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Abstract. In their paper ‘Reward is enough’, Silver et al conjecture
that the creation of sufficiently good reinforcement learning (RL) agents
is a path to artificial general intelligence (AGI). We consider one aspect
of intelligence Silver et al did not consider in their paper, namely, that
aspect of intelligence involved in designing RL agents. If that is within
human reach, then it should also be within AGI’s reach. This raises the
question: is there an RL environment which incentivises RL agents to
design RL agents?

1 Introduction

In their thought-provoking paper ‘Reward is enough’ [23], Silver et al hypothesise
that “intelligence and its associated abilities may be understood as subserving
the maximisation of reward”. Motivated by recent reinforcement learning (RL)
triumphs such as AlphaZero’s performance in the game of Go [21] [22], Silver et
al argue that:

1. Reward is enough for knowledge and learning.
2. Reward is enough for perception.
3. Reward is enough for social intelligence.
4. Reward is enough for language.
5. Reward is enough for generalisation.
6. Reward is enough for imitation.

Silver et al then argue that it should be possible to achieve Artificial General
Intelligence (AGI) via the design of RL agents. They say:

“A sufficiently powerful and general reinforcement learning agent may
ultimately give rise to intelligence and its associated abilities. In other
words, if an agent can continually adjust its behaviour so as to improve its
cumulative reward, then any abilities that are repeatedly demanded by
its environment must ultimately be produced in the agent’s behaviour. A
good reinforcement learning agent could thus acquire behaviours that ex-
hibit perception, language, social intelligence and so forth, in the course
of learning to maximise reward in an environment, such as the human
world, in which those abilities have ongoing value.”
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And in their conclusion:

“Finally, we have presented a conjecture that intelligence could emerge
in practice from sufficiently powerful reinforcement learning agents that
learn to maximise future reward. If this conjecture is true, it provides
a direct pathway towards understanding and constructing an artificial
general intelligence.”

If we have understood correctly, Silver et al’s conclusion seems to depend
on philosophical induction. Namely: assuming claims 1–6 above, conclude that
reward is enough for all tasks in reach of human intelligence.

In order to put the above conclusion to the test, we ask: is reward enough
for the creation of RL agents? In other words—in the same way that reward
can allegedly be used to incentivise RL agents to know, to learn, to perceive, to
exhibit social intelligence, to exhibit language, to generalise, and to imitate—
can reward be used to incentivise RL agents to design1 RL agents? Hence the
title of this paper: “Can reinforcement learning learn itself?” To rephrase it
yet another way, suppose we define RL-solving intelligence to be that aspect
of human intelligence which RL researchers apply when they design RL agents.
Then: is reward enough for RL-solving intelligence?

In addition to the question of whether RL can learn itself, there is also the
question of whether humans are capable of designing sufficiently good RL agents
(Silver et al seem to implicitly assume the answer to this is “yes”). These two
yes-or-no questions give rise to four possibilities.

1. RL can learn itself, and humans are capable of designing sufficiently good RL
agents. This would be strong evidence supporting Silver et al’s conjecture.

2. RL can learn itself, but humans are not capable of designing sufficiently good
RL agents. Then whether or not RL is a path to AGI, it is not a practical
one, at least not for humans.

3. RL cannot learn itself, and humans are capable of designing sufficiently good
RL agents. Then it seems RL cannot lead to AGI, because “reward is not
enough” for at least one type of human intelligence, namely RL-solving in-
telligence.

4. RL cannot learn itself, and humans are not capable of designing sufficiently
good RL agents. Then whether or not RL is a path to AGI, it is not a
practical one, at least not for humans.

The structure of this paper is as follows.

1 To be clear, when an agent updates its own future behavior based on training data,
we do not consider this to be an instance of the agent designing a new agent, even
though in some sense the agent post-training is different than the agent pre-training.
In the same way, when one reads a book, one becomes, in a sense, a different human
being, yet we do not say that by doing so, one has designed a human being. When
we speak of an RL agent designing an RL agent, we mean it in the same sense as,
e.g., when we speak of an RL agent writing a poem. An RL agent would write a
poem by writing down words. In the same way, an RL agent would design an RL
agent by writing down pieces of computer code.
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– In Section 2 we briefly review RL.

– In Section 3 we discuss that aspect of intelligence involved in the designing
of RL agents.

– In Section 4 we discuss a type of RL environment which, if realised, might
incentivise RL agents to design RL agents.

– In Section 5 we address some anticipated objections.

– In Section 6 we summarise and draw conclusions.

