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Abstract. Suppose that the word of an eyewitness makes it 80% probable that A 
committed a crime, and that B is drawn from a population in which the incidence 
rate of that crime is 80%. Many philosophers and legal theorists have held that 
if this is our only evidence against those parties then (i) we may be justified in 
finding against A but not against B; but (ii) that doing so incurs a loss in the 
accuracy of our findings. This paper argues against (ii). It argues that accuracy 
considerations can motivate taking different attitudes towards individualized and 
statistical evidence even across cases where they generate the same probability 
that the defendant is guilty. 
 

 
1. Introduction 

Both intuition and the actual findings of courts distinguish between the force of ‘individual’ 
and that of ‘statistical’ evidence on grounds that seem unconnected to their accuracy. Consider 
these two cases: 
 

A: The organizers of a rodeo sue Alice for gate-crashing their Saturday afternoon event. 
Their evidence is as follows: Alice attended the event—she was seen and photographed 
on the main ranks. No tickets were issued, so she cannot be expected to prove that she 
bought a ticket with a ticket stub. However, a local police officer observed Alice 
climbing the fence and taking a seat. The officer is willing to testify in court. Careful 
testing has shown that this officer’s testimony about such matters in such circumstances 
is correct about 90% of the time.  

B: The organizers of the local rodeo decide to sue Bob for gate-crashing their Sunday 
afternoon event. Their evidence is as follows: Bob attended the Sunday afternoon 
event—he was seen and photographed on the main ranks. No tickets were issued, so 
Bob cannot be expected to prove that he bought a ticket with a ticket stub. However, 
while 1,000 people were counted in the seats, only 100 paid for admission.1  

 
Courts that are supposed to make findings based on what is more likely than not—as, in civil 
cases, actual courts in the US and the UK do—would in fact find against Alice in case A but 
not against Bob in case B. And intuition seems to accord with this. But the evidence against 
Alice makes her guilt no more likely the evidence against Bob makes his; and in both cases 
the balance of evidence favours a finding against the defendant.  
  The relevant difference between the cases seems to be that the evidence against the 
defendant is in some sense ‘individualized’ in case A and in some sense ‘statistical’ in case B, 
as is borne out by the fact that people exhibit parallel differences in their responses to other 
pairs of cases that clearly fall on either side of this vaguely defined line. Slightly more 
precisely: the evidence in case A seems to be about Alice and the offence that she specifically 
is supposed to have committed, whereas the evidence in B seems to have no more bearing on 
Bob’s alleged gate-crashing than on that of the 900 (or 899) other miscreants in attendance on 
that day.2     

                                                        
1 Adapted from Cohen 1977: 74-81. 
2 Here are some examples: (i) A bus known to belong either to the Blue Bus Co. or the Green Bus Co. causes an 
accident. An eyewitness with 90% reliability claims that it was clearly a Blue Bus Co. bus that was involved. (ii) 
Like case (i), except that the evidence is just the fact that an expert witness testifies that an identification technique 
based on matching tyre tracks with tyres is correct 90% of the time, and that based on this technique he believes 
that the bus involved in this accident belonged to the Blue Bus Co. (iii) Like case (i), except that the evidence is 
just the fact that 90% of the bus traffic on the route where the accident took place belongs to the Blue Bus Co. 
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 A substantial literature offers both vindicatory and debunking explanations of the 
difference in our reactions to these and similar cases.3 Vindicatory explanations include the 
following: (i) that there is no good reason to infer a probability of guilt from the evidence in 
case B4; (ii) that the evidence in case A supports counterfactuals that the evidence in case B 
does not5; (iii) that finding against a defendant on statistical evidence is inconsistent with 
respecting his autonomy6; (iv) that the evidence can support a self-ascription of knowledge 
that A is guilty but not a self-ascription of knowledge that B is7; (v) that a finding against Bob 
could ‘easily’ be mistaken, whereas a finding against Alice could not.8 Debunking explanations 
include the following: (vi) that our subjective probability of guilt in B-like cases fails to match 
the mathematically correct probability9; (vii) that we get the probabilities right but are misled 
by the form in which the evidence is presented.10 
 But there is one thing on which advocates of all these views, except possibly (i), agree: 
considerations of accuracy alone cannot motivate different approaches to A and B. Anyone 
who cared only about the accuracy of the court’s findings should be in favour of finding against 
both Alice and Bob (given a relatively lenient standard of accuracy) or against neither of them 
(given a relatively strict standard). For instance, Enoch et al. write of ‘the loss in accuracy that 
is always involved in ruling out probabilistically respectable evidence’.11 Koehler and Shaviro 
write: 

 
From the standpoint of verdict accuracy, the equivalence between background and 
case-specific evidence is difficult to dispute. Even cases involving ‘naked statistical 

                                                        
(iv) Like case (i), except that the evidence is just the fact that nine times more accidents on that route are due to 
buses operated by the Blue Bus Co. than are due to buses operated by the Green Bus Co. (iv) Like case (i), except 
that the evidence is just the fact that tyre tracks taken from the scene of the accident match 9 of the ten Blue Bus 
Co. buses and only one of the ten Green Bus Co. buses. Wells (1992) presents evidence that most people, including 
most of the practicing trial judges questioned, are prepared to find against the Blue Bus Co. in cases like (i) and 
(ii) but not in ones like (iii)-(v). One glaring difference between the cases that elicit a finding of liability, and 
those that do not, is that in the former cases the evidence explicitly involves reference to the incident itself rather 
than to general statistics that are equally concerned with other, similar incidents.  
3 Other B-like cases, summarized in Redmayne 2008: 282-3, include: (i) Prisoners: 24 of the 25 prisoners in a 
yard kill the prison guard – should we convict a prisoner chosen at random from those 25? (Nesson 1979: 1192-
3.) (ii) Predicting Violence: studies show that 50% of males who are brought up in broken homes, are unemployed 
and addicted to drugs go on to commit violent crimes. Can we use this fact as evidence against a defendant who 
possesses these characteristics? (Duff 1998: 156.) (iii) People v. Tice: ‘Two people, Tice and Simonson, both 
hated Summers and wished him dead. Summers went hunting one day. Tice followed with a shotgun loaded with 
ninety-five pellets. Quite independently, Simonson also followed, but he had loaded his shotgun with only five 
pellets, this being all he had on hand. Both caught sight of Summers at the same time, and both shot all their 
pellets at him… Only one pellet hit Summers, but that was enough: it hit Summers in the head and caused his 
death. While it was possible to tell that the pellet which caused Summers’ death came either from Tice’s gun or 
from Simonson’s gun, it was not possible to tell which’ (Thomson 1986: 200-1). Do we have evidence on which 
to convict Tice?   
4 Allen and Pardo 2007 sect. 3.  
5 Cohen 1986: 165; Enoch et al. 2012. 
6 Wasserman 1991: 943. 
7 Thomson 1986: sections IV-V; Blome-Tillman 2017. Blome-Tillman’s approach seems to me to offer an 
especially promising way to recover our intuitions in so far as they are worth recovering, assuming that one buys 
into the ‘knowledge first’ program in epistemology. My aim here, as will shortly become clear, is not to compete 
with it but rather to attack the claim that dispensing with statistical evidence inevitably incurs a cost in accuracy 
(whether or not it incurs a cost in knowledge). 
8 Pritchard forthcoming. 
9 Tribe 1971. 
10 Neidermeier and Messé 1991; cf. Redmayne 2008: 304. 
11 Enoch et al. 2012: 219. 
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evidence’ (i.e., a base rate unaccompanied by other evidence [as in case B]) should not 
be treated differently from other cases if one's sole concern is verdict accuracy.12  

 
Similarly, Nesson regards accuracy in verdicts as just one of the aims of a trial, to be balanced 
against that of producing an ‘acceptable’ history of the events being investigated. But he grants 
that rejection of ‘statistical’ evidence in the light of these other aims imposes a cost in accuracy: 

Because the judicial system strives to  project an acceptable account about what 
happened, then, the [base rate] evidence is insufficient, notwithstanding the high 
probability of its accuracy… One who is absolutely committed to the process of 
ascertaining and testing the truth, and who would thus shun any concession of the 
search for truth to the production of acceptable verdicts, may find that he does so at the 
expense of other important values.13 

 
Again, Brook, writing about case B, concedes that: 
 

If minimization of errors simply in terms of reducing the total number of wrong results 
is to be the only fundamental criterion of successful fact-finding in civil litigation, then 
traditional probability theory, properly applied and understood, points us to the right 
result [i.e. finding against Bob], however harsh it may sometimes seem.14 

 
Brilmayer states in similar terms why a concern for accuracy demands finding against Bob: 
 

[T]o deny recovery [to the organizers of the rodeo] would increase unnecessarily the 
number of errors in the long run. Holding each rodeo spectator liable for trespass will 
result in [900] correct decisions and [100] incorrect decisions. Disallowing liability will 
result in only [100] correct decisions but [900] incorrect ones.15     

 
Brook’s and Brilmayer’s argument applies to Alice as much as to Bob. If it establishes anything 
at all then it commits us to treating these cases alike. 
 We can express what is common to all these views by means of a formula: 
 

Accuracy-indifference (AI): Accuracy considerations cannot by themselves justify a 
difference in finding between case A and case B. 

 
On the fact of it, (AI) is highly intuitive. After all, just as Brilmayer says, if you repeatedly find 
against people like Bob because of a base rate exceeding 50%, you will get it right just as often 
as if you repeatedly find against people like Alice because of an eyewitness whose reliability 
exceeds 50%. Considerations of accuracy are indifferent to the distinction between individual 
and statistical evidence.  

I’ll argue here that (AI) is false. The argument involves a simple model in which 
accuracy considerations do by themselves motivate finding against Alice but not against Bob. 
Wherever we draw the exact line between statistical and individual evidence, that line must put 
the evidence against Alice on the ‘individual’ side and the evidence against Bob on the 
‘statistical’ side. Since this is plausibly the only relevant difference between case A and case 

                                                        
12 Koehler and Shaviro 1990: 264.  
13 Nesson 1985: 1379, 1392. 
14 Brook 1985: 322.  
15 Brilmayer 1979: 676. I have altered the numbers to fit with my own example. 
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B, the model is therefore also a counterexample to the claim that an exclusive concern for 
accuracy demands indifference to this distinction. 

Section 2 describes the basic elements of the model. Section 3 gives the argument for 
finding against Alice but not against Bob. The model is highly idealized in the interests of 
clarity, in the sense that (a) it makes somewhat unrealistic assumptions about the details of the 
case; (b) it misses out various complicating factors that we’d expect to be present in real cases; 
(c) it is explicitly focused on just one type of comparison of individual and statistical evidence. 
Subsection 3.2 discusses what happens if we (a) relax the assumptions; section 4 looks at the 
effect of (b) adding some complicating factors and (c) considering a different way in which we 
might compare these types of evidence for accuracy. Section 5 concludes. 
 
 

2. The model 
This model has four elements: (i) a threshold for finding against the defendant; (ii) an option 
set; (iii) a distribution for the probability of guilt that eyewitness evidence produces; (iv) a 
distribution for the probability of guilt that base rate evidence produces.  
 

