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Abstract

A biologically unavoidable sequence is an infinite gender sequence which occurs
in every gendered, infinite genealogical network satisfying certain tame conditions.
We show that every eventually periodic sequence is biologically unavoidable (this
generalizes König’s Lemma), and we exhibit some biologically avoidable sequences.
Finally we give an application of unavoidable sequences to cellular automata.

1 Introduction

The following definition is motivated by biological considerations. The idea of modelling
the biosphere with a directed graph goes at least back to Hennig [10], more recently (and
more formally) to Dress, Moulton, Steel and Wu [6]. The idea of including vertices for
future organisms was made explicit in Kornet, Metz, and Schellinx [12]. The (simplifying)
assumption of infinitely many vertices was made explicit in Alexander [2]. We hope to
submit the results of this paper as an answer to Sturmfels [16].

Definition 1. Let n > 0. An infinite n-gendered population is a directed graph G =
(V,E), together with a map v 7→ t(v) ∈ R assigning birthdates to vertices and a map
e 7→ g(e) ∈ {1, . . . , n} assigning genders to edges, satisfying the following conditions (we
call v a parent of u if (v, u) ∈ E, we define child similarly, and we define ancestor and
descendant in the obvious (strict) way):

• (A1) There are only finitely many parentless vertices (call them roots).

• (A2) Each vertex has only finitely many children.

• (A3) For every r ∈ R, {v ∈ V : t(v) 6 r} is finite, and for each (u, v) ∈ E,
t(u) < t(v).

the electronic journal of combinatorics 20(1) (2013), #P31 1



• (A4) |V | = ∞.

• (n-Gendered) For every non-root u and every 1 6 i 6 n, u has a parent v with
g(v, u) = i.

Note that A3 implies G is a DAG and is reverse-well-founded, i.e., has no infinite
reverse-directed path. Thus every non-root is a descendant of some root. Although
Definition 1 stipulates that edges be gendered, we will often consider special cases where
vertices are gendered, implicitly giving each edge the gender of its initial vertex.

Definition 2. Let n > 0. An infinite sequence s = (s1, s2, . . .) ∈ {1, . . . , n}N is biologically
unavoidable if every infinite n-gendered population realizes s– by which we mean there is
a vertex sequence v1, v2, . . . with each vi a parent of vi+1 and each g(vi, vi+1) = si. If s is
not biologically unavoidable, it is biologically avoidable.

A priori, biological unavoidability appears ill-defined. The following lemma shows that
it is well-defined.

Lemma 3. Suppose s ∈ {1, . . . , n}N and at the same time s ∈ {1, . . . ,m}N. Then s is
realized in every infinite n-gendered population if and only if s is realized in every infinite
m-gendered population.

Proof. Without loss of generality, n < m. If there is an infinite m-gendered population
which fails to realize s, delete all edges with genders > n to obtain an infinite n-gendered
population which fails to realize s. Conversely, suppose there is an n-gendered population
P failing to realize s. Inductively it suffices to show there’s an (n+1)-gendered population
failing to realize s. Let P ′ be a disjoint copy of P . To the graph P ′ ⊔P , add two (n+1)-
gendered edges, (v′, u) and (v, u′), for every n-gendered edge (v, u) in P . It’s easy to see
this makes P ⊔ P ′ an (n+ 1)-gendered population which fails to realize s.

In Section 2, we will show that every eventually periodic sequence is biologically un-
avoidable.

In Section 3, we will establish the existence of biologically avoidable sequences. This
nontrivial fact involves a couple of unexpected enumerative combinatorial arguments.

In Section 4, we will show that there are biologically avoidable sequences from {1, 2}N

which contain no gender repeated thrice in a row.
In Section 5, we will give an unexpected application to cellular automata: an alternate

proof of a result about spaceship speed limits in Conway’s Life-like Games, first proved
by Nathaniel Johnston [11].

2 Eventually periodic implies biologically unavoidable

Before proving the unavoidability of eventually periodic sequences, a small amount of
machinery must be developed. For the remainder of this section, let P = (V,E) be an
infinite n-gendered population, n > 0.
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Definition 4. For i ∈ N, we define the set Vi ⊆ V as follows: a vertex u ∈ V lies in Vi if
and only if there is some root r and some directed path from r to u of length 6 i.