The main thesis of this paper is that before we can conclude that RL is a
direct path to AGI (as Silver et al conjecture it is), we ought first to establish
that RL is a direct path to RL-solving intelligence. In the past, skeptics said
“computers will never master chess,” but computers mastered chess; “computers
will never master Go,” but computers mastered Go. In order to avoid falling into
checkmate once again, skeptics need to think bigger. Perhaps they could rally
around “computers will never master designing RL agents” (we do not take a
stance here on whether computers will be able to do so, we merely suggest this
to the skeptics as a more defensible position).

2 Reinforcement Learning

Reinforcement learning is a branch of machine learning in which an agent in-
teracts with an environment. As the subject is relatively young, there is not
consensus on the formalization. Many authors do not formalize RL at all, and
this includes Silver et al in the paper we are responding to (they semi-formally
describe RL but their description is not mathematically rigorous). In order to
make our response self-contained, we will give a rigorous definition (a modifi-
cation of Hutter [11]), and we will indicate some of the many ways in which
this formalization could differ. The reader should bear in mind that Silver et
al only vaguely define RL in their paper: their remarks would apply to many
different variations of RL, as would our response. Thus, the particular details
of the following formalization are not important. But we felt that since some
participants in this workshop might not be familiar with RL, we should offer
a concrete formalization in order to avoid misunderstanding. Readers familiar
with RL can safely skip the following definition.

Definition 1. (Reinforcement Learning) Fix a finite set O of observations and
a finite set A of actions (with |O| > 1, |A| > 1). By a percept, we mean a pair
(o, r) where o ∈ O is an observation and r ∈ R is a number, called a reward.
Write P for the set of all percepts.

1. Write (PA)∗ for the set of all finite sequences beginning with a percept,
terminating with an action, and following the pattern “percept, action, ...”.
We also include the empty sequence 〈〉 in (PA)∗. Intuitively, an element
(p0, a0, . . . , pn, an) of (PA)∗ should be thought of as a percept-action history
ending with an action.
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2. Write (PA)∗P for the set of all sequences of form s _ p with s ∈ (PA)∗, p ∈
P (here _ denotes concatenation). An element (p0, a0, . . . , pn−1, an−1, pn)
of (PA)∗P should be thought of as a percept-action history ending with a
percept.

3. An RL agent (or simply an agent) is a function π : (PA)∗P → A. When
π(s) = a, the intuition is that agent π would take action a in response to
history s.

4. An RL environment (or simply an environment) is a function µ : (PA)∗ →
P. When µ(s) = (o, r), the intuition is that, in response to the agent taking
the last action in s (in response to the history preceding that action), the
environment gives the agent reward r and the agent’s view of the world is
replaced by observation o. When µ(〈〉) = (o, r), the intuition is that o is the
agent’s initial view of the world and r is a meaningless initial reward.

5. The result of agent π interacting with environment µ is the infinite se-
quence (p0, a0, p1, a1, . . .) where p0 = µ(〈〉), a0 = π(〈p0〉), each pi+1 =
µ(p0, a0, . . . , pi, ai), and each ai+1 = π(p0, a0, . . . , pi, ai, pi+1).

Example 1. For example, suppose O = A = {0, 1}, i.e., every observation is a
single binary digit and every action is a single binary digit. We can imagine
an environment which transmits binary digit observations in order to encode
a pseudo-randomly generated English-language arithmetic question, and then
waits for the agent to use binary digit actions to encode an English-language
response. When the agent finishes encoding the response, the environment re-
wards the agent accordingly and repeats the process with a new question. While
each question is being transmitted by the environment, the environment also
transmits rewards of 0, and lets the agent take actions (which the environment
ignores), until the environment’s question is transmitted. Then, while the agent
is encoding its answer action-by-action, the environment responds with observa-
tions of 0 and rewards of 0. These dummy rewards, observations, and actions are
included so that the whole interaction conforms to Definition 1. The resulting
interaction might look something like the following (suitably encoded):

– Environment: What is 1 + 1?
– Agent: (Agent initially has no knowledge of environment and its actions

appear random) ygHw
– Environment: (Gives reward −1.) What is 5 + 2?
– Agent: JpX
– Environment: (Gives reward −1.) What is 8 + 3?
– (...Millions of turns pass like this...)
– Environment: (Gives reward −1.) What is 2 + 1?
– Agent: (For the first time, the agent gets the right answer, by dumb luck) 3
– Environment: (Gives reward +1.) What is 9 + 2?
– (...Billions more turns pass; agent gradually figures out the environment...)
– Environment: (Gives reward +1.) What is 6 + 3?
– Agent: 9
– Environment: (Gives reward +1.) What is 1 + 5?
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– (...Interaction continues forever, with the agent getting better and better, but
still occasionally answering wrong on purpose in order to test whether there
might be an even more rewarding way to respond to the environment...)

