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Abstract. In this paper we present the concept of neutro-
sophic quadruple algebraic structures. Specially, we 

study neutrosophic quadruple rings and we present their 
elementary properties. 
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1 Introduction 

The concept of neutrosophic quadruple numbers was 
introduced by Florentin Smarandache [3]. It was shown in 
[3] how arithmetic operations of addition, subtraction, mul-
tiplication and scalar multiplication could be performed on 
the set of neutrosophic quadruple numbers. In this paper, 
we studied neutrosophic sets of quadruple numbers togeth-
er with binary operations of addition and multiplication 
and the resulting algebraic structures with their elementary 
properties are presented. Specially, we studied neutrosoph-
ic quadruple rings and we presented their basic properties. 

Definition 1.1 [3] 

A neutrosophic quadruple number is a number of the 
form (𝑎, 𝑏𝑇, 𝑐𝐼, 𝑑𝐹), where 𝑇, 𝐼, 𝐹 have their usual neutro-
sophic logic meanings and 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ or ℂ. The set 𝑁𝑄 
defined by 

𝑁𝑄 = {(𝑎, 𝑏𝑇, 𝑐𝐼, 𝑑𝐹 ) ∶  𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ or ℂ} (1) 
is called a neutrosophic set of quadruple numbers. For a 
neutrosophic quadruple number (𝑎, 𝑏𝑇, 𝑐𝐼, 𝑑𝐹), represent-
ing any entity which may be a number, an idea, an object, 
etc., 𝑎 is called the known part and (𝑏𝑇, 𝑐𝐼, 𝑑𝐹) is called 
the unknown part. 

Definition 1.2 

Let 
𝑎 =  (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹), 
𝑏 =  (𝑏1, 𝑏2𝑇, 𝑏3𝐼, 𝑏4𝐹 ) ∈ 𝑁𝑄. 

We define the following: 
𝑎 + 𝑏 = (2) 

(𝑎1 + 𝑏1, (𝑎2 + 𝑏2)𝑇, (𝑎3 + 𝑏3)𝐼, (𝑎4 + 𝑏4)𝐹) 
𝑎 − 𝑏 = (3) 

(𝑎1 − 𝑏1, (𝑎2 − 𝑏2)𝑇, (𝑎3 − 𝑏3)𝐼, (𝑎4 − 𝑏4)𝐹).

Definition 1.3 

Let 
𝑎 = (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹 ) ∈ 𝑁𝑄 

and let 𝛼 be any scalar which may be real or complex, the 
scalar product 𝛼. 𝑎 is defined by 

𝛼. 𝑎 =  𝛼. (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹 )  =
 (𝛼𝑎1, 𝛼𝑎2𝑇, 𝛼𝑎3𝐼, 𝛼𝑎4𝐹) (4) 
If 𝛼 = 0 , then we have 0. 𝑎 = (0, 0, 0, 0)  and for 

any non-zero scalars m  and n  and b =
(𝑏1, 𝑏2T, 𝑏3I, 𝑏4F), we have:

(𝑚 + 𝑛)𝑎 = 𝑚𝑎 + 𝑛𝑎, 
𝑚(𝑎 + 𝑏) = 𝑚𝑎 + 𝑚𝑏, 
𝑚𝑛(𝑎) = 𝑚(𝑛𝑎), 
−𝑎 = (−𝑎1, −𝑎2𝑇, −𝑎3𝐼, −𝑎4𝐹).

Definition 1.4 [3] [Absorbance Law] 

Let 𝑋  be a set endowed with a total order 𝑥 <  𝑦 , 
named “x prevailed by y” or “x less strong than y” or “x 
less preferred than y”. 𝑥 ≤ 𝑦 is considered as “𝑥 prevailed 
by or equal to 𝑦” or “𝑥 less strong than or equal to 𝑦” or “𝑥 
less preferred than or equal to 𝑦”. 

