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Abstract. One shortcoming of the chain rule is that it does not iterate: it

gives the derivative of f(g(x)), but not (directly) the second or higher-order

derivatives. We present iterated differentials and a version of the multivariable
chain rule which iterates to any desired level of derivative. We first present

this material informally, and later discuss how to make it rigorous (a discussion

which touches on formal foundations of calculus). We also suggest a finite
calculus chain rule (contrary to Graham, Knuth and Patashnik’s claim that

“there’s no corresponding chain rule of finite calculus”).

1. Introduction

Consider the following statement, uncontroversial in an elementary calculus con-
text (∗): “For all variables u and v, d(uv) = v du + u dv.” In his popular calculus
textbook [11], Stewart says:

...the differential dx is an independent variable...

So if ∗ really does hold for all variables u and v, and if x is a variable, and if
(as Stewart says) dx is also a variable, then, by letting u = x and v = dx, we
get d(x dx) = dx dx + x ddx. We do not know whether Stewart intended us to
make such an unfamiliar-looking conclusion from his innocent-looking statement,
but let’s continue along these lines and see where it leads us. We will formalize this
kind of computation using machinery from first-order logic, and show that it leads
to an elegant higher-order multivariable chain rule.

A weakness of the familiar chain rule is that it does not iterate: it tells us how
to find the first derivative of f(g(x)), but it does not tell us how to find second- or
higher-order derivatives of the same (at least not directly). Our abstract chain rule
will iterate: the exact same rule which tells us df(g(x)) will also tell us dkf(g(x))
for any integer k > 1.

Our d operator has some similarities with the ∆ operator of Huang et al [7]. Our
work improves on theirs in that we explicitly distinguish differential variables from
others, so that the operator we develop better reveals the connection to differentials.
For example, in Huang et al, one has ∆1e

x0 = ex0x1 and ∆2e
x0 = ex0(x2

1 + x2),
which is equivalent to our dex0 = ex0 dx0 and d2ex0 = ex0(dx0 dx0 +ddx0). Besides
better emphasizing the connection to differentials, the latter version should also be
more familiar, since we already routinely write things like dex = ex dx in elementary
calculus classes.
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2. Computing iterated partial derivatives: informal examples

In this section, we will informally describe a way to compute iterated partial
derivatives of a multivariable function. We will make the method formal in subse-
quent sections.

Example 2.1. Compute the differential dd x2 = d(dx2), treating differential vari-
ables just like ordinary variables.

Solution. The differential dx2 = 2x dx involves two variables: x and dx. Thus,
d(dx2) will have two terms, one where we differentiate with respect to x and multiply
the result by dx, and one where we differentiate with respect to dx and multiply
the result by ddx:

ddx2 = d(dx2)

= d(2x dx)

=
∂(2x dx)

∂x
dx+

∂(2x dx)

∂dx
ddx

= 2 dx dx+ 2x ddx.

Note that when we compute ∂(2x dx)
∂x , we treat dx as a variable independent from x,

so dx can be treated as a constant. Likewise when we compute ∂(2x dx)
∂dx , x is treated

as a constant. �

Example 2.2. Compute the differential dd ex, treating differential variables just
like ordinary variables.

Solution. As in Example 2.1, since d ex = ex dx,

dd ex = d (ex dx)

=
∂(ex dx)

∂x
dx+

∂(ex dx)

∂dx
ddx

= ex dx dx+ ex ddx.

�

Example 2.3. Compute dd f(x), treating differential variables just like ordinary
variables.

Solution. Just as above,

dd f(x) = d(f ′(x) dx)

=
∂(f ′(x) dx)

∂x
dx+

∂(f ′(x) dx)

∂dx
ddx

= f ′′(x) dx dx+ f ′(x) ddx.

�

In a later section, we will formalize and prove a formal chain rule (Corollary 6.9).
For now, we will state it informally:

Remark 2.4. (Abstract Chain Rule, stated informally) Let T and U be expres-
sions and let x be a non-differential variable. Assume T , U , and all of their sub-
expressions are everywhere infinitely differentiable. Then

d(T [x|U ]) = (dT )[x|U ],
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where the operator [x|U ] works by simultaneously replacing all occurrences of x by
U , all occurrences of dx by dU , all occurrences of d2x by d2U , and so on.

