
Arithmetical algorithms for elementary patterns

Samuel A. Alexander∗ †

Department of Mathematics, the Ohio State University

March 30, 2014

Abstract

Elementary patterns of resemblance notate ordinals up to the ordinal of Π1

1 − CA0. We provide

ordinal multiplication and exponentiation algorithms using these notations.

1 Introduction

In [4], Timothy J. Carlson used deep structural properties of the ordinal numbers [3] to settle an open problem
of William Reinhardt. These properties were later organized into elementary patterns of resemblance [5]. In
the latter paper, Carlson showed that elementary patterns notate the recursive ordinals up to an ordinal κ

called the core. Wilken established [10] that the core is the ordinal of KPℓ0 (equivalently, of Π1
1 −CA0), via

isomorphism with notations based on collapsing functions. One way to perform pattern arithmetic, then,
is to use Wilken’s isomorphism, perform the arithmetic using the collapsing functions, and then reverse
the isomorphism. Our goal is to establish algorithms for performing arithmetic directly on patterns, in a
geometric way.

Two algorithms have already been published. In [5], Lemma 7.12 is proved constructively, implicitly
yielding an algorithm for amalgamating two patterns into a single pattern. We will see shortly why this
simplifies pattern arithmetic. In [7], the constructive Theorem 4.6 yields an algorithm for putting patterns
in normal form.

The algorithms in the present paper are implemented in [1], an online ordinal calculator under develop-
ment.

In Section 2, we review preliminaries, some of which are phrased in a new way that we hope will illuminate.
This section also makes explicit the addition algorithm implicit in [5].

In Section 3 we introduce the notion of the reach of an ordinal below the ordinal of Π1
1 − CA0.

In Section 4 we give a multiplication algorithm.
In Section 5 we give algorithms for base-ω exponentiation and logarithm.

2 Preliminaries

An ordinal α is decomposable if α = 0 or α = β+γ for some nonzero β, γ < α. Otherwise, α is indecomposable.
The following definition is a special case of Definition 3.7 of [5].

Definition 1. A set X of ordinals is closed if whenever X contains α, then X contains all the components
in α’s Cantor normal form decomposition.

Definition 2. Let L0 be the language (0,+,≤), where 0 and ≤ have the expected arities and + is a ternary
relation symbol (meant to represent the graph of a possibly non-total addition function). An ordinal-additive

structure is an L0-structure that is L0-isomorphic to a closed set of ordinals. An element a 6= 0 of an ordinal-
additive structure A is indecomposable if there are no 0 6= b, c ∈ A with a = b + c, c < a.

∗Email: alexander@math.ohio-state.edu
†2010 Mathematics Subject Classification: 03F15

1



Lemma 1. A finite L0-structure A is an ordinal-additive structure if and only if the following conditions
hold.

• ≤ linearly orders A with minimum element 0.

• For all 0 6= a ∈ A there is a descending sequence a1, . . . , am of A-indecomposables with a = a1+· · ·+am.

• Whenever a1, . . . , am and b1, . . . , bn are descending sequences of A-indecomposables such that a1 +
· · · + am and b1 + · · · + bn are defined, we have

1. a1 + · · · + am ≤ b1 + · · · + bn iff (a1, . . . , am) ≤lex (b1, . . . , bn).

2. If n 6= 0 then either

(a) a1 < b1 and a1 + · · · + am + b1 + · · · + bn = b1 + · · · + bn, or

(b) a1 6< b1 and a1 + · · · + am + b1 + · · · + bn = a1 + · · · + ai + b1 + · · · + bn, where i is maximal
such that b1 ≤ ai.

Proof. By basic facts about ordinal arithmetic.

In [5], the conditions of Lemma 1 (minus finiteness) define what is there called an additive structure.

Definition 3. (See Fig. 1) Let L1 be the language (0,+,≤,≤1), where ≤1 is a binary relation symbol and
0,+,≤ are as in L0. An additive pattern of resemblance of order one (hereafter just a pattern) is a finite
L1-structure P satisfying the following conditions.

• The L0 part of P is an ordinal-additive struc-
ture.

• ≤1 is a reflexive transitive subrelation of ≤.

• ≤1 is a forest respecting ≤, by which we mean
that whenever a ≤ b ≤ c and a ≤1 c, this im-
plies a ≤1 b.

• Whenever a <1 b, a is indecomposable.

Elements of the universe of a pattern are called nodes,
or points, of the pattern.

Figure 1: A pattern of resemblance. An
arc with left endpoint ℓ and right endpoint
r indicates that ℓ ≤1 x for all ℓ ≤ x ≤ r.
A point that is not the left endpoint of
any arc is understood to be 6≤1 any point
except itself.

Having added ≤1 to L1, we feel obliged to give an intended interpretation of ≤1 on the ordinals.

Definition 4. The binary relation ≤1 on Ord is defined by transfinite recursion so that for all α, β ∈ Ord,
α ≤1 β iff α ≤ β and (α, 0,+,≤,≤1) is a Σ1-elementary substructure of (β, 0,+,≤,≤1).