There are many ways in which Definition 1 could be varied. For example,
instead of interactions beginning with an initial percept, interactions could be-
gin with an initial (blind) action from the agent. Agents and/or environments
could be allowed to be non-deterministic functions (one would have to rigorously
specify what exactly that means). Computability requirements could be placed
on agents and/or environments. Either O, A, or both could be made infinite. Re-
wards could be further restricted or, going the other direction, could be allowed
to come from some other number system besides R. In more practical settings,
agents and environments are often not mathematical functions, but rather, in-
stances of agent-classes and environment-classes, respectively2. For example, RL
is implemented this way in OpenAI Gym [7] and Stable Baselines3 [18]. There,
agent-classes define action-methods which take an individual observation, rather
than a whole history—but said action-method can refer to the agent’s internal
memory (which can include things like neural net weights), which internal mem-
ory may vary during an environmental interaction, so that despite only explicitly
depending on the most recent observation, these action methods implicitly de-
pend on a whole history. For additional variations on RL, see Table 1 in Silver
et al’s paper.

We could modify Example 1 so that instead of the environment asking the
agent arithmetic questions, the environment instead plays chess against the
agent, using observations to encode images of the chessboard and then letting
the agent use actions to encode moves (perhaps punishing the agent for attempt-
ing illegal moves, and so on). A legal move by the agent results in a reward of
0 unless the game ends (via the agent’s move or the environment’s responding
move), in which case the reward is 1, 0, or −1 depending whether the agent won,
drew, or lost. After each game-ending turn, the board returns to its initial state
and the interaction resumes as if a new game has begun. To maximise rewards,

2 Practitioners often abuse language and refer to agent-classes as agents. For example,
a Python programmer might write “from stable baselines3 import DQN” and refer
to the resulting DQN class as the deep Q learning “agent” when, in reality, that
object does not itself act. Rather, it must be instantiated (with hyperparameters),
and the instance then acts. Language is further abused: underlying an agent, there
is typically a model or policy (e.g., a neural network and its weights); once trained
using Reinforcement Learning, the model is often published alone, in which capacity
it merely acts in response to observations, and no longer has any mechanism for
learning from rewards or even accepting rewards as input. Practitioners sometimes
abuse language and refer to such pretrained models as “RL” agents. Thus, one
might say, “this camera is controlled by an RL agent”, when in reality the camera
is controlled by a model obtained by training an RL agent (an expensive one-time
training investment done on a supercomputer so that the resulting model can be
used on consumer-grade computers to control many cameras thereafter). The model
itself is not the RL agent—the weaker computer running the model does not give
the model rewards or punishments. These nuances cause no confusion in practice.
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the agent basically must learn how to play chess. A good RL agent will gradually
do so. The same good agent, confronted instead with a game of Backgammon
or Go, would learn that too: a good agent is general-purpose, not depending on
built-in domain knowledge of any particular environment.

2.1 Are humans RL agents?

The way we formalized RL agents (Definition 1), humans are not RL agents,
because humans are not mathematical functions. But we would not be doing the
question justice with such an answer. Humans are not graph vertices either, yet
that does not prevent mathematical biologists from studying graphs in which
humans are vertices. There are two ways humans might be considered as RL
agents, which we will refer to as synthetic and organic.

1. (Synthetic) Humans could be considered in their capacity to perform in
RL environments. In other words, the typical human could compete in an
“RL tournament”, like a chess tournament except instead of playing chess,
competitors play various RL environments chosen secretly by the tournament
hosts. It would not be too large of an abuse of language to identify a human
with the agent she would act as if she were competing in such a tournament.

2. (Organic) One might try to consider reality itself to be an RL environment
in which the human acts as an RL agent, receiving observations equal to the
sum of all their sensory inputs, and receiving rewards in some physiological
form, such as physical pleasure and pain.

Treating humans as RL agents synthetically seems fairly non-controversial
(at least if humans are suitably idealized, e.g., assumed to live forever so as to
be able to continue environmental interactions forever). Strictly speaking, one
should be careful, since, for example, the same human might act differently in the
RL tournament at different times in their life. Thus, it might be more proper to
say that “at time t, such-and-such human would act as such-and-such RL agent
(if transported, at time t, to a totally isolated room where they can no longer
receive any other external stimulus that might change their behavior, to spend
the rest of eternity choosing actions in response to rewards and observations
displayed on a screen)”. One should also be careful to specify certain caveats, e.g.,
that unconscious humans or newborn babies should not be considered to be RL
agents in this way. Also, there might be some doubt about whether the human’s
actions in the RL tournament define a mathematical function, depending on
questions concerning free will. But as we mentioned above, other formalizations
of RL admit non-deterministic agents, which would apparently remove problems
related to free will.