For any elements 𝑥, 𝑦 ∈ 𝑋, with 𝑥 ≤ 𝑦, absorbance law 
is defined as 

𝑥 ∙ 𝑦 =  𝑦 ∙ 𝑥 =  absorb(𝑥, 𝑦) 
=  max{𝑥, 𝑦}  =  𝑦 (5) 

which means that the bigger element absorbs the smaller 
element (the big fish eats the small fish). It is clear from (5) 
that 

𝑥 ∙ 𝑥 = 𝑥2 = 𝑎𝑏𝑠𝑜𝑟𝑏(𝑥, 𝑥) = 𝑚𝑎𝑥{𝑥, 𝑥} = 𝑥 (6) 
and 

𝑥1 ∙ 𝑥2 ··· 𝑥𝑛  =  𝑚𝑎𝑥{𝑥1, 𝑥2,··· , 𝑥𝑛}. (7) 
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Analogously, if 𝑥 >  𝑦, we say that “𝑥 prevails to 𝑦” or “𝑥 
is stronger than 𝑦” or “𝑥 is preferred to 𝑦”. Also, if 𝑥≥𝑦, 
we say that “𝑥 prevails or is equal to 𝑦” or “𝑥 is stronger 
than or equal to 𝑦” or “𝑥 is preferred or equal to 𝑦”. 

Definition 1.5 

Consider the set {𝑇, 𝐼, 𝐹}. Suppose in an optimistic way 
we consider the prevalence order 𝑇 > 𝐼 > 𝐹 . Then we 
have: 

𝑇𝐼 = 𝐼𝑇 = max{𝑇, 𝐼} = 𝑇, (8) 
𝑇𝐹 = 𝐹𝑇 = max{𝑇, 𝐹} = 𝑇, (9) 
𝐼𝐹 = 𝐹𝐼 = max{𝐼, 𝐹} = 𝐼, (10) 
𝑇𝑇 = 𝑇2 =  𝑇, (11) 
𝐼𝐼 = 𝐼2 = 𝐼,  (12) 
𝐹𝐹 = 𝐹2 = 𝐹. (13) 
Analogously, suppose in a pessimistic way we consider 

the prevalence order 𝑇 <  𝐼 < 𝐹. Then we have: 
𝑇𝐼 =  𝐼𝑇 =  𝑚𝑎𝑥{𝑇, 𝐼}  =  𝐼,   (14) 
𝑇𝐹 =  𝐹𝑇 =  𝑚𝑎𝑥{𝑇, 𝐹}  =  𝐹, (15) 
𝐼𝐹 =  𝐹𝐼 =  𝑚𝑎𝑥{𝐼, 𝐹}  =  𝐹,   (16) 
𝑇𝑇 =  𝑇2  =  𝑇,  (17) 
𝐼𝐼 =  𝐼2  =  𝐼,  (18) 
𝐹𝐹 =  𝐹2  =  𝐹.  (19) 

Definition 1.6 

Let 
𝑎 = (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹),
𝑏 = (𝑏1, 𝑏2𝑇, 𝑏3𝐼, 𝑏4𝐹) ∈ 𝑁𝑄.
 Then (20) 

𝑎. 𝑏 = (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹). (𝑏1, 𝑏2𝑇, 𝑏3𝐼, 𝑏4𝐹)
=  (𝑎1𝑏1, (𝑎1𝑏2  +  𝑎2𝑏1  
+  𝑎2𝑏2)𝑇, (𝑎1𝑏3 + 𝑎2𝑏3 + 𝑎3𝑏1  
+  𝑎3𝑏2  +  𝑎3𝑏3)𝐼, (𝑎1𝑏4 + 𝑎2𝑏4, 𝑎3𝑏4

+ 𝑎4𝑏1 + 𝑎4𝑏2  +  𝑎4𝑏3 + 𝑎4𝑏4)𝐹).

2 Main Results 

All neutrosophic quadruple numbers to be considered 
in this section will be real neutrosophic quadruple numbers 
i.e 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ  for any neutrosophic quadruple number
(𝑎, 𝑏𝑇, 𝑐𝐼, 𝑑𝐹) ∈ 𝑁𝑄. 

Theorem 2.1 

 (𝑁𝑄, +) is an abelian group. 