Lemma 2. ≤1 is transitive and is a forest respecting ≤. More strongly, for every finite closed set X ⊆ Ord,
(X, 0,+,≤,≤1) is a pattern.

Proof. Straightforward.

More remarkably, a converse also holds.

Theorem 3. (ZF) Every pattern is L1-isomorphic to a closed set of ordinals.

Proof. See Lemma 6.1 and Theorem 5.9 (1-2) of [5]. Carlson’s proof of Lemma 6.1 uses the full force of ZF,
in the form of the reflection principle.

Theorem 3 is also obtained in [10].
For the remainder of the paper, we assume full ZF so that we may use Theorem 3. We will not use the

following lemma, but it will motivate a later definition.

Lemma 4. For all α ≤ β ∈ Ord, α ≤1 β if and only if for every finite X ⊆ α and finite Y ⊆ [α, β), there is

X < Ỹ < α such that X ∪ Ỹ ∼=L1
X ∪ Y .

Proof. Straightforward; for a proof, see Gunnar Wilken’s dissertation [8].

2



2.1 Pattern Syntax and Semantics

Nodes of a pattern notate ordinals in two ways. One is concrete and constructive, the other is abstract.
Carlson showed that both are equivalent. Identifying the two, one can learn much about the ordinals.

Definition 5. A pointed pattern is a pair (P, x) where P is a pattern and x ∈ P .

Definition 6. A pointed pattern (P, x) is said to semantically notate the ordinal α if, writing P ∗ for the
lexicominimal closed set of ordinals L1-isomorphic to P , α corresponds to x under the isomorphism.

Example 5. By the exercise atop p. 21 of [5] (see also
[9]), ωω is the least ordinal α such that1 α ≤1 α + 1;
ǫ0 is the least nonzero ordinal α such that α ≤1 α+α;
and Γ0 is the least nonzero ordinal α ≤1 α2; it follows
that the nodes in Fig. 2 notate 0, 1, ωω, ωω + 1, ǫ0,
ǫ0+ǫ0, Γ0, Γ2

0, and Γ2
0+Γ0, in that order. (In the case

of the last three nodes, this takes some more work to
establish, but it can be done using the aforementioned
exercise.)

Figure 2: A pattern of resemblance with
its nodes labeled by the ordinals they se-
mantically notate.

We will also define what it means for (P, x) to syntactically notate an ordinal; this requires more ma-
chinery.

Lemma 6. (See Fig. 3) Suppose P is a pattern
and a1, . . . , an+1 is a descending sequence of P -
indecomposables such that a1 + · · · + an is defined
but a1 + · · ·+ an+1 is not. There is an extension of P

to a pattern P+ such that

• a1 + · · · + an+1 is defined in P+.

• a1 + · · ·+ an+1 is the unique element of P+\P .

• For every x < a1+· · ·+an+1, x <1 a1+· · ·+an+1

iff x <1 y for some y > a1 + · · · + an+1.

Any two such extensions are L1-isomorphic over P .
Such an extension is called a simple additive extension

of P .

Proof. Straightforward (Lemma 4.5 of [5]).

Figure 3: Pattern P+ is a simple additive
extension of pattern P .

By a subpattern of a pattern P , we mean an L1-substructure of P . A subpattern Q of P is closed (with
respect to P ) if whenever a +P b ∈ Q, this implies a ∈ Q and b ∈ Q.

Lemma 7. (Compare Lemma 4) (See Fig. 4) Let P

be a pattern, a, b ∈ P , a <1 b, and let Y ⊆ [a, b)P

be such that [0, a)P ∪ Y is a closed subpattern of P .
There is a pattern P+, of which P is a subpattern,
such that, writing Ỹ for P+\P , we have:

• [0, a)P < Ỹ < a

• [0, a)P ∪ Y ∼=L1
[0, a)P ∪ Ỹ .

• Whenever y ∈ Ỹ and y ≤1 z then z ∈ Ỹ .
Figure 4: Downward reflection.

1Bès showed [2] that for α ∈ Ord, the elementary theory of (α,≤, ·) is decidable precisely if α < ωω . Thus in loose geometric
terms, we can say that the elementary theory of ordinals under multiplication becomes badly behaved precisely when the first
“arc” appears.

3



Furthermore, any two candidates for P+ are L1-isomorphic over P . Such a P+ is said to be obtained from

P by reflecting Y below a (or simply to be obtained from P by reflection).

Proof. See Lemma 4.8 of [5].

Definition 7. (Immediate Extension) Let P,Q be patterns. We call Q an immediate extension of P if either
Q = P , or Q is a simple additive extension of P , or Q is obtained from P by reflection.

Definition 8. (Fair Sequences) Suppose Pn (n ∈ N)
is a sequence of patterns, each an immediate exten-
sion of the previous. Let P∞ = ∪nPn. We say the Pn

form a fair sequence for P0 if the following conditions
hold.