Thus V0 is the set of roots, V1 contains the roots and their children, and so on.

Lemma 5. For every i ∈ N, Vi is finite.

Proof. Follows trivially from A1 and A2.

Lemma 6. For every 1 6 i 6 n, there is
a map i∗ : V \V0 → V such that for ev-
ery u ∈ V \V0 we have (i∗u, u) ∈ E and
g(i∗u, u) = i.

Proof. By the axiom of choice and the n-
Gendered assumption on P .

In case n = 2, one might refer to 1∗ and
2∗ as motherhood and fatherhood maps, in
some order. We will write i∗j∗ for i∗ ◦ j∗.

V \V0 E

{i} {1, . . . , n}
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Definition 7. If s = (s1, s2, . . .) is a periodic sequence on {1, . . . , n}, with period p, and
if u ∈ V , then we define the s-path to u, a finite directed path, written s∗u, as follows.

1. If u ∈ Vp−1 then s∗u = (u) (the length 0 path).

2. Otherwise,

s∗u = (s∗1 · · · s
∗

pqu, s∗2 · · · s
∗

pqu, . . . , s∗pq−1s
∗

pqu, s∗pqu, u),

where q is maximal such that s∗1 · · · s
∗

pqu is defined. (Some such q > 0 exists lest u
lie in Vp−1, and such q are bounded above due to Assumption A3.)

For example, suppose n = 2 and {1, 2} = {M,F}. If s = (M,M,M, . . .), then s∗u
is obtained as follows: start with u, go to u’s father, go to his father, and so on until a
root is reached; then reverse the order of the resulting path. If s = (M,F, F,M, F, F, . . .),
then s∗u is obtained by starting at u, taking his mother, taking her mother, taking her
father, and repeating this three-step process until too close to a root to continue; and
then reversing the resulting path.

Lemma 8. Let s, p be as in Definition 7. For any u ∈ V , s∗u is a finite directed path
starting at a vertex in Vp−1 and ending at u, and if s∗u = (v1, . . . , vr) then for all 1 6 i < r,
g(vi, vi+1) = si.

Proof. To see that s∗u starts in Vp−1, write s∗u = (v1, . . . , vr) and assume v1 6∈ Vp−1.
Then s∗1 · · · s

∗

pv1 is defined. Let q be as in the definition of s∗u. By periodicity of s,

s∗1 · · · s
∗

pv1 = s∗1 · · · s
∗

p(s
∗

1 · · · s
∗

pqu)

= s∗1 · · · s
∗

ps
∗

1 · · · s
∗

pqu

= s∗1 · · · s
∗

p(q+1)u,

violating the maximality of q. The rest of the lemma is clear.
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Proposition 9. Every periodic sequence is biologically unavoidable. In fact, if s is a
sequence with period p, it is realized by a path in P which begins at a vertex in Vp−1.

Proof. Consider the set (call it X) of finite directed paths {s∗u}u∈V (note |X| = ∞ by
Assumption A4). Each begins (by Lemma 8) in Vp−1, and Vp−1 is finite by Lemma 5.
Thus, there is some u1 ∈ Vp−1 such that infinitely many members (call them X1) of X
begin at u1.

Inductively, suppose I’ve defined a finite directed path u1, . . . , uk and an infinite set
Xk ⊆ X such that

1. For all Π ∈ Xk, the kth vertex in Π is uk; and

2. g(ui, ui+1) = si for all 0 < i < k.

It follows from Assumptions A1 and A2 that Xk contains only finitely many paths of
length 6 k, we may assume it contains no paths so short.

Since each path in Xk has uk as kth vertex, each path in Xk has some child of uk

as(k+ 1)th vertex. By Assumption A2, uk only has finitely many children. Thus there is
a child uk+1 of uk such that an infinite subset Xk+1 of paths in Xk have uk+1 as (k+1)th
vertex.

In particular, Xk+1 has at least one path, s∗v for some v ∈ V . By Lemma 8,
g(uk, uk+1) = sk.

This inductively defines u1, u2, . . . with all the desired properties.

It is also possible to prove Proposition 9 using the compactness theorem from first-
order logic. Compare the proof (see Simpson’s book [15]) that weak König’s Lemma is
equivalent (over RCA0) to the compactness theorem.