2.1 The Threshold 
The model is, as I’ll say, semi-Lockean. This means that a person is convicted only if the 
evidence supports a probability of guilt that passes a certain threshold 𝑐. For instance, the 
requirement that guilt be ensured ‘beyond a reasonable doubt’ might be interpreted as meaning 
that the probability of guilt must exceed 95%, so that 𝑐 = 0.95; in UK civil cases what matters 
is the balance of evidence, i.e. 𝑐 = 0.5. The precise value of 𝑐 will not affect the argument, but 
for convenience I’ll set 𝑐 = 0.8 as the relevant threshold. 
 It matters that a threshold probability of 𝑐 does not imply that the proportion of 
convictions that are correct is 𝑐. Rather, a threshold of 𝑐 implies a rate of true conviction that 
exceeds 𝑐; by how much depends on the kind of evidence. For instance, suppose 𝑐 = 0.8. And 
suppose that our method for determining guilt is to cast a magic die with faces labelled 1-10: 
if the number shown is 𝑛 then the probability of guilt is 𝑛/10. This is because over many trials 
it has turned out (in light of subsequent findings) that the defendant was guilty in 10% of trials 
in which the die showed 1, in 20% of those in which it showed 2, and so on; and the laws of 
magic give us every reason to expect things to continue this way. 𝑐 = 0.8 implies that we 
convict if and only if the die shows 9 or 10. But if the die shows each number equally often, 
then this means that on this policy, the true conviction rate is 95%, not 80% (or 90%): that is, 
95% of convictions are correct. The obvious point that this fictional example illustrates will be 
of vital importance in what follows. 
 

2.2 The policy problem 
I’ll start by assuming that the situation is as follows. We have the resources to punish a fixed 
number 𝐷 of gate-crashers every year. Because we are semi-Lockean, we can only punish those 
against whom the evidence supports a probability of guilt of at least 80%. Every year there are 
many more than 𝐷 visitors to the rodeo for whom the eyewitness evidence supports such a 
probability of guilt; this year that number includes Alice. And there are many more than 𝐷 such 
visitors for whom statistical evidence, of the sort found in case B, supports such a probability 
of guilt. This year that number includes Bob. Let us suppose that the total number of such 
visitors in each category is 𝐾, where 𝐾 ≫ 𝐷.  
 In this idealized scenario, the policy problem is to choose a proportion 𝛼, 0 ≤ 𝛼 ≤ 1, 
such that of the 𝐷 people that we convict of gate-crashing on either eyewitness or statistical 
evidence, 𝐷𝛼 are convicted on eyewitness evidence and 𝐷(1 − 𝛼) are convicted on statistical 
evidence. For instance, we might choose 𝛼 = 0.3, so that each year 30% of convicted persons 
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are convicted on the sole basis of eyewitness evidence that implies a probability of guilt 
exceeding 80%, and 70% on the sole grounds that they attended the rodeo on a day when at 
least 80% of those who attended did so without paying. The aim is to choose the policy with 
maximal accuracy i.e. the value of 𝛼 for which the proportion of convictions that are true 
convictions is maximal, given that we are going to convict 𝐷 people.  
 

2.3 Distribution of 𝑎 
In cases where we have a positive identification from an eyewitness, the probability of guilt is 
determined as follows. (i) Form an estimate 𝑝 of the probability of Alice’s guilt given positive 
identification by ‘the average’ eyewitness. (This is something for which we shall have to rely 
on pre-existing statistics, or failing that common sense.) (ii) Create a large population of 
photographs of persons in situations (lighting, angle of view etc.) like those obtaining at the 
rodeo (or wherever else the incident took place), in which a proportion 𝑝	of photographs are of 
Alice herself.16 (iii) Draw photographs at random from this population and ask the witness 
whether the person in the photograph is Alice; repeat until the witness has made some very 
large number 𝑁 of positive identifications. (iv) If 𝑀 is the number of true positive 
identifications that the witness has made, then 𝑎 = 𝑀 𝑁⁄ .17 We convict on this evidence if and 
only if 𝑎 > 𝑐, where 𝑐 is the threshold for conviction as described above. 
 For instance, suppose that we think that the average eyewitness’s positive identification 
of Alice is correct 25% of the time. So (i) we form an initial estimate that the probability of 
guilt, given positive ID from the ‘average eyewitness’, is 25%. (ii) We form a population of 
photographs of people climbing fences at rodeos; 25% of these are photographs of Alice 
herself. (iii) After seeing very many of these photographs, the eyewitness identifies 𝑁 = 100 
of these as photographs of Alice. (iv) It turns out that 𝑁 = 90 of those 100 photographs are 

                                                        
16 More generally, a proportion 𝑞 of photographs have visible feature 𝐹 if our initial estimate is that a proportion 
𝑞 of positive courtroom identifications of Alice by the average eyewitness would identify her with a person who 
has property 𝐹. So for instance, if Alice is more than 6’ tall, none, or vanishingly few, of the photographs should 
be clearly of individuals who are less than 5’ tall. 
17 Here is a brief mathematical justification for the procedure. Suppose that given the eyewitness testimony but 
prior to any testing of the eyewitness, we start out with probability 𝑝 that Alice is guilty. And suppose that we 
show the witness a very large number 𝑇 of photographs, of which 𝑁 result in positive identifications, 𝑀 of which 
are true positive identifications. Then the results may be tabulated as follows: 
 

 Positive ID No positive ID 
Photo is of Alice 𝑀 𝑝𝑇 −𝑀 
Photo is not of Alice 𝑁 −𝑀 (1 − 𝑝)𝑇 −𝑁 +𝑀 

  
In the body of this table, the entries in the first column follow from the description of the case; the entries in the 
second column follow from the fact that for large 𝑇, a proportion 𝑝 of the 𝑇 photographs that the witness sees will 
be photographs of Alice. Now writing 𝐺 for the proposition that Alice is guilty, 𝑌 for the proposition that this 
eyewitness has positively identified her, we can form the following estimates from the data given in the table:  
 

(i) Pr(𝑌|𝐺) = D
DE(FGHD)

= D
FG

 

(ii) Pr(𝑌|¬𝐺) = JHD
JHDEK(LHF)GHJEDM

= JHD
(LHF)G

 

 
We can now insert these values and Pr(𝐺) = 𝑝 into the following formula, which is a theorem of the probability 
calculus: 
 

(iii) Pr(𝐺|𝑌) = NOK𝑌P𝐺MNO(Q)
NOK𝑌P𝐺MNO(Q)ENOK𝑌P¬𝐺MNO(¬Q) . 

 
This gives 𝑎 = Pr(𝐺|𝑌) = 𝑀 𝑁⁄ . 
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indeed of Alice; so our probability of guilt following testing is 𝑎 = 𝑀/𝑁 = 0.9. We convict 
on this evidence if and only if 0.9 > 𝑐.  
 A natural objection is that the whole procedure is highly unrealistic: it has very little to 
do with the ways in which we actually assess eyewitness evidence. It is unrealistic, but there 
are two things to say about that. First, the aim here is only to show that it doesn’t follow, from 
the premise that accuracy is our sole concern, that we must treat cases A and B in the same 
way. To that end, it’s enough to show that there is a model that distinguishes them but in which 
accuracy is the only concern; it isn’t necessary to show that the model is an accurate description 
of reality. (And we knew from the outset that it wouldn’t be, since as Bentham complained, 
some aspects of actual legal practice certainly are inconsistent with the aim of accuracy.18) 

Second, the procedure is rationally defensible, at least from a Bayesian perspective (for 
reasons outlined at n. 17). I submit that setting aside the likely costs of the imaginary procedure, 
something like it is rationally preferable to the overly credulous attitude towards eyewitness 
evidence that seems still to be prevalent in many courts.19 It could therefore be maintained that 
although the model doesn’t explain – and was never intended to explain – why actual courts 
distinguish A-like cases from B-like ones, it might still cast light on why an overriding concern 
for accuracy might make it rational to do so.20         
 Having set out the procedure that determines 𝑎, can we say anything about its 
distribution? Should we expect its value to be tightly bunched around a single value, so that 
everyone in the population has 𝑎 ≈ 0.9, say? Or should we expect the distribution to be much 
more spread out, so that we can (e.g.) find equally many people with 𝑎 = 0.1, 𝑎 = 0.2, etc? 
Clearly the actual distribution of 𝑎 is an empirical question. But we can say enough about it 
𝑎	𝑝𝑟𝑖𝑜𝑟𝑖 to place constraints on its distribution that are strong enough to make the intended 
point.  
 Consider the process that leads to the determination of 𝑎: repeated tests of visual 
identification. Visual identification is a skill that is, we normally assume, relatively stable in a 
single person over, say, a few weeks or months. (If we did not assume this then nobody would 
regard a witness’s skills of visual identification as determined during the trial as indicative of 
his acuity at the time of the incident.) It follows that there is a correlation between the results 
of individual tests. To take two extreme cases: if the witness’s first 𝑛 positive identifications 
are all correct, 𝑛 < 𝑁, then it is more likely that the (𝑛 + 1)th positive identification is also 
correct. If the witness’s first 𝑛 positive identifications are all incorrect then it is more likely 
that the (𝑛 + 1)th positive identification is also wrong. Putting this more generally, and in 
terms of statistics: the relative frequency of test subjects whose (𝑛 + 1)th positive 

                                                        
18 See Jackson and Doran 2010: 178f. (commenting on Bentham 1978 [1827]). 
19 For a survey of eyewitness research and a history of its uptake within the US legal system, see Wells et al. 2006.   
20 There are two other apparent difficulties with this procedure. First, it is something of a simplification to suppose 
that we simply identify 𝑎 with 𝑀 𝑁⁄  without any ‘smoothing’ in the light of the background rate of success in the 
general population. Certainly, it would be absurd to think so when 𝑁 = 1: nobody would say that if an eyewitness 
makes a single positive identification under test conditions, and it happens to be correct, then that witness’s 
positive ID of a suspect would be sufficient to convict at any threshold. However, the simplification is harmless 
on the assumption that 𝑁 is large.  

Second, the reasoning might appear to involve the base-rate fallacy by not taking account of the actual 
incidence of gate-crashing in the population (or at any event in stadia like that into which the eye-witness identified 
Alice as having gate-crashed). But this is not so: we can imagine that there is no doubt that the witness saw a gate-
crasher – perhaps because only a gate-crasher would have been in that exact location – and the question is only 
which person he saw. This form of the base-rate fallacy arises only if we mistakenly identify the converse 
proportion – that is, the proportion of guilty people whom the witness positively identifies as guilty – with the 
probability of guilt given positive eyewitness identification. (For a description of one such case see Bar-Hillel 
1980: 211-12.)  
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identification is correct is higher amongst witnesses whose first 𝑛 positive identifications have 
a higher success rate than amongst those whose first 𝑛 positive identifications have a lower 
success rate.  

Now the important point is that the tighter the correlation between successes in 
successive instances of the 𝑁 trials that determine 𝑎, the more ‘dispersed’ is the distribution of 
𝑎 itself. Slightly more precisely: as the correlation between success in past trials and success 
in the next trial gets stronger, then for any given distance from the mean value of 𝑎, an 
increasing proportion of the population will have an 𝑎 lying further than that distance from the 
mean. 
 To get an intuitive feel for this, consider a crude informal model of the test procedure. 
Imagine two large populations of coins, 𝑃L and 𝑃Y. Each coin in each population is tossed 𝑁 
times for some very large 𝑁 and the results of each trial are compiled into a record for that 
coin. For a given coin 𝑖, let 𝑎Z be the proportion of its 𝑁 tosses that were heads. For each 𝑛 <
𝑁 we look at the frequency of heads on the first 𝑛 tosses within each population (i.e. within 𝑃L 
or 𝑃Y), and we attempt to correlate this with the occurrence of heads on the (𝑛 + 1)th toss in 
that population.  