1. + is a total function on P∞. In other words,
for every i ∈ N and every descending sequence
a1, . . . , am of indecomposables in Pi, there is
j ≥ i such that a1 + · · · + am is defined in Pj .

2. For every i ∈ N, every a, b ∈ Pi with a <1 b,
and every Y ⊆ [a, b)Pi such that [0, a)Pi ∪ Y is
a closed subpattern of Pi, there is some j ≥ i

such that Pj+1 is obtained from Pj by reflect-
ing Y below a.

Fig. 5 shows the beginning of a fair sequence for a
pattern whose nodes notate {0, 1, ωω, ωω +1}. A fair
sequence may be thought of as an attempt, starting
with P0, to generate as many nodes as possible using
machinery from Definition 7.

Figure 5: The first few patterns in a fair
sequence.

Theorem 8. Let P be a pattern.

1. If Pn (n ∈ N) is a fair sequence for P , then P∞ = ∪nPn is well founded by ≤, i.e., it has no infinite
strictly decreasing sequence of nodes.

2. If x ∈ P then for any two fair sequences Pn, P ′
n for P , the order type of the nodes below x in P∞ is

equal to the order type of the nodes below x in P ′
∞.

Proof. Follows from Lemma 5.8 of [5].

Definition 9. (Compare Definition 6) A pointed pattern (P, x) is said to syntactically notate the ordinal
α if for some (equivalently for every) fair sequence Pn for P , α is the order type of the nodes below x in
P∞ = ∪nPn.

We have developed enough machinery to state a theorem saying that pointed patterns syntactically notate
the same ordinals as they semantically notate. But first we will develope a little more machinery in order to
state an even broader theorem.

Definition 10. Let P , Q be patterns such that P is a subpattern of Q.

• We say P syntactically exactly generates Q if Q can be obtained from P by a finite sequence of
immediate extensions.

• We say P syntactically generates Q if P syntactically exactly generates a pattern Q′ in which Q is a
subpattern.

• Let ι : P → Q be inclusion. Let P ∗, Q∗ be the lexicominimal closed Ord-substructures isomorphic to P

and Q respectively, with isomorphisms φ : P → P ∗ and ψ : Q → Q∗. We say P semantically generates

Q if P contains Q’s maximum indecomposable (or P = Q if Q has no indecomposables) and φ = ψ ◦ ι.

4



Theorem 9. (Syntax-Semantics Equivalence)

1. If pointed pattern (P, x) semantically notates α and syntactically notates α′, then α = α′.

2. If P is a subpattern of Q then P semantically generates Q if and only if P syntactically generates Q.

Proof. Follows from the way Lemmas 5.7 and 5.8 and Theorem 5.9 of [5] are proved.

Definition 11. If (P, x) is a pointed pattern, (P, x)∗ shall denote the ordinal that is semantically (equiva-
lently, syntactically) notated by (P, x). In case P is clear from context, we may write x∗ for the same thing.
If P ⊆ Q, we say P generates Q if P semantically (equivalently, syntactically) generates Q.

Theorem 10. The ordinals notated by pointed patterns are precisely the ordinals below the ordinal of
Π1

1 − CA0, or equivalently below the ordinal of KPℓ0.

Proof. See Wilken [10].

Theorem 11. (The Interval Theorem) Suppose P is a pattern, x < y ∈ P . Let P = P0, P1, . . . be a
fair sequence for P , let P∞ = ∪iPi. The ordinals in the interval (x∗, y∗)Ord are precisely the ordinals
{(Pn, z)∗ : z ∈ (x, y)Pn for some n ∈ N}.

Proof. First suppose z ∈ (x, y)Pn for some n ∈ N. Since P generates Pn,

x∗ = (P, x)∗ = (Pn, x)∗ < (Pn, z)∗ < (Pn, y)∗ = (P, y)∗ = y∗,

so (Pn, z)∗ ∈ (x∗, y∗)Ord.
We will prove the converse by contradiction. Let Z = {(Pn, z)∗ : z ∈ (x, y)Pn for some n ∈ N} and

assume (x∗, y∗) * Z. Let α ∈ (x∗, y∗)\Z be minimal and let β ∈ Z ∪ {y∗} be minimal such that β > α.
There is some n ∈ N and z ∈ Pn with z∗ = β. By minimality of α and β, the set Z ′ = {(Pm, t)∗ :
t ∈ (x, z)Pm for some m ≥ n} is exactly (x∗, α). By the syntactic definition of z∗, it follows that z∗ = α, a
contradiction.

2.2 Amalgamation

The following (semantic) definition differs from the (syntactic) Definition 6.5 of [5], but the two are easily
seen to be equivalent in light of Theorem 9.

Definition 12. (See Fig. 6) Assume P1, P2 are patterns. An amal-

gamation of P1 and P2 is a pattern P̂ along with embeddings
φi : Pi → P̂ such that, writing P̂i for φi(Pi) and x̂ for φi(x),

• P̂ = P̂1 ∪ P̂2.