Proof. 
Suppose that 
𝑎 = (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹),
𝑏 = (𝑏1, 𝑏2𝑇, 𝑏3𝐼, 
𝑐 = (𝑐1, 𝑐2𝑇, 𝑐3𝐼, 𝑐4𝐹 ∈ 𝑁𝑄

are arbitrary. 
It can easily be shown that 
𝑎 + 𝑏 = 𝑏 + 𝑎 ∙ 𝑎 + (𝑏 + 𝑐) = 

(𝑎 + 𝑏) + 𝑐 ∙ 𝑎 + (0,0,0,0) = (0,0,0,0) = 𝑎 
and 

𝑎 + (−𝑎) = −𝑎 + 𝑎 = (0,0,0,0). 

Thus, 0 = (0,0,0,0) is the additive identity element in 
(𝑁𝑄, +) and for any 𝑎 ∈ 𝑁𝑄, −𝑎  is the additive inverse. 
Hence, (𝑁𝑄, +) is an abelian group. 

Theorem 2.2 

 (𝑁𝑄, . ) is a commutative monoid. 

Proof. 
Let 
𝑎 = (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹),
𝑏 = (𝑏1, 𝑏2𝑇, 𝑏3𝐼, 
𝑐 = (𝑐1, 𝑐2𝑇, 𝑐3𝐼, 𝑐4𝐹 

be arbitrary elements in 𝑁𝑄. It can easily be shown that 
𝑎𝑏 = 𝑏𝑎 ∙ 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐 ∙ 𝑎 ∙ (1, 0, 0, 0) = 𝑎. 

Thus, 𝑒 = (1, 0, 0, 0) is the multiplicative identity ele-
ment in (𝑁𝑄, . ). Hence, (𝑁𝑄, . ) is a commutative monoid. 

Theorem 2.3 

 (𝑁𝑄, . ) is not a group. 

Proof. 
Let 
𝑥 = (𝑎, 𝑏𝑇, 𝑐𝐼, 𝑑𝐹) 

be any arbitrary element in 𝑁𝑄. 
Since we cannot find any element 𝑦 = (𝑝, 𝑞𝑇, 𝑟𝐼, 𝑠𝐹) ∈

𝑁𝑄  such that 𝑥𝑦 = 𝑦𝑥 = 𝑒 = (1, 0, 0, 0),  it follows 
that 𝑥 − 1 does not exist in 𝑁𝑄 for any given 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ 
and consequently, (𝑁𝑄, . ) cannot be a group. 

Example 1. 
Let 𝑋 = {(𝑎, 𝑏𝑇, 𝑐𝐼, 𝑑𝐹) ∶  𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ𝑛}. Then (𝑋, +)

is an abelian group. 

Example 2. 
Let 

(𝑀2×2, . ) = {
[
(𝑎, 𝑏𝑇, 𝑐𝐼, 𝑑𝐹) (𝑒, 𝑓𝑇, 𝑔𝐼, ℎ𝐹)

(𝑖, 𝑗𝑇, 𝑘𝐼, 𝑙𝐹) (𝑚, 𝑛𝑇, 𝑝𝐼, 𝑞𝐹)
] :

a, b, c, d, e, f, g, h, i, j, k, l, m, n, p, q ∈ ℝ
} 

Then (𝑀2×2, . ) is a non-commutative monoid.

Theorem 2.4 

 (𝑁𝑄, +, . ) is a commutative ring. 
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Proof. 
It is clear that (𝑁𝑄, +) is an abelian group and (𝑁𝑄, . ) 

is a semigroup. To complete the proof, suppose that  
𝑎 = (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹),
𝑏 = (𝑏1, 𝑏2𝑇, 𝑏3𝐼, 
𝑐 = (𝑐1, 𝑐2𝑇, 𝑐3𝐼, 𝑐4𝐹 ∈ 𝑁𝑄

are arbitrary. It can easily be shown that 𝑎(𝑏 + 𝑐) = 𝑎𝑏 +
𝑎𝑐, (𝑏 +  𝑐)𝑎 = 𝑏𝑎 + 𝑐𝑎  and 𝑎𝑏 = 𝑏𝑎 . Hence, (𝑁𝑄, +, . ) 
is a commutative ring. 

From now on, the ring (𝑁𝑄, +, . ) will be called neutro-
sophic quadruple ring and it will be denoted by 𝑁𝑄𝑅. The 
zero element of 𝑁𝑄𝑅 will be denoted by (0, 0, 0, 0) and the 
unity of 𝑁𝑄𝑅 will be denoted by (1, 0, 0, 0). 