Theorem 10. Every eventually periodic sequence is biologically unavoidable.

Proof. If s is eventually periodic, write it as s = t ⌢ t′ where t is finite of length k and t′

is periodic. Let P ′ be the population obtained from P by discarding all vertices in Vk−1;
it’s easy to see P ′ remains an infinite gendered population. By Proposition 9, there is
a directed path in P ′ realizing t′. This defines a path u1, u2, . . . in P , realizing t′, and
avoiding Vk−1. Back-extend this path to

(t∗1 · · · t
∗

ku1, t∗2 · · · t
∗

ku1, . . . , t∗ku1, u1, u2, . . .),

which realizes s as desired; this is possible because if not, that would imply u1 ∈ Vk−1.

This generalizes König’s Lemma for trees, which can be seen as the 1-gender case
of Theorem 10 with the additional constraint that vertices have only one parent. The
following corollary pushes this idea even further.

Corollary 11. There is a subset V0 ⊆ V , ancestrally closed (whenever v ∈ V0 and
u is an ancestor of v then u ∈ V0), such that for every eventually periodic sequence
s ∈ {1, . . . , n}N, G realizes s with a path p entirely in V0, with the additional property that
every vertex in V0 has a descendant on p.
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Proof. By Theorem 10 above, combined with Theorem 3 and Proposition 5 from Alexan-
der [2].

Using Theorem 10 we can give a game-theoretical characterization of unavoidable
sequences using the notion of guessability discovered by Wadge [17] (pp. 141–145) (and
independently by Alexander [1]). Let s be a sequence on {1, . . . , n}. In the game Gs, I
starts by playing an infinite n-gendered population P . Thereafter, II plays a path p in
P (one vertex per turn) and I tries to guess (making one guess per turn) whether p’s
genders have the form t ⌢ s for some finite t. I wins if I’s guesses converge to the correct
answer, II wins otherwise. We leave it an exercise that I has a winning strategy iff s is
biologically avoidable. (This holds whether or not II can see I’s guesses.)

3 Existence of Biologically Avoidable Sequences

One might hope to cleverly generalize the argument from the previous section to non-
periodic gender sequences. In this section we’ll show that’s impossible. There are se-
quences which are biologically avoidable. Populations lacking certain gender sequences
are analogous to Aronszajn trees (first introduced by Kurepa [13]) in the sense that both
provide counterexamples to plausible-seeming generalizations of König’s Lemma.

In this and the next section we restrict attention to populations with gendered vertices,
implicitly gendering edges according to their initial vertices.

Definition 12. Suppose P = (V,E) is an infinite n-gendered population, s = (s1, . . . , sk)
is a finite sequence, k > 0, and V is partitioned into heights H1, H2, . . .. We say that s
is impossible in P at height k if there is no finite directed path v1, . . . , vk, gendered by s,
with v1 ∈ Hk.

Lemma 13. Suppose s is an infinite {1, . . . , n}-sequence. If there is an infinite n-gendered
population P = (V,E) and a partition of V into heights H1, H2, . . . such that for every
k > 0, some finite restriction of s is impossible in P at height k, then s is biologically
avoidable.

Proof. If s were realized by P , it would be realized by some path, starting with a vertex in
some heightHk, yet s would have some finite restriction impossible at height k, impossible.
So s is not realized by P , so s is biologically avoidable.

We will now define a specific family of infinite 2-gendered populations (generalizing
an example suggested by Timothy J. Carlson) designed to take advantage of Lemma 13.
Let {M,F} = {1, 2}, we will refer to M -gendered vertices as males, F -gendered vertices
as females, and adopt terminology such as son, daughter with the obvious meanings.

Definition 14. Suppose h : N+ → N
+. The infinite 2-gendered population Th is de-

fined as follows (Figure 1 shows Tn 7→n). The vertices of Th are partitioned into successive
generations G1, G2, . . ., the nth generation consisting of h(n) males mn

1 , . . . ,m
n
h(n) and
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h(n) females fn
1 , . . . , f

n
h(n). These vertices are given birthdates, v 7→ t(v), so that ver-

tices in Gi are born before those in Gj whenever i < j, and within each generation Gn,
max{t(mn

i ), t(f
n
i )} < min{t(mn

j ), t(f
n
j )} whenever i < j. Edges are defined as follows.

