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Abstract

This paper proposes a notion of partial Additivity in bankruptcy, µ-Additivity.

We show that this property, together with Anonymity and Continuity, iden-

tify the Minimal Overlap rule, introduced by O'Neill (1982).
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1 Introduction

There is empirical evidence pointing out that mergers continue to be a highly

popular form of corporative development (Weitzel and McCarthy, 2011). To

this regard, let us mention, as a recent example, that Spain is expected to

su�er from a drastic reduction in the number of regional saving banks: from

45 in 2009 to 20 after the restructuring process that the �nancial sector

is going through. In the �nancial literature, the avoidance of bankruptcy

has been suggested as a plausible motive, among many others, for merging

(see, for instance, Shrieves and Stevens 1979, and Billingsley et al. 1988).

Therefore the ongoing global �nancial crisis, which explains the considerably

increase in the number of �rms going bankrupt, could somewhat support the

current merger wave.

In this context our goal is to �nd out sharing rules for bankruptcy situa-

tions that are not a�ected by business alliances, that is, neutral distributive

methods against mergers. In other words, and taking into account that cred-

itors of a bankrupted �rm can neither avoid nor promote any merger process,

we try to �nd distribution rules that do not cause externalities. Just to il-

lustrate it, let us consider a creditor lending some funds to two �rms, say A

and B. After a merger course, involving both �rms, the new corporation C

bankrupts. When reimbursing this corporation's creditors, two procedures

can be proposed. The �rst one considers the possibility of partially reim-

bursing C's creditors, whereas the second one lies in paying the debts that A

and B had with their creditors before the merger process. What neutrality

requires is that both ways of proceeding yield the same outcome. So there

will be no disagreement about how to proceed and, in this sense, creditors'

consensus will be reached.

To deal with this question which is quite simple but, as this paper will

point out, not trivial, we formalize general rationing problems by means of

the so-called bankruptcy problems. This is a simple and robust economic

model for describing situations where the demand of some endowment over-
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comes its supply. Moreover, we use the axiomatic method, introduced by

Young (1988). The goal of this approach is to identify sharing rules with sets

of properties that represent `Equity Principles', helping to understand the

nature and applicability of the di�erent solutions. The study by Thomson

(2003) provides a nice and complete overview of the main bankruptcy rules

following this research line.

In this framework, neutrality against mergers is called Additivity and, as

far as we know, the paper by Bergantiños and Méndez-Naya (2001) is the

only one which explores this property. Their conclusion on this matter can

be summarized as follows: There is no bankruptcy rule satisfying Additivity

but, considering a very restrictive family of bankruptcy problems, the Ibn

Ezra's rule, due to Rabad (12th Century), is the only one which conciliates

Additivity and Equal Treatment of Equals.

The previous impossibility result shows that Additivity is a very demand-

ing axiom.1 This fact is not surprising since bankruptcy rules should allocate

the debtor's assets according to essential characteristics of creditors' claims,

and addition can substantially distort them. In general, there are two ways to

overcome these �ndings. One of them involves restricting the domain keep-

ing intact the required property. The other one is the opposite, based on

weakening the property considering the whole domain. The former method

is the one followed by Bergantiños and Méndez-Naya (2001). But, as far

as we know, the latter one has not been analyzed for bankruptcy problems

yet, although it has provided interesting results in other contexts (see, for

instance, Peters (1986) who introduces a restricted Additivity for bargaining

problems).

Taking into account the previous ideas, this paper presents a weak notion

of Additivity, that we call µ-Additivity. Our proposal says that neutrality

against mergers should only be required for problems with a similar internal

1Section 3 discusses the rationale of such a fact from both economic and mathematical
viewpoints.
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structure.

The concept of similarity that we introduce concentrates on crucial char-

acteristics of bankruptcy problems that on the one hand gather its whole

essence and on the other hand are invulnerable to addition. Speci�cally, we

say that two bankruptcy problems have a similar internal structure when,

in both of them, every creditor's claim has a threefold �xed position with

regard to: (i) any other creditor's claim, (ii) the debtor's assets and (iii) the

magnitude of the whole problem.

The interpretation of the above conditions (i) and (ii) is straightforward.

We analyze condition (iii) by dichotomously classifying the creditors on the

basis of the certainty of being partially paid o�, that is, paying attention to

the part of the debtor's assets that each creditor has guaranteed. From our

point of view, this aspect stands for the creditors' position against the severity

of the bankruptcy in a `natural' way. Furthermore the idea of establishing

reasonable bounds on awards is not new, quite the contrary since it has

underlied the theoretical bankruptcy problems from its beginnings to present

day.2

Our starting point is to take as reference the security level of a creditor,

that is, one n-th part of her feasible claim. This lower bound on awards was

introduced for bankruptcy problems by Moreno-Ternero and Villar (2004)

as a weakening of a limit previously proposed by Moulin (2002). Broadly

speaking, we say that a creditor is `privileged' when she is absolutely sure

of getting an amount strictly greater than her security level. Otherwise we

classify her as `non-privileged'. Moreover, we consider that total certainty

of a sharing out arises when whatever minimally fair division rule is applied

such an outcome is achieved. Finally, we assume that the property of Order

Preservation, which demands the respect of the ordering of claims, represents

the minimal requirement of `Equity'.