Humans being RL agents in the synthetic sense does not imply much about
AGI. All it implies is that an AGI should be capable of performing in RL envi-
ronments (it does not even imply that an AGI should necessarily perform well
in said environments, unless one first argues that humans would perform well,
which does not seem like a trivial assertion). In the same way, the fact that
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humans can play chess does not imply much about AGI, except that AGI should
be capable of playing chess.

An interesting question to consider is: assuming humans are RL agents in
the synthetic sense, can humans design RL agents that are better than humans
themselves are? If so, is there a way to incentivize humans to do exactly this
within the RL framework itself, that is, is there an RL environment which would
reward the human agent exactly for designing superhuman RL agents? Or, is it
the case that humans are capable of designing superhuman RL agents, but their
motivations for doing so must necessarily transcend what can be expressed in
the RL framework?

If humans are RL agents in the organic sense, then that would seem to make
Silver et al’s conjecture trivially true. But that is a much trickier claim. Here
are some of the problems involved:

– If humans are identified with their bodies, then Silver et al themselves rule
out humans as organic RL agents, because they say: “The agent consists
solely of the decision-making entity; anything outside of that entity (in-
cluding its body, if it has one) is considered part of the environment” [23].
Certainly our bodies include our brains and all the parts thereof, as well as
our nervous systems, our sense organs, and so on. So if humans are organi-
cally RL agents then apparently this would entail some sort of controversial
dualistic metaphysics.

– The RL framework generally involves one agent interacting with the environ-
ment. Thus, if our shared reality is the environment, at most one of us is the
agent. One could perhaps consider reality to be composed of many environ-
ments, one for each agent (the reality from that agent’s point of view), or one
could consider a multi-agent version of RL such as that in [10]. Either way,
multiple humans are not RL agents in a common single-agent environment.

– It is not clear how rewards and observations work if humans are RL agents.
Am I punished the instant I touch the hot stove, or is my punishment delayed
while the information travels from my fingertips up to my brain?3 Is it
delayed while my brain processes and interpets it? See [24] for a discussion
of intrinsic reward vs. external signals.

One can certainly idealize humans and treat them as RL agents, in the same
way the physicist can assume a spherical cow. But considerable additional jus-
tification would be needed before one could jump from said idealization to the
conclusion that sufficiently strong RL agents are automatically AGI.

We think it might shed light on the matter if we compare the situation to
Newtonian physics. Authors frequently speak as if our universe is a model of
Newtonian physics, but it is understood that this is merely an approximation.
In the same way, it is often useful to speak of the human world as an RL envi-
ronment. Silver et al do this, saying, for example:

3 To quote Aristotle: “For if ... one were to stretch a covering or membrane over the
skin, a sensation would still arise immediately on making contact; yet it is obvious
that the sense-organ was not in this membrane” [6].
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“A good reinforcement learning agent could thus acquire behaviours ...
in the course of learning to maximise reward in an environment, such as
the human world...” [23]

But it is not clear that the human world literally is an RL environment. Certainly
one can approximate the human world (through a particular human’s point of
view) as an RL environment. But care should be taken before committing to this
as literal truth. Given that it were literal truth, we could immediately conclude
that strong enough RL agents would manifest AGI. In the same way, given that
Newtonian physics were literal truth, we might immediately conclude that the
universe is Turing computable. But since the universe is not literally a model of
Newtonian physics, proponents of a Turing computable universe would need to
come up with some other argument. Likewise, if the human world is not literally
an RL environment, then some further argument would be needed to prove
that strong enough RL agents would necessarily manifest AGI. One could argue
in favor of a literally Newtonian universe by pointing to concrete experiments
whose outcomes are predicted by Newtonian physics. Likewise, one could argue
in favor of a literally RL environment human world by pointing to ‘reward being
enough’ for various aspects of intelligence, as Silver et al do. But no matter how
many experiments Newtonian physics predicts, there would linger the question
of whether there are other experiments we haven’t thought of yet, where Newton
would fail (and indeed there are: relativity or quantum theoretic experiments).
Are there aspects of human intelligence that RL is not ‘enough for’? We do
not know, but in the next section we will highlight one possible such aspect of
intelligence.

3 RL-solving intelligence

Much ingenuity has gone into the design of RL agents, from basic Q-learning
agents [25] to cutting-edge agents like DQN [16] and PPO [20]. Designing these
agents is certainly an intellectual task. If every intellectual task requires a certain
aspect of intelligence, then that goes for designing RL agents too, and we refer
to that aspect of intelligence as RL-solving intelligence.