The Abstract Chain Rule can be stated in English: “substituting first and then
applying d gives the same result as applying d first and then substituting, provided
that when one substitutes U for x, one also substitutes dU for dx and so on.”

Example 2.5. Compute (ex
2

)′′.

Solution. By Example 2.3, (ex
2

)′′ is the dx dx-coefficient of dd ex
2

. We compute:

dd ex
2

= dd (ex[x|x2])

= (dd ex)[x|x2] (Abstract Chain Rule)

= (ex dx dx+ ex ddx)[x|x2] (Example 2.2)

= ex
2

d(x2) d(x2) + ex
2

dd(x2) (Substituting)

= ex
2

(2x dx)2 + ex
2

(2 dx dx+ 2x ddx) (Example 2.1)

= (4x2 + 2)ex
2

dx dx+ 2xex
2

ddx.

The answer is the above dx dx-coefficient:

(ex
2

)′′ = (4x2 + 2)ex
2

.

�

Our Abstract Chain Rule works for multivariable and higher-order derivatives,
too.

Example 2.6. The iterated total derivative

d3 sinxy = d3(sinx [x|xy]) = (d3 sinx)[x|xy]

encodes:

• ∂3 sinxy/∂x3 as its dx dx dx-coefficient.
• ∂3 sinxy/∂y3 as its dy dy dy-coefficient.

• ∂3 sin xy
∂x∂y∂y = ∂3 sin xy

∂y∂x∂y = ∂3 sin xy
∂y∂y∂x times 3 as its dx dy dy = dy dx dy = dy dy dx-

coefficient (the fact that there are three ways to write this coefficient is why
we write “times 3”).

In Sections 5–6 we will formalize and prove the Abstract Chain Rule. But first,
we will connect these higher-order differentials to a more concrete higher-order
chain rule known as Faà di Bruno’s formula, and also show how the same ideas lead
to a finite calculus chain rule.

3. Faà di Bruno’s formula

Faà di Bruno’s formula, named after the 19th century Italian priest Francesco
Faà di Bruno, is a formula for the higher derivatives of f(g(x)). See [8] and [3] for
the history of Faà di Bruno’s formula (see also [10] for related work in category
theory by another ACMS presenter). The formula can be stated combinatorially:

f(g(x))(n) =
∑
π∈Πn

f (|π|)(g(x))
∏
B∈π

g(|B|)(x)
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where π ranges over the set Πn of all partitions of {1, . . . , n} (so for each such
partition π, B ranges over the blocks in π).

The ideas of Section 2 offer an intuitive way to understand the above formula1.
For any partition π = {B1, . . . , Bk} of {1, . . . , n}, let I(π) be the expression

I(π) = f (k)(x) d|B1|x d|B2|x · · · d|Bk|x

involving iterated differentials as in Section 2. By an inductive argument, one can
check that

dnf(x) =
∑
π∈Πn

I(π)

(for the inductive step, consider the different ways of obtaining a partition π′ ∈
Πn+1 from a partition π ∈ Πn: one can either add {n + 1} as a new block, which
corresponds to changing f (k)(x) to f (k+1)(x)dx when using the product rule to
calculate dI(π); or one can add n+ 1 to existing block Bi of π, which corresponds
to changing d|Bi|x to d|Bi|+1x when using the product rule to calculate dI(π)).

By similar reasoning as in Examples 2.3 and 2.5, f(g(x))(n) is the (dx)n-coefficient
of dnf(g(x)) = dn(f(x)[x|g(x)]) = (dnf(x))[x|g(x)]. Thus f(g(x))(n) is the (dx)n-
coefficient of ∑

π∈Πn

I(π)[x|g(x)] =
∑
π∈Πn

f (|π|)(g(x))
∏
B∈π

d|B|g(x).

