# Guessing, Mind-changing, and the Second Ambiguous Class 

Samuel Alexander


#### Abstract

In his dissertation, Wadge defined a notion of guessability on subsets of the Baire space and gave two characterizations of guessable sets. A set is guessable iff it is in the second ambiguous class $\left(\Delta_{2}^{0}\right)$, iff it is eventually annihilated by a certain remainder. We simplify this remainder and give a new proof of the latter equivalence. We then introduce a notion of guessing with an ordinal limit on how often one can change one's mind. We show that for every ordinal $\alpha$, a guessable set is annihilated by $\alpha$ applications of the simplified remainder if and only if it is guessable with fewer than $\alpha$ mind changes. We use guessability with fewer than $\alpha$ mind changes to give a semi-characterization of the Hausdorff difference hierarchy, and indicate how Wadge's notion of guessability can be generalized to higher-order guessability, providing characterizations of $\Delta_{\alpha}^{0}$ for all successor ordinals $\alpha>1$.


## 1 Introduction

Let $\mathbb{N}^{\mathbb{N}}$ be the set of sequences $s: \mathbb{N} \rightarrow \mathbb{N}$ and let $\mathbb{N}<\mathbb{N}$ be the set $\cup_{n} \mathbb{N}^{n}$ of finite sequences. If $s \in \mathbb{N}^{<\mathbb{N}}$, we will write $[s]$ for $\left\{f \in \mathbb{N}^{\mathbb{N}}: f\right.$ extends $\left.s\right\}$. We equip $\mathbb{N}^{\mathbb{N}}$ with a second-countable topology by declaring $[s]$ to be a basic open set whenever $s \in \mathbb{N}^{<\mathbb{N}}$.

Throughout the paper, $S$ will denote a subset of $\mathbb{N}^{\mathbb{N}}$. We say that $S \in \boldsymbol{\Delta}_{2}^{0}$ if $S$ is simultaneously a countable intersection of open sets and a countable union of closed sets in the above topology. In classic terminology, $S \in \Delta_{2}^{0}$ just in case $S$ is both $G_{\delta}$ and $F_{\sigma}$.

The following notion was discovered by Wadge [9] (pp. 141-142) and independently by this author [1]. ${ }^{1}$

2010 Mathematics Subject Classification: Primary 03E15
Keywords: guessability, difference hierarchy

Definition 1.1 We say $S$ is guessable if there is a function $G: \mathbb{N}<\mathbb{N} \rightarrow\{0,1\}$ such that for every $f \in \mathbb{N}^{\mathbb{N}}$,

$$
\lim _{n \rightarrow \infty} G(f \upharpoonright n)=\chi_{S}(f)=\left\{\begin{array}{l}
1, \text { if } f \in S, \\
0, \text { if } f \notin S
\end{array}\right.
$$

If so, we say $G$ guesses $S$, or that $G$ is an $S$-guesser.
The intution behind the above notion is captured eloquently by Wadge (p. 142, notation changed):

Guessing sets allow us to form an opinion as to whether an element $f$ of $\mathbb{N}^{\mathbb{N}}$ is in $S$ or $S^{c}$, given only a finite initial segment $f \upharpoonright n$ of $f$.
Game theoretically, one envisions an asymmetric game where II (the guesser) has perfect information, $I$ (the sequence chooser) has zero information, and $I I$ 's winning set consists of all sequences $\left(a_{0}, b_{0}, a_{1}, b_{1}, \ldots\right)$ such that $b_{i} \rightarrow 1$ if $\left(a_{0}, a_{1}, \ldots\right) \in S$ and $b_{i} \rightarrow 0$ otherwise.

The following result was proved in [9] (pp.144-145) by infinite game-theoretical methods. The present author found a second proof [1] using mathematical logical methods.