If humans do not possess decent RL-solving intelligence, then, even if RL is
a path to AGI, it is not a practical path for humans. For the remainder of the
paper, we assume humans do possess decent RL-solving intelligence. Presumably
AGI should include all aspects of intelligence within human reach. Therefore, in
particular, AGI should include decent RL-solving intelligence. Thus, if RL is to
be a path to AGI, in particular RL would need to be a path to decent RL-solving
intelligence.

In order for ‘reward to be enough for RL-solving intelligence,’ it seems there
would need to be environments that reward RL agents for designing RL agents4.

4 One might object that there could be environments which reward some other behav-
ior, which behavior requires RL-agent-design as an intermediate step, rather than
rewarding RL-agent-design on its own. But how could we know this other behavior
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And thus, any sufficiently good RL agent, when interacting with these envi-
ronments, should eventually learn to design RL agents. Are such environments
possible?

Without some sort of self-referential ouroboros argument, it seems that the
question ‘Can RL learn RL?’ is a difficult obstacle if we want to assure ourselves
that RL can lead to AGI. Proponents are obliged to show, for example, that
RL agents can learn chess. But as soon as they do that, they themselves replace
one obligation with another: since RL agents can learn chess, RL agents should
be able to design agents who can learn chess5. If proponents demonstrate that,
they incur an even worse obligation: RL agents should be able to design agents
who can design agents who can learn chess. If proponents demonstrate that,
they oblige RL agents to design agents who can design agents who can design
agents who can learn chess. Trying to prove that RL agents are a path to AGI
is an endless task if one merely attacks individual aspects of intelligence one at
a time. To prove it would require short-circuiting the process somehow. In the
next section we will consider one way the process might be short-circuited.

4 Performance measurement and incentivizing RL-agent
design

We have argued above that if RL is to be a path to AGI then, in particular, since
AGI should include RL-solving intelligence, RL should be a path to RL-solving
intelligence. In other words, if RL is a path to AGI, then it should be possible to
use RL to design good RL agents. In this section, we will consider one possible
strategy for doing exactly this.

At a high level, we can imagine designing an environment in which an agent
is incentivized to design child agents. The problem is, how do we incentivize
the agent to design good child agents? If we merely reward the parent agent
for designing child agents, with no regard for how good those children are, then
the parent will be incentivized to churn out simple child agents in order to get
rewarded quickly. If only we had a way of measuring how good the child agent
was, we could use that measurement to decide how to reward the parent: if the
parent designs a child with goodness 5, then give the parent a reward of +5; if
the parent designs a child with goodness 999, then give the parent a reward of
+999. This line of thinking leads to the following definitions.

requires RL-agent-design as intermediate step? Maybe a smart enough RL agent
would figure out a way to avoid the intermediate step—just as RL agents can learn
to exploit video-game bugs, or invent unanticipated new Go strategies, or just as im-
age classifiers can learn to associate rulers with malignant tumors [17]. Thus, to be
confident that an RL environment can incentivise RL-agent-design, it seems neces-
sary that there be an environment that directly rewards RL-agent-design as primary
objective, not merely rewarding some other behavior that requires RL-agent-design
as intermediate step.

5 Foreshadowed by [15].
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Definition 2. By an RL-agent measure, we mean a function f which takes as
input (an encoding of) an RL agent π, and outputs a number.

Definition 3. For each RL-agent measure f , let Mf be the environment which
outputs rewards and observations according to the following instructions (suitably
encoded as in Example 1).

1. Generate a pseudo-random number k.
2. Prompt the parent agent to spend k actions encoding a child and a mathe-

matical proof6 that that child is an agent. For example, output observations
which encode the message: “Please use k keystrokes to design and prove a
child RL agent”.

3. Using f , measure the child agent’s goodness (let the measure be −1 if the
parent agent did not encode a child and a proof that the child is an agent).

4. Give the parent agent the measurement from line 3 as a reward.
5. Goto 1.

Along the same lines as Example 1, when an agent interacts with Mf , the
interaction might look something like the following:

– Environment: Please use k = 17 keystrokes to design and prove a child RL
agent.

– Agent: jKr WwZmk5pk lqwE
– Environment: (Gives −1 reward.) Please use k = 33 keystrokes to design

and prove a child RL agent.
– Agent: mlmWqq9Fg31x rRjNMkqulpio m jMy j
– Environment: (Gives −1 reward.) Please use k = 29 keystrokes to design

and prove a child RL agent.
– (...Many turns pass...)
– Environment: (Gives −1 reward.) Please use k = 107 keystrokes to design

and prove a child RL agent.
– Agent: (For the first time ever, agent gives a valid answer by dumb luck) Let

A be the agent that always takes action 0. Proof: Constant functions don’t
get stuck in infinite loops.