Suppose that after many tosses our findings are as follows. In both populations, half of 
the coins land heads on the first toss. But in 𝑃L there is a correlation between heads in past 
tosses and heads in the next. Specifically: for each 𝑛 < 𝑁 and 𝑚 ≤ 𝑛, in the subpopulation of 
𝑃L that scored 𝑚 heads out of 𝑛 tosses, the proportion of coins that land heads on the (𝑛 + 1)th 
toss is (𝑚 + 1)/(𝑛 + 2). In 𝑃Y by contrast, there is no such correlation: for each 𝑛 < 𝑁 and 
𝑚 ≤ 𝑛, in the subpopulation of 𝑃Y that scored 𝑚 heads out of 𝑛 tosses, the proportion of coins 
that land heads on the (𝑛 + 1)th toss is always 0.5.  

It follows from these facts that the overall distribution of the 𝑎Z is much more dispersed 
in 𝑃L than it is in 𝑃Y. In 𝑃L the distribution of the 𝑎Z is uniform, with mean 𝑁/2	 and variance 
J(JEY)
LY

: that is, for each integer 𝑥 = 0,1…𝑁, the proportion of coins 𝑖 such that 𝑎Z = 𝑥 is L
JEL

, 
so that the distribution is flat across its support. For instance, if we toss each coin in 𝑃L one 
hundred times, then about 1% of the coins in 𝑃L always land heads, about 1% land tails once 
in these hundred tosses, about 1% land tails twice, etc.  

But in 𝑃Y the distribution is binomial, with mean 𝑁/2 and variance J
_
< J(JEY)

LY
 (if 𝑁 >

1): it is peaked around its mean and falls off rapidly as we move away from the mean in either 
direction. For instance, if we toss each coin in 𝑃Y a hundred times, a negligible proportion lands 
heads on every toss; about 1% land tails 40 times and heads 60 times, about 8% land tails 50 
times and heads 50 times, about 1% land tails 60 times and heads 40 times, and so on. The 
proportion of heads is therefore more widely dispersed in 𝑃L than in 𝑃Y. For an extreme 
illustration of that, note that in 𝑃L the proportion of coins that land the same every time is Y

JEL
; 

in 𝑃Y it is L
Y`ab

 i.e. very much less.21  
 We can put all this more generally by means of the following formal model. Let us 
write 𝜇	for the mean value of 𝑎 across the population. And let us suppose that there is a constant 
real number 𝜆 ∈ [0,∞) such that for any 𝑛 < 𝑁 and any 𝑚 ≤ 𝑛, in a sub-population of 
individuals for which 𝑚 out of the first 𝑛 positive identifications are correct, the proportion of 
individuals whose (𝑛 + 1)th positive identification is correct is given by:   
 

(1) 𝜇h
i/j = iEkl

jEk
 

                                                        
21 Note that the model says nothing about the physical chances of any coin’s landing heads, nor does it assume 
that the tossing of a coin is an indeterministic process. As in the overall story about statistical evidence offered 
here, the objective probability involved is simply frequency.     
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The quantity 𝜆 is thus a measure of the correlation between a high rate of success in any 
sequence of trials and a high rate of success in the next. When 𝜆 is very small, the correlation 
is strong. As 𝜆 gets large, the correlation becomes weak. For instance, in the extreme case that 
𝜆 = 0, a success rate of 𝑚/𝑛 in the first 𝑛 trials implies a success rate of 𝑚/𝑛 in the (𝑛 + 1)th 
trial. So in the sub-population that was successful in the first trial, the rate of success in the 
second (and in any subsequent) trial is 100%; and in the sub-population that was unsuccessful 
on the first trial, the rate of success in the second (and in any subsequent trial) is zero. This is 
analogous to a large collection of coins that have been tossed 𝑁 times, of which all land heads 
every time or tails every time (perhaps because all have an extreme bias). The other extreme 
𝜆 = ∞ corresponds to the case where there is no correlation: any success rate in the first 𝑛 trials 
implies a constant success rate of 𝜇 in the (𝑛 + 1)th trial. If 𝜇 = 0.5, this is analogous to 
population 𝑃Y in the example: a large collection of coins that have been tossed 𝑁 times and in 
which the success rate has a binomial distribution with mean 𝑁/2 and variance 𝑁/4. 
(Population 𝑃L in that example corresponds to an intermediate case in which 𝜆 = 2 and 𝜇 =
0.5.)22 
 For any fixed values of 𝜆 and 𝜇 we can determine the distribution of 𝑎. Specifically, for 
large 𝑁, the distribution of 𝑎 is roughly a beta distribution with parameters 𝜆𝜇 and 𝜆(1 − 𝜇). 
Its probability density function is given by: 
 

(2) 𝛽kl,k(LHl)(𝑥) =
opqab(LHo)p(baq)abr(k)

r(kl)rKk(LHl)M
 

 
– where Γ is the gamma function Γ(𝑥) = ∫ 𝑡oHL𝑒Hw𝑑𝑡y

z ; for 𝑥 a positive integer this yields 
Γ(𝑥) = (𝑥 − 1)!  
 These mathematical details are not necessary for a qualitative understanding of the 
basic argument. The important point is that the distribution of the statistic 𝑎 depends, for its 
dispersion about its mean in a population, on the strength of correlation, for each individual in 
that population, between the rate of success in past trials and success in the next trial. The 
formalization in terms of beta functions is just a way of quantifying that point. To illustrate the 
quantification, consider Figures 1 and 2.  
 

 
Figure 1: 𝛽z.|,z.| 

                                                        
22 There is a little bit of fudging here. If the average rate of success amongst those who have made 𝑚 correct 
positive identifications out of 𝑛 positive identifications under test conditions is iEkl

jEk
, then the average rate of 

success amongst those who have made 𝑀 correct positive identifications out of 𝑁 positive identifications is DEkl
JEk

, 
and so 𝑎 should be taking this value and not the value 𝑀/𝑁. What makes the fudging harmless is the assumption 
that 𝑁 is large, for as 𝑁 becomes large 𝑀/𝑁 and DEkl

JEk
 approach one another because both tend to 𝜇. 

 

 
Figure 2: 𝛽Y,Y
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Figure 1 represents the distribution of 𝑎 in a population where an individual’s past success is 
strongly correlated with her performance at the next trial, here illustrated by 𝜇 = 0.5 and 𝜆 =
1. Figure 2 represents the distribution of 𝑎 in a population where this correlation is weak, here 
illustrated by 𝜇 = 0.5, 𝜆 = 4. 

What I want to take forward from this discussion of the distribution of 𝑎 is therefore 
the following. First, because visual acuity as measured by 𝑎 is a relatively stable skill, we 
should expect a correlation between the results of the sequence of trials by means of which we 
determine 𝑎. Second, the existence of such a correlation implies a degree of dispersal in the 
distribution of 𝑎 across the population. It is to be expected that more people will score high 
values and more people will score low values than we should expect if an individual’s track 
record and future performance were (statistically) completely independent.   
 

2.4 Distribution of 𝑏  
The fourth part of the model is the distribution of the second statistic, which I’ll call 𝑏: the 
number of people who did not pay for entry as a proportion of the total number of people who 
attended. To be clear on what we are now asking about: for every rodeo or rodeo-like event, 
there is a certain proportion of people amongst those that attended who did not pay for a ticket: 
at one event, it may be 0 (if everybody pays for entrance on that day); at another, it may be 1 
(if nobody pays for entrance); at a third, it may be 0.2 (if 80% pay); and so on. By ‘the 
distribution of 𝑏’ I mean the record of how frequently each such value turns up in a very long 
sequence of rodeos. For instance, if 𝑏 has a roughly normal distribution with a mean of 0.5 and 
a very small variance, then this means that at almost all Sunday events, close to half of those 
that attended paid for their ticket. If 𝑏 has a roughly exponential distribution, then there may 
be (e.g.) relatively many events that nobody entered without paying for entrance, half as many 
at which 10% did, a quarter as many at which 20% did, and so on.23   
 Now we know what is meant by the distribution of 𝑏, can we say anything about its 
shape? Again, some a priori constraints on it follow from the manner of its determination. The 
statistic 𝑏 is not determined by testing, for each audience member one, over whether he or she 
has paid for entry. (If we could do that then there would be no need to rely on statistics in Bob’s 
case, as we could simply apply the test to Bob directly!) Rather, we extract it from aggregate 
data concerning gate receipts and a head-count of spectators. We know from receipts that 𝑀 
people paid for entry; and we know from a head-count that 𝑁 people were actually present at 
the Sunday event. So 𝑏 = 𝑀/𝑁. 
 Even though we do not have data on this, we can say something about our expectations 
concerning the correlation between the proportion of non-payers in the first 𝑛 audience 
members and whether the (𝑛 + 1)th audience member is a non-payer. Specifically, suppose 
that we order the members of the audience at each event in some arbitrary way, for instance by 
the order in which they passed through the gate.24 The question is whether for each 𝑛 we should 
expect a correlation between the proportion of non-payers amongst the first 𝑛 audience 
members to have passed through the gate and whether the (𝑛 + 1)th audience member is a 
non-payer. More explicitly: suppose we look at the data across a very large number of events. 
                                                        
23 These would have to be truncated normal and exponential distributions, because the proportion of people that 
did not pay at a given rodeo-like event must lie between 0 and 1.  
24 That the method of ordering is irrelevant follows from the fact that if we treat the results on any Sunday as a 
sequence of random variables 𝜒L,… 𝜒J, where 𝜒Z = 1 if on some specific ordering the 𝑖th audience member is a 
non-ticket-holder, and otherwise 𝜒Z = 0, then the 𝜒L, …𝜒J are exchangeable i.e. for any 𝐽 ⊆ {1,2…𝑁} and any 
𝑘 ≤ |𝐽|, the frequency with which ∑ 𝜒��∈� = 𝑘 is a function of |𝐽|. That the 𝜒L,… 𝜒J are exchangeable is a weaker 
condition than that they are independent and identically distributed (i.i.d.), although as we’ll see there is reason 
to expect something like independence in this case.   
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Do we expect that, amongst the events in which a larger proportion of the first 𝑛 people to pass 
through the gate didn’t pay, the (𝑛 + 1)th person to pass through the gate is a non-payer more 
often than amongst the events at which a smaller proportion of the first 𝑛 people to pass through 
the gate didn’t pay?25  
 The answer, I claim, is no. Whether one person chooses to pay has no bearing on 
whether another person does. Given a particular base rate of such behavior 𝑥 in the population 
in general, the existence of a proportion 𝑦 ≫ 𝑥 of non-ticket-holders in the first 𝑛 audience 
members on some occasion does nothing to move the rate of non-ticket-holding by the (𝑛 +
1)th audience member much higher than 𝑥; and if we found such a high rate in the first 𝑛 
people that we examined then we should be inclined to say it was bad luck, rather than that it 
was indicative of a strain of criminality amongst people attending on those days, people whose 
behavior cannot have had a causal influence on anyone else who attended that day. (At any 
rate, we can stipulate that this is how the story is supposed to go.)26  