Example 3. 
(i) Let 𝑋 be as defined in EXAMPLE 1. Then (𝑋, +, . ) 

is a commutative neutrosophic quadruple ring called a neu-
trosophic quadruple ring of integers modulo 𝑛.  

It should be noted that 𝑁𝑄𝑅(ℤ𝑛) has 4𝑛 elements and
for 𝑁𝑄𝑅(ℤ2)we have

𝑁𝑄𝑅(ℤ2) =
= {(0,0,0,0), (1,0,0,0), (0, 𝑇, 0,0), (0,0, 𝐼, 0), (0,0,0, 𝐹),
(0, 𝑇, 𝐼, 𝐹), (0,0, 𝐼, 𝐹), (0, 𝑇, 𝐼, 0), (0, 𝑇, 0, 𝐹), (1, 𝑇, 0,0),
(1,0, 𝐼, 0), (1,0,0, 𝐹), (1, 𝑇, 0, 𝐹), (1,0, 𝐼, 𝐹), (1, 𝑇, 𝐼, 0),
(1, 𝑇, 𝐼, 𝐹)}. 
(ii) Let 𝑀2×2  be as defined in EXAMPLE 2. Then

(𝑀2×2, . )  is a non-commutative neutrosophic quadruple
ring. 

Definition 2.5 

Let 𝑁𝑄𝑅 be a neutrosophic quadruple ring.  
(i) An element 𝑎 ∈ 𝑁𝑄𝑅 is called idempotent if 𝑎2 = 𝑎. 
(ii) An element 𝑎 ∈ 𝑁𝑄𝑅  is called nilpotent if there 

𝑒𝑥𝑖𝑠𝑡𝑠 𝑛 ∈ 𝑍+ such that 𝑎𝑛 = 0. 

Example 4. 
(i) In 𝑁𝑄𝑅(ℤ2), (1, 𝑇, 𝐼, 𝐹) and (1, 𝑇, 𝐼, 0) are idempo-

tent elements.  
(ii) In 𝑁𝑄𝑅(ℤ4), (2,2𝑇, 2𝐼, 2𝐹) is a nilpotent element.

Definition 2.6 

Let 𝑁𝑄𝑅 be a neutrosophic quadruple ring. 
𝑁𝑄𝑅  is called a neutrosophic quadruple integral do-

main if for 𝑥, 𝑦 ∈ 𝑁𝑄𝑅 , 𝑥𝑦 = 0  implies that 𝑥 = 0 
or 𝑦 = 0.  

Example 5. 
𝑁𝑄𝑅(ℤ) the neutrosophic quadruple ring of integers is 

a neutrosophic quadruple integral domain. 

Definition 2.7 

Let 𝑁𝑄𝑅 be a neutrosophic quadruple ring. 
An element 𝑥 ∈ 𝑁𝑄𝑅 is called a zero divisor if there 

exists a nonzero element 𝑦 ∈ 𝑁𝑄𝑅 such that 𝑥𝑦 = 0. For 
example in 𝑁𝑄𝑅(ℤ2) , (0, 0, 𝐼, 𝐹)  and (0, 𝑇, 𝐼, 0)  are zero
divisors even though ℤ2 has no zero divisors.

This is one of the distinct features that characterize 
neutrosophic quadruple rings. 

Definition 2.8 

Let 𝑁𝑄𝑅 be a neutrosophic quadruple ring and let 𝑁𝑄𝑆 
be a nonempty subset of 𝑁𝑄𝑅. Then 𝑁𝑄𝑆 is called a neu-
trosophic quadruple subring of 𝑁𝑄𝑅 if (𝑁𝑄𝑆, +, . ) is itself 
a neutrosophic quadruple ring. For example, 𝑁𝑄𝑅(𝑛ℤ) is a 
neutrosophic quadruple subring of 𝑁𝑄𝑅(ℤ)  for 𝑛 =
1, 2, 3,···.