One can check that d|B|g(x) = g(|B|)(x)d|B|x+o where o is a sum of terms involving
higher-order differentials (which can be ignored because they contribute nothing to
the (dx)n-coefficient we seek). Faà di Bruno’s formula follows.

4. Application to finite calculus

The ideas in this paper also lead to a chain rule for the so-called finite calculus.
The finite calculus is described in Section 2.6 of Graham, Knuth and Patashnik’s
Concrete Mathematics [4]. In finite calculus, one defines an operator ∆ on functions
by ∆f(x) = f(x + 1) − f(x). This operator has many surprising analogies with
differentiation, but Graham et al claim: “there’s no corresponding chain rule of
finite calculus, because there’s no nice form for ∆f(g(x)).” To the contrary, since
∆x = (x+ 1)− x = 1, an equivalent way to write ∆f(x) is

∆f(x) = f(x+ ∆x)− f(x).

One can then easily check that

∆f(g(x)) = f(g(x+ ∆x))− f(g(x)) = f(g(x) + ∆g(x))− f(g(x)),

which can be expressed as a chain rule

∆(f(x)Jx|g(x)K) = (∆f(x))Jx|g(x)K,

where Jx|g(x)K operates by replacing x by g(x) and ∆x by ∆g(x).

1Shortly after presenting this argument at ACMS, we realized that the argument can actually
be applied directly, without using iterated differentials at all, yielding a shockingly short elemen-

tary proof of Faà di Bruno’s formula. Examining the literature, we found that the basic idea is
already known [9] [6], but both published proofs which we found are actually proofs of more com-

plicated multivariable generalizations of Faà di Bruno’s formula. For the single-variable special

case, the idea (essentially the same idea which we presented using iterated differentials at ACMS)
is so simple that it can be written with a single sentence [2].
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Of course, to make this rigorous, it would be necessary to work in a formal
language so as to carefully track which “1”s are “∆x”s. For example, if f(x) =
1/(1 + x2), we want f(x)Jx|g(x)K to be 1/(1 + g(x)2), not ∆g(x)/(∆g(x) + g(x)2),
even though ∆x = 1. We will not go through the necessary formalism in this paper,
but it would be very similar to the formalism required for the d operator, which we
devote the whole rest of the paper to.

5. Formalizing terms

In this section, we will formalize the terms (or expressions) of differential calculus.
We attempt to make this formalization self-contained. The machinery we develop
here is very similar to the machinery used to define terms in first-order logic, except
that we assume more structure on the set of variables than is assumed in first-order
logic.

Note that one could strongly argue that elementary calculus already implicitly
operates on terms, abusing language to call terms “functions”. For example, x 7→ x2

and y 7→ y2 are two names for the exact same function. Yet, nevertheless, in ele-
mentary calculus, the expressions x2 and y2 are not interchangeable [5]. Evidently,
such discrepancies point to the fact that elementary calculus really is done using
formal terms, implicitly. In the following, we make it explicit.

Definition 5.1. (Variables) We fix a set of variables defined inductively as follows.

(1) For the base step, we fix a countably infinite set {x0, x1, . . .} of distinct
elements called precalculus variables, and we declare them to be variables.

(2) Inductively, for every variable v, we fix a new variable dv, which we call
a differential variable; we do this in such a way as to satisfy the following
requirement (we write dnv for ddd · · · dv where d occurs n times):
• (Unique Readability) For all n,m ∈ N, for all variables v and w, if dnv

is the same variable as dmw, then n = m and v = w.

We write V for the set of variables.

Examples of variables include x1, x50, dx0, ddx3, d4x50 (shorthand for ddddx50),
and so on. The unique readability property guarantees that, for example, dx1 is
not the same variable as dx2 or ddx3 or dddx1, etc. We allow n or m to be 0 in
the unique readability requirement, so, for example, x1 and dx1 are not the same
variable (since d0x1 denotes x1). Every variable is either a precalculus variable (in
which case it is xn for some n ∈ N) or a differential variable (in which case it is
dmxn for some n,m ∈ N with m > 0).