• ∀i ∈ {1, 2}, ∀x ∈ Pi, (Pi, x)∗ = (P̂ , x̂)∗.

Theorem 12. There is an algorithm that takes patterns P,Q as
input and outputs an amalgamation of P and Q.

Proof. The algorithm is implicit in the constructive proof of Lemma
7.12 of [5].

Figure 6: Amalgamation.

Theorem 12 is implemented in the Patterns of Resemblance Ordinal Calculator [1] as the amalgamate

command.

5



2.3 Preliminary Arithmetic Algorithms

Proposition 13. (Comparison Algorithm) The following algorithm, taking input two pointed patterns (P, x)
and (Q, y), decides whether or not (P, x)∗ ≤ (Q, y)∗ and whether or not (P, x)∗ ≤1 (Q, y)∗.

1. Using Theorem 12, compute an amalgamation A of P and Q, along with inclusions P̂ and Q̂ of P and
Q in A.

2. If x̂ ≤ ŷ, report that (P, x)∗ ≤ (Q, y)∗. Otherwise, report (P, x)∗ > (Q, y)∗.

3. If x̂ ≤1 ŷ, report that (P, x)∗ ≤1 (Q, y)∗. Otherwise, report (P, x)∗ £1 (Q, y)∗.

Proof. Immediate by Theorem 12 and Definition 12.

Proposition 14. (Addition Algorithm) The follow-
ing algorithm, taking input two pointed patterns
(P, x) and (Q, y), outputs a pointed pattern (R, z)
such that (P, x)∗ + (Q, y)∗ = (R, z)∗.

1. Using Theorem 12, compute an amalgamation
A of P and Q, along with inclusions P̂ and Q̂

of P and Q in A.

Figure 7: Result of adding Γ0 and ǫ0.

2. If x̂ + ŷ is defined in A, output (A, x̂ + ŷ) and stop.

3. Otherwise, use Lemma 6 (repeatedly, if needed) to compute a sequence A = A1, . . . , An of simple
additive extensions such that x̂ + ŷ is defined in An. Output (An, x̂ + ŷ).

Proof. If the algorithm halts on line 2, its accuracy is immediate by Theorem 12 and Definition 12. Suppose
the algorithm halts on line 3. Since A syntactically generates An, by Syntax-Semantics Equivalence, A

semantically generates An, thus (An, x̂)∗ = (A, x̂)∗ = (P, x)∗ and (An, ŷ)∗ = (A, ŷ)∗ = (Q, y)∗, and the
algorithm’s accuracy follows.

Comparison (≤) and addition are implemented in the Patterns of Resemblance Ordinal Calculator [1] as
the compare and add commands.

3 Reach and Index

In this section we introduce two notions that play a crucial role in the arithmetic of patterns: reach and
index.

Lemma 15. The indecomposable ordinals are precisely the ordinals of the form ωα.

Proof. Basic ordinal arithmetic.

Lemma 16. A nonzero ordinal α is an epsilon number if and only if α ≤1 α + α.

Proof. Follows from Theorem 4.16 of [9].

Definition 13. (Reach) If P is a pattern, a reach is a finite formal descending sum of P -indecomposables.
If x ∈ P is indecomposable, we say reach(x) = a1 + · · ·+ an if a1 + · · ·+ an is the lexicomaximal reach such
that x + a1 + · · ·+ an is defined and x ≤1 x + a1 + · · ·+ an. In case there is no y > 0P such that x ≤1 x + y,
reach(x) = 0P (we identify 0P with the empty formal descending sum). We also define minreach(x) to be
min{x, reach(x)}. If r1 and r2 are reaches, write r1 < r2 to indicate that r1 precedes r2 lexicographically. If
r = a1 + · · · + an, we write (P, r)∗ (or just r∗ if P is clear from context) for a∗

1 + · · · + a∗
n.

Lemma 17. If P is a pattern and x ∈ P , the following are equivalent.

1. x is the leftmost indecomposable node of P , and reach(x) = 0.

6



2. x∗ = 1.

Proof. Let P0, P1, . . . be a fair sequence for P .
(1 ⇒ 2) Given (1), it is clear that there is no way (neither by simple additive extensions nor by downward

reflections) to add a point between 0P and x. The order type of [0, x)∪Pi is the order type of {0}, namely 1.
(2 ⇒ 1) If x∗ = 1 then at no step in P0, P1, . . . is there a point between 0P and x. In particular, x is the

leftmost nonzero node of P , hence indecomposable. If reach(x) > 0, the fair sequence would be obligated,
at some step, to reflect [x, x + reach(x)) below x; this does not happen, so reach(x) = 0.

Based on Lemma 17, if P is a pattern, we write 1P for the leftmost indecomposable of P , provided it has
reach 0. Otherwise (or if P has no indecomposable), 1P is undefined.

Lemma 18. For (P, x) a pointed pattern, the following are equivalent.

1. minreach(x) = x.

2. x ≤1 x + x.