This relative weakness of correlation has consequences for the distribution of 𝑏 itself, 
just as the corresponding stronger correlation had consequences for the distribution of 𝑎. 
Specifically, if we model the strength of correlation in accordance with (1), then the relevant 
value of 𝜆 must be high. Since it follows from (1) that 𝑏 has a beta distribution with parameters 
𝜆𝜇 and 𝜆(1 − 𝜇), where 𝜇 is the overall mean rate of non-payment, the shape of 𝑏’s distribution 
must look something like that in Figure 2: that is, tightly bunched around its mean. 
 Briefly to repeat the intuition behind this. We are supposing that the payment or non-
payment behaviour of individuals is close to being independent, in the sense that a high rate of 
non-payment among the first 𝑛 individuals arriving at the stadium does not correlate with a 
large rate of non-payment amongst later-arriving individuals. In this sense, testing individuals 
for non-payment is like repeatedly tossing a coin that is known to be fair: a long run of heads 
is no indication that the next toss will result in heads – it is just a run of good (or bad) luck. 
 The basic philosophical distinction that drives the difference in the shapes of the 
distributions of 𝑎 and of 𝑏 can be put like this. Whether a single individual is good at identifying 
witnesses is a relatively enduring trait that we can identify from testing that individual’s time-
slices for a property like having made a correct positive identification: doing well in the tests 
                                                        
25 Note: I am not saying that this procedure is being carried out in the model as a means of ascertaining anybody’s 
guilt; rather, I am eliciting your intuitions about what would happen if we did carry it out, as a means for 
motivating the claim that the proportion of non-paying spectators at a rodeo is a random variable that is distributed 
relatively tightly about this mean value. 
26 The situation would be different if mass non-payment generally took the form of a cascade, in which each 
participant’s decision to enter without paying depended on the number of participants who had already entered 
without paying, in such a way that non-payment by a high proportion of her predecessors tended to encourage an 
individual to enter without paying. (For discussion a similar case, see Blome-Tillman 2015). In that case, a high 
rate of non-payment amongst the first 𝑛 people to enter the stadium would correlate with non-payment by the 
(𝑛 + 1)th entrant. But even then, it is implausible that the correlation would be anything like as strong as exists 
between earlier and later successes in trials of the sort that determine statistic 𝑎. The reason for this is that a great 
variety of facts about an individual’s experience and psychology are relevant to the determination of her decision 
to pay entrance or not, almost all of which are causally independent of – and share no common cause with – what 
her predecessors did. By contrast, we should expect that a sequence of tests of an eyewitness’s visual acuity will 
reflect in its outcomes the impact of all important factors that were relevant to the correctness of the identification 
of a suspect. 

It is perhaps worth mentioning here that it may be this, and not any Kantian conception of freedom as 
autonomy, that mediates the relevance to these sorts of cases of the assumption that Alice and Bill acted freely. 
That assumption has been thought, on a roughly Kantian interpretation of freedom, to imply that we cannot use 
the incidence rate in a group as evidence against any of its members, although the connection between these things 
is somewhat unclear (Wasserman 1991). It may be that it is not any radical autonomy of her decision, but rather 
the fact, that an unsurveyable variety of facts about an individual’s experience and psychology go into determining 
it, that bears on the propriety of using statistical evidence against her, ultimately for reasons that my main 
argument is going to outline.  
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suggests that the person is discerning, and so we can expect there to be a correlation between 
a high rate of possession of that property by earlier time-slices, and its possession by the next 
time-slice that makes a positive identification.  

But when we examine distinct individuals in some class – such as: the class of people 
who entered the stadium on this or that day – for the property of not having paid for entry, we 
are not identifying a trait that can be ascribed to the whole group. It is not as though we think 
of individual guilt as manifesting some sort of moral or legal miasma that was associated with 
the event and which somehow caused audience members on that day to enter without paying 
for a ticket. There are historical instances of this view’s having been widely accepted with 
regards to this or that type of wrong-doing; and if the argument that follows is correct, it may 
be no accident that they were also cases in which collective punishment for such types of 
wrong-doing seemed to some to be appropriate. Be that as it may, what matters from the present 
perspective is the connection between the different distributions of 𝑎 and 𝑏 in this model to the 
rate of accuracy of convictions on the two types of evidence that they represent, to which I now 
turn.  
 
 
3 The demands of accuracy 
Recall that the policy problem was to determine the optimal value for the proportion 𝛼 of 
convictions on eyewitness as opposed to statistical evidence, where 𝛼 lies between 0 and 1 
inclusive. ‘Optimal’ means that we are maximizing accuracy i.e. the proportion of convictions 
that are correct. To this end, we need to calculate two quantities: the rate 𝐴 of true convictions 
per conviction on eyewitness evidence, and the rate 𝐵 of true convictions per conviction on 
statistical evidence. The proportion of convictions that are true convictions will then be given 
by 𝑇(𝛼) = 𝛼𝐴 + (1 − 𝛼)𝐵: we must select an 𝛼 that maximizes 𝑇(𝛼).  
 

3.1 Solving the policy problem 
We calculate 𝐴 as follows. The curve in Figure 3 is the same as that in Figure 1: it depicts the 
distribution of eyewitness reliability amongst cases in which the eyewitness picks out a suspect 
(for instance, Alice) as having gate-crashed a rodeo or similar.  
 

 
 

Figure 3: distribution of 𝑎     Figure 4: distribution of 𝑏  
 
The region under the curve to the right of 𝑥 = 0.8 is shaded: this represents the distribution of 
this accuracy amongst those cases in which we convict on this evidence, because these are 
exactly the cases in which the witness’s accuracy exceeds the threshold i.e. 𝑎 > 𝑐 = 0.8. The 
average accuracy of all these convictions will be the mean value of the accuracy within the 
shaded region: this is the average rate 𝐴 of true convictions given that the conviction is made 
on eyewitness evidence.  
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 Intuitively we can see, just by looking at this curve, that 𝐴 > 0.9. Amongst the cases in 
which we have an eyewitness whose accuracy exceeds 0.8, there are for any Δ ∈ (0,0.1], more 
cases in which her accuracy is 0.9 + Δ than in which her accuracy is 0.9 − Δ. (It suffices for 
this, though it is not in general necessary, that the distribution function is increasing throughout 
𝑎 ∈ (0.8,1).) More formally, the mean rate of true conviction is: 
 

(3) 𝐴 = 𝐸(𝑎|𝑎 > 0.8) = ∫ o��.�,�.�(o)�o
b
�

∫ ��.�,�.�(o)
b
� �o

= ∫ o��.�,�.�(o)�o
b
�.�

∫ ��.�,�.�(o)
b
�.� �o

≈ 0.93 

 
Given the distribution of eyewitness accuracy assumed in Figure 1 and Figure 3, approximately 
93% of convictions on eyewitness testimony are true convictions. 
 Exactly parallel reasoning applies to statistical testimony based on gate receipts. See 
Figure 4, which stands to Figure 2 as Figure 3 does to Figure 1, and which we can assume to 
represent the distribution of the proportion of non-payers per stadium. Intuitively we can see, 
just by looking at this curve, that 0.9 > 𝐵. For amongst the stadia in which the rate of non-
payment exceeds 0.8, there are for any Δ ∈ (0,0.1], more cases in which this rate is 0.9 − Δ 
than in which it is 0.9 + Δ. (It suffices for this, though again it’s not necessary, that the 
distribution function is decreasing throughout 𝑏 ∈ (0.8,1).) More formally, the mean rate of 
true conviction is: 
 

(4) 𝐵 = 𝐸(𝑏|𝑏 > 0.8) = ∫ o��,�(o)�o
b
�.�

∫ ��,�(o)
b
�.� �o

≈ 0.87  

  
Given the distribution of incidence rates per rodeo assumed in Figure 2 and Figure 4, 
approximately 87% of convictions on statistical evidence of the type facing Bob are true. 
 It follows straightforwardly that given a policy that selects a proportion 𝛼 of convictions 
from cases where we have eyewitness testimony sufficient to convict, and the remaining 1 − 𝛼 
from cases where we have statistical evidence sufficient to convict, the overall rate of true 
convictions per conviction is 𝑇(𝛼) = 0.93𝛼 + 0.87(1 − 𝛼) i.e.: 
 

(5) 𝑇(𝛼) = 0.87 + 0.06𝛼 
 
Since the accuracy rate is strictly increasing in 𝛼 it follows that the accuracy-maximizing 
policy is to convict only on eyewitness evidence; more generally it follows that accuracy-
maximization alone is grounds for preferring eyewitness to statistical evidence, at least when 
the model presented here approximates closely enough to the truth. 
 We can now return to the widely-held view with which I began, namely that accuracy 
considerations alone cannot motivate different treatment of Alice’s case and of Bob’s case. 
What we have seen is that in the present model, accuracy considerations alone can motivate 
different treatment. More precisely: suppose that we are given a fixed threshold for conviction 
and a fixed number of convictions, and that we must choose how many convictions are based 
on eye-witness testimony and how many are based on statistical evidence. Then accuracy 
considerations alone can motivate preferring to convict based on eye-witness testimony in 
every case. According to this model, therefore, the target position is simply false. Concern for 
accuracy alone can motivate a policy, one effect of which is that we convict Alice but not Bob. 
 

3.2 Permissible relaxations of the model 
We derived this result from quite specific assumptions. It is worth asking to what extent we 
can relax the assumptions of the model whilst preserving the result. The answer is that the 
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model can be relaxed in three ways. These correspond to relaxations of some of the 
assumptions at 2.1 concerning the threshold, at 2.2 concerning the objective, and at 2.3 and 2.4 
concerning the mean and the mathematical form of the distributions for 𝑎 and 𝑏.  
 
3.2.1 Variation in 𝑐 
First: the superiority of eyewitness evidence holds at any plausible level at which we fix the 
threshold 𝑐: however strict or lenient we are about the standard of proof, convictions based on 
eyewitness evidence will convict fewer innocent ones than convictions based on aggregate 
incidence data. This follows from the fact that for any 𝑐 ≥ 0.5 we have: 
 

(6) ∫ o��.�,�.�(o)�o
b
�

∫ ��.�,�.�(o)
b
� �o

> ∫ o��,�(o)�o
b
�

∫ ��,�(o)
b
� �o

 

 
This inequality fails if 𝑐 falls close enough to 0; but a threshold for conviction well below the 
base rate, in this case 0.5, seems unlikely.  