Theorem 1.2 (Wadge) $S$ is guessable if and only if $S \in \boldsymbol{\Delta}_{2}^{0}$.
Wadge defined (pp. 113-114) the following remainder operation.
Definition 1.3 For $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, define $\operatorname{Rm}_{0}(A, B)=\mathbb{N}^{\mathbb{N}}$. For $\mu>0$ an ordinal, define

$$
\operatorname{Rm}_{\mu}(A, B)=\bigcap_{v<\mu}\left(\overline{\operatorname{Rm}_{v}(A, B) \cap A} \cap \overline{\operatorname{Rm}_{v}(A, B) \cap B}\right)
$$

(Here $\boldsymbol{\bullet}$ denotes topological closure.) Write $\operatorname{Rm}_{\mu}(S)$ for $\operatorname{Rm}_{\mu}\left(S, S^{c}\right)$.
By countability considerations, there is some (in fact countable) ordinal $\mu$, depending on $S$, such that $\operatorname{Rm}_{\mu}(S)=\operatorname{Rm}_{\mu^{\prime}}(S)$ for all $\mu^{\prime} \geq \mu$; Wadge writes $\operatorname{Rm}_{\Omega}(S)$ for $\operatorname{Rm}_{\mu}(S)$ for such a $\mu$. He then proves the following theorem:
Theorem 1.4 (Wadge, attributed to Hausdorff) $S \in \Delta_{2}^{0}$ if and only if $\operatorname{Rm}_{\Omega}(S)=\emptyset$.
In Section 2, we introduce a simpler remainder $(S, \alpha) \mapsto S_{\alpha}$ and use it to give a new proof of Theorem 1.4.

In Section 3, we introduce the notion of $S$ being guessable while changing one's mind fewer than $\alpha$ many times ( $\alpha \in \mathrm{Ord}$ ) and show that this is equivalent to $S_{\alpha}=\emptyset$.

In Section 4, we show that for $\alpha>0, S$ is guessable while changing one's mind fewer than $\alpha+1$ many times if and only if at least one of $S$ or $S^{c}$ is in the $\alpha$ th level of the difference hierarchy.

In Section 5, we generalize guessability, introducing the notion of $\mu$ th-order guessability ( $1 \leq \mu<\omega_{1}$ ). We show that $S$ is $\mu$ th-order guessable if and only if $S \in \Delta_{\mu+1}^{0}$.

## 2 Guessable Sets and Remainders

In this section we give a new proof of Theorem 1.4. We find it easier to work with the following remainder ${ }^{2}$ which is closely related to the remainder defined by Wadge. For $X \subseteq \mathbb{N}^{<\mathbb{N}}$, we will write $[X]$ to denote the set of infinite sequences all of whose finite initial segments lie in $X$.

Definition 2.1 Let $S \subseteq \mathbb{N}^{\mathbb{N}}$. We define $S_{\alpha} \subseteq \mathbb{N}^{<\mathbb{N}}$ ( $\alpha \in$ Ord) by transfinite recursion as follows. We define $S_{0}=\mathbb{N}^{<\mathbb{N}}$, and $S_{\lambda}=\cap_{\beta<\lambda} S_{\beta}$ for every limit ordinal $\lambda$. Finally, for every ordinal $\beta$, we define

$$
S_{\beta+1}=\left\{x \in S_{\beta}: \exists x^{\prime}, x^{\prime \prime} \in\left[S_{\beta}\right] \text { such that } x \subseteq x^{\prime}, x \subseteq x^{\prime \prime}, x^{\prime} \in S, x^{\prime \prime} \notin S\right\}
$$

We write $\alpha(S)$ for the minimal ordinal $\alpha$ such that $S_{\alpha}=S_{\alpha+1}$, and we write $S_{\infty}$ for $S_{\alpha(S)}$.

Clearly $S_{\alpha} \subseteq S_{\beta}$ whenever $\beta<\alpha$. This remainder notion is related to Wadge's as follows.