Theorem 2.9 

Let 𝑁𝑄𝑆 be a nonempty subset of a neutrosophic quad-
ruple ring 𝑁𝑄𝑅 . Then 𝑁𝑄𝑆  is a neutrosophic quadruple 
subring if and only if for all 𝑥, 𝑦 ∈ 𝑁𝑄𝑆 , the following 
conditions hold:  

(i) 𝑥 − 𝑦 ∈ 𝑁𝑄𝑆 
and 

(ii) 𝑥𝑦 ∈ 𝑁𝑄𝑆. 

Proof. 
Same as the classical case and so omitted. 

Definition 2.10 

Let 𝑁𝑄𝑅 be a neutrosophic quadruple ring. 
Then the set  
𝑍(𝑁𝑄𝑅)  =  {𝑥 ∈ 𝑁𝑄𝑅: 𝑥𝑦 = 𝑦𝑥 ∀ 𝑦 ∈ 𝑁𝑄𝑅}

is called the centre of 𝑁𝑄𝑅. 

Theorem 2.11 

Let 𝑁𝑄𝑅 be a neutrosophic quadruple ring. 
Then 𝑍(𝑁𝑄𝑅) is a neutrosophic quadruple subring of 

𝑁𝑄𝑅. 

Proof. 
Same as the classical case and so omitted. 

Theorem 2.12 

Let 𝑁𝑄𝑅  be a neutrosophic quadruple ring and let 
𝑁𝑄𝑆𝑗  be families of neutrosophic quadruple subrings of
𝑁𝑄𝑅. Then 

⋂ 𝑛
𝑗=1

𝑁𝑄𝑆𝑗

is a neutrosophic quadruple subring of 𝑁𝑄𝑅. 

Definition 2.13 

Let 𝑁𝑄𝑅 be a neutrosophic quadruple ring. 
If there exists a positive integer 𝑛 such that 𝑛𝑥 = 0 for 

124



Neutrosophic Sets and Systems, Vol. 12, 2016 

S.A. Akinleye, F. Smarandache, A.A.A. Agboola, On Neutrosophic Quadruple Algebraic Structures

each 𝑥 ∈ 𝑁𝑄𝑅, then the smallest such positive integer is 
called the characteristic of 𝑁𝑄𝑅. If no such positive integer 
exists, then 𝑁𝑄𝑅  is said to have characteristic zero. For 
example, 𝑁𝑄𝑅(ℤ)  has characteristic zero and 𝑁𝑄𝑅(ℤ𝑛)
has characteristic 𝑛. 

Definition 2.14 

Let 𝑁𝑄𝐽 be a nonempty subset of a neutrosophic quad-
ruple ring 𝑁𝑄𝑅 . 𝑁𝑄𝐽  is called a neutrosophic quadruple 
ideal of 𝑁𝑄𝑅 if for all x, y ∈ 𝑁𝑄𝐽, 𝑟 ∈ 𝑁𝑄𝑅, the following 
conditions hold:  

(i) 𝑥 − 𝑦 ∈ 𝑁𝑄𝐽. 
(ii) 𝑥𝑟 ∈ 𝑁𝑄𝐽 and 𝑟𝑥 ∈ 𝑁𝑄𝐽. 

Example 6. 
(i) 𝑁𝑄𝑅(3ℤ)  is a neutrosophic quadruple ideal of 

𝑁𝑄𝑅(ℤ). 
(ii) Let 
𝑁𝑄𝐽 = 
{(0,0,0,0), (2,0,0,0), (0,2𝑇, 2𝐼, 2𝐹), (2,2𝑇, 2𝐼, 2𝐹)}

be a subset of 𝑁𝑄𝑅(ℤ4) . Then 𝑁𝑄𝐽  is a neutrosophic
quadruple ideal. 

Theorem 2.15 

Let 𝑁𝑄𝐽 and 𝑁𝑄𝑆 be neutrosophic quadruple ideals of 
𝑁𝑄𝑅 and let 

{𝑁𝑄𝐽𝑗}𝑗=1
𝑛

be a family of neutrosophic quadruple ideals of 𝑁𝑄𝑅 . 
Then:  

(i) 𝑁𝑄𝐽 + 𝑁𝑄𝐽 = 𝑁𝑄𝐽.  
(ii) 𝑥 + 𝑁𝑄𝐽 = 𝑁𝑄𝐽 for all 𝑥 ∈ 𝑁𝑄𝐽. 
(iii) 

⋂ 𝑛
𝑗=1

𝑁𝑄𝑆𝑗

is a neutrosophic quadruple ideal of 𝑁𝑄𝑅. 
(iv) 𝑁𝑄𝐽 + 𝑁𝑄𝑆 is a neutrosophic quadruple ideal of 

𝑁𝑄𝑅. 