On the other hand, it is consistent with my semi-Lockean assumptions that we operate 
with a higher threshold 𝑐� > 𝑐 when the evidence is statistical. If we do, then it is possible to 
ensure that the expected safety of convictions on statistical evidence matches or even exceeds 
the expected safety of convictions on eyewitness evidence, assuming that the latter type of 
conviction is still responsive to the lower threshold 𝑐. In the model, this follows from the fact 

that if 𝑐 < 1 then there is some 𝑐� ∈ (𝑐, 1) such that ∫
o��,�(o)�o

b
��

∫ ��,�(o)
b
�� �o

> ∫ o��.�,�.�(o)�o
b
�

∫ ��.�,�.�(o)
b
� �o

; that this 

result holds independent of the particular beta distributions in this model follows from the fact 
that for any two probability distribution functions 𝑓 and 𝑔 with support exclusively in [0,1] 

and 𝑐 ∈ (0,1), there is some 𝑐� ∈ (𝑐, 1) such that ∫
o�(o)�ob

��

∫ �(o)b
�� �o

> ∫ o�(o)�ob
�

∫ �(o)b
� �o

 .27  So on this variant 

of the model, dispensing with statistical evidence does incur a cost in accuracy.  
This is true; and in fact our actual intuitions about this case would seem to fit a version 

of this variable-threshold policy. (After all, we are willing to find against Bob if it turns out 
that everyone on the relevant day entered without paying.) But conceding that does nothing to 
help Accuracy-Indifference, which said that a concern for accuracy cannot motivate a 
difference in our treatment of cases A and B i.e. of cases in which the evidence makes guilt 
equally likely. What we saw was that there can be a variable-threshold policy on which 
statistical evidence can produce convictions that are as accurate in expectation as those based 
on ‘individualized evidence’. So given that we are adopting the variable-threshold policy, 
accuracy considerations can’t motivate treating statistical evidence on which we are prepared 
to convict any differently from ‘individualized’ evidence on which we are prepared to convict. 
But it is also true, on the variable-threshold policy, that we are treating (a) cases where 
individualized evidence generates a probability of guilt 𝑥 differently from (b) cases where 
statistical evidence generates the same probability 𝑥, for any 𝑥 in the range (𝑐, 𝑐�]. So if 
accuracy considerations can motivate a variable-threshold policy then they can motivate an 
invidious attitude towards cases A and B, contrary to Accuracy-Indifference.            
 
3.2.2 Minimizing false non-convictions when 𝐾 ≫ 𝐷 

                                                        
27 Proof: choose 𝑐� = 𝐸(𝑓(𝑥)|𝑥 > 𝑐) = ∫ o�(o)�ob

�

∫ �(o)b
� �o

. 
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Second: at section 2.2 we made some assumptions about the form of the prosecutor’s 
optimization problem took. More specifically, we supposed that the objective is simply to 
maximize the proportion of these convictions that are true convictions.  
 Suppose that instead we have two objectives: to maximize the proportion of convictions 
that are true convictions, and to minimize the proportion of non-convictions that are false non-
convictions. That is, suppose that there are altogether 𝐾 ≫ 𝐷 cases in which we have either 
eye-witness or statistical evidence against a person that exceeds the threshold 𝑐. We are aiming 
to select 𝛼 in such a way that, of the 𝐷 convictions that we secure, a maximal proportion are 
true convictions, and in such a way that, of the 𝐾 − 𝐷 non-convictions, a minimal proportion 
are false non-convictions: i.e., so that of those who are not convicted, the proportion that are 
guilty of gate-crashing is as low as it can be.  
 If we are given that 𝐾 ≫ 𝐷, we can assume that the rate of incidence amongst the 𝐾 −
𝐷 non-convicted persons against whom we have evidence of either type that exceeds the 
threshold, is the same as the base-rate amongst all people against whom we have evidence of 
either type that exceeds the threshold: call this 𝜇′. It follows that the rate of false non-
convictions, for any value of 𝛼, is 1 − 𝜇′. More precisely, whatever value we choose for 𝛼, we 
will secure 𝑇(𝛼) true convictions per conviction and (1 − 𝜇�) true non-convictions per non-
conviction. Therefore, choosing 𝛼 = 1 remains the optimal choice because it is ‘Pareto 
optimal’: it secures a higher rate of true conviction than at any alternative setting of 𝛼 without 
incurring a higher rate of false non-conviction than any alternative setting of 𝛼. 
 This argument shows that if we relax the assumption that we only care about the rate 
of true convictions, then we can still derive the basic result. But it still relies on another 
assumption in 2.2, namely that there are many more cases in which evidence of either type 
exists than there are cases that we can feasibly prosecute (i.e. that 𝐾 ≫ 𝐷). The situation 
becomes considerably more complicated if we also relax that assumption: I’ll discuss this in 
section 4. 
 
3.2.3 Varying the mean of 𝑎 and 𝑏 
Third: in the present model, I have set the means of the distributions of 𝑎 and of 𝑏 at the same 
value i.e. 0.5. My reason for doing so was not empirical but rather to control for that parameter, 
thereby exposing the effect of variation in the other parameter 𝜆. But that setting is most 
unrealistic. Any eyewitness who is not completely incompetent is almost certain to have a hit 
rate exceeding 0.5; and in any case, it is reasonable to suppose that the hit rate of the average 
eyewitness exceeds the frequency of gate-crashing in the average stadium. However, this 
idealization does not affect the main result, because it understates the true conviction-rate of 
eyewitness evidence: if 𝑎 ∼ 𝛽kl,k(LHl) and 𝑐 and 𝜆 are held fixed, an increase in 𝜇 can only 
increase the value of 𝐸(𝑎|𝑎 > 𝑐).  
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Figure 5 
 
Graphically, imagine the curve in Figure 3 with some of the mass shifted to the right, for 
instance as in Figure 5, which represents the situation when 𝜇 = 0.9 but still 𝜆 = 1. Clearly 
the expectation of this distribution to the right of 𝑥 = 0.8 (or to the right of 𝑥 = 𝑐, for any 
feasible 𝑐) is greater than that in Figure 3. 
 
3.2.4 Varying the type of their distribution 
Fourth: we can see from the graphical intuition behind the argument that it is possible to relax 
the assumption that 𝑎 and 𝑏 take the specified beta distributions. All that is required for the 
argument to go through is that: (i) the distribution of 𝑎 is skewed to the right in the region 𝑥 ≥
𝑐; and (ii) the distribution of 𝑏 is skewed to the left in the region 𝑥 ≥ 𝑐. These features don’t 
depend on 𝑎 and 𝑏 having the beta distributions that I chose for illustration. They don’t even 
depend on 𝑎 and 𝑏 having beta distributions at all. What matters is just that their distributions 
have the right kind of shape, regardless of their precise algebraic form. It suffices for that, that 
there is a strong correlation between successive outcomes of the trials from which we generate 
𝑎, but a weak correlation between successive outcomes of the (counterfactual) trials that 
determine 𝑏. And it suffices for that that visual acuity is a trait that we expect to remain stable 
across successively examined stages of a single person; whereas a tendency to enter a single 
rodeo without paying entrance is not a trait that we expect to remain stable across successively 
examined stages of different persons.  
 

3.3 Generalizations and limitations  
The argument in this paper targeted one specific pair of cases in which eye-witness evidence 
is contrasted with statistical evidence, namely the case involving Alice and Bob, in which the 
statistical evidence against Bob consists of gate receipts from attendance at a large event. I 
argued that if we model the optimization problem as in section 2, accuracy considerations alone 
can motivate a policy that convicts Alice but not Bob, even though the probability of Alice’s 
guilt is the same as the probability of Bob’s. Now as well as asking – as I just did – how we 
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can weaken those assumptions whilst still deriving that result, we can also ask how we can 
strengthen that result whilst maintaining those assumptions. Can we show that accuracy 
considerations alone may suffice to motivate preferring other kinds of ‘individualized’ 
evidence to other kinds of ‘statistical’ evidence? 
 The answer is that we can probably do so in some but certainly not in all cases where 
intuition distinguishes them. What is needed for the argument to go through is that there be 
variables 𝑎 and 𝑏, corresponding to the posterior probability of guilt given an arbitrary piece 
of evidence of the individualized and of the statistical type respectively, such that the 
distribution of 𝑎 is more heavily weighted towards the right than is the distribution of 𝑏, 
conditional on both exceeding the fixed threshold 𝑐 above which we convict. More precisely, 
we need 𝐸(𝑎|𝑎 > 𝑐) > 𝐸(𝑏|𝑏 > 𝑐). It suffices for this that there be a stronger correlation 
between guilt of all the first 𝑛 people and guilt of the (𝑛 + 1)th person to face evidence of type 
𝑎, than between guilt of the first 𝑛 and guilt of the (𝑛 + 1)th person in any group from which 
the incidence rate 𝑏 is drawn. And it suffices for that, that there be a common explanation, for 
instance a common causal explanation, of the correctness of what the 𝑎-type evidence suggests, 
but no single explanation, or at best a very incomplete single explanation, of the correctness of 
what the 𝑏-type evidence suggests.  
 Consider (for instance) extended vetting at airports. Suppose that we have the resources 
to carry out an extensive search for illegal drugs on some relatively small number 𝐷 of 
travellers every day, and that the two available means of selection are either (a) the positive 
judgment of a security officer or (b) membership of some target group (for instance, the 
traveller’s nationality as given by his or her passport). More specifically, suppose that we can 
select a person for extended searching either (a) on the word of a security officer, if testing has 
shown that that officer’s positive judgments are right at least 1% of the time, or (b) because at 
least 1% of air passengers from the subject’s country are carrying drugs. (These figures are 
likely to be low because the base rate of drug-smuggling amongst international travellers is 
presumably very much less than 1%.)  

On these assumptions, it is very plausible that the mean accuracy of officers whose 
accuracy exceeds 1% is much greater than the mean smuggling rate in countries for which it 
exceeds 1%. The reason is that we do not expect a strong correlation between (say) a positive 
finding for the first 𝑛 passengers from e.g. France and a positive finding for the (𝑛 + 1)th 
French passenger, given that these individuals are otherwise unrelated, whereas we do expect 
a relatively strong correlation between a positive finding for the first 𝑛 passengers whom a 
given security officer suspects, and the finding for the next individual whom that officer 
suspects. Given these statistical assumptions, there is therefore a purely accuracy-based 
motivation for preferring to base extended vetting of this sort on the judgment of individual 
security officers rather than on any sort of ethnic, national or religious profiling.   
 But it is possible to change the statistical assumptions behind the example so that 
accuracy considerations point in the opposite direction. Suppose it is known that although 
relevant rate of smuggling amongst persons from all countries is, say, 0.01%, there are two 
countries for which the corresponding rate of smuggling is as high as 10%. On this assumption, 
it is not plausible that the mean accuracy of officers whose accuracy-of-suspicion exceeds 1% 
is much greater than the mean smuggling rate amongst travellers from countries in which it 
exceeds 1%. The demand for accuracy would therefore justify national profiling in this case. 
Perhaps in this case some people’s intuitions go that way too. (My own intuitions about this 
type of case are too corrupted for any report of them to be useful.) 
 Still, there certainly are cases in which the accuracy-based argument defended here 
delivers a counter-intuitive result. Suppose there are very many squadrons of 𝑁 soldiers in an 
occupied country. Soldiers will almost never fire on unarmed civilians unless all are explicitly 
ordered to do so by the commanding officer of the squadron; but the rate of compliance with 
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such orders is very high. In this case, we should certainly expect a strong correlation between 
the proportion of the first 𝑛 soldiers in a squadron that fired on unarmed civilians on any 
occasion and whether the (𝑛 + 1)th soldier did so on that occasion, because if the former 
quantity is high then we have a reliable indication that the commanding officer ordered all 
soldiers in that squadron to fire. In this situation, everything will depend on whether the rate of 
compliance 𝑟 with an order of this kind exceeds the threshold for conviction 𝑐. If 𝑟 > 𝑐 then 
the argument may recommend conviction of an arbitrary soldier in any group in which the 
proportion of soldiers that fired exceeds 𝑐, because in most such groups the rate of firing will 
be appreciably higher than 𝑐; it may even recommend preferring this sort of evidence to 
eyewitness evidence. This certainly looks counterintuitive. 
 But the aim of the argument was never to show that accuracy-based considerations can 
totally recover out intuitions about the differences between individualized and statistical 
evidence. It was rather to undermine the common view that accuracy considerations alone 
cannot motivate the distinction between statistical and individualized (for instance, eye-
witness) evidence. To that end it is sufficient to show that they can do this in at least one case; 
and I think the foregoing argument does establish as much for the gate-crashing case with 
which I began, given the Lockean model. I have not shown, and I don’t think is true, that 
accuracy concerns never recommend convicting when intuition acquits. 
 