2Jiménez-Gómez and Marco (2008) summarize the analysis of the concept of guarantee
in the bankruptcy literature and propose a new method to establish lower bounds on
awards.
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Summarizing, what we demand to the problems that are going to be

added up, besides the fact that every creditor's claim has the same relative

position respect to both the rest of the claims and the debtor's assets, is

that every creditor belongs to the same category according to the previous

classi�cation.

Our main result establishes that the Minimal Overlap rule, introduced

by O'Neill (1982), is the only rule for which µ-Additivity is compatible with

Anonymity and Continuity, two properties which have been widely justi�ed

in the literature for bankruptcy problems.

The rest of the paper is organized as follows: Section 2 introduces the

model and the main de�nitions related to bankruptcy problems; Section 3

discusses the notion of general Additivity from a bankruptcy perspective and

argues its lack of reasonableness in this context; Section 4 presents our pro-

posal of partial Additivity and provides our main result: an axiomatization

of the Minimal Overlap rule based on µ-Additivity. Technical proofs are

provided in the Appendices.

2 The Framework and Main De�nitions

Let us consider an individual, the debtor, who borrowed money. Let N =

{1, . . . , i, . . . , n} denote the set of her creditors. This set is �xed throughout

the paper. Let E ≥ 0 denote the valuation of the debtor's assets, which we

call the estate. For any �xed creditor, say i, ci ≥ 0 denotes her loan, i.e.

the claim she has on the estate. Vector c = (c1, . . . , ci, . . . , cn) summarizes

creditors' claims. We say that the debtor goes bankrupt if her assets are

insu�cient to reimburse her debts.

A bankruptcy problem, or simply a problem, is a vector (E, c) ∈ R+×Rn
+

such that

E ≤
n∑
i=1

ci. (1)
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Condition (1) re�ects that reimbursing all debts is not possible. Let B
denote the family of all problems.

A solution provides a way of selecting, for each problem, a division be-

tween the creditors of the available amount satisfying natural lower and upper

bound requirements.

De�nition 1 A bankruptcy rule, or simply a rule, is a function ϕ : B → Rn
+

such that for each problem (E, c) ∈ B,

(a)
∑n

i=1 ϕi (E, c) = E and

(b) 0 ≤ ϕi (E, c) ≤ ci for each creditor i.

The main goal of the axiomatic method for the analysis of bankruptcy prob-

lems is to identify bankruptcy rules with sets of properties that represent

`Equity Principles'. In this sense, and taking into account that in our setting

there are no priority classes, neither absolute nor relative, we consider that

a bankruptcy rule is minimally fair whenever it respects the ordering of

claims. This axiom, called Order Preservation, was introduced by Aumann

and Maschler (1985) as a minimal requirement of fairness and it has been

understood as such by many authors.

A rule ϕ satis�es Order Preservation if for each (E, c) ∈ B and each

{i, j} ⊆ N , whenever ci ≥ cj, then

ϕi (E, c) ≥ ϕj (E, c) and ci − ϕi (E, c) ≥ cj − ϕj (E, c) .

Let Φ∗ denote the set of minimally fair rules. Let us note that, when

there are no priority classes, all the rules proposed in the literature belong

to Φ∗.

Next we introduce those two rules that will be most useful in our analysis.

The �rst one, to be called Ibn Ezra's rule, is a `semi-solution' in the sense that

it is not de�ned for every problem. The second one, known as the Minimal
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Overlap rule, was proposed by O'Neill (1982) as a possible extension of Ibn

Ezra's rule to the whole class of problems.

Henceforth, for expository and technical convenience, we assume without

loss of generality, that creditors' claims are increasingly ordered, i.e. ci ≤
cj whenever i < j. Let us remark that if this is not the case, there is

a permutation3 π such that π (c) is increasingly ordered. Hence, we can

compute ϕ (E, c) = π−1 [ϕ (E, π (c))] .

As mentioned above, Ibn Ezra's rule is only de�ned for a restricted class

of bankruptcy problems, those having at least one `super-creditor', i.e. an

individual whose claim is not lower than the estate. Let BS denote this class,

BS ≡ {(E, c) ∈ B : E ≤ cn} .

De�nition 2 Ibn Ezra's rule is the function ϕIE : BS → Rn
+ that asso-

ciates to each problem (E, c) ∈ BS and each creditor i ∈ N , the amount

ϕIEi (E, c) =
i∑

j=1

min {E, cj} −min {E, cj−1}
n− j + 1

, (2)

where c0 = 0.

Chun and Thomson (2005) propose a formal description for the Minimal

Overlap rule. What these authors suggest is to proceed as follows. Let

(E, c) ∈ B. Then, what each creditor i ∈ N recovers is:

(a) If (E, c) ∈ BS,

ϕMO
i (E, c) = ϕIEi (E, c) and

3A permutation is a bijection applying N to itself. In this paper, and abusing notation,
π (c) will denote the claim vector obtained by applying permutation π to its components,
i.e. the i-th component of π (c) is cj whenever j = π (i). Similar reasoning considerations
apply for π [ϕ (E, c)].