Definition 2.16 

Let 𝑁𝑄𝐽  be a neutrosophic quadruple ideal of 𝑁𝑄𝑅 . 
The set  

𝑁𝑄𝑅/𝑁𝑄𝐽 = {𝑥 +  𝑁𝑄𝐽 ∶  𝑥 ∈  𝑁𝑄𝑅} 

is called a neutrosophic quadruple quotient ring. 
If 𝑥 + 𝑁𝑄𝐽 and 𝑦 + 𝑁𝑄𝐽 are two arbitrary elements of 

𝑁𝑄𝑅/𝑁𝑄𝐽 and if ⊕ and ⊙ are two binary operations on 
𝑁𝑄𝑅/𝑁𝑄𝐽 defined by:  

(𝑥 +  𝑁𝑄𝐽) ⊕ (𝑦 + 4 𝑁𝑄𝐽)  =  (𝑥 +  𝑦)  +  𝑁𝑄𝐽, 
(𝑥 +  𝑁𝑄𝐽) ⊙ (𝑦 +  𝑁𝑄𝐽)  =  (𝑥𝑦)  +  𝑁𝑄𝐽,

it can be shown that ⊕ and ⊙ are well defined and that 
(NQR/NQJ, ⊕, ⊙) is a neutrosophic quadruple ring.  

Example 7. 
Consider the neutrosophic quadruple ring 𝑁𝑄𝑅(ℤ) and 

its neutrosophic quadruple ideal 𝑁𝑄𝑅(2ℤ). Then 
𝑁𝑄𝑅(ℤ)

𝑁𝑄𝑅(2ℤ)
= 

{𝑁𝑄𝑅(2ℤ), (1,0,0,0)  +  𝑁𝑄𝑅(2ℤ), (0, 𝑇, 0,0)
 + 𝑁𝑄𝑅(2ℤ), (0,0, 𝐼, 0) +  𝑁𝑄𝑅(2ℤ), (0,0,0, 𝐹)
+ 𝑁𝑄𝑅(2ℤ), (0, 𝑇, 𝐼, 𝐹) +  𝑁𝑄𝑅(2ℤ), (0,0, 𝐼, 𝐹)

 + 𝑁𝑄𝑅(2ℤ), (0, 𝑇, 𝐼, 0) +  𝑁𝑄𝑅(2ℤ), (0, 𝑇, 0, 𝐹)
+ 𝑁𝑄𝑅(2ℤ), (1, 𝑇, 0,0) +  𝑁𝑄𝑅(2ℤ), (1,0, 𝐼, 0)

 + 𝑁𝑄𝑅(2ℤ), (1,0,0, 𝐹) +  𝑁𝑄𝑅(2ℤ), (1, 𝑇, 0, 𝐹)
+ 𝑁𝑄𝑅(2ℤ), (1,0, 𝐼, 𝐹) +  𝑁𝑄𝑅(2ℤ), (1, 𝑇, 𝐼, 0)  +

 𝑁𝑄𝑅(2ℤ), (1, 𝑇, 𝐼, 𝐹)  +  𝑁𝑄𝑅(2ℤ)}.

which is clearly a neutrosophic quadruple ring. 

Definition 2.17 
Let 𝑁𝑄𝑅  and 𝑁𝑄𝑆  be two neutrosophic quadruple 

rings and let 𝜑 ∶  𝑁𝑄𝑅 →  𝑁𝑄𝑆 be a mapping defined for 
all 𝑥, 𝑦 ∈  𝑁𝑄𝑅 as follows:  

(i) 𝜑(𝑥 +  𝑦)  =  𝜑(𝑥)  +  𝜑(𝑦). 
(ii) 𝜑(𝑥𝑦)  =  𝜑(𝑥)𝜑(𝑦). 
(iii) 𝜑(𝑇)  =  𝑇, 𝜑(𝐼)  =  𝐼 and 𝜑(𝐹)  =  𝐹. 
(iv) 𝜑(1,0,0,0)  =  (1,0,0,0). 