 
4 Two types of accuracy 
The model assumes that the policy problem arises against a background of a high rate of 
criminality, certainly far more than can be addressed by the penal system.28 The decision is 
therefore not over whether to convict more people or fewer, but rather over which ones to 
convict, given that one is convicting as many people as one can. Formally this is reflected in 
the framing of the problem as that of maximizing 𝑇(𝛼) = 𝛼𝐴 + (1 − 𝛼)𝐵, where 𝛼 is the 
proportion of convictions on eye-witness evidence.  
 But it is possible to think of a different policy problem, namely that of deciding how 
many people within a specified class to convict. Suppose that we have the resources to convict 
everyone against whom we have evidence that suffices to convict, for a given threshold (so that 
𝐾 ≈ 𝐷). And suppose that these people fall into two classes, which may be of different sizes: 
those against whom we have eye-witness evidence from an eyewitness whose accuracy exceeds 
𝑐, and those against whom we have statistical evidence that implies a probability of guilt 
exceeding 𝑐. For simplicity, we can frame the resultant policy problem as a choice between 
three options: 
 

(a) Only convict everyone against whom we have eye-witness evidence. 
(b) Only convict everyone against whom we have statistical evidence. 
(c) Convict everyone against whom we have either type of evidence. 

 
Now the target claim – the one that I am saying is false – is that accuracy considerations 

alone cannot motivate preferring eye-witness or other types of ‘individualized’ evidence to 
statistical evidence. Even if we grant that that claim is false on the assumptions of the original 
policy problem (where 𝐾 ≫ 𝐷), we might still suspect that it is true against the present 
background of a three-way choice (where 𝐾 ≈ 𝐷). More specifically, we might suspect that 

                                                        
28 This is not in itself unreasonable for many crimes. John Adams, speaking in 1770, said that ‘guilt and crimes 
are so frequent in the world, that all of them cannot be punished; and many times they happen in such a manner, 
that it is not of much consequence to the public, whether they are punished or not’; and the first part of this surely 
remains true today.  
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accuracy considerations cannot motivate a policy that treats these types of evidence 
asymmetrically: they cannot account for why (a) should be preferable to both (b) and (c). 

An uncharitable response would be as follows. Suppose that we are concerned with 
accuracy only to the extent that we are trying to maximize the proportion of convictions that 
are true convictions. And suppose that we have 𝑥𝐾 cases in which the eye-witness evidence 
exceeds the threshold for conviction, and (1 − 𝑥)𝐾 cases in which the statistical evidence 
exceeds the threshold for conviction, for some 𝑥 between 0 and 1. Then if we write 𝑎 and 𝑏 
for random variables stating the accuracy of a randomly chosen item of eye-witness evidence 
or statistical evidence respectively, the rate of true convictions per conviction under policy (a) 
is still 𝐸(𝑎|𝑎 > 𝑐), that under policy (b) is still 𝐸(𝑏|𝑏 > 𝑐), and that under policy (c) is: 

 
(1) 𝑥𝐸(𝑎|𝑎 > 𝑐) + (1 − 𝑥)𝐸(𝑏|𝑏 > 𝑐) 

 
And given what I have already defended at length, namely that 𝐸(𝑎|𝑎 > 𝑐) > 𝐸(𝑏|𝑏 > 𝑐), it 
follows that the rate of true conviction under policy (a) still exceeds that under either policy 
(b) or policy (c).    
 What makes this response uncharitable is that a concern ‘for accuracy’ might involve 
concern not only with the rate of true conviction, but also with the rate of true non-conviction. 
We do not only want to convict only the guilty; we should also like to acquit (or not to convict) 
only the innocent. As we saw at 3.2.2, if 𝐾 ≫ 𝐷 then our having this additional aim makes no 
difference to the analysis: if many more cases exist than can be prosecuted, any distribution of 
the 𝐷 available prosecutions between those in which we have eye-witness and those in which 
we have statistical evidence will result in the same rate of true non-convictions. (Compare: 
given a fixed number of Americans, and a fixed number of Americans with brown eyes, the 
proportion of US Senators who have brown eyes makes almost no difference at all to the 
proportion of all other Americans that have brown eyes.) In the original policy problem, any 
choice of 𝛼 leaves the rate of true non-convictions completely unaffected. Hence the only 
accuracy-based grounds on which to prefer one choice of 𝛼 to another is an improvement in 
the rate of true convictions.  

On the other hand, if 𝐾 ≈ 𝐷 then the choice between (a), (b) and (c) certainly does 
make a difference to the rate of true non-convictions. (Compare: given a fixed population of 
100 US Senators of which a fixed number have brown eyes, the proportion of Democratic 
Senators who have brown eyes could make a relatively big difference to the proportion of 
Republican (or non-aligned) Senators who do.) We must therefore ask whether under these 
conditions, anyone whose concern for accuracy takes this two-dimensional form can motivate 
preferring eye-witness to statistical evidence: specifically, preferring (a) to (b) or (c) on 
grounds of accuracy alone. 
 The analysis in this section aims to show that such a motivation is available. Doing so 
involves, first, saying a little more accurately what it means to want to maximize, and to be 
forced into trading off, two competing types of good (in this case, true convictions and true 
non-convictions); section 1 does so by means of some basic concepts of microeconomics. The 
next steps are to show that in this framework we can motivate on accuracy grounds a preference 
for (a) over (b); and that we can – but only in a slightly weaker sense of ‘can’ – motivate on 
such grounds a preference for (a) over (c). 
 

4.1 Trade-off between true conviction and true non-conviction rate 
In the model that I now want to develop, there are two accuracy-related goods: the rate of true 
convictions and the rate of true non-convictions, and different measures of accuracy trade these 
off at different rates. 
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This situation is analogous to a more familiar one that arises with regards to belief. To 
say that belief aims at truth is really to say that in the formation of belief we have two aims: 
the maximization of true belief and the minimization of false belief. But as James points out in 
a famous passage, having those two aims, and only those two aims, is consistent with any 
degree of emphasis on one over the other.  
 

Believe truth! Shun error! – these, we see, are two materially different laws; and by 
choosing between them we may end by coloring differently our whole intellectual life. 
We may regard the chase for truth as paramount, and the avoidance of error as 
secondary; or we may, on the other hand, treat the avoidance of error as more 
imperative, and let truth take its chance.29 

 
For instance, W. K. Clifford treats the avoidance of false belief as always taking lexical priority 
over the attainment of true belief. ‘Believe nothing, [Clifford] tells us, keep your mind in 
suspense forever, rather than by closing it on insufficient evidence incur the awful risk of 
believing lies.’  
 

You, on the other hand, may think that the risk of being in error is a very small matter 
when compared with the blessings of real knowledge, and be ready to be duped many 
times in your investigation rather than postpone indefinitely the chance of guessing 
true…30 

 
Or you might take some approach in between these two. For instance, you might be prepared 
to adopt any method that gains you one additional true belief for every two or fewer false 
beliefs. In any case and as James concludes, this decision is not dictated by the aim of 
maximizing accuracy but is rather something for taste, or ‘passion’ to settle, any such 
settlement being consistent with that aim. ‘We must remember that these feelings of our duty 
about either truth or error are in any case only expressions of our passional life.’ 

In the present case we are concerned, not with the rate at which any individual is willing 
to trade off belief in true propositions against non-belief in false ones, but rather with the rate 
at which a jurisdiction trades off true convictions against true non-convictions amongst the 𝐾 
individuals that we could potentially convict, because our evidence against them exceeds the 
Lockean threshold. But the parallel point remains: an overriding concern with accuracy is 
consistent with any of very many ways in which we can rank these trade-offs.  

We can characterize these ways by means of what economists call indifference curves. 
An indifference curve, in this context, is generated by an objective function 𝐹: [0,1]Y → ℝ. The 
two inputs to an indifference function, 𝑥 and 𝑦, will represent respectively a true conviction 
rate and a true non-conviction rate. The true non-conviction rate is the proportion of non-
convictions that are of innocent people, and the true conviction rate is the proportion of 
convictions that are of guilty people. The objective function is what the jurisdiction is trying to 
maximize. For each constant 𝑘 ∈ ℝ, 𝐹(𝑥, 𝑦) = 𝑘 is an associated indifference curve that 
represents a set of combinations of true conviction rates and true non-conviction rates between 
which the jurisdiction is indifferent. Intuitively, we can think of indifference curves as contour 
lines on a map in which altitude corresponds to overall utility.  If any two points (𝑥, 𝑦) and 
(𝑥�, 𝑦�) lie on the same indifference curve then they are at the same ‘altitude’ i.e. we are 
indifferent between (i)  𝑥 true convictions per conviction and 𝑦 true non-convictions per non-

                                                        
29 James 2000 [1896]: 209. 
30 James 2000 [1896]: 209; cf. Clifford 1999 [1887]. 
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conviction, and (ii) 𝑥′ true convictions per conviction and 𝑦′ true non-convictions per non-
conviction.   

For instance, suppose the objective function is 𝐹(𝑥, 𝑦) = 2𝑥 + 𝑦, so that the 
indifference curves take the form 2𝑥 + 𝑦 = 𝑘 This means that we are, at any point, just willing 
to accept a reduction of ∆𝑥 in the true conviction rate if doing so can get us an increase of at 
least ∆𝑦 = 2∆𝑥 in the proportion of innocent people who are acquitted. More generally, if at 
any point (𝑥z, 𝑦z) the indifference curve passing through that point is 𝐹(𝑥, 𝑦) = 𝑘, then we are 
willing to trade correct convictions for correct acquittals at the same rate as (the sign-reversal 
of) the slope of 𝐹(𝑥, 𝑦) = 𝑘 at that point: that is, at the rate of  
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£
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correct acquittals per correct conviction. This is the Marginal Rate of Substitution (MRS) of 
true acquittals and true convictions at that point.   

Indifference curves have two qualitative properties of interest. First: like contour lines, 
no two indifference curves ever cross. Conceptually, the reason is that indifference curves are 
effectively the equivalence classes associated with the equivalence relation of indifference on 
the unit square; and it follows from the definition of an equivalence class that any two such 
classes are disjoint. Second, indifference curves generally slope downwards: more precisely, if 
𝑥� > 𝑥 and 𝑦� > 𝑦 then there is no indifference curve on which (𝑥, 𝑦) and (𝑥�, 𝑦�) both lie. 
This reflects the fact that any form of concern for accuracy must prefer a ‘Pareto improvement’ 
in the rates of true conviction and non-conviction. If policy 𝑆′ generates higher rates of true 
conviction and of true non-convictions than policy 𝑆, then 𝑆′ must be preferred to 𝑆.  