Definition 5.2. (Constant symbols and function symbols)

(1) We fix a distinct set {r}r∈R of constant symbols for the real numbers. For
any r ∈ R, r is the constant symbol for r.

(2) For every n ∈ N with n > 0, we fix a distinct set {f}f of n-ary function
symbols, where f ranges over the set of all functions from Rn to R. For any
such f , f is the n-ary function symbol for f .

We make these choices in such a way that no variable is a constant symbol, no
variable is an n-ary function symbol (for any n), and no constant symbol is an
n-ary function symbol (for any n).
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For example, the exponential function exp gives rise to a 1-ary (or unary) func-
tion symbol exp. The addition function + gives rise to a 2-ary (or binary) function
symbol +.

Definition 5.3. (Terms) We define the terms of differential calculus (or simply
terms) inductively as follows.

(1) Every variable v is a term.
(2) Every constant symbol is a term.
(3) For all n ∈ N (n > 0), for every f : Rn → R, for all terms U1, . . . , Un,

f(U1, . . . , Un) is a term.

Examples of terms include 5, π, x1, dx2, sin(x1), +(x0, x1), and so on. We often
abuse notation and suppress the overlines and possibly parentheses when writing
terms. For example, we might write sinx0 instead of sin(x0), cosπ instead of cos(π),
and so on. For certain well-known functions, we sometimes abuse notation further,
for example, writing:

• x0 + x1 instead of +(x0, x1);
• 2x0 instead of ·(2, x0);
• x0 dx1 instead of ·(x0, dx1);

• x2
0 instead of x 7→ x2(x0);

• ex1 instead of exp(x1);
• x0 dx1 + x1 dx0 instead of +(·(x0, dx1), ·(x1, dx0));
• and so on.

This should cause no confusion in practice.

Definition 5.4. (Term interpretation)

• By an assignment, we mean a function s : V → R (recall that V is the set
of variables).
• Let s be an assignment. For every term T , we define the interpretation
T s ∈ R of T (according to s) by induction on term complexity as follows.
(1) If T is a constant symbol r, then T s = r.
(2) If T is a variable v, then T s = s(v).
(3) If T is f(U1, . . . , Un) for some f : Rn → R and terms U1, . . . , Un, then

T s = f(Us1 , . . . , U
s
n).

For example, if s(x0) = 5, then exp(x0)s = e5. If s(x0) = 9 and s(dx0) = 0.1,
then (x dx)s = 9 · 0.1 = 0.9.

Definition 5.5. (Free variables) We define the free variables FV(T ) of a term T
as follows.

(1) If T is a constant symbol, then FV(T ) = ∅ (the empty set).
(2) If T is a variable v, then FV(T ) = {v}.
(3) If T is f(U1, . . . , Un) for some f : Rn → R and terms U1, . . . , Un, then

FV(T ) = FV(U1) ∪ · · · ∪ FV(Un).

For example, FV(5) = ∅, FV(x6) = {x6}, FV(dx2) = {dx2} (note that x2 is not
a free variable of dx2), FV(ex0+x1) = {x0, x1}, FV(x1 dx2) = {x1, dx2}.

Lemma 5.6. Suppose T is a term, v is a variable, and s is an assignment. If
v 6∈ FV(T ), then T s does not depend on s(v).
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Proof. By induction. �

Definition 5.7. (Semantic equivalence) If T and U are terms, we declare T ≡ U
(and say that T and U are semantically equivalent) if for every assignment s,
T s = Us.

For example, sin(x0 +2π) ≡ sinx0, by which we mean sin(+(x0, 2π))) ≡ sin(x0).

5.1. Formal derivatives.

Definition 5.8. (Ordered free variables) If T is a term, we define the ordered free
variables OFV(T ) to be the finite sequence whose elements are the free variables
FV(T ) of T (each appearing exactly one time in the sequence), ordered such that:

• Whenever 0 < n < m then dnxi precedes dmxj .
• Whenever 0 < i < j then dnxi precedes dnxj .

For example,

OFV(ex1+x3+x2+x2+x99 dx1 d
3x1 dx2 d

50x0) = (x1, x2, x3, x99, dx1, dx2, d
3x1, d

50x0).