Lemma 2.2 For each ordinal $\alpha, \operatorname{Rm}_{\alpha}(S)=\left[S_{\alpha}\right]$.
Proof $\quad$ Since $S_{\alpha} \subseteq S_{\beta}$ whenever $\beta<\alpha$, for all $\alpha$, we have $S_{\alpha}=\cap_{\beta<\alpha} S_{\beta+1}$ (with the convention that $\cap \emptyset=\mathbb{N}^{<\mathbb{N}}$ ). We will show by induction on $\alpha$ that $\operatorname{Rm}_{\alpha}(S)=\left[S_{\alpha}\right]=\left[\cap_{\beta<\alpha} S_{\beta+1}\right]$.

Suppose $f \in\left[\cap_{\beta<\alpha} S_{\beta+1}\right]$. Let $\beta<\alpha$. Let $\mathscr{U}$ be an open set around $f$, we can assume $\mathscr{U}$ is basic open, so $\mathscr{U}=\left[f_{0}\right], f_{0}$ a finite initial segment of $f$. Since $f \in\left[\cap_{\beta<\alpha} S_{\beta+1}\right], f_{0} \in S_{\beta+1}$. Thus there are $x^{\prime}, x^{\prime \prime} \in\left[S_{\beta}\right]$ extending $f_{0}$ (hence in $\mathscr{U}), x^{\prime} \in S, x^{\prime \prime} \notin S$. In other words, $x^{\prime} \in\left[\cap_{\gamma<\beta} S_{\gamma+1}\right] \cap S$ and $x^{\prime \prime} \in\left[\cap_{\gamma<\beta} S_{\gamma+1}\right] \cap S^{c}$. By induction, $x^{\prime} \in \operatorname{Rm}_{\beta}(S) \cap S$ and $x^{\prime \prime} \in \operatorname{Rm}_{\beta}(S) \cap S^{c}$. By arbitrariness of $\mathscr{U}$, $f \in \overline{\operatorname{Rm}_{\beta}(S) \cap S} \cap \overline{\operatorname{Rm}_{\beta}(S) \cap S^{c}}$. By arbitrariness of $\beta, f \in \operatorname{Rm}_{\alpha}(S)$.

The reverse inclusion is similar.
Note that Lemma 2.2 does not say that $\operatorname{Rm}_{\alpha}(S)=\emptyset$ if and only if $S_{\alpha}=\emptyset$. It is (at least a priori) possible that $S_{\alpha} \neq \emptyset$ while $\left[S_{\alpha}\right]=\emptyset$. Lemma 2.2 does however imply that $\operatorname{Rm}_{\Omega}(S)=\emptyset$ if and only if $S_{\infty}=\emptyset$, since it is easy to see that if $\left[S_{\alpha}\right]=\emptyset$ then $S_{\alpha+1}=\emptyset$. Thus in order to prove Theorem 1.4 it suffices to show that $S$ is guessable if and only if $S_{\infty}=\emptyset$. The $\Rightarrow$ direction requires no additional machinery.

Proposition 2.3 If S is guessable then $S_{\infty}=\emptyset$.
Proof Let $G: \mathbb{N}^{<\mathbb{N}} \rightarrow\{0,1\}$ be an $S$-guesser. Assume (for contradiction) $S_{\infty} \neq \emptyset$ and let $\sigma_{0} \in S_{\infty}$. We will build a sequence on whose initial segments $G$ diverges, contrary to Definition 1.1. Inductively suppose we have finite sequences $\sigma_{0} \subset_{\neq} \cdots \subset_{\neq} \sigma_{k}$ in $S_{\infty}$ such that $\forall 0<i \leq k, G\left(\sigma_{i}\right) \equiv i \bmod 2$. Since $\sigma_{k} \in S_{\infty}=S_{\alpha(S)}=S_{\alpha(S)+1}$, there are $\sigma^{\prime}, \sigma^{\prime \prime} \in\left[S_{\infty}\right]$, extending $\sigma_{k}$, with $\sigma^{\prime} \in S, \sigma^{\prime \prime} \notin S$. Choose $\sigma \in\left\{\sigma^{\prime}, \sigma^{\prime \prime}\right\}$ with $\sigma \in S$ iff $k$ is even. Then $\lim _{n \rightarrow \infty} G(\sigma \upharpoonright n) \equiv k+1 \bmod 2$. Let $\sigma_{k+1} \subset \sigma$ properly extend $\sigma_{k}$ such that $G\left(\sigma_{k+1}\right) \equiv k+1 \bmod 2$. Note $\sigma_{k+1} \in S_{\infty}$ since $\sigma \in\left[S_{\infty}\right]$.