3. x∗ is an epsilon number.

Proof. By Lemma 16.

Lemma 19. If (P, x) is a pointed pattern and x is decomposable, then reach(x) = 0.

Proof. The definition of a pattern (Definition 3) forbids x <1 y when x is decomposable.

Definition 14. The index of an ordinal α, written Index(α), is the order type of the indecomposable ordinals
below α. If (P, x) is a pointed pattern, we will abuse notation and write Index(P, x) (or even simply Index(x)
if P is clear) for Index(x∗).

Lemma 20. If α is an indecomposable ordinal, then α = ωIndex(α).

Proof. Follows from Lemma 15.

Corollary 21. For any nonzero ordinal α, α is an epsilon number if and only if Index(α) = α.

If α is an ordinal, we will sometimes write exp(α) for ωα. If (P, x) is a pointed pattern, we will abuse
notation and write exp(P, x) (or even just exp(x)) for exp(x∗). If r = a1 + · · · + an is a reach in P , we will
increase our abuse and write exp(r) for exp(r∗). Index, reach, and exp are related by the following theorem.

Theorem 22. Suppose P is a pattern, x < y ∈ P , x is indecomposable, and there is no indecomposable
strictly between x and y in P . Then Index(y) = Index(x) + exp(minreach(y)).

Proof. Let r = minreach(y). We induct on r∗. Let P = P0, P1, . . . be a fair sequence for P and let
P∞ = ∪iPi. By the Interval Theorem (Theorem 11), the indecomposables in [x∗, y∗) are exactly the ordinals
{z∗ : z ∈ [x, y)P∞ is indecomposable}.

Case 1: r∗ = 0. Hence reach(y) = 0. There are no indecomposable z ∈ (x, y)P∞ : if there were, there
would be such a z ∈ (x, y)Pn+1 for some minimal n, but the only way to add (via immediate extension) an
indecomposable to (x, y)Pn (given that there are no indecomposables already in (x, y)Pn) would be to reflect
some set X below y, impossible when reach(y) = 0. Hence, since x itself is indecomposable, Index(y) =
Index(x) + 1 = Index(x) + exp(0).

Case 2: r∗ = y∗. By Lemma 18, y∗ is an epsilon number. Thus

Index(y) = y∗ (Corollary 21)

= exp(y) (y∗ is an epsilon number)

= Index(x) + exp(y) (Clearly Index(x) < y∗)

= Index(x) + exp(minreach(y)). (Lemma 18)

7



Case 3: 0 < r∗ < y∗. So reach(y) = r. Let

R = {n > 0 : Pn is obtained from Pn−1 by reflecting a set below y}.

For each n ∈ R, let zn1, . . . , znkn
be (see Fig. 8) the indecomposables (in ascending order) in Pn\Pn−1, with

minreach(zn1) = rn1, . . . , minreach(znkn
) = rnkn

.

Evidently each rnℓ < r. Observe that for any two consecutive m < n ∈ R, zmkm
and zn1 are consecutive

indecomposables in Pn.

Figure 8: Each rnℓ < r, providing a foothold for transfinite induction.

By kn applications of the induction hypothesis,

Index(znkn
) = Index(zmkm

) + exp(rn1) + · · · + exp(rnkn
).

If m 6= min(R), we may repeat the above argument to unravel Index(zmkm
); if m = min(R), we may repeat

the above argument substituting x for zmkm
. Thus

Index(znkn
) = Index(x) +

∑

m∈R
m≤n

km∑

ℓ=1

exp(rmℓ).

Since the z• are cofinal below y in P∞, each indecomposable ordinal below y∗ is accounted for in the
above sum for some n large enough. Thus the order type of indecomposables in [0, y∗) is of the form
Index(x) +

∑
p exp(rp) where every rp < r. The fact that the sequence P0, P1, . . . is fair implies that the rp

are themselves cofinal below r, thus
∑

p exp(rp) = exp(r).

In the definition of syntactic exact generation, we recalled two rules for generating new patterns from
old: simple additive extension, and downward reflection. Carlson proved these are exhaustive, in the sense
of Theorem 9. We now introduce a third rule, minreach insertion, useful for arithmetic.

Theorem 23. (Minreach Insertion) (See Fig. 9) Let P be a pattern,
x ∈ P , and let r = a1 + · · ·+an be a reach (ai ∈ P indecomposable).
Suppose that for every z > x in P with minreach(z) = r, there is
x < z′ < z in P with minreach(z′) > r. Let y ≥ x be the largest
node in P such that for all x < y′ ≤ y in P , minreach(y′) < r. Let
P+ be obtained from P by inserting n + 1 new points

z, z + a1, z + a1 + a2, . . . , z + a1 + · · · + an,

Figure 9: Minreach Insertion.

in that order (with respect to ≤), directly after y; let ≤P+

1 extend ≤P
1 so that reach(z) = r and so that for

all u < z and all v ∈ [z, z + r], u ≤1 v iff u ≤1 w for some w > z + r. Then P+ is a pattern, minreach(z) = r,
and for every q ∈ P , (P, q)∗ = (P+, q)∗.