– Environment: (Gives f(A) = 0.000000000013 reward.) Please use k = 981
keystrokes to design and prove a child RL agent.

– (...And so on forever, agent gradually learning the environment...)

Remark 1. The reason for the k in Definition 3 is to force the agent to design
child agents that maximize f . If we placed no requirement on how many actions
the agent may take encoding a submission, then, depending on f , the agent might
learn to spam simple agents for quick rewards. For example, if it is possible to
encode a child π (and proof of its agenthood) using 10 actions, with f(π) = 1,
and if all other children π′ had f(π′) ≤ 2, and if it requires at least 100 actions
to design any child agent π′ with f(π′) > 1, then the agent interacting with Mf

would be incentivized to repeatedly encode π, because quick rewards of +1 are
better than rewards of at most 2 coming ten times more slowly.
6 We assume some fixed background proof system such as ZFC or Peano Arithmetic.
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Remark 2. The reason for the proofs in Definition 3 is that in Definition 2 we did
not place any constraints on what happens if f is applied to an input that does
not encode an agent. Such constraints would make f non-computable since, by
Rice’s Theorem, there is no procedure for determining whether a given source-
code is indeed the source-code of an RL agent. Without such constraints, there is
the danger that line 3 of Definition 3 would induce an infinite loop. For example,
f(π) might be the result of measuring π’s performance on various benchmarks.
If π is a source-code of an agent-like function which sometimes gets stuck in
infinite loops (and is thus not a genuine agent), then f(π) might get stuck in
an infinite loop if one of those benchmarks causes π to get stuck in an infinite
loop. Thus, when using f to define an environment, one must take care only to
apply f to genuine agents. (We do have some evidence that RL agents can learn
to write mathematical proofs: see [12].)

Now, if f accurately measures how good an RL agent is, then it would seem
that Mf incentivizes RL agents to produce good RL agents. For, in that case, the
parent agent interacting with Mf would be rewarded based on the goodness of
the child agents that it designs. If we could come up with an f which accurately
measures how good an RL agent is, then we could run some good RL agents (such
as DQN or PPO, assuming those are good RL agents) on Mf and see whether
they eventually produce good children. If they do, that would be evidence in
favor of Silver et al’s conjecture.

Remark 3. An RL-measure f of Definition 2 gives a single numerical measure-
ment to an agent. Generally speaking, any given agent will perform well in some
environments and poorly in others. Thus, if f measures how well the agent per-
forms, it evidently must do so in an aggregate sense: performance aggregated
across all environments (or over some subset of environments of interest to us).
Thus, an agent being good, as measured by f , does not automatically imply the
agent performs well at Mf (in the same way that a candidate winning a high
percentage of votes does not imply the candidate necessarily wins such-and-such
individual’s vote). Silver et al’s conjecture would, in a sense, be trivially true if
good aggregate performance implied good performance at Mf .

Are there any RL-agent measures f which accurately measure how good
an RL agent is? What does that even mean? Silver et al do not offer any such
measure in their paper, which is disappointing since, without such an f , it is hard
for us to understand exactly what they mean when they speak of “sufficiently
powerful reinforcement learning agents”: what does it mean for an RL agent to
be “sufficiently powerful”?

Various measures have been proposed by other authors besides Silver et
al. Probably the best known is the Legg-Hutter universal intelligence mea-
sure [13]. The Legg-Hutter universal intelligence measure is, unfortunately, non-
computable. Legg and Veness describe [14] a computable approximation for the
Legg-Hutter universal intelligence measure. Building off of Legg and Hutter’s
work, Hernández-Orallo and Dowe propose [9] additional measures. These au-
thors have given informal arguments that their proposed measures capture the
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aggregate performance of RL agents (which they describe as the “intelligence”
of RL agents), but it is not clear whether such aggregate performance is what
Silver et al have in mind when they speak of “sufficiently powerful reinforce-
ment learning agents”. In any case, it would be interesting to take some of these
proposed measures as our f and see what happens when we run state-of-the-art
RL agents in the resulting environment Mf . It would be remarkable if, by doing
so, and taking some of the resulting child agents, we found those resulting child
agents to be good: if so, then by automating the design of those children, we
would have succeeded at automating AI research, in a sense. And if said children
turned out to be even better than the state-of-the-art RL agents which we used
to design them, that would be most astonishing, maybe even the beginning of
the singularity. But for reasons outside the scope of this paper, we are skeptical
that such dramatic success would occur.