Definition 5.9. If s is an assignment, w is a variable, and r ∈ R, we write s(w|r)
for the assignment defined by

s(w|r)(v) =

{
r if v is w

s(v) otherwise.

In other words, s(w|r) is the assignment which is identical to s except that it
overrides s’s output on w, mapping w to r instead.

Lemma 5.10. For any assignment s and variable v, s(v|s(v)) = s.

Proof. Trivial. �

Definition 5.11. (Everywhere-differentiability) Let T be a term, w a variable. We
say that T is everywhere-differentiable with respect to w if for every assignment s,
the limit

lim
h→0

T s(w|s(w)+h) − T s

h

converges to a finite real number.

Lemma 5.12. Let T be a term with OFV(T ) = (v1, . . . , vn) 6= ∅, and let w be a
variable. Assume T is everywhere-differentiable with respect to w. For all r1, . . . , rn,
let

f(r1, . . . , rn) = lim
h→0

T s(w|s(w)+h) − T s

h

where s is some assignment such that each s(vi) = ri. Then f : Rn → R is
well-defined.

Proof. In other words, for any r1, . . . , rn ∈ R, f(r1, . . . , rn) does not depend on the
choice of s, as long as each s(vi) = ri. This follows from Lemma 5.6 since T has no
free variables other than v1, . . . , vn. �
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Definition 5.13. If T is a term with OFV(T ) = (v1, . . . , vn), w is a variable, and
T is everywhere-differentiable with respect to w, then we define the derivative of T
with respect to w, a term, written ∂T

∂w , as

∂T

∂w
= f(v1, . . . , vn)

where f is as in Lemma 5.12. We define ∂T
∂w to be the term 0 if FV(T ) = ∅.

Example 5.14. (Some example term derivatives)

(1) ∂x0/∂x0 ≡ 1.
(2) ∂x0/∂x1 ≡ 0.
(3) ∂x0/∂dx0 ≡ 0.
(4) ∂(ex1x2 dx1)/∂x1 ≡ x2e

x1x2 dx1.

Proof. (1) The function f of Lemma 5.12 is

f(r) = lim
h→0

x
s(x0|s(x0)+h)
0 − xs0

h

(for any assignment s with s(x0) = r). By Definitions 5.4 and 5.9 this simplifies to

f(r) = limh→0
s(x0)+h−s(x0)

h = 1. The claim follows.
(2) The function f of Lemma 5.12 is

f(r) = lim
h→0

x
s(x1|s(x1)+h)
0 − xs0

h

(where s(x0) = r). This simplifies to f(r) = limh→0
s(x0)−s(x0)

h = 0. The claim
follows.

(3) Similar to (2).
(4) By Definition 5.8, OFV(ex1x2 dx1) = (x1, x2, dx1). So, letting v1 = x1,

v2 = x2, v3 = dx1, the function f of Definition 5.12 is

f(r1, r2, r3) = lim
h→0

(ex1x2 dx1)s(v1|s(v1)+h) − (ex1x2 dx1)s

h

(where each s(vi) = ri). By Definitions 5.4 and 5.9 this simplifies to

f(r1, r2, r3) = lim
h→0

e(r1+h)r2r3 − er1r2r3

h
,

which is r2e
r1r2r3 by calculus. The claim follows. �

Another way to prove Example 5.14 would be to use the following lemma.

Lemma 5.15. For each term T , variable w, and assignment t, if T is everywhere-
differentiable with respect to w, then(

∂T

∂w

)t
= lim
h→0

T t(w|t(w)+h) − T t

h
.