• m1
1 and f 1

1 have no parents.

• ∀n > 0,mn+1
1 has parentsmn

h(n) and
fn
1 .

• ∀n > 0, fn+1
1 has parents fn

h(n) and
mn

1 .

• ∀n > 0, ∀0 < i < h(n), mn
i+1 has

parents mn
i and fn

1 .

• ∀n > 0, ∀0 < i < h(n), fn
i+1 has

parents fn
i and mn

1 .

Figure 1: The infinite 2-
gendered population Tn 7→n.
Solid and open vertices corre-
spond to males and females,
not necessarily in that order.

Lemma 15. Let h : N+ → N
+.

1. Th is an infinite 2-gendered population with roots m1
1 and f 1

1 .

2. If mn
i has a daughter, or fn

i has a son, then i = 1.

3. No edge in Th skips an entire generation: if an edge has initial vertex in Gi, then it
has terminal vertex in either Gi or Gi+1.

4. If B = (v1, . . . , vn) is a finite directed path of males from Th, such that v1 ∈ Gi and
vn ∈ Gj, then for every i < k < j, B contains all the males in Gk.

Proof. Left to the reader.

Definition 16. When a function h : N+ → N
+ is clear from context, we let m̂1, m̂2, . . . de-

note the males in Th (over all the generations), ordered ascending by birthdate. Similarly

for f̂1, f̂2, . . .. We partition Th into heights H1, H2, . . . by letting each Hi = {m̂i, f̂i}.

The following technical lemma should be compared and contrasted with Cauchy’s
polygonal number theorem (see Nathanson [14]) which states that every positive integer
can be written as a sum of n n-gonal numbers, for any n > 3. For example, every natural
number has the form

∑b1
p=1 p +

∑b2
p=1 p +

∑b3
p=1 p. Also worth comparing is the work of

D. Cantor and B. Gordin [4], and more recently of S. Gupta [8].

Lemma 17. Suppose h : N+ → N
+ and limn→∞ h(n) = ∞. For every u ∈ N, there is

some positive integer e which is not of the form

a+
b∑

p=1

h(c+ p)

for any a, b, c ∈ N with c 6 u and a 6 max{h(1), . . . , h(u)}.
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Proof. Let A = max{h(1), . . . , h(u)}. Since limn→∞ h(n) = ∞, there is some M0 so big
that h(c+M) > (u+ 1)(A+ 1) whenever M > M0 and 0 6 c 6 u. Let

M = max

{
a+

b∑

p=1

h(c+ p) : a 6 A, c 6 u, b 6 M0

}

and let X = {M + 1,M + 2, . . . ,M + (u+ 1)(A+ 1) + 1}.
I claim that for every c 6 u, X contains at most A+ 1 different numbers of the form

a+
∑b

p=1 h(c+ p) with a 6 A. If not, by the pigeonhole principle there is some particular

a 6 A and some b1 < b2 such that a +
∑b1

p=1 h(c + p) and a +
∑b2

p=1 h(c + p) are both in
X, let d be their difference. Then d = h(c + b1 + 1) + · · · + h(c + b2) > h(c + b2). Since
a+

∑b2
p=1 h(c+p) > M (by virtue of being in X), by definition of M this implies b2 > M0,

whereby d > h(c+b2) > (u+1)(A+1). This is absurd: X is made up of (u+1)(A+1)+1
consecutive points, no two of them can have a difference > (u + 1)(A + 1). The claim is
proved.

Given the above claim, the number of numbers in X with the form a+
∑b

p=1 h(c+ p),
a 6 A, c 6 u, is at most (u+ 1)(A+ 1): u+ 1 choices for c, times A+ 1 numbers of the
given form for each c. Since |X| > (u+ 1)(A+ 1), X contains an e as desired.

Proposition 18. If h : N+ → N
+, limn→∞ h(n) = ∞, k > 0, and s is any finite {M,F}-

sequence, there is some e > 0 such that s ⌢ M eF is impossible in Th at height k.