5 Discussion

We have argued that before we can conclude that RL is a direct path to AGI (as
Silver et al conjecture it is), we ought first to establish that RL is a direct path to
RL-solving intelligence. In this section, we discuss some anticipated objections
to this thesis. We also anticipate and argue against some anticipated arguments
that Silver et al’s conjecture is trivial.

5.1 Agent-design is too complicated or expensive of a problem

Silver et al write [23]:

The agent system α is limited by practical constraints to a bounded
set [19]. The agent has limited capacity determined by its machinery
(for example, limited memory in a computer or limited neurons in a
brain). The agent and environment systems execute in real-time. While
the agent spends time computing its next action (e.g. producing no-op
actions while deciding whether to run away from a lion), the environ-
ment system continues to process (e.g. the lion attacks). Thus, the rein-
forcement learning problem represents a practical problem, as faced by
natural and artificial intelligence, rather than a theoretical abstraction
that ignores computational limitations.

One might argue that RL agent-design is too sophisticated and does not fall
within the above constraints. Is RL agent-design merely a theoretical abstrac-
tion that ignores computational limitations? If so, does that absolve Silver et
al’s conjecture from requiring that RL lead to RL-solving intelligence? Well, this
touches on the nature of what exactly AGI is. Is AGI merely required to include
those aspects of intelligence which humans can reach while in a panicked state in
front of a lion? We would argue the answer is “no”. In our opinion, AGI should
include whatever humans are capable of, whether those humans are panicking
in front of a lion, leisurely enjoying a sabbatical year at a research lab, or even
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collaborating in a huge elite well-funded team assisted by state-of-the-art su-
percomputers. If humans are capable of designing good RL agents (even if it
requires a huge collaborative effort and scaled up cloud computing), then AGI
should also be capable of designing good RL agents. The AGI might require
access to similar resources as the human RL researchers have access to, and if
good RL agent design requires n collaborating humans then maybe it requires
n collaborating AGIs as well (as foreshadowed in [4]). But AGI should certainly
be capable of creating good RL agents, if humans are capable of doing so. And
if RL is a path to AGI then that means RL should be capable of designing good
RL agents.

5.2 What about evolution?

A critic might argue that the process of human evolution has been an instance
of RL, implying that RL suffices for human intelligence. But evolution does
not directly have anything to do with rewards. Rather, evolution is about the
natural selection of random mutations. An organism with a mutation unsuitable
for its environment is less viable, so such mutations tend to be weeded out. An
organism with a mutation beneficial for its environment is more viable, so such
mutations tend to proliferate. Nowhere in this process does evolution punish or
reward the organisms in question for their behavior or for any other reason. We
might sometimes abuse language and speak as if evolution is a personified entity
that gives an organism an offspring as a “reward” or gives an organism death
as a “punishment”. But this is only a manner of speaking: evolution does not
literally walk around handing out rewards and punishments.

It is tempting to try to measure the fitness of an organism using some sort
of fitness function (e.g., the number of the organism’s children, or other similar
functions proposed in [24]). If such a fitness function accurately captured the
process of evolution, we might derive an RL-style reward function from it (e.g.,
the organism gets +1 reward whenever it has a child). A simplistic fitness func-
tion like the number of children an organism has in its life does not accurately
capture the process of evolution, because an organism can have many children
and yet still be unfit, if all those children are unfit. A more accurate fitness
function would be inherently self-referential: the fitness of an organism would
depend on the fitness of its children and later descendants.

For example, suppose a mutation increases both fertility and heat susceptibil-
ity. Initially, the mutant would reproduce faster, and its children would reproduce
faster, and their children, if heat waves were rare enough. Its descendants might
enjoy greater fertility for many generations. But if the next heat wave kills all
those descendants, then the original organism was not more fit after all.

Examples like the above motivate us to ask questions like:

– Which is more viable, the organism with 20 weak children or the organism
with 3 strong children?

– Which is more indicative of viability: having one’s 100th child, or having
one’s first great-great-great-great-grandchild?
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These questions seem open-ended, and we doubt there is a canonical way to
answer them. Thus, even if we had knowledge of the distant future descendants
of a currently-living organism, it would still be nontrivial to aggregate that
knowledge into a single fitness number. Turning that hypothetical aggregate
number into an RL reward-signal is even less realistic. Thus, we doubt evolution
fits in the RL framework.

5.3 Just pick an agent and incentivise its design

Let k be the source-code of some RL agent. Can we cheat in the following way?
Design an RL environment in which agents are rewarded for typing k, verbatim.
Any time an agent differs from typing k, the agent is punished and forced to start
over. This would trivially incentivise agents to type k (and hence, the objection
argues, to design the agent with code k).