7



(b) If (E, c) /∈ BS, then there is a unique t∗ ≥ 0 such that

t∗ = E −
n∑
i=1

max {ci − t∗, 0}

and in such a case,

ϕMO
i (E, c) = ϕIEi (E − t∗, c) + max {ci − t∗, 0} .

Recently, Alcalde et al. (2008) found an alternative expression for the

Minimal Overlap rule. They showed that this rule can be understood as a de-

composition involving Ibn Ezra's rule and the Constrained Equal Losses rule.

Before presenting their result we introduce the Constrained Equal Losses rule,

which chooses the awards vector at which losses from the claims vector are

the same for all creditors subject to no-one receiving a negative amount.

The Constrained Equal Losses rule is the function, ϕCEL : B → Rn
+

that associates to each problem (E, c) ∈ B and each creditor i ∈ N ,

ϕCELi (E, c) = max {0, ci − β} ,

where β is such that
∑
i∈N

max{0, ci − β} = E.

De�nition 3 The Minimal Overlap rule is the function ϕMO : B → Rn
+

that associates to each problem (E, c) ∈ B and each creditor i ∈ N , the

amount

ϕMO
i (E, c) = ϕIEi (min {E, cn} , c) + ϕCELi (Er, cr) ,

where Er = max {E − cn, 0}, and cr = c− ϕIE (min {E, cn} , c).
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3 Additivity and Bankruptcy Rules

The aim of this section is to discuss the notion of Additivity in the framework

of bankruptcy problems. Firstly we present the basis of this property from

the axiomatic approach. Let us consider the following example. A creditor,

say i, loans some quantity to two �rms, say F and G, which go bankrupt. Let

cFi and cGi denote these quantities. After a merger course, �rm H emerges as

the fusion of F and G and, initially H's assets are insu�cient to reimburse

its debts. If we denote by EF and EG the valuations of �rms F and G

respectively; and their respective debts vectors are denoted by cF and cG, we

have that4

(a) EH = EF + EG, and

(b) cH = cF + cG,

what creditor i would expect to obtain at the division process, for any

bankruptcy rule, say ϕ, is

ϕi
(
EH , cH

)
≥ ϕi

(
EF , cF

)
+ ϕi

(
EG, cG

)
.

Otherwise, creditor i could claim that she has been `penalized' due to the

merger process, and she would not have the possibility to object against such

a decision made by the two �rms. If such an argument is extended to all the

creditors we have that the above inequality must become an equality. This

is the essence of the Additivity notion.

De�nition 4 A bankruptcy rule ϕ satis�es Additivity if for each pair of

problems in B, (E1, c1), and (E2, c2), we have that

ϕ
(
E1, c1

)
+ ϕ

(
E2, c2

)
= ϕ

(
E1 + E2, c1 + c2

)
.

4We are implicitly assuming that the set of creditors, N , is the same for both �rms
and that there are no intra-group debts, i.e. F is not a G's creditor or debtor.
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Secondly, the requirement of Additivity of rules comes from the interpre-

tation of bankruptcy problems as TU-games. This formulation, suggested

by O'Neill (1982), associates to each problem (E, c) the TU-game (N , V ),

where the characteristic function V : 2N → R+ assigns to each non-empty

coalition S ⊆ N the amount

V (S) = max

{
E −

∑
i/∈S

ci, 0

}
. (3)

Following this approach, both TU-games solutions and properties can be

extended to bankruptcy problems. On the one hand, Curiel et al. (1987)

showed that not all bankruptcy rules can be interpreted as solutions of

bankruptcy games. They provided a necessary and su�cient condition,

known as Claims Truncation Invariance, for having this correspondence.

This property demands a solution to depend only on the feasible claims and

debtor's assets.

A rule ϕ satis�es Claim Truncation Invariance if for each problem

(E, c) ∈ B, ϕ (E, c) = ϕ
(
E, cE

)
, where is the feasible claims vector; i.e. for

each creditor i,

cE = min {ci, E}

On the other hand, when concentrating on properties for TU-games so-

lutions re�ecting `Equity' of the distributive process, Additivity is one of the

most extensively imposed requirements. As it is well known Shapley (1953),

in his seminal paper, pointed out the Additivity of the value he proposed.

In fact, the ful�llment of this property has been demanded in a huge family

of allocation problems analyzed from a cooperative perspective. As an ex-

ample, Moretti and Patrone (2008) refer to the Shapley value application to

cost allocations, social networks, water issues, biology, reliability theory and

belief formation.
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Despite the previous mainstays of Additivity, Bergantiños and Méndez-

Naya (2001) pointed out, by means of an example, that this property is

overly demanding for bankruptcy rules. Actually they showed that no rule

is additive.

Next, we deal with some reasons that justify this �nding. The �rst one

lies in the relationship between bankruptcy problems and TU-games. Specif-

ically, the next example shows that Additivity of bankruptcy problems might

not induce Additivity of the respective TU-games.

Example 5 Let us consider the three-agent problems (E, c) = (9, (8, 8, 8))

and (E ′, c′) = (31, (4, 12, 22)). Therefore, the aggregate problem is (E ′′, c′′) =

(E + E ′, c+ c′) = (40, (12, 20, 30)). Let V (resp. V ′, V ′′) denote the charac-

teristic function relative to (E, c) (resp. (E ′, c′), (E ′′, c′′)). By equation (3)

we have that

S V (S) V ′ (S) V ′′ (S) V (S) + V ′ (S)

{1} 0 0 0 0

{2} 0 5 0 5

{3} 0 15 8 15

{1, 2} 1 9 10 10

{1, 3} 1 19 20 20

{2, 3} 1 27 28 28

{1, 2, 3} 9 31 40 40

Therefore, the TU-game induced by adding the two problems di�ers from

the addition of the TU-games they induce.