Proof. We may assume s nonempty. We may also assume the first gender in s is M , the
other case being similar. Let ℓ = length(s). By Lemma 17, there is some e > 1 such
that e − 1 is not of the form a +

∑b

p=1 h(c + p) for any a, b, c ∈ N with c 6 ℓ + k and

a 6 max{h(1), . . . , h(ℓ+k)}. Thus e itself is not of the form a+1+
∑b

p=1 h(c+p) for any
such a, b, c. We will show s ⌢ M eF is impossible in Th at height k. Suppose not: suppose
there is a finite directed path v0, . . . , vℓ, vℓ+1, . . . , vℓ+e in Th, gendered by s ⌢ M eF , with
v0 = m̂k.

We would like to estimate in which generation does vℓ, the first vertex corresponding
to the M eF block, lie. We will be content with an overestimate. By Lemma 15 part 3,
every edge either ends in the same generation where it began, or at most one generation
further. Thus v0 = m̂k is in at most the kth generation, and vℓ is in at most the (k+ ℓ)th
generation.

I claim e has the form a + 1 +
∑b

p=1 h(c + p) for some a, b, c ∈ N with c 6 ℓ + k,
a 6 max{h(1), . . . , h(ℓ+k)}, a contradiction. Let i, j be such that vℓ is in Gi (so i 6 k+ℓ)
and vℓ+e−1 is in Gj. Since vℓ+e is female, and vℓ+e−1 is male, by Lemma 15 part 2, vℓ+e−1

must be mj
1. Thus B = (vℓ, . . . , vℓ+e−1) is a finite directed path of male vertices beginning

with mi
x for some x and ending with mj

1. All of these males lie in generations between i
and j inclusive, and for every i < p < j, Lemma 15 part 4 says that B contains all the
males in Gp. Let us count the vertices in B:

1. The number of males from Gi included in B is at most all of them, so B has 6 h(i)
vertices from Gi.
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2. For i < p < j, B contains all h(p) males of Gp. This is a total of

h(i+ 1) + · · ·+ h(i+ (j − i− 1)) =

j−i−1∑

p=1

h(i+ p)

vertices.

3. B has exactly one vertex from Gj, namely mj
1.

Thus, the number e of vertices in B has the form a+ 1+
∑b

p=1 h(c+ p) for some natural
c 6 i 6 ℓ + k, some a 6 max{h(1), . . . , h(ℓ + k)}, and some natural b, the desired
contradiction.

Corollary 19. There is a biologically avoidable sequence.

Proof. Let h be as in Definition 14. Using Proposition 18 repeatedly, define finite se-
quences {sk}k>0 such that each sk+1 strictly extends sk and each sk is impossible in Th at
height k. Then s = ∪sk is biologically avoidable by Lemma 13.

Example 20. M9FM4200F · · ·M enF · · · is biologically avoidable, where each en > 0 is
chosen minimal so as to avoid the form a + 1 +

∑b

p=1(c + p) (a, c 6 u where u = ℓ + n,

where ℓ is the length of M9F · · ·M en−1F ).

The above example is suboptimal, because our proof of Proposition 18 used such
staggering overestimates.

Example 21. An alternate way to obtain avoidable sequences is to follow the proof of
Corollary 19, but to obtain sk+1, rather than follow the instructions in Proposition 18,
we can simply do a brute-force search to find the minimal e > 0 such that sk ⌢ M eF
is impossible at height k + 1 (Proposition 18 says we won’t get stuck). If we do this for
the function h(n) = n, we obtain the avoidable sequence M3FM5FM8FM11F · · · where
each block of M ’s is 3 longer than the last, with one exception at the beginning (the
proof is tedious so we omit it). That one exception is annoying, so here’s how to further
optimize the sequence: choose each sk to be impossible at height k + 1. This leaves open
the possibility, a priori, the sequence could occur in Th at height 1. However, by fortune,
it ends up being impossible at height 1 anyway. This yields a very nice well-behaved
avoidable sequence,

M2FM5F · · ·M3n−1F · · ·

(again we omit the formal proof).

All the avoidable sequences we obtain in this manner have the property that they
contain arbitrarily long blocks of one gender.
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4 There is a biologically avoidable sequence in which

no block of males or females has length more than 2

Julian Ziegler Hunts discovered an interesting family of populations which witness the
avoidability of sequences with very short blocks of males and females.

Definition 22. Suppose h : N+ → N
+. The infinite 2-gendered population Hh is defined

in the same way as Th was defined (Definition 14) except for its edges, which are instead
defined as follows.