8



Proof. That P+ is a pattern is straightforward. We divide the rest of the proof into two claims.

Claim 1 minreach(z) = r.
Assume not. By construction, reach(z) = r. Thus r = a1 + · · · + an > z. Since z is an indecomposable

unequal to a1, this implies a1 > z. In particular, y is not the last point in P . Let y2 be the next point after
y in P . Since a1 > z and z > y, y2 ≤ a1.

Case 1: r > a1. Then minreach(y2) ≤ y2 ≤ a1 < r, violating maximality of y.

Case 2: r = a1 = minreach(y2). This violates the supposition of the theorem: y2 > x is an element of P

with minreach r and no element of (x, y2)
P has minreach > r.

Case 3: r = a1 6= minreach(y2). By maximality of y, minreach(y2) ≥ r, so minreach(y2) > r. This
implies y2 ≥ r = a1, so y2 = a1. We have minreach(r) = minreach(a1) = minreach(y2) > r, absurd since
minreach(r) ≤ r.

Claim 2 For all q ∈ P , (P, q)∗ = (P+, q)∗.
Fix q ∈ P , and let P+ = P0, P1, . . . be a fair sequence for P+.

Case 1: z > max(P ). Because of how we defined ≤P+

1 , for all q ∈ P , q 6≤P+

1 z. For all i ∈ N, if Pi+1 is formed
from Pi by an immediate extension involving any part of Pi that is > max(P ), it is clear (by considering
simple additive extension and downward reflection separately) that the new nodes in Pi+1\Pi will also lie
above max(P ). Thus, all the points ≤ max(P ) in ∪iPi could just as well be created by a fair sequence for
P itself. By Syntax-Semantics Equivalence, since q ∈ P , this implies (P, q)∗ = (P+, q)∗.

Case 2 (See Fig. 10): z ≤ max(P ). So z < max(P )
since z 6∈ P . Let y2 be the next point in P after y

(so y < z < y2). By choice of y, minreach(y2) ≥ r, in
fact by the theorem’s hypothesis, minreach(y2) > r.
So certainly reach(y2) > r. We will show P generates
P+, so that (P+, q)∗ = (P, q)∗.

Let P ′ be obtained by adding (as needed) y2 +a1,
. . ., y2 +r to P . Then P exactly generates P ′ via sim-
ple additive extensions. Let Y = {y2, y2+a1, . . . , y2+
r}. Since reach(y2) > r, Y ⊆ [y2, y2 + reach(y2))

P ′

.
Thus we may reflect Y below y2 to exactly generate
a new pattern P++. By construction, the copy Ỹ of
Y that we add below y2 is isomorphic to—and so we
can assume equal to—the points we add to P in the

Figure 10: Emulating minreach insertion.

construction of P+. So P+ is a subpattern of P++. Since P exactly generates P++, this shows that P

generates P+.

Corollary 24. There is an algorithm that takes as input a pattern P such that 1P is undefined and outputs
a pattern P ′ such that

1. 1P ′

is defined.

2. P ′\P = {1P ′

}.

3. If P has at least one nonzero element, then P generates P ′.

Proof. By Lemma 17, and Theorem 23 with x = 0P and r = 0.

4 Multiplication

In the proofs below, we intend to get our hands dirty with minreaches, so the following notation will be
useful.

Notation 15. If P is a pattern, x ∈ P , we will write x⌢ for minreach(x).

9



Definition 16. The node multiplication algorithm is
as follows.

1. Input: Two pointed patterns (P, x) and (P, y)
such that 1P is defined and x, y are indecom-
posable.

2. Let ℓ (“left”) be 1P and let r (“right”) be x.
Let P+ be a copy of P . Figure 11: Result of multiplying Γ0 by ǫ0.

3. If ℓ < y then

(a) Let ℓ+ be the next indecomposable in P after ℓ.

(b) Using Lemma 23 to enlarge P+ if necessary (without changing which ordinals its nodes notate), let
r+ > r be a P+-indecomposable such that r⌢

+ = ℓ⌢
+ and such that q⌢ < ℓ⌢

+ for all indecomposable
r < q < r+ in P+.

(c) Let ℓ = ℓ+, let r = r+, and goto 3.

4. Output (P+, r).

Theorem 25. Let P, x, y be as in Definition 16. The node multiplication algorithm halts on input (P, x),
(P, y). If (P+, r) is its output, then r∗ = x∗y∗.

Proof. The algorithm halts because in line 3a, we let ℓ+ be the next indecomposable in P , not in P+. There
are only finitely many indecomposables in P (and we never enlarge P ), so eventually ℓ = y.

For the rest of the proof, I claim that every time the algorithm hits line 3, r∗ = x∗ℓ∗. The algorithm
halts and outputs (P+, r) when ℓ = y so this will prove the theorem. The claim certainly holds the first time
we hit line 3, when ℓ = 1P and r = x.