The second reason which explains that Additivity is a strong requirement,

comes from an economic perspective. Let us consider a company that is the

result of a merger process involving some �rms. When the company as a
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whole goes bankrupt, the bankruptcy degree5 of all the �rms that con�gure

the company is not usually similar. This will justify the fact that not all the

creditors should be rationed considering the company's �nancial situation

but that of the �rms receiving their credits. Therefore, what this argument

suggests is that Additivity, as in De�nition 4, might not be a reasonable

property for bankruptcy rules, except that the problems to be added share,

at least, some similarity.

4 µ-Additivity and the Minimal Overlap Rule

This section describes reasonable conditions, re�ecting similarity in the in-

ternal structure of problems, under which Additivity is both justi�ed from an

economic point of view and consistent with the interpretation of problems

as TU-games. The main idea of our requirements starts from considering

that the complete essence of a problem can be described, in addition to the

relative position of each creditor's claim in regard to both the rest of claims

and the debtor's assets, by means of each creditor' claim position against the

magnitude of the whole problem.

From our point of view, the severity of a problem for each creditor can be

adequately represented through her certainty of getting a minimal share of

the debtor's assets. To analyze this aspect we take as reference the security

level of each creditor. This notion, de�ned as one n-th part of the feasible

claim, was introduced by Moreno-Ternero and Villar (2004) as a fair lower

bound on awards.

5The notion of bankruptcy degree is introduced by Alcalde et al. (2012) as follows.
Given a bankruptcy problem (E, c) with c 6= 0, we can de�ne its bankruptcy degree as the
expression

D (E, c) = 1− E
n∑

i=1

ci

.
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De�nition 6 Given a problem, B = (E, c), the security levels vector,

σ (E, c), provides to each creditor i ∈ N ,

σi (E, c) =
1

n
min {ci, E} .

Now we establish a partition of the set of creditors on the basis of receiving,

with complete certainty, preferential treatment regarding their security lev-

els. Speci�cally, we say that a creditor is privileged if for any structure of

creditors' claims demanding less than she does and, whatever minimally fair

rule is applied, her security level either is exceeded or if it is exactly achieved,

any other creditor's security level is less than hers. Otherwise we say that

such a creditor is non-privileged.

De�nition 7 Given a problem B = (E, c), we say that creditor i is privi-

leged in B if, and only if, for each c′ ∈ Rn
+, such that c′j ≤ ci for each j < i

and c′k = ck for each k ≥ i, and for each minimally fair bankruptcy rule,

ϕ ∈ Φ∗,

(a) ϕi (E, c
′) > σi (E, c) or

(b) ϕi (E, c
′) = σi (E, c) and σi (E, c) > σj (E, c) for each j ∈ N , j 6= i.

To illustrate the notion of a privileged creditor, we provide an exam-

ple, relegated to Appendix B, in which the partition of the set of creditors

according to such a quali�cation is determined for two di�erent problems.

The following results provide alternative de�nitions of the concept of a

privileged creditor and highly intuitive interpretations of its meaning. The

�rst one pays attention to the original data of the problem whereas the second

one is stated in terms of the associated TU-game.

Next proposition can be expressed as follows: creditor i is privileged

whenever there is some partial reimbursement of the debts such that in the

residual problem the feasible part of agent i's claim is greater than any of

her `rivals'.
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Proposition 8 Given a problem B = (E, c), creditor i is privileged in B if,

and only if, there is τ ∈ Rn
+ such that

(a) B′ = (E ′, c′) = (E −
∑n

i=1 τi, c− τ) ∈ B, and

(b) min {c′i, E ′} > min
{
c′j, E

′} for all j ∈ N , j 6= i.

Proof. See Appendix C.

Our second result comes directly from the previous one. It says that cred-

itor i is privileged whenever there is some partial reimbursement of the debts

such that in the residual bankruptcy game agent i's marginal contributions

exceed those of any of her rivals.

To introduce it formally, we proceed as follows. Given a TU-game, V , a

coalition S ⊆ N and an agent i /∈ S, letMV
i (S) denote agent i's marginal

contribution to S, i.e.

MV
i (S) = V (S ∪ {i})− V (S) .

Corollary 9 Given a problem B = (E, c), creditor i is privileged in B if,

and only if, there is τ ∈ Rn
+ such that

(a) B′ = (E ′, c′) = (E −
∑n

h=1 τi, c− τ) ∈ B,

(b) for each j 6= i, and each S ⊆ N \ {i, j},MVB′
i (S) ≥MVB′

j (S) and

(c) for each j 6= i, there is Tj ⊆ N\{i, j} such thatM
VB′
i (Tj) >M

VB′
j (Tj).

Now we introduce a notion of partial Additivity which lies in allowing

adding up problems in which creditors belong to the same category according

to the previous dichotomously classi�cation: privileged and non-privileged.