Proof. If FV(T ) = ∅, the lemma is trivial. Assume not. Let (v1, . . . , vn) = OFV(T ).
By definition, ∂T∂w = f(v1, . . . , vn), where f : Rn → R is such that for all r1, . . . , rn ∈
R, for any assignment s with each s(vi) = ri,

f(r1, . . . , rn) = lim
h→0

T s(w|s(w)+h) − T s

h
.
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In particular, let each ri = t(vi). Then:(
∂T
∂w

)t
= f(v1, . . . , vn)t (Definition 5.13)

= f(t(v1), . . . , t(vn)) (Definition 5.4)

= f(r1, . . . , rn) (Choice of r1, . . . , rn)

= lim
h→0

T t(w|t(w)+h) − T t

h
, (Since each t(vi) = ri)

as desired. �

Definition 5.16. (Term total differentials) Suppose T is a term. We say T is
everywhere totally differentiable if T is everywhere-differentiable with respect to
every variable. If so, we define the total differential dT , a term, as follows. If
FV(T ) = ∅ then we define dT = 0. Otherwise, let OFV(T ) = (v1, . . . , vn) and
define

dT =
∂T

∂v1
dv1 + · · ·+ ∂T

∂vn
dvn.

Furthermore, we inductively define d1T to be dT and, whenever dnT is defined
and is everywhere totally differentiable, we define dn+1T = ddnT .

For example,

d(x1 dx2) =
∂(x1 dx2)

∂x1
dx1 +

∂(x1 dx2)

∂dx2
ddx2

≡ dx1 dx2 + x1 ddx2.

Lemma 5.17. If term T is everywhere totally differentiable and if v1, . . . , vn are
distinct variables such that FV(T ) ⊆ {v1, . . . , vn}, then

dT ≡ ∂T

∂v1
dv1 + · · ·+ ∂T

∂vn
dvn.

Proof. Follows from the commutativity of addition and the fact that clearly ∂T
∂vi
≡ 0

if vi 6∈ FV(T ). �

In order to prove an abstract chain rule in Section 6, we will need a form of the
classical multivariable chain rule, expressed for formal terms. For this purpose, we
first introduce shorthand for finite summation notation2.

Definition 5.18. If m > 0 is an integer and T1, . . . , Tm are terms, we write
∑m
i=1 Ti

(or just
∑
i Ti if no confusion results) as shorthand for T1 + · · ·+ Tm.

Lemma 5.19. (Classic Multivariable Chain Rule for Terms) Suppose f : Rn →
R. Suppose ~T = (T1, . . . , Tn) are terms with each FV(Ti) ⊆ {v1, . . . , vm} (where

v1, . . . , vm are distinct). Assume that f(~T ) and T1, . . . , Tn are everywhere totally
differentiable. Then for all 1 ≤ i ≤ m,

∂(f(~T ))

∂vi
≡

n∑
j=1

fj(~T )
∂Tj
∂vi

,

2It is also possible to incorporate summation notation formally into Definition 5.3, but the
details are complicated. See [1].
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where fj = Djf (the partial derivative of f (in the usual sense) with respect to its
jth argument).

Proof. Let s be an assignment and fix 1 ≤ i ≤ m. We must show (Definition 5.7)
that (

∂(f(~T ))

∂vi

)s
=

 n∑
j=1

fj(~T )
∂Tj
∂vi

s

.

Define functions F,Gj : R→ R (1 ≤ j ≤ n) by

F (z) = f(~T )s(vi|z),

Gj(z) = T
s(vi|z)
j .

For all 1 ≤ j ≤ n and z ∈ R,

F (z) = f(~T )s(vi|z) (Definition of Fi)

= f(T
s(vi|z)
1 , . . . , T s(vi|z)n ) (Definition 5.4)

= f(G1(z), . . . , Gn(z)), (Definition of Gj)

so (∗) F ′(z) =
∑
jfj(G1(z), . . . , Gn(z))G′j(z) (Classic multivar. chain rule)

(the hypotheses of the classic multivariable chain rule are implied by the everywhere-

total-differentiability of f(~T ) and each Ti, by Lemma 5.15). So armed, we compute:(
∂(f(~T ))
∂vi

)s
= lim
h→0

f(~T )s(vi|s(vi)+h) − f(~T )s

h
(Lemma 5.15)

= lim
h→0

F (s(vi) + h)− F (s(vi))

h
(Def. of F )

= F ′(s(vi)) (Def. of F ′)