Suppose that r∗ = x∗ℓ∗ when we hit line 3 for the nth time. Let P ′, r+, ℓ+ be the values of the variables
when we hit line 3 for the (n + 1)th time, we will show r∗+ = x∗ℓ∗+.

Let r = r1, . . . , rk = r+ list the indecomposables, in order, from r to r+ in P ′. By repeated applications
of Theorem 22,

Index(r+) = Index(r1) + exp(r⌢
2 ) + · · · + exp(r⌢

k ).

By choice of r+ = rk, r⌢
i < r⌢

k for i = 2, . . . , k − 1. Thus by ordinal arithmetic,

Index(r+) = Index(r1) + exp(r⌢
k )

= Index(r) + exp(r⌢
+ ).

Now we compute:

x∗ℓ∗+ = x∗ exp(Index(ℓ+)) (Lemma 20)

= x∗ exp(Index(ℓ) + exp(ℓ⌢
+ )) (Theorem 22)

= x∗ exp(Index(ℓ)) exp(exp(ℓ⌢
+ )) (Ordinal arithmetic)

= x∗ℓ∗ exp(exp(ℓ⌢
+ )) (Lemma 20)

= r∗ exp(exp(ℓ⌢
+ )) (By assumption x∗ℓ∗ = r∗)

= r∗ exp(exp(r⌢
+ )) (By choice of r+ in line 3b of Def. 16)

= exp(Index(r) + exp(r⌢
+ ))) (Lemma 20 and ordinal arithmetic)

= exp(Index(r+)) (By the above discussion)

= r∗+, (Lemma 20)

as desired.

Corollary 26. (The Multiplication Algorithm) Suppose (P, x) and (Q, y) are pointed patterns. The follow-
ing algorithm can be used to compute (a pattern that notates) x∗y∗.

10



1. If x = 0P or y = 0Q, output ({0}, 0) and stop. If y = 1Q (see Lemma 17), output (P, x) and stop.

2. Using Theorem 12 and Corollary 24, ensure that P = Q and that 1P is defined.

3. If y = b1 + · · ·+ bn is decomposable (b1, . . . , bn a decreasing sequence of indecomposables), recursively
compute pointed patterns (B1, z1), . . . , (Bn, zn) notating x∗b∗1, . . . , x

∗b∗n respectively. Use Theorem 12
to ensure B1 = · · · = Bn (call it B). If necessary, extend B via simple additive extensions so that
z1 + · · · + zn is defined. Output (B, z1 + · · · + zn) and stop.

4. If x = a1 + · · ·+an is decomposable (a1, . . . , an a descending sequence of indecomposables), recursively
output a pointed pattern that notates a∗

1y
∗ and stop.

5. If this step is reached, x and y are both indecomposable. Employ the node multiplication algorithm
(Definition 16).

Proof. Elementary ordinal arithmetic and Theorem 25.

The multiplication algorithm is implemented in [1] via the mult command.

5 Exponentiation

Definition 17. The (base ω) exponentiation algo-

rithm and the index algorithm are defined simultane-
ously in terms of one another as follows. Both take
as input a pointed pattern (P, x) (by Corollary 24 we
can assume 1P is defined).

• (Exponentiation Algorithm)

1. If x = 0P , output ({0, 1}, 1) and stop. If
x = 1P , output ({0, 1, ω}, ω) (or any other fixed
notation for ω) and stop.

2. If x∗ is an epsilon number (see Lemma 16), out-
put (P, x) and stop.

Figure 12: Above, the result of computing
Γǫ0

0 = exp(Γ0ǫ0). Below, the reduction to
normal form (i.e., the simplification) using
an algorithm related to [7].

3. If x is decomposable, say x = a1 + · · · + an where the ai are decreasing indecomposables, recursively
compute pointed patterns notating exp(a1), . . . , exp(an), use Corollary 26 to output their product, and
stop.

4. Use the index algorithm (below) to compute a pointed pattern (Q, y) notating Index(x). Using Theorem
12, ensure P = Q. Abuse notation and identify y and Index(x).

5. Using Lemma 23 to enlarge P if needed, let z be a node in P such that z⌢ = Index(x) and z⌢
0 <

Index(x) for all z0 < z. Output (P, z) and stop.

• (Index Algorithm)

1. If x = 0P or x = 1P , output ({0}, 0) and stop.

2. If x∗ is an epsilon number (see Lemma 16), output (P, x) and stop.

3. Using simple additive extensions if necessary, ensure P contains reach(x) as a point.

4. Using the index algorithm (recursively) and the exponentiation algorithm (above), along with the
addition algorithm (Proposition 14), output a pointed pattern notating Index(x0) + exp(reach(x)),
where x0 is the largest P -indecomposable less than x.

Theorem 27. Let (P, x) be a pointed pattern (notating ordinal α). The exponentiation algorithm and the
index algorithm halt on input (P, x). Call their outputs (Q, y) and (R, z), respectively. Then y∗ = ωα and
z∗ = Index(α).