• m1
1 and f 1

1 have no parents.

• ∀n > 0, mn+1
1 has parents mn

1 and
fn
h(n).

• ∀n > 0, fn+1
1 has parents mn

h(n) and
fn
h(n).

• ∀n > 0, ∀0 < i < h(n), mn
i+1 has

parents mn
1 and fn

i .

• ∀n > 0, ∀0 < i < h(n), fn
i+1 has

parents fn
i and mn

i .

Figure 2: The infinite 2-
gendered population Hn 7→n.
Solid and open vertices corre-
spond to males and females,
not necessarily in that order.

Lemma 23. Let h : N+ → N
+.

1. Hh is an infinite 2-gendered population with roots m1
1 and f 1

1 .

2. If mn
i has a son, then i = 1.

3. No edge skips an entire generation: if an edge of Hh has initial vertex in Gi then
its terminal vertex is in Gi or Gi+1.

4. If B = (v1, . . . , vn) is a finite directed-path in Hh, whose genders are alternating, and
if v1 lies in Gi and Vn lies in Gj, then for every i < p < j and every 0 < k 6 h(p),
precisely one of {mp

k, f
p
k} appears in B.

Proof. Left to the reader.

We define the heights of Hh, and the corresponding m̂i and f̂i, in the same way as we
did for Th.

Proposition 24. Let h : N+ → N
+ be such that limn→∞ h(n) = ∞ and h(n) is even for

every n. If k > 0 and s is any finite {M,F}-sequence, then there is some e > 0 such that
s ⌢ (FM)eM is impossible in Hh at height k.
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Proof. We may assume s nonempty and that the first gender in s is M . Let ℓ = length(s).
Since h(n) is even for every n, by Lemma 17 there is an e > 1 such that e−1 is not of the
form a+

∑b

p=1
1
2
h(c+ p) for any a, b, c ∈ N with c 6 ℓ+ k and a 6 max{h(1)/2, . . . , h(ℓ+

k)/2}. Thus e itself is not of the form a+1+
∑b

p=1
1
2
h(c+ p) for any such a, b, c. We will

show s ⌢ (FM)eM is impossible in Hh at height k. If not, there is a finite directed path
v0, . . . , vℓ, vℓ+1, . . . , vℓ+2e in Hh, gendered by s ⌢ (FM)eM , with v0 = m̂k.

By similar reasoning to the proof of Proposition 18, vℓ is in at most the (k + ℓ)th
generation. I claim e has the form a + 1 +

∑b

p=1
1
2
h(c + p), some a, b, c as above, a

contradiction. Let i, j be such that vℓ ∈ Gi (so i 6 k + ℓ) and vℓ+2e−1 ∈ Gj. Since
vℓ+2e−1 is male and has a son vℓ+2e, Lemma 23 part 2 ensures vℓ+2e−1 = mj

1. Thus
B = (vℓ, . . . , vℓ+2e−1) is a finite directed path of alternating gender beginning with f i

x for
some x and ending with mj

1. All these vertices lie in generations between i and j inclusive,
and for each i < p < j, Lemma 23 part 4 implies that the number of vertices in B ∩ Gp

is exactly h(p). Count the male vertices in B:

1. The number of males from Gi is at most half of them (since B alternates genders),
that is at most h(i)/2.

2. For any i < p < j, the number of males from Gp is exactly half of them, h(p)/2, by
Lemma 23 part 4 since B alternates genders.

3. There is exactly one male from Gj, namely mj
1.

Thus the number of males in B is of the form a + 1 +
∑b

p=1
1
2
h(c + p) (a, b, c as above).

But the number of males in B is e– absurd.

Corollary 25. There is a biologically avoidable sequence in which no gender occurs thrice
in a row.

Proof. Similar to the proof of Corollary 19.

5 Application to cellular automata

In his paper, Nathaniel Johnston [11] proved that in certain (a large family) of Conway’s
Life-like games, spaceships have an orthogonal speed limit of 1/2 cells per generation, and
a diagonal speed limit of 1/3 cells per generation. We will give an alternate proof using a
technique which, we believe, might be generalizable to obtain results of a wide variety1.
We assume a novice-level familiarity with Life-like games (see Eppstein [7]), and brush
formal details under the rug.