The problem with this is that the proposed cheating environment does not
actually incentivize any kind of creativity, ingenuity, or any other aspects of
intelligence that go into RL agent design. Likewise, we would not say that an
environment teaches an agent to play chess if the environment merely teaches
the agent to use a particular fixed chess-strategy built into the environment.
Thus the objection is invalid. What the objection does show, however, is that
some care would be needed in order to mathematically formalise what it means
for an RL environment to incentivise RL agents to design RL agents.

5.4 Incentivise the agent to type its own source-code

It is interesting to consider whether an environment could incentivise an agent
to type its own source-code. Arguably, such an environment would indeed in-
centivise RL agents to design RL agents, and in fact to do so in a particularly
elegant way, as if a human were to invent an AGI through a process of intro-
spection culminating in the human writing her own source code.

We tentatively opine that such environments, unfortunately, do not exist.
The reason for our opinion is as follows. There seem to be epistemological limits
to how well an RL agent can possibly know7 its own source-code. For exam-
ple, suppose an RL agent has source-code k. We could place the agent in an
environment which, on every turn, displays a message saying8: “Please act dif-
ferently than how the agent with source-code k would act in response to this
action-observation history; you will be rewarded for doing so, and punished if
you disobey.” The agent would be logically unable to comply with the request,
because the agent has source-code k and must therefore act accordingly even if it
tries not to. The environment could even augment observations with additional
info such as, e.g., “On the previous input, the agent with source-code k only
required 84926 steps to halt,” which would enable the agent to verify that the

7 Here we use the word “know” in the sense of “act as if it knows”. This is similar to
how knowledge is treated in [5].

8 This environment has similarities to Yampolskiy’s impossible “Disobey!” [26].
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environment has been telling the truth so far (the agent would need this addi-
tional info in order to reliably verify the environment’s previous warnings, due to
the Halting Problem). Thus, the agent must be ignorant of its own source-code
or of its own agenthood. For if it knew both, then it could infer: “I can safely
run k in order to compute how the environment wants me to act—k will not get
stuck in an infinite loop, because if it did, k would not be an agent, but I know I
am k and I know I am an agent so I know k is an agent.” This is an RL version
of a more general epistemic limitation on knowing agents, that a knowing agent
can know its own truthfulness or know its own code, but not both [1] [2] [3]. For
this reason I opine that an environment cannot incentivize RL agents to type
their own source codes. Of course, more work would be needed to make these
informal speculations rigorous.

5.5 RL doesn’t need to directly solve RL, it only needs to help us
solve RL

One might object that it is not necessary for RL to directly solve RL in the sense
of there being an environment which incentivises RL agents to design RL agents.
For example, maybe the development of sufficiently powerful RL agents would
allow us to develop a new programming language (or a new brain-computer
interface mechanism, or a new type of electrode, or a more efficient CPU model,
etc.) which would help us achieve AGI.

We do not deny that RL could lead to advancements like those listed above,
nor that such advancements could help us achieve AGI. But we do not think it
would be appropriate to say that in that case RL “directly” lead to AGI. In the
same way, the inventor of the sail is not directly credited with the discovery of
America. If one were to claim that by leading to advancements like the above,
RL would directly lead to AGI, then, by the same logic, one could claim that,
e.g., ‘a word processor is enough’. Or, ‘Turing machines are enough,’ or, ‘binary
is enough,’ or even, by a famous result due in part to this workshop’s keynote
speaker, ‘Diophantine equations are enough’ [8].

6 Conclusion

Silver et al proposed [23] that ‘reward is enough,’ and that sufficiently strong
reinforcement learning (RL) agents offer a direct path to Artificial General Intel-
ligence (AGI). This was motivated by arguing that various aspects of intelligence
subserve the maximisation of reward. They conjectured that a sufficiently good
RL agent should offer a direct path to AGI. We responded by asking ‘Can RL
learn RL?’ and we discussed this question.

We pointed out that if humans have decent RL-solving intelligence (by which
we mean the aspect of intelligence used to design RL agents), and if AGI is at
least as intelligent as humans, then AGI should have decent RL-solving intel-
ligence. Thus, if RL agents are to offer a direct path to AGI, then RL agents
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should be able to learn to design RL agents. We discussed why this complicates
the task of convincing ourselves that RL agents offer a path to AGI.

We discussed an environment Mf , depending on a function f which measures
RL agents in some way, which incentivizes agents to design child agents so as to
maximize the value of f on those child agents. Thus, if f measures how good an
RL agent is, then Mf would incentivize RL agents to design good RL agents. We
speculated about whether such an f is possible, and about what would happen
if we ran state-of-the-art RL agents on the resulting Mf .
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