By induction, there are $\sigma_{0} \subset_{\neq} \sigma_{1} \subset_{\neq} \cdots$ such that for $i>0, G\left(\sigma_{i}\right) \equiv i \bmod 2$. This contradicts Definition 1.1 since $\lim _{n \rightarrow \infty} G\left(\left(\cup_{i} \sigma_{i}\right) \upharpoonright n\right)$ ought to converge.

The $\Leftarrow$ direction requires a little machinery.
Definition 2.4 If $\sigma \in \mathbb{N}^{<\mathbb{N}}, \sigma \notin S_{\infty}$, let $\beta(\sigma)$ be the least ordinal such that $\sigma \notin S_{\beta(\sigma)}$.

Note that whenever $\sigma \notin S_{\infty}, \beta(\sigma)$ is a successor ordinal.
Lemma 2.5 Suppose $\sigma \subseteq \tau$ are finite sequences. If $\tau \in S_{\infty}$ then $\sigma \in S_{\infty}$. And if $\sigma \notin S_{\infty}$, then $\beta(\tau) \leq \beta(\sigma)$.

Proof It is enough to show that $\forall \beta \in$ Ord, if $\tau \in S_{\beta}$ then $\sigma \in S_{\beta}$. This is by induction on $\beta$, the limit and zero cases being trivial. Assume $\beta$ is successor. If $\tau \in S_{\beta}$, this means $\tau \in S_{\beta-1}$ and there are $\tau^{\prime}, \tau^{\prime \prime} \in\left[S_{\beta-1}\right]$ extending $\tau$ with $\tau^{\prime} \in S$, $\tau^{\prime \prime} \notin S$. Since $\tau^{\prime}$ and $\tau^{\prime \prime}$ extend $\tau$, and $\tau$ extends $\sigma, \tau^{\prime}$ and $\tau^{\prime \prime}$ extend $\sigma$; and since $\sigma \in S_{\beta-1}$ (by induction), this shows $\sigma \in S_{\beta}$.
Lemma 2.6 Suppose $f: \mathbb{N} \rightarrow \mathbb{N}, f \notin\left[S_{\infty}\right]$. There is some $i$ such that for all $j \geq i$, $f \upharpoonright j \notin S_{\infty}$ and $\beta(f \upharpoonright j)=\beta(f \upharpoonright i)$. Furthermore, $f \in\left[S_{\beta(f \mid i)-1}\right]$.
Proof The first part follows from Lemma 2.5 and the well-foundedness of Ord. For the second part we must show $f \upharpoonright k \in S_{\beta(f \mid i)-1}$ for every $k$. If $k \leq i$, then $f \upharpoonright k \in S_{\beta(f \mid i)-1}$ by Lemma 2.5. If $k \geq i$, then $\beta(f \upharpoonright k)=\beta(f \upharpoonright i)$ and so $f \upharpoonright k \in S_{\beta(f \mid i)-1}$ since it is in $S_{\beta(f \backslash k)-1}$ by definition of $\beta$.
Definition 2.7 If $S_{\infty}=\emptyset$ then we define $G_{S}: \mathbb{N}^{<\mathbb{N}} \rightarrow\{0,1\}$ as follows. Let $\sigma \in \mathbb{N}^{<\mathbb{N}}$. Since $S_{\infty}=\emptyset, \sigma \notin S_{\infty}$, so $\sigma \in S_{\beta(\sigma)-1} \backslash S_{\beta(\sigma)}$. Since $\sigma \notin S_{\beta(\sigma)}$, this means for every two extensions $x^{\prime}, x^{\prime \prime}$ of $\sigma$ in $\left[S_{\beta(\sigma)-1}\right]$, either $x^{\prime}, x^{\prime \prime} \in S$ or $x^{\prime}, x^{\prime \prime} \in S^{c}$. So either all extensions of $\sigma$ in $\left[S_{\beta(\sigma)-1}\right]$ are in $S$, or all such extensions are in $S^{c}$.
(i) If there are no extensions of $\sigma$ in $\left[S_{\beta(\sigma)-1}\right]$, and length $(\sigma)>0$, then let $G_{S}(\sigma)=G_{S}\left(\sigma^{-}\right)$where $\sigma^{-}$is obtained from $\sigma$ by removing the last term.
(ii) If there are no extensions of $\sigma$ in $\left[S_{\beta(\sigma)-1}\right]$, and length $(\sigma)=0$, let $G_{S}(\sigma)=0$.
(iii) If there are extensions of $\sigma$ in $\left[S_{\beta(\sigma)-1}\right]$ and they are all in $S$, define $G_{S}(\sigma)=1$.
(iv) If there are extensions of $\sigma$ in $\left[S_{\beta(\sigma)-1}\right]$ and they are all in $S^{c}$, define $G_{S}(\sigma)=0$.