But these constraints leave open a very wide variety of patterns of preference over 
combinations of rates of true convictions and rates of true acquittal. Figures 6-9 represent four 
such combinations. (In case they are hard to see, the curves in Figure 6 are horizontal lines, 
and those in Figure 7 are vertical lines.) In all cases, the best possible situation is in the north-
east corner, at (1,1). That point corresponds to the case where all non-convictions are of 
innocent and all convictions of guilty suspects. The worst possible situation is the south-west 
corner (0,0), corresponding to a regime that convicts only the innocent and acquits only the 
guilty. And travelling north-east from any point gets us to a better point, one that is higher up 
the mountain of utility. But the rate, at which movement in these or any other directions of 
travel increases altitude, depends on the location of the contour lines, which are very different 
in all four cases. 

Let us consider these examples in a little more detail. 
 

Figure 6: quasi-Jamesian preferences Figure 7: Clifford-type preferences 
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In Figure 6, all we care about is the rate of true non-conviction: in other words, it is paramount 
that we convict the guilty. If belief corresponds to conviction and non-belief to acquittal, then 
this corresponds to James’s suggestion that you may ‘be ready to be duped many times in your 
investigation rather than postpone indefinitely the chance of guessing true’ – hence ‘quasi-
Jamesian’. So, the indifference curves are horizontal. At any given rate of true non-convictions, 
we don’t care about the rate of true convictions: we can climb this utility mountain by, and 
only by, increasing the proportion of innocent people amongst those that we do not convict, for 
instance by convicting everyone against whom we have the slightest evidence.  

In Figure 7, all we care about is the rate of true conviction – we are willing to let 
indefinitely many guilty suspects go free rather than convict one more innocent one, for 
instance by never convicting unless the evidence is overwhelming. This corresponds to the 
imperative that James attributes to Clifford: ‘Believe nothing... keep your mind in suspense 
forever, rather than by closing it on insufficient evidence incur the awful risk of believing lies.’ 
Hence, the indifference curves are all horizontal. 
 Here are two more realistic examples. 
 

 
Figure 8: ‘Blackstone’ preferences 
 

 
Figure 9: Declining marginal utility 

 
In Figure 8 the slope of the indifference curves is −10. On the (implausible) assumption that 
about as many people are convicted as not, this represents the minimum degree of caution 
mandated by the ‘Blackstone formula’: ‘Better that ten guilty persons escape than that one 
innocent suffer’. If we are convicting 100 people, out of which 20 are guilty, and acquitting 
100 people, out of which 10 are guilty, then we are at the point (0.2,0.9); and we are indifferent 
between this situation and that in which we are convicting 100 people, of whom 19 are guilty, 
and acquitting 100 people, of whom none are guilty, which corresponds to the point (0.19,1).   

Finally, in Figure 9 there is no one rate of trade-off common to all points. Rather, the 
figure depicts a jurisdiction that is (a) willing to see more guilty people go free when the regime 
is unduly harsh, and (b) willing to see more innocent people convicted when the regime is 
unduly lenient. An extreme instance of (a) would be a situation where the offence is rare, and 
yet the courts simply convict everyone that the police suspect i.e. in which the rate of true 
conviction stands at the base rate 𝐵 (which is close to 0) and the rate of true non-conviction at 
1. Relative to that point, it might seem an improvement to adopt a more lenient attitude that 
generates a true conviction rate of 𝐵 + 0.1 and a true non-conviction rate of, say, 0.8. An 
extreme instance of (b) would be a situation where only absolute certainty was sufficient for 
conviction for an offence that is in fact prevalent throughout society. In this case the rate of 
true convictions would be close to 1 and that of true non-convictions close to 1 − 𝐵, where 𝐵 
is the base rate of the offence (which is close to 1). From this starting point, it might be 
considered an improvement for the courts to start convicting on relatively weak evidence, 
leading e.g. to a fall in the rate of true convictions to 0.8 and a rise in the rate of true non-
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convictions to 1.1 − 𝐵. More generally the attitude, of caring more about increasing the rate of 
true convictions (true acquittals) when that rate is lower, implies indifference curves that are 
bowed towards the origin – as e.g. in Figure 9, where 𝐹(𝑥, 𝑦) = 𝑥𝑦. 

For present purposes, what matters more than the specific features of the sets of 
indifference curves depicted in Figures 6-9, is that they are all consistent with an exclusive 
concern for accuracy. Having as our sole motivation the maximization of accuracy in findings 
does not yet tell us what to maximize, since accuracy itself encompasses two goods 
(corresponding to James’s goods of believing the true and not believing the false). Just as an 
exclusive preoccupation with the accumulation of precious metals is consistent with a 
preference for gold over platinum, but also with the reverse, so too an exclusive preoccupation 
with accuracy is consistent with any set of indifference curves lying ‘between’ the James-type 
and the Clifford-type as described here. 

 
4.2 (a) vs (b) 

Suppose that of the 𝑁 suspects against whom we have evidence of either type and at any level 
of probability, a proportion 𝛼 face eyewitness evidence and a proportion (1 − 𝛼) face evidence 
of the statistical type. And suppose in line with our earlier model that the distributions of the 
accuracies 𝑎 and 𝑏 for these two types of evidence are beta, with a common mean and with the 
reliability of the eye-witness evidence more ‘dispersed’ than that of the statistical evidence. 
That is, we have: 𝑎	~	𝛽kl,k(LHl) and 𝑏	~	𝛽k�l,k�(LHl), with 𝜆′ > 𝜆. As before, we can suppose 
for the sake of illustration that 𝜆 = 1, 𝜆� = 4 and 𝜇 = 0.5. 
 How does policy (a) fare on the two measures of accuracy that now concern us? We 
already know that amongst the suspects who are convicted, the proportion of convictions that 
are true convictions is given by: 
 

(2) 𝑥h = 𝐸(𝑎|𝑎 > 𝑐) = ∫ o�pq,p(baq)(o)�o
b
�

∫ �pq,p(baq)(o)
b
� �o

 

 
What about the proportion of non-convictions that are true non-convictions? Well, the people 
that we don’t convict under policy (a) fall into two classes:  

 
• Class 1: all those against whom we have statistical evidence;  
• Class 2: all those against whom we have eye-witness evidence at a level that does not 

exceed the threshold. 
 
To work out the rate of true non-conviction under policy (a), we need to calculate, for 𝑖 = 1,2, 
the size 𝑠Z of class 𝑖 and the rate of offending within it. We can then calculate the total number 
of non-convictees and the total number of offenders amongst them. 
 The size of Class 1 is clearly 𝑠L = 𝑁(1 − 𝛼) and the rate 𝑟L of offending within it is 
just the mean of the distribution for 𝑏, that is, 𝑟L = 𝜇. The size of Class 2 is given by: 
 

(3) 𝑠Y = 𝛼𝑁 ∫ 𝛽kl,k(LHl)(𝑥)𝑑𝑥
ª
z  

 
And the rate of offending in class 2 is just the mean accuracy of eyewitnesses whose accuracy 
does not exceed the threshold, that is: 
 

(4) 𝑟Y =
∫ o�pq,p(baq)(o)�o
�
�
∫ �pq,p(baq)(o)
�
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The total rate of offence amongst those that policy (a) does not convict is therefore: 
 

(5) ∑ «¬¬�
¬®b
∑ ¬�
¬®b

=
(LH¯)lE¯ ∫ o�pq,p(baq)(o)�o
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So the rate of true non-convictions per non-conviction achieved by policy (a) is given by: 
 

(6) 𝑦h =
(LH¯)(LHl)E¯ ∫ (LHo)�pq,p(baq)(o)�o
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By exactly parallel reasoning, the rate of true convictions amongst those that policy 
(b) convicts is: 
 

(7) 𝑥° = 𝐸(𝑏|𝑏 > 𝑐) =
∫ o�p�q,p�(baq)(o)�o
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And the rate of true non-convictions on this policy is given by: 
 

(8) 𝑦° =
¯(LHl)E(LH¯) ∫ (LHo)�p�q,p�(baq)(o)�o
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We already know that for the assumed values of 𝑐, 𝜆, 𝜆�, 𝜇 we have 𝑥h ≈ 0.93 and 𝑥° ≈ 0.87, 
so that for any value of 𝛼 policy (a) has a better true conviction rate than does policy (b). But 
things are different when it comes to true non-conviction rates. By inspection of (12) and (14) 
and a little algebra, when 𝛼 is close to its extreme values the approximate values of those rates 
are as follows: 
 
 𝜶 ≈ 𝟎 𝜶 ≈ 𝟏 
𝒚𝒂 1 − 𝜇 1 − 𝐸(𝑎|𝑎 ≤ 𝑐) 
𝒚𝒃 1 − 𝐸(𝑏|𝑏 ≤ 𝑐) 1 − 𝜇 

Table 1  
 

We can see intuitively from Table 1 and Figures 3 and 4 that if 𝛼 is close to 1 then 𝑦h > 𝑦° ; 
but if 𝛼 is close to zero then 𝑦° > 𝑦h.31  

It follows that if 𝛼 is close to 1 then policy (a) has a better true non-conviction rate than 
(b), as well as a better true conviction rate. In those circumstances, policy (a) is a Pareto 
improvement on policy (b): no matter the rate at which we are prepared to trade off true 
convictions for true non-convictions, we should always prefer a policy of only convicting on 
eye-witness evidence to a policy of only convicting on statistical evidence. 

But if 𝛼 is close to zero then things are not so clear. In that situation, although it is still 
true that policy (a) has a better true conviction rate than policy (b), policy (b) has a better true 
non-conviction rate. That makes intuitive sense: if almost none of your evidence is eye-witness 
evidence then a policy of convicting only on eye-witness evidence is going to let many more 

                                                        
31 Here is a formal argument for the case that 𝛼 ≈ 0. Note that 𝜇 = 𝑘𝐸(𝑏|𝑏 ≤ 𝑐) + (1 − 𝑘)𝐸(𝑏|𝑏 > 𝑐), where 
𝑘 = ∫ 𝛽k�l,k�(LHl)(𝑥)𝑑𝑥

ª
z . Since 0 < 𝑘 < 1 and 𝐸(𝑏|𝑏 ≤ 𝑐) < 𝐸(𝑏|𝑏 > 𝑐), it follows that 𝐸(𝑏|𝑏 ≤ 𝑐) < 𝜇. 

Therefore 1 − 𝜇 < 1 − 𝐸(𝑏|𝑏 ≤ 𝑐). 
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genuine offenders escape than a policy of convicting on other, more readily available sorts of 
evidence. So in that case, neither policy is a Pareto improvement on the other. 