Then 𝜑 is called a neutrosophic quadruple homomor-
phism. Neutrosophic quadruple monomorphism, endomor-
phism, isomorphism, and other morphisms can be defined 
in the usual way.  

Definition 2.18 

Let 𝜑 ∶  𝑁𝑄𝑅 →  𝑁𝑄𝑆  be a neutrosophic quadruple 
ring homomorphism.  

(i) The image of 𝜑 denoted by 𝐼𝑚𝜑 is defined by the 
set 𝐼𝑚𝜑 =  {𝑦 ∈  𝑁𝑄𝑆 ∶  𝑦 =  𝜑(𝑥) , for some 𝑥 ∈
 𝑁𝑄𝑅}.

(ii) The kernel of 𝜑 denoted by 𝐾𝑒𝑟𝜑 is defined by the 
set 𝐾𝑒𝑟𝜑 =  {𝑥 ∈  𝑁𝑄𝑅 ∶  𝜑(𝑥)  =  (0,0,0,0)}.  

Theorem 2.19 

Let 𝜑 ∶  𝑁𝑄𝑅 →  𝑁𝑄𝑆  be a neutrosophic quadruple 
ring homomorphism. Then:  

(i) 𝐼𝑚𝜑 is a neutrosophic quadruple subring of 𝑁𝑄𝑆. 
(ii) 𝐾𝑒𝑟𝜑 is not a neutrosophic quadruple ideal of 𝑁𝑄𝑅. 

Proof. 
(i) Clear. 
(ii) Since 𝑇, 𝐼, 𝐹 cannot have image (0,0,0,0) under 𝜑, 

it follows that the elements (0, 𝑇, 0,0), (0,0, 𝐼, 0), (0,0,0, 𝐹) 
cannot be in the 𝐾𝑒𝑟𝜑. Hence, 𝐾𝑒𝑟𝜑 cannot be a neutro-
sophic quadruple ideal of 𝑁𝑄𝑅.  
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Example 8. 
Consider the projection map 
𝜑 ∶  𝑁𝑄𝑅(ℤ2) × 𝑁𝑄𝑅(ℤ2)  →  𝑁𝑄𝑅(ℤ2) 

defined by 𝜑(𝑥, 𝑦)  =  𝑥 for all 𝑥, 𝑦 ∈  𝑁𝑄𝑅(ℤ2).
It is clear that 𝜑  is a neutrosophic quadruple homo-

morphism and its kernel is given as 
𝐾𝑒𝑟𝜑 = 

{{((0,0,0,0), (0,0,0,0)), ((0,0,0,0), (1,0,0,0)), 
((0,0,0,0), (0, 𝑇, 0,0)), ((0,0,0,0), (0,0, 𝐼, 0)),  
((0,0,0,0), (0,0,0, 𝐹)), ((0,0,0,0), (0, 𝑇, 𝐼, 𝐹)), 
((0,0,0,0), (0,0, 𝐼, 𝐹)), ((0,0,0,0), (0, 𝑇, 𝐼, 0)),  
((0,0,0,0), (0, 𝑇, 0, 𝐹)), ((0,0,0,0), (1, 𝑇, 0,0)), 
((0,0,0,0), (1,0, 𝐼, 0)), ((0,0,0,0), (1,0,0, 𝐹)),  
((0,0,0,0), (1, 𝑇, 0, 𝐹)), ((0,0,0,0), (1,0, 𝐼, 𝐹)), 
((0,0,0,0), (1, 𝑇, 𝐼, 0)), ((0,0,0,0), (1, 𝑇, 𝐼, 𝐹))}. 

Theorem 2.20 
  Let φ: NQR(Z) → NQR(Z)/NQR(nZ) be a mapping de-
fined by φ(x) = x + NQR(nZ) for all x ∈ NQR(Z) and n = 
1, 2, 3, … . Then φ is not a neutrosophic quadruple ring 
homomorphism. 
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