## Proposition 2.8 If $S_{\infty}=\emptyset$ then $G_{S}$ guesses $S$.

Proof Assume $S_{\infty}=\emptyset$. Let $f \in S$. I will show $G_{S}(f \upharpoonright n) \rightarrow 1$ as $n \rightarrow \infty$. Since $f \notin\left[S_{\infty}\right]$, let $i$ be as in Lemma 2.6. I claim $G_{S}(f \upharpoonright j)=1$ whenever $j \geq i$. Fix $j \geq i$. We have $\beta(f \upharpoonright j)=\beta(f \upharpoonright i)$ by choice of $i$, and $f \in\left[S_{\beta(f \backslash i)-1}\right]=\left[S_{\beta(f \upharpoonright j)-1}\right]$. Since $f \upharpoonright j$ has one extension (namely $f$ itself) in both $\left[S_{\beta(f \upharpoonright j)-1}\right]$ and $S, G_{S}(f \upharpoonright j)=1$.

Identical reasoning shows that if $f \notin S$ then $\lim _{n \rightarrow \infty} G_{S}(f \upharpoonright n)=0$.
Theorem 2.9 $S \in \Delta_{2}^{0}$ if and only if $S_{\infty}=\emptyset$. That is, Theorem 1.4 is true.
Proof By combining Propositions 2.3 and 2.8 and Theorem 1.2.

## 3 Guessing without changing one's Mind too often

In this section our goal is to tease out additional information about $\Delta_{2}^{0}$ from the operation defined in Definition 2.1.
Definition 3.1 For each function $G$ with domain $\mathbb{N}^{<\mathbb{N}}$, if $G(f \upharpoonright(n+1)) \neq G(f \upharpoonright n)$ $\left(f \in \mathbb{N}^{\mathbb{N}}, n \in \mathbb{N}\right)$, we say $G$ changes its mind on $f \upharpoonright(n+1)$. Now let $\alpha \in$ Ord. We say $S$ is guessable with $<\alpha$ mind changes if there is an $S$-guesser $G$ along with a function $H: \mathbb{N}^{<\mathbb{N}} \rightarrow \alpha$ such that the following hold, where $f \in \mathbb{N}^{\mathbb{N}}$ and $n \in \mathbb{N}$.
(i) $H(f \upharpoonright(n+1)) \leq H(f \upharpoonright n)$.
(ii) If $G$ changes its mind on $f \upharpoonright(n+1)$, then $H(f \upharpoonright(n+1))<H(f \upharpoonright n)$.