But even in the case that 𝛼 is close to zero (though still strictly positive), it remains 
possible for accuracy considerations to motivate a preference for (a) over (b). It all depends on 
the rate at which one is willing to trade off these things. Suppose that one takes the ‘Blackstone’ 
attitude that it is very much better to let 10 (or 100, or 1000) guilty men go free than falsely to 
convict one. That is, suppose that the way in which one cares about accuracy rates the true 
conviction rate as being very much more important than the true non-conviction rate at almost 
any level that these two rates might take. Then one might well care more about the fact that 
policy (a) has a better true conviction rate than about the fact that policy (b) has a better false 
conviction rate.  
 The kind of concern for accuracy that might bring this situation about is as illustrated 
in Table 2 and Figures 10 and 11. Table 2 specifies the numerical values of the true conviction 
and non-conviction rates on the two extreme assumptions for the values of 𝛼, calculated on the 
usual assumptions that 𝑐 = 0.8, 𝜆 = 1, 𝜆� = 4, 𝜇 = 0.5.  
 
 𝜶 ≈ 𝟎 𝜶 ≈ 𝟏 
𝒙𝒂 0.93 0.93 
𝒚𝒂 0.5 0.68 
𝒙𝒃 0.87 0.87 
𝒚𝒃 0.54 0.5 

Table 2 
 
Figure 10 plots the points (𝑥h, 𝑦h) and (𝑥°, 𝑦°) on the assumption 𝛼 ≈ 0 against some notional 
indifference curves that would express a relatively high concern for the rate of true conviction 
relative to the rate of true non-conviction; in this case, I have chosen members of the family 
𝑥z.¸𝑦z.L = 𝑘 for varying 𝑘. Figure 11 plots the points (𝑥h, 𝑦h) and (𝑥°, 𝑦°) on the assumption 
𝛼 ≈ 1 against the same indifference curves.  

  
Figure 10:	𝛼 ≈ 0    Figure 11: 𝛼 ≈ 1

It is clear from these figures that in both cases the point (𝑥h, 𝑦h) is preferred to – because it lies 
‘higher up the utility mountain than’ – the point (𝑥°, 𝑦°).32 That is, even if practically all of 
one’s evidence is statistical, anyone with this kind of concern for accuracy would still prefer 
the combination of true conviction rates and true non-conviction rates arising from a policy 
that convicts only on eyewitness evidence, to the combination of those rates arising from a 
policy that convicts only on statistical evidence. In consequence of this, it can also be shown 

                                                        
32 This would be true in Figure 11 for any background indifference curves, because in that case (𝑥h, 𝑦h) lies to the 
north-east of (𝑥°, 𝑦°) i.e. the former is a ‘Pareto improvement’ on the latter.   
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that anyone with this kind of concern for accuracy would retain these preferences for any value 
of 𝛼.33 
 We may conclude that on this new model, whilst it is true that a concern for accuracy 
may not mandate a preference for only-eyewitness over only-statistical evidence, it certainly 
can motivate such a preference. More precisely: the indifference curves in Figures 10 and 11 
illustrate a way of caring about accuracy, and only about accuracy, that would rationalize just 
such an invidious attitude towards these two kinds of evidence. 
 

4.3 (a) vs (c) 
Similar points can be made, this time more briefly, for the comparison of policy (a) with policy 
(c), on which we convict people on either kind of evidence. From the perspective of accuracy, 
what matters is (i) the rate of true convictions and (ii) the rate of true non-convictions under 
the two policies.  
 We already know what these rates are for policy (a), for a given proportion 𝛼 of cases 
in which we have eye-witness evidence. These are the quantities 𝑥h and 𝑦h as described in 
equations (8) and (12) for arbitrary 𝛼 and as specified in Tables 1 and 2 for extreme values of 
that parameter. What about policy (c)? 
 The rate of true conviction under policy (c) is given by the rate of offence amongst all 
those against whom evidence of either sort supports a probability of guilt exceeding 𝑐. This 
quantity is the weighted sum of the rates of offence amongst those who face eye-witness and 
those who face statistical evidence, where the weights are given by the proportion of suspects 
that face evidence of either type. So we need to look at the size, and the rate of offending, in 
two classes: 
 

• Class 1: those who face eye-witness evidence that implies a probability of guilt that 
exceeds 𝑐; 

• Class 2: those who face statistical evidence that implies a probability of guilt exceeding 
𝑐. 

 
The size and rate of offence in Class 1 is given by: 
 

(9) 𝑠L = 𝑁𝛼 ∫ 𝛽kl,k(LHl)(𝑥)𝑑𝑥
L
ª   

(10) 𝑟L =
∫ o�pq,p(baq)(o)�o
�
b
∫ �pq,p(baq)(o)
�
b �o

= 𝑥h 

 
Similarly, the size and rate of offence in Class 2 are given by: 
 

(11) 𝑠Y = 𝑁(1 − 𝛼)∫ 𝛽k�l,k�(LHl)(𝑥)𝑑𝑥
L
ª  

(12) 𝑟Y =
∫ o�p�q,p�(baq)(o)�o
b
�

∫ �p�q,p�(baq)(o)�o
b
�

= 𝑥° 

 
It follows that the rate of true convictions under policy (c) is: 
                                                        
33 To show this, it suffices to show that 𝑦h is increasing in 𝛼 and 𝑦° is decreasing in 𝛼. Differentiation of (12) 
implies that 𝜕𝑦h 𝜕𝛼⁄ = ∫ (𝜇 − 𝑥)𝛽kl,k(LHl)(𝑥)𝑑𝑥

ª
z 𝑣Y⁄ , where 𝑣 = 𝛼 + (1 − 𝛼) ∫ 𝛽k�l,k�(LHl)(𝑥)𝑑𝑥

ª
z . The 

denominator of this fraction is always positive if 0 < 	𝛼 < 1; the numerator is positive if and only if 𝜇 >
∫ 𝑥𝛽kl,k(LHl)(𝑥)𝑑𝑥
ª
z ∫ 𝛽kl,k(LHl)(𝑥)𝑑𝑥

ª
zº = 𝐸(𝑎|𝑎 < 𝑐). Since 𝜇 = 𝐸(𝑎) this condition clearly holds, so 𝑦h is 

increasing. Similar reasoning shows that 𝑦° is decreasing if and only if 𝜇 >
∫ 𝑥𝛽k�l,k�(LHl)(𝑥)𝑑𝑥
ª
z ∫ 𝛽k�l,k�(LHl)(𝑥)𝑑𝑥

ª
zº = 𝐸(𝑏|𝑏 < 𝑐), and again this is obviously true.   
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(13) 𝑥ª =

b«bE�«�
bE�

= 𝑘𝑥h + (1 − 𝑘)𝑥°, where 

(14) 𝑘 =
¯ ∫ �pq,p(baq)(o)�o

b
�

¯ ∫ �pq,p(baq)(o)�o
b
� E(LH¯) ∫ �p�q,p�(baq)(o)�o

b
�

. 

  
Since 0 < 𝛼 < 1 → 0 < 𝑘 < 1, it follows from (19), (20) and 𝑥h > 𝑥° that we always have 
𝑥h > 𝑥ª. This is intuitively plausible: since relying on eye-witness evidence creates a better 
true conviction rate than relying on statistical evidence alone, one would expect that a policy 
of convicting given either type of evidence will dilute the true conviction rate relative to the 
policy of convicting only on eye-witness evidence. More precisely, the true conviction rate 
under policy (c) must lie somewhere between the higher true conviction rate on policy (a) and 
the lower true conviction rate under policy (b).    
 What about the rate of true non-convictions under policy (c)? By parallel reasoning to 
that regarding 𝑦h and 𝑦° , we can calculate this quantity as:  
 

(15) 𝑦ª =
¯∫ (LHo)�pq,p(baq)(o)�o

�
� E(LH¯) ∫ (LHo)�p�q,p�(baq)(o)�o

�
�

¯ ∫ �pq,p(baq)(o)�o
�
� E(LH¯)∫ �p�q,p�(baq)(o)�o

�
�

 

 
Putting all of this together, and simplifying (21), we can tabulate our results for extreme 

values of 𝛼 as follows: 
 
 𝜶 ≈ 𝟎 𝜶 ≈ 𝟏 
𝒙𝒂 𝐸(𝑎|𝑎 > 𝑐) 𝐸(𝑎|𝑎 > 𝑐) 
𝒚𝒂 1 − 𝜇 1 − 𝐸(𝑎|𝑎 ≤ 𝑐) 
𝒙𝒄 𝑥° + ∆L 𝑥h − ∆Y 
𝒚𝒄 1 − 𝐸(𝑏|𝑏 ≤ 𝑐) 1 − 𝐸(𝑎|𝑎 ≤ 𝑐) 

Table 3 
 
In Table 3, ∆L and ∆Y are both small positive quantities. That both are positive follows from 
the fact that (19) makes 𝑥ª increasing in 𝛼; moreover, the latter entails that 𝑥h > 𝑦h for any 
value of 𝛼.34   
 It follows from Table 3 that even if 𝑦ª > 𝑦h – which certainly will happen if 𝛼 is close 
to zero – it is still possible for there to be an accuracy-based motivation for preferring policy 
(a) to policy (c). In English: even if convicting on both types of evidence (above the threshold) 
generates a smaller rate of true non-conviction than convicting only on eye-witness testimony, 
which is what we would expect if most available evidence is statistical, one can still justify, on 
grounds of accuracy alone, an exclusive focus on the latter type of evidence. The argument is 
the same as at section 4.2: if the way in which one cares about accuracy rates the true conviction 
rate as much more important than the true non-conviction rate at almost any level for either, 
then one might well care more about the fact that policy (a) has a better true conviction rate 
than about the fact that policy (c) has a better true non-conviction rate, and so not be willing to 
trade off the former for the latter given that there is some eye-witness evidence. Indifference 
curves of the type illustrate in Figures 10 and 11 represent just such a way. I conclude that 
accuracy by itself does not mandate a preference for policy (c) over policy (b). 
 
 
                                                        
34 Since 𝑥h > 𝑥°, it is obvious from (19) that 𝑥ª is increasing in 𝑘, and from (20) that 𝑘 is increasing in 𝛼. So 𝑥ª 
is increasing in 𝛼.  
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5. Conclusion 
Our initial cases A and B seemed alike in respect of the accuracy of the evidence presented in 
each case; that is because those particular cases are alike in that respect. I have argued, contrary 
to many legal and philosophical commentators – perhaps also contrary to intuition – that it does 
not follow that accuracy considerations alone are powerless to motivate a distinction between 
the types of evidence that these cases involve. In the model of section 2 accuracy considerations 
will, and in the model of section 4 they can, motivate by themselves an invidious attitude 
towards those types of evidence.  

The position of the ‘accuracy-fetishist’ who takes this attitude is therefore like that of a 
rule consequentialist for whom a just rule may have many instances that are unjust considered 
by themselves.  
 

Nor is every single act of justice, considered apart, more conducive to private interest 
than to public; and it is easily conceived how a man may impoverish himself by a single 
instance of integrity, and have reason to wish that, with regard to that single act, the 
laws of justice were for a moment suspended in the universe. But however single acts 
of justice may be contrary either to public or private interest, it is certain that the whole 
plan or scheme is highly conductive, or indeed absolutely requisite, both to the support 
of society, and the well-being of every individual.35 

 
Convicting Alice but not Bob amounts to treating differently cases that are alike in point of the 
accuracy of the evidence that we have in those two cases, and therefore seems to evince a 
concern for something other than accuracy. But it does not: rather, it illustrates the fact, for 
which this paper has been an extended argument, that an exclusive concern for accuracy can 
motivate rules for the treatment of evidence whose individual instances, when considered in 
isolation, seem incompatible with it. 
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