Axiom 10 A rule ϕ satis�es µ-Additivity if

ϕ (E, c) + ϕ (E ′, c′) = ϕ (E + E ′, c+ c′)

for any two problems (E, c) and (E ′, c′) such that
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(a) (ci − cj)
(
c′i − c′j

)
≥ 0 for each i and j in N ,

(b) (E − ci) (E − c′i) ≥ 0 for each i in N and

(c) Each creditor is privileged in (E, c) if, and only if, she is privileged in

(E ′, c′).

Axiom 10 suggests that Additivity should be preserved in problems shar-

ing their essential features from each creditor's point of view: rivals' claims,

available amount to divide and severity of the problem. That is:

(a) In both problems the creditors' claims should be ordered in the same

way: if i's claim is greater than j's claim in a problem, it should not

be the case that j's claim is greater than i's claim in the other one.

(b) In both problems each creditor's claim should have the same position

related to the estate: if some creditor's claim is lower than the estate

in a problem, it should not be the case that, for the other problem, her

claim exceeds the estate.

(c) In both problems the set of privileged creditors is the same: if a creditor

is privileged in a problem, it should not be the case that she is non-

privileged in the other one.

In order to present our main result we need to introduce two standard

axioms. The �rst one states that the identity of the creditors should no

matter. The second one says that small changes in the data of the problem

should not lead to large changes in the chosen awards vector.

Axiom 11 A rule ϕ satis�es Anonymity if for each problem (E, c) and any

permutation π,6

π [ϕ (E, c)] = ϕ (E, π (c)) .

6To introduce this axiom we must not to assume that c is increasingly ordered.
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Axiom 12 A rule ϕ satis�es Continuity if for each sequence of problems

{(Eν , cν)}ν∈N such that

lim
ν→∞

(Eν , cν) = (E, c) ∈ B, lim
ν→∞

ϕ (Eν , cν) = ϕ (E, c) .

At this point it is worth noting that µ-Additivity together with Continuity

ensure that a rule is also a solution for bankruptcy games.

Proposition 13 Let ϕ a rule satisfying µ-Additivity and Continuity. Then

ϕ satis�es Claims Truncation Invariance.

Proof. See Appendix D.

We can now establish our main result.

Theorem 14 TheMinimal Overlap rule is the only rule satisfying Ano-

nymity, Continuity and µ-Additivity.

Proof. See Appendix E.

Next we show that Theorem 14 requires each and every one of the axioms.

The Constrained Equal Losses rule is both continuous and anonymous but

fails satisfy µ-Additivity. Any Weighted Minimal Overlap rule (see Alcalde

et al. 2008) is both continuous and µ-additive, but does not satisfy Anony-

mity. Finally, let us consider the rule ϕc that recommends for any problem

such that E ≤ cn the Ibn Ezra's proposal and otherwise the following modi-

�cation of the Constrained Equal Losses rule,

ϕci (E, c) =

{
0 if i /∈ P (E, c)

ϕCELi

(
E,
(
{0}j /∈P(E,c) , {c}j∈P(E,c)

))
if i ∈ P (E, c)

,

where P (E, c) denotes the set of privileged creditors for (E, c). This rule is

anonymous and µ-additive but not continuous.

To sum up, this paper introduces reasonable economic conditions, on the

whole class of bankruptcy problems, to analyze the possibility of preserving
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shareholder's wealth when bankrupted �rms merge. Speci�cally, it �nds out

that if we are looking for neutral solution when adding bankruptcy problems

that have �xed creditor's position, in a broad sense, the Minimal Overlap

rule should be selected. Therefore this analysis goes into the nature of this

solution in depth and helps to understand its applicability.
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A General Remark

Next we note how to check if a creditor i ∈ N is privileged (De�nition 7)

when facing a problem B = (E, c). This reasoning will be used in Appendices

B and C.

Let us introduce the Constrained Equal Awards rule, which will be

useful in the sequel. This rule is the function ϕCEA : B → Rn
+ that associates

to each problem (E, c) ∈ B and each creditor i ∈ N , the amount

ϕCEAi (E, c) = min {ci, α} ,

where α is such that
∑

i∈N min {ci, α} = E.

Remark 15 Given a problem B = (E, c), to prove that a creditor i ∈ N
is privileged, i.e. that some of the conditions, (a) or (b), in De�nition 7 is

satis�ed, it will be enough to check them in the least favorable situation for

such a creditor with regard to both the rest of the claims and the rule that

prevails.

Let cW (i) and ϕW (i) respectively denote the claims vector and the mini-

mally fair bankruptcy rule corresponding to the worst situation for creditor

i. Clearly, cW (i) is such that c
W (i)
j = ci for each j < i, and c

W (i)
k = ck for each

k ≥ i. And ϕW (i) is obtained by applying the following two step rule: �rst

the Constrained Equal Losses rule, ϕCEL, is applied until no creditor claims

more than creditor i does (see Section 2 for a formal de�nition). Afterwards

the remainder, if any, is divided according to the Constrained Equal Awards

rule, ϕCEA.
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B Classi�cation of Creditors: Privileged and

Non-Privileged

To illustrate the notion of privileged creditor, we present, taking into account

Remark 15, the partition of the set of creditors according to such a quali�-

cation for two di�erent problems. In the �rst one, all the claims are lower

than the estate whereas in the second problem, there is some creditor who

claims more than the debtor's assets.