11



Proof. By induction on α. If α ≤ 1, the theorem is clear, assume α > 1, so x > 1P .

Claim 1 The index algorithm halts on (P, x) and its output notates Index(α).
If x∗ is an epsilon number, the claim follows by Lemma 21. Assume not. Then by Lemma 21, reach(x) < x

(so reach(x)∗ < α). By induction, the exponentiation algorithm halts on input (P, reach(x)) and its output
notates exp(reach(x)). Let x0 be the largest P -indecomposable less than x (x0 exists since x > 1P ). By
induction, the index algorithm halts on input (P, x0) and its output notates Index(x0). Thus, the index
algorithm halts on (P, x). By construction, its output notates Index(x0) + exp(reach(x)), the same as
Index(x0) + exp(x⌢) (since reach(x) < x). By Theorem 22, Index(x0) + exp(x⌢) = Index(x) as desired.

Claim 2 The exponentiation algorithm halts on (P, x) and its output notates ωα.

Case 1: α is decomposable, hence so is x, write x = a1 + · · · + an, (ai) a decreasing sequence of P -
indecomposables, each ai < x, so a∗

i < α. By induction, the exponentiation algorithm behaves correctly on
each input (P, ai), and the claim follows by basic ordinal arithmetic.

Case 2: α is an epsilon number. Then the claim follows by Lemma 21.

Case 3: α is a non-epsilon indecomposable. By Claim 1, the index algorithm halts on input (P, x) and its
output notates Index(x). Thus the z described in line 5 of the exponentiation algorithm really does have the
properties it is constructed to have. Let 1P = z1, . . . , zk = z list the indecomposables in P (after possibly
enlarging it as described in line 5), in ascending order. By repeated applications of Lemma 22,

Index(z) = Index(1P ) + exp(z⌢
2 ) + · · · + exp(z⌢

k−1) + exp(z⌢).

By choice of z, z⌢
i < z⌢ for all 2 ≤ i < k, so by ordinal arithmetic,

Index(z) = Index(1P ) + exp(z⌢)

= 0 + exp(z⌢)

= exp(Index(x)). (Since z⌢ = Index(x))

Thus

z∗ = exp(Index(z)) (Lemma 20 applied to z∗)

= exp(exp(Index(x)))

= exp(x), (Lemma 20 applied to x∗)

as desired.

Corollary 28. (An algorithm for the base-ω logarithm) Given a pointed pattern (P, x) (by Corollary 24
we may assume 1P is defined), if x∗ = ωα for some α, then the following algorithm will output a pointed
pattern notating α, and otherwise the following algorithm will output an error message.

1. If x is not indecomposable, output an error message and stop.

2. Output a pattern notating Index(x) (using the index algorithm) and stop.

Proof. By Theorem 27 and Lemma 20.

Base-ω exponentiation and logarithm are implemented (and automatically simplified) in [1] via the exp

and log commands.

6 Future work

In future work, we would like to publish algorithms for the epsilon function α 7→ ǫα, the Gamma function
α 7→ Γα, the Veblen function (α, β) 7→ ϕαβ, and other ordinal arithmetical functions of interest. We would
also like to give algorithms in terms of second-order patterns of resemblance [6].

12



References

[1] Alexander, S. (2012) The Patterns of Resemblance Ordinal Calculator.
http://www.xamuel.com/patterns/

[2] Bès, A. (2002) Decidability and definability results related to the elementary theory of ordinal multi-
plication. Fundamenta Mathematicae 171, 197–211.

[3] Carlson, T.J. (1999) Ordinal arithmetic and Σ1 elementarity. Archive for Mathematical Logic, 38,
449–460.

[4] Carlson, T.J. (2000) Knowledge, machines, and the consistency of Reinhardt’s strong mechanistic thesis.
Annals of Pure and Applied Logic, 105, 51–82.

[5] Carlson, T.J. (2001) Elementary patterns of resemblance. Annals of Pure and Applied Logic 108(1),
19–77.

[6] Carlson, T.J. (2009) Patterns of resemblance of order 2. Annals of Pure and Applied Logic 158(1–2),
90–124.

[7] Carlson, T.J. & Wilken, G. (2012) Normal forms for elementary patterns. Journal of Symbolic Logic

77(1), 174–194.

[8] Wilken, G. (2004) Σ1-elementarity and Skolem hull operators. Thesis (Dissertation), University of
Münster.

[9] Wilken, G. (2006) The Bachmann-Howard Structure in Terms of Σ1-Elementarity. Arch. Math. Logic

45(7), 807–829.

[10] Wilken, G. (2007) Assignment of ordinals to elementary patterns of resemblance. Journal of Symbolic

Logic 72(2), 704–720.

13

http://www.xamuel.com/patterns/

	Introduction
	Preliminaries
	Pattern Syntax and Semantics
	Amalgamation
	Preliminary Arithmetic Algorithms

	Reach and Index
	Multiplication
	Exponentiation
	Future work