Definition 26. Suppose a Life-like game is played, with some initial configuration in
generation 1, which generates a configuration in generation 2, and so on. A lifeline for
this gameplay is a sequence c1, c2, . . . of cells such that:

1If nothing else, our proof would generalize with minimal changes to Life-like games in higher dimen-
sions (see Bays [3]).
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1. Each ci is alive in generation i.

2. For each i, either ci = ci+1 or ci is adjacent to ci+1.

Thus, a lifeline is a (not necessarily simple) stroll through the cells which, at each ith
step, visits a cell alive in the ith generation.

Lemma 27. (Two Forbidden Directions) Suppose x, y are any two of the following direc-
tions:

N, S, E, W, NE, NW, SE, and SW.

Consider a Life-like gameplay with the following properties:

1. The initial configuration is finite.

2. Each generation contains at least one live cell.

3. Birth requires > 3 neighbors and survival requires > 1 neighbor.

For any such gameplay, there is a lifeline which never steps in direction x or y (that is,
xi+1 is never located in the x or y direction from xi).

To be clear, the third condition is to be understood as liberally as possible, making the
lemma apply not only to the ruleset B345678/S12345678, but to any sub-ruleset thereof.

We postpone the proof (using biologically unavoidable sequences) of Lemma 27 so we
can first see how it applies to spaceship speed limits.

Theorem 28. (Johnston 2010) For any Life-like ruleset where birth requires > 3 neigh-
bors and survival requires > 1 neighbor, spaceships can move at most 1

2
cells per generation

orthogonally and at most 1
3
cells per generation diagonally.

Proof sketch. Since a spaceship is initially finite and does not go extinct, the hypotheses
of Lemma 27 are met.

(Orthogonal) By symmetry, it’s enough to show the spaceship cannot exceed 1
2
cells

per generation northward. By Lemma 27, there is a lifeline which never steps in direction
N or NE. The cells in this lifeline are living cells, hence cells in the spaceship, and it
follows that the spaceship cannot travel faster than the lifeline. The only movement
the lifeline can make with northward component is NW (N and NE being forbidden).
Any such step also moves the lifeline westward, and so to maintain an overall northward
direction, any such step must be compensated for by a step in one of the directions E or
SE (NE is forbidden). So at least two total steps are required per unit of overall northward
movement. Thus the speed limit, 1

2
.

(Diagonal) By symmetry, it’s enough to show the spaceship cannot exceed 1
3
cells per

generation northeastward. By Lemma 27, there is a lifeline which never steps N or NE.
The only way the lifeline may move northward is by moving NW, and two eastward steps
must be added to produce overall NE movement. Thus the speed limit, 1

3
.
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Proof sketch of Lemma 27. Let V be the set of pairs (c, i) such that c is a cell alive in
generation i. Direct an edge from (c, i) to (d, j) if j = i + 1 and either c = d or c is a
neighbor of d. By (3) of Lemma 27, if d is a cell born into generation i + 1, there must
have been at least three distinct neighbors c1, c2, c3 of d alive in generation i. There are
only two forbidden directions, so (possibly relabelling) we may assume d does not lie in a
forbidden direction from c1. Gender the edge ((c1, i), (d, i+1)) male, and gender all other
edges terminating in (d, i+1) female. If d survives into generation i+1, then gender the
edge ((d, i), (d, i + 1)) male and gender all other edges terminating in (d, i + 1) female.
Let each vertex (c, i) have birthdate i. The reader may check (using the hypotheses of
Lemma 27) this makes V an infinite 2-gendered population. By Theorem 10, there is an
infinite directed path through this population with all edges male. By construction, male
edges never step in a forbidden direction.

6 Further Questions

If s is an avoidable gender sequence, to what extent can we find populations avoiding s
which are universal among all such, in a way analogous to that described by Cherlin and
Shelah [5]?

Given a possibly avoidable sequence, can the infinite gendered populations which re-
alize that sequence be characterized in some way? Of particular interest would be a
characterization in terms of ordinal numbers, similar to R. Schmidt’s characterization of
rayless graphs (see Halin [9]).

But perhaps the most important question remaining is, what are the biologically
unavoidable sequences? Are there any which are not eventually periodic?
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