=
∑
jfj(G1(s(vi)), . . . , Gn(s(vi)))G

′
j(s(vi)) (By (∗))

=
∑
jfj(T

s(vi|s(vi))
1 , . . . , T s(vi|s(vi))n )G′j(s(vi)) (Def. of Gj)

=
∑
jfj(T

s
1 , . . . , T

s
n)G′j(s(vi)) (Lemma 5.10)

=
∑
jfj(T

s
1 , . . . , T

s
n) lim

h→0

Gj(s(vi) + h)−Gj(s(vi))
h

(Def. of G′j)

=
∑
jfj(T

s
1 , . . . , T

s
n) lim

h→0

T s(vi|s(vi)+h) − T s(vi|s(vi))

h
(Def. of Gj)

=
∑
jfj(T

s
1 , . . . , T

s
n) lim

h→0

T s(vi|s(vi)+h) − T s

h
(Lemma 5.10)

=
∑
jfj(T

s
1 , . . . , T

s
n)
(
∂Tj

∂vi

)s
(Lemma 5.15)

=
(∑n

j=1fj(
~T )

∂Tj

∂vi

)s
, (Def. 5.4)

as desired. �

Note that in Lemma 5.19 the assumption that f(~T ) is everywhere totally differ-
entiable does not automatically imply that T1, . . . , Tn are everywhere totally differ-
entiable. For example, f could be the function f(x, y) = x in which case f(T1, T2)
would be everywhere totally differentiable iff T1 is everywhere totally differentiable,
regardless of the behavior of T2.
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6. An Abstract Chain Rule

Recall that V denotes the set of all variables. Let T denote the set of all terms.

Definition 6.1. For any φ0 : V → T , the extension of φ0 to all terms is the
function φ : T → T defined by induction as follows:

(1) If T is a constant symbol then φ(T ) = T .
(2) If T is a variable then φ(T ) = φ0(T ).
(3) If T is f(S1, . . . , Sn) then φ(T ) = f(φ(S1), . . . , φ(Sn)).

Lemma 6.2. Let φ0 : V → T and let φ be the extension of φ0 to all terms. Then:

(1) (The Substitution Lemma) For any assignment s, if φ(s) is the assignment
defined by φ(s)(v) = φ(v)s, then for every term T , φ(T )s = Tφ(s).

(2) For all terms T and U , if T ≡ U then φ(T ) ≡ φ(U).

Proof. (1) By induction on T . If T is a constant symbol or variable, the claim is
trivial. Otherwise, T is f(U1, . . . , Un). Then

φ(T )s = f(φ(U1), . . . , φ(Un))s (Definition 6.1)

= f(φ(U1)s, . . . , φ(Un)s) (Definition 5.4)

= f(U
φ(s)
1 , . . . , Uφ(s)

n ) (Induction)

= Tφ(s). (Definition 5.4)

(2) Assume T ≡ U . For any assignment s, if φ(s) is as in (1), then Tφ(s) = Uφ(s) by
Definition 5.7. Thus φ(T )s = φ(U)s by (1). By arbitrariness of s, φ(T ) ≡ φ(U). �

Definition 6.3. Say φ0 : V → T respects d if for each variable v, φ0(dv) ≡ dφ0(v).

Definition 6.4. (Strong differentiability)

(1) We define the subterms of a term T by induction as follows. If T is a variable
or constant symbol, then T is its own lone subterm. If T is f(U1, . . . , Un),
then the subterms of T are T itself along with the subterms of each Ui.

(2) A term T is strongly differentiable if every subterm of T is everywhere
totally differentiable.

Thus, a term is strongly differentiable if it is built up from pieces which are
everywhere totally differentiable. An example of a term which is everywhere totally
differentiable but not strongly differentiable is |x0|2, which is everywhere totally
differentiable despite having a subterm |x0| which is not. Note that the ordinary
chain rule for f(g(x))′ fails when f(x) = x2 and g(x) = |x| (these functions fail the
chain rule’s hypotheses): (|x|2)′ = 2x, but |x|′ is undefined at x = 0. We avoid
such traps in the following theorem by requiring strong differentiability.