This notion bears some resemblance to the notion of a set $Z \subseteq \mathbb{N}$ being $f$-c.e. in [4], or $g$-c.a. in [7].

Theorem 3.2 For $\alpha \in$ Ord, $S$ is guessable with $<\alpha$ mind changes if and only if $S_{\alpha}=\emptyset$.

## Proof

$(\Rightarrow)$ Assume $S$ is guessable with $<\alpha$ mind changes. Let $G, H$ be as in Definition 3.1. We claim that for all $\beta \in$ Ord, if $\sigma \in S_{\beta}$ then $H(\sigma) \geq \beta$. This will prove $(\Rightarrow)$ because it implies that if $S_{\alpha} \neq \emptyset$ then there is some $\sigma$ with $H(\sigma) \geq \alpha$, absurd since codomain $(H)=\alpha$.

We attack the claim by induction on $\beta$. The zero and limit cases are trivial. Assume $\beta=\gamma+1$. Suppose $\sigma \in S_{\gamma+1}$. There are $x^{\prime}, x^{\prime \prime} \in\left[S_{\gamma}\right]$ extending $\sigma, x^{\prime} \in S, x^{\prime \prime} \notin S$. Pick $x \in\left\{x^{\prime}, x^{\prime \prime}\right\}$ so that $\chi_{S}(x) \neq G(\sigma)$ and pick $\sigma^{+} \in \mathbb{N}^{<\mathbb{N}}$ with $\sigma \subseteq \sigma^{+} \subseteq x$ such that $G\left(\sigma^{+}\right)=\chi_{S}(x)$ (some such $\sigma^{+}$exists since $G$ guesses $S$ ). Since $x \in\left[S_{\gamma}\right], \sigma^{+} \in S_{\gamma}$. By induction, $H\left(\sigma^{+}\right) \geq \gamma$. The fact $G\left(\sigma^{+}\right) \neq G(\sigma)$ implies $H\left(\sigma^{+}\right)<H(\sigma)$, forcing $H(\sigma) \geq \gamma+1$.
$(\Leftarrow)$ Assume $S_{\alpha}=\emptyset$. For all $\sigma \in \mathbb{N}^{<\mathbb{N}}$, define $H(\sigma)=\beta(\sigma)-1$ (by definition of $\beta(\sigma)$, since $S_{\alpha}=\emptyset$, clearly $H(\sigma) \in \alpha$ ). I claim $G_{S}, H$ witness that $S$ is guessable with $<\alpha$ mind changes.

By Proposition 2.8, $G_{S}$ guesses $S$. Let $f \in \mathbb{N}^{\mathbb{N}}, n \in \mathbb{N}$. By Lemma 2.5, $H(f \upharpoonright(n+1)) \leq H(f \upharpoonright n)$. Now suppose $G_{S}$ changes its mind on $f \upharpoonright(n+1)$, we must show $H(f \upharpoonright(n+1))<H(f \upharpoonright n)$. Assume, for sake of contradiction, that $H(f \upharpoonright(n+1))=H(f \upharpoonright n)$. Assume $G_{S}(f \upharpoonright n)=0$, the other case is similar. By definition of $G_{S},(*)$ for every infinite extension $f^{\prime}$ of $f \upharpoonright n$, if $f^{\prime} \in\left[S_{\beta(f \backslash n)-1}\right]$ then $f^{\prime} \in S^{c}$. Since $G_{S}$ changes its mind on $f \upharpoonright(n+1), G_{S}(f \upharpoonright(n+1))=1$. Thus $(* *)$ for every infinite extension $f^{\prime \prime}$ of $f \upharpoonright(n+1)$, if $f^{\prime \prime} \in\left[S_{\beta(f \upharpoonright(n+1))-1}\right]$ then $f^{\prime \prime} \in S$. And $f \upharpoonright(n+1)$ does actually have some such infinite extension $f^{\prime \prime}$, because if it had none, that would make $G_{S}(f \upharpoonright(n+1))=G_{S}(f \upharpoonright n)$ by case 1 of the definition of $G_{S}$ (Definition 2.7). Being an extension of $f \upharpoonright(n+1), f^{\prime \prime}$ also extends $f \upharpoonright n$; and by the assumption that $H(f \upharpoonright(n+1))=H(f \upharpoonright n), f^{\prime \prime} \in\left[S_{\beta(f\lceil n)-1}\right]$. By $(*), f^{\prime \prime} \in S^{c}$, and by $(* *), f^{\prime \prime} \in S$. Absurd.