Example 16 Let B1 = (E1, c1) = (120, (10, 20, 50, 80)). By de�nition, the

security levels vector is

σ
(
B1
)

=

(
5

2
, 5,

25

2
, 20

)
,

and the claims vectors cW (i) are

cW (1) = (10, 20, 50, 80) , cW (2) = (20, 20, 50, 80) ,

cW (3) = (50, 50, 50, 80) , cW (4) = (80, 80, 80, 80) .

Therefore,

(1) creditor 1 is non-privileged since

ϕ
W (1)
1

(
E1, cW (1)

)
= ϕCEL1

(
E1, cW (1)

)
= 0 < σ1(B

1) =
5

2
;

(2) creditor 2 is privileged since

ϕ
W (2)
2

(
E1, cW (2)

)
= ϕCEL2

(
90, cW (2)

)
+ ϕCEA2 (30, (20, 20, 20, 20)) =

0 + 30
4
> σ2 (B1) = 5;
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(3) creditor 3 is also privileged since

ϕ
W (3)
3

(
E1, cW (3)

)
= ϕCEL3

(
30, cW (3)

)
+ ϕCEA3 (90, (50, 50, 50, 50)) =

0 + 90
4
> σ3 (B1) = 25

2
; and

(4) �nally, creditor 4 is privileged since

ϕ
W (4)
4

(
E1, cW (4)

)
= ϕCEA4 (120, (80, 80, 80, 80)) =

120

4
> σ4

(
B1
)

= 20.

Example 17 Let B2 = (E2, c2) = (70, (30, 30, 60, 90)). Now, the security

levels vector is

σ
(
B2
)

=

(
15

2
,
15

2
, 15,

35

2

)
and the agents' `worst claim vectors' are

cW (1) = (30, 30, 60, 90) , cW (2) = (30, 30, 60, 90) ,

cW (3) = (60, 60, 60, 90) , cW (4) = (90, 90, 90, 90) .

Therefore, we have that

(1) creditors 1 and 2 are non-privileged since for i = 1, 2,

ϕ
W (i)
i

(
E2, cW (i)

)
= ϕCELi

(
E2, cW (1)

)
= 0 < σi

(
B2
)

=
15

2
;

(2) creditor 3 is also non-privileged since

ϕ
W (3)
3

(
E2, cW (3)

)
= ϕCEL3

(
30, cW (3)

)
+ ϕCEA3 (40, (70, 70, 70, 70)) =

0 + 40
4

= 10 < σ3 (B2) = 15; and
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(3) �nally, creditor 4 is privileged since

ϕ
W (4)
4

(
E2, cW (4)

)
= ϕCEA4 (70, (90, 90, 90, 90)) = 70

4
= σ4 (B2) , and

σi (B
2) < σ4 (B2) for i = 1, 2, 3.

C Proof of Proposition 8

Firstly we show that De�nition 7 implies conditions (a) and (b) of Proposition

8.

Let i ∈ N be a privileged creditor in (E, c) ∈ B, then for each c′ ∈ Rn
+,

such that c′j ≤ ci for each j < i and c′k = ck for each k ≥ i, and for each

minimally fair rule, ϕ ∈ Φ∗, we have one of the two following cases.

Case 1 ϕi (E, c
′) > σi (E, c).

Taking into account Remark 15, the above inequality should be met for

ϕW (i). It implies that once the Constrained Equal Losses rule, ϕCEL, has been

applied until no creditor claims more than creditor i does, the remainder is

greater than ci. Therefore

E −
∑
j>i

(cj − ci) > ci.

Let us de�ne

α ≡ E − ci −
∑
j>i

(cj − ci) , and

let S ⊂ N be the subset of creditors, whose cardinality is denoted by s, such

that k ∈ S if and only if k 6= i and ck ≥ ci, and let β = 1
s

min {ci, α}. Now
we de�ne τ ∈ Rn

+ such that

τk = (ck − ci) + β for all k ∈ S, and τj = 0 for all j ∈ N\S.
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Thus

B′ = (E ′, c′) =

(
E −

n∑
i=1

τi, c− τ

)

is a problem in B and for all j ∈ N , j 6= i, min {c′i, E ′} > min
{
c′j, E

′}.
Case 2 ϕi (E, c

′) = σi (E, c), and σi (E, c) > σj (E, c) for all j ∈ N , j 6= i.

By De�nition 6, the previous inequality is 1
n

min {ci, E} > 1
n

min {cj, E}
for all j ∈ N , j 6= i. Therefore, for τ ∈ Rn

+ such that τi = 0 for all i ∈ N ,
conditions (a) and (b) of Proposition 8 are obviously satis�ed.

Secondly we show that conditions (a) and (b) of Proposition 8 imply

De�nition 7.

Let us suppose that there is τ ∈ Rn
+ such that

(a) B′ = (E ′, c′) = (E −
∑n

i=1 τi, c− τ) ∈ B and

(b) min {c′i, E ′} > min
{
c′j, E

′} for all j ∈ N , j 6= i.