Theorem 6.5. (General Abstract Chain Rule) Let φ0 : V → T and assume that
φ0(v) is strongly differentiable for every variable v. Let φ be the extension of φ0 to
all terms. If T is strongly differentiable and φ0 respects d, then dφ(T ) ≡ φ(dT ).

Proof. By induction on T . If T is a constant symbol, the theorem is trivial. If T is
a variable, the theorem reduces to the statement that φ0 respects d, which is one of

the hypotheses. It remains to consider the case when T is f(~T ) where f : Rm → R
and ~T = T1, . . . , Tm are simpler terms. Then T1, . . . , Tm are subterms of T , so, since
T is strongly differentiable, it follows that T1, . . . , Tm are strongly differentiable. By
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induction, each dφ(Ti) ≡ φ(dTi). Let {v1, . . . , v`} = FV(φ(T1))∪ · · · ∪FV(φ(Tm)).
For the rest of the proof, whenever S is a term and v is a variable, we will write Sv

for ∂S
∂v . Let

−−→
φ(T ) denote φ(T1), . . . , φ(Tm). We calculate:

dφ(f(~T ))

≡
∑`
i=1φ(f(~T ))vidvi (Lemma 5.17)

=
∑
if(
−−→
φ(T ))vidvi (Definition 6.1)

≡
∑
i

∑m
j=1fj(

−−→
φ(T ))φ(Tj)vidvi (Lemma 5.19)

≡
∑
jfj(
−−→
φ(T ))

∑
iφ(Tj)vidvi (Basic algebra)

≡
∑
jfj(
−−→
φ(T ))dφ(Tj) (Lemma 5.17)

≡
∑
jfj(
−−→
φ(T ))φ(dTj) (Induction Hypothesis)

= φ
(∑

jfj(
~T )dTj

)
(Definition 6.1)

≡ φ
(∑

jfj(
~T )
∑`
i=1(Tj)vi dvi

)
(Lemma 5.17)

≡ φ
(∑

i

∑
jfj(

~T )(Tj)vi dvi

)
(Basic algebra)

≡ φ(
∑
if(~T )vidvi) (Lemma 5.19)

≡ φ(df(~T )) (Lemma 5.17)

(in the last few lines, we use Lemma 6.2 part 2). �

A weakness of the familiar chain rule is that it does not iterate. The following
corollary shows that the abstract chain rule does iterate.

Corollary 6.6. For all φ0, φ and T as in Theorem 6.5, for all k ∈ N (k > 0), if
d`T exists and is strongly differentiable for all ` < k, then

dkφ(T ) ≡ φ(dkT ).

Proof. By repeated applications of Theorem 6.5. �

In Sections 2 and 3 we used a special case of Theorem 6.5 which we will now
formalize. Recall that a precalculus variable is one that is not of the form dv for
any variable v.

Definition 6.7. (Variable substitution respecting differentials) Let v be a precal-
culus variable, U a term such that dkU is strongly differentiable for all k. For
every term T , we will define the result of substituting U for v in T while respecting
differentials, written T [v|U ], as follows. First, we define φ0 : V → T so that:

(1) φ0(v) = U .
(2) For every k > 0, φ0(dkv) = dkU .
(3) For all variables w not of either of the above two forms, φ0(w) = w.

We define T [v|U ] to be φ(T ) where φ is the extension of φ0 to all terms (Definition
6.1).

Corollary 6.8. (Abstract Chain Rule) Let U, v be as in Definition 6.7. If term T
is strongly differentiable, then

d(T [v|U ]) ≡ (dT )[v|U ].
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Proof. If φ0 is as in Definition 6.7 then evidently φ0 satisfies the hypotheses of
Theorem 6.5. The corollary then immediately follows from Theorem 6.5. �

Corollary 6.9. (Iterated Abstract Chain Rule) Let v, T, U be as in Corollary 6.8.
For all k > 0, if d`T is strongly differentiable for all ` < k, then

dk(T [v|U ]) ≡ (dkT )[v|U ].

Proof. By repeated applications of Corollary 6.8. �
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