Let us note that the previous inequality implies that for all j ∈ N , j 6= i,

either E ′ ≥ c′i > c′j or c′i > E ′ > c′j. This means that there is a partial

reimbursement of debts, τ , such that in the residual problem, (E ′, c′), c′i > c′j

for all j ∈ N . Let us look for the minimum partial reimbursement of debts,

τ ∗, for which

(E∗, c∗) =

(
E −

n∑
i=1

τ ∗i , c− τ ∗
)
∈ B.

Let us consider the following two cases.

Case 1 ci = cn > cn−1.

Then τ ∗ = 0 and, by Remark 15, ϕW (i) = ϕCEA. If E > ci,

ϕ
W (i)
i

(
E, cW (i)

)
=
E

n
> σi (E, c) =

ci
n
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and condition (a) in De�nition 7 is satis�ed. Otherwise, i.e. if ci > E > cn−1,

ϕ
W (i)
i

(
E, cW (i)

)
=
ci
n

= σi (E, c) < σj (E, c) =
cj
n

for all j ∈ N , j 6= i, which implies condition (b) in De�nition 7.

Case 2 There is j ∈ N , j 6= i such that cj ≥ ci.

Then it is possible to partially reimburse debts in such a way that: (i) no

creditor has a new claim greater than creditor i does and (ii) what is left of

estate is greater than ci. Otherwise conditions (a) and (b) of Proposition 8

would not be ful�lled. Therefore, the previous statement is equivalent to

E −

[∑
i∈N

ϕCELi

(∑
j∈N

τ ∗j , c
W (i)

)]
> ci,

where τ ∗ ∈ Rn
+ is such that τ ∗j = max {cj − ci, 0} for all j ∈ N .

From the previous inequality,

ϕCEAi

(
E −

∑
i∈N

ϕCELi

(∑
j∈N

τ ∗j , c
W (i)

)
, cW (i))

)
>
ci
n

= σi (E, c) .

Now, taking into account Remark 15

ϕ
W (i)
i

(
E, cW (i)

)
> σi (E, c) ,

which implies condition (a) in De�nition 7.

D Proof of Proposition 13

Let ϕ be a rule satisfying µ-Additivity and Continuity. Let (E, c) be a

problem where 0 < E < cn = maxi∈N {ci}; and let S ⊂ N be the subset of

agents claiming zero. Let us consider the following two cases.
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Case 1 E ≤ cn−1.

By µ-Additivity,

ϕ (E, c) = ϕ

(
E − 1

r
,

(
(0)i∈S ,

(
cEi −

1

r

)
i∈N\S

))
+

+ ϕ

(
1

r
,

(
(0)i∈S ,

(
ci − cEi +

1

r

)
i∈N\S

))

for all r ∈ N such that

1

r
< min

{
min
i∈N\S

{ci} , cn − E
}
.

Now, we let r go to in�nity in the previous equation and obtain

lim
r→∞

ϕ (E, c) = lim
r→∞

ϕ

(
E − 1

r
,

(
(0)i∈S ,

(
cEi −

1

r

)
i∈N\S

))
+

+ lim
r→∞

ϕ

(
1

r
,

(
(0)i∈S ,

(
ci − cEi +

1

r

)
i∈N\S

))
.

Taking into account that ϕ is continuous,

ϕ (E, c) = ϕ
(
E, cE

)
+ ϕ

(
0, c− cE

)
= ϕ

(
E, cE

)
.

Case 2 E > cn−1.

By µ-Additivity,

ϕ (E, c) = ϕ

(
E − 1

r
,

(
(0)i∈S ,

(
cEi −

1

r

)
i∈N\S∪{n}

, cEn −
1

2r

))
+

+ ϕ

(
1

r
,

(
(0)i∈S ,

(
ci − cEi +

1

r

)
i∈N\S∪{n}

, cn − cEn +
1

2r

))
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for all r ∈ N such that

1

r
< min

{
min
i∈N\S

{ci} , max
{i∈N : E<ci<cn}

{ci − E} , 2 (cn − cn−1)
}
.

Now, we let r go to in�nity in the previous equation and obtain

lim
r→∞

ϕ (E, c) = lim
r→∞

[
ϕ

(
E − 1

r
,

(
(0)i∈S ,

(
cEi −

1

r

)
i∈N\S∪{n}

, cEn −
1

2r

))
+

+ ϕ

(
1

r
,

(
(0)i∈S ,

(
ci − cEi +

1

r

)
i∈N\S∪{n}

, cn − cEn +
1

2r

))]
.

Taking into account that ϕ is continuous,

ϕ (E, c) = ϕ
(
E, cE

)
+ ϕ

(
0, c− cE

)
= ϕ

(
E, cE

)
.

E Proof of Theorem 14

Firstly, it is straightforward to verify that the Minimal Overlap rule satis�es

Anonymity, Continuity and µ-Additivity.

Now, let ϕ be a rule satisfying these axioms. Given a problem (E, c) ∈ B,
let us consider the following two cases:

Case 1 E ≤ cn.

By Proposition 13,

ϕ (E, c) = ϕ
(
E, cE

)
.

Let us denote P 1 = cE1 ; P
i = cEi − cEi−1 for 1 < i ≤ n; and cP

i
=(

(0)j<i , (P
i)j≥i

)
for each i ∈ N .

Now, let us consider the following two subcases.

26



Subcase 1. cEn = cEn−1.

µ-Additivity implies that

ϕ
(
E, cE

)
=
∑
i∈N

ϕ
(
P i, cP

i
)
.

By Anonymity and Proposition 13,

ϕj

(
P i, cP

i
)

=

{
0 if j < i
P i

n−i+1
if j ≥ i

,

i.e.

ϕj

(
P i, cP

i
)

=

{
0 if j < i

cEi −cEi−1

n−i+1
if j ≥ i

with c0 = 0.7 Thus, for each agent h

ϕh
(
E, cE

)
=
∑
i∈N

ϕh

(
P i, cP

i
)
.

Since, for any j > h we have that cP
j

h = 0,

ϕh
(
E, cE

)
=

h∑
i=1

ϕh

(
P i, cP

i
)

=
h∑
i=1

cEi − cEi−1
n− i+ 1

=

=
h∑
i=1

min {ci, E} −min {ci−1, E}
n− i+ 1

= ϕMO
h (E, c) .

Subcase 2. cEn 6= cEn−1.

Let q (j) denote the cardinality of the set {i ≤ j : P i 6= 0}. µ-Additivity
7Throughout this proof, and for notational convenience, we will consider c0 = cE0 = 0.
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implies that

ϕ
(
E, cE

)
= ϕ

(
P 1 + 1

r
,
((
cP

1

i

)
i<n

, cP
1

n + 1
r

))
+

+
∑

{1<i<n : P i 6=0}

ϕ

(
P i − 1

r [q (n)− 1]
,

(
max

{
0, cP

i

j −
1

r [q (j)− 1]

})
j∈N

)
+

+ ϕ
(
P n − 1

r[q(n)−1] ,
(

0,
(

min
{
cp

i

i ,
1
r

})
1<i<n

, cP
n

n − 1
r[q(n)−1]

))
,

where r ∈ N is such that

1

r
< min

{(
1− 1

q (n)

)
P n, min

{i : P i 6=0}

{
P i
}}

.

Now, we let r go to in�nity in the previous equation and obtain

lim
r→∞

ϕ
(
E, cE

)
= lim

r→∞

[
ϕ

(
P 1 +

1

r
,

((
cP

1

i

)
i<n

, cP
1

n +
1

r

))
+

+
∑

{1<i<n : P i 6=0}

ϕ

(
P i − 1

r [q (n)− 1]
,

(
max

{
0, cP

i

j −
1

r [q (j)− 1]

})
j∈N

)
+

+ ϕ
(
P n − 1

r[q(n)−1] ,
(

0,
(

min
{
cp

i

i ,
1
r

})
1<i<n

, cP
n

n − 1
r[q(n)−1]

))]
.

By Continuity,

ϕ
(
E, cE

)
=
∑
i∈N

ϕ
(
P i, cP

i
)
.

By using the reasoning of the Subcase (a) above, we obtain that for each

agent h,

ϕh
(
E, cE

)
= ϕMO

h (E, c) .
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Case 2 E > cn.

In such a case, there is a unique t, 0 ≤ t < cn, such that∑
i∈N

max {0, ci − t} = E − t.

Let k be the unique agent such that ck − t > 0, and ck−1 − t ≤ 0. Note that

this implies that each agent j, with j ≥ k, is privileged in (E, c). Then, for

each r ∈ N such that

1

r
< min {E − t, (n− k − 1) (ck − t)} .

By µ-Additivity,

ϕ (E, c) = ϕ

(
t+ 1

r
,

(
(ci)i<k ,

(
t+ 1

r(n−k+1)

)
i≥k

))
+ ϕ

(
E − t− 1

r
,

(
(0)i<k ,

(
ci − t− 1

r(n−k+1)

)
i≥k

))
.

(4)

Now, we let r go to in�nity in equation (4) above and obtain

lim
r→∞

ϕ (E, c) = lim
r→∞

[
ϕ

(
t+ 1

r
,

(
(ci)i<k ,

(
t+ 1

r(n−k+1)

)
i≥k

))
+ ϕ

(
E − t− 1

r
,

(
(0)i<k ,

(
ci − t− 1

r(n−k+1)

)
i≥k

))]
.

By Continuity,

ϕ (E, c) = ϕ
(
t, (min {ci, t})i∈N

)
+ ϕ

(
E − t, (max {0, ci − t})i∈N

)
.

Observe that the problem
(
t, (min {ci, t})i∈N

)
was analyzed in Case 1
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above. Therefore, for each agent h,

ϕh
(
t, (min {ci, t})i∈N

)
=

h∑
i=1

min {ci, t} −min {ci−1, t}
n− i+ 1

. (5)

Moreover, note that for agent h,

max {0, ch − t} =

{
0 if h < k

ch − t if h ≥ k
.

Since by construction

n∑
i=1

max {0, ci − t} = E − t,

we conclude that for each agent h,

ϕh
(
E − t, (max {0, ci − t})i∈N

)
= max {0, ch − t} . (6)

Finally, by combining equations (4), (5), and (6), we have that, for each

agent h,

ϕh (E, c) =
h∑
i=1

min {ci, t} −min {ci−1, t}
n− i+ 1

+ max {0, ch − t} = ϕMO
h (E, c) .
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