It is not hard to show $S$ is a Boolean combination of open sets if and only if $S$ is guessable with $<\omega$ mind changes, so Theorem 3.2 and Lemma 2.2 give a new proof of a special case of the main theorem (p. 1348) of [3] (see also [2]).

## 4 Mind Changing and the Difference Hierarchy

We recall the following definition from [5] (p. 175, stated in greater generality—we specialize it to the Baire space). In this definition, $\Sigma_{1}^{0}\left(\mathbb{N}^{\mathbb{N}}\right)$ is the set of open subsets of $\mathbb{N}^{\mathbb{N}}$, and the parity of an ordinal $\eta$ is the equivalence class modulo 2 of $n$, where $\eta=\lambda+n, \lambda$ a limit ordinal (or $\lambda=0$ ), $n \in \mathbb{N}$.

Definition 4.1 Let $\left(A_{\eta}\right)_{\eta<\theta}$ be an increasing sequence of subsets of $\mathbb{N}^{\mathbb{N}}$ with $\theta \geq 1$. Define the set $D_{\theta}\left(\left(A_{\eta}\right)_{\eta<\theta}\right) \subseteq \mathbb{N}^{\mathbb{N}}$ by
$x \in D_{\theta}\left(\left(A_{\eta}\right)_{\eta<\theta}\right) \Leftrightarrow x \in \bigcup_{\eta<\theta} A_{\eta} \&$ the least $\eta<\theta$ with $x \in A_{\eta}$ has parity
opposite to that of $\theta$.
Let

$$
D_{\theta}\left(\boldsymbol{\Sigma}_{1}^{0}\right)\left(\mathbb{N}^{\mathbb{N}}\right)=\left\{D_{\theta}\left(\left(A_{\eta}\right)_{\eta<\theta}\right): A_{\eta} \in \boldsymbol{\Sigma}_{1}^{0}\left(\mathbb{N}^{\mathbb{N}}\right), \eta<\theta\right\}
$$

This hierarchy offers a constructive characterization of $\boldsymbol{\Delta}_{2}^{0}$ : it turns out that

$$
\Delta_{2}^{0}=\cup_{1 \leq \theta<\omega_{1}} D_{\theta}\left(\boldsymbol{\Sigma}_{1}^{0}\right)\left(\mathbb{N}^{\mathbb{N}}\right)
$$

(see Theorem 22.27 of [5], p. 176, attributed to Hausdorff and Kuratowski).
For brevity, we will write $D_{\alpha}$ for $D_{\alpha}\left(\boldsymbol{\Sigma}_{1}^{0}\right)\left(\mathbb{N}^{\mathbb{N}}\right)$.
Theorem 4.2 (Semi-characterization of the difference hierarchy) Let $\alpha>0$. The following are equivalent.
(i) $S$ is guessable with $<\alpha+1$ mind changes.
(ii) $S \in D_{\alpha}$ or $S^{c} \in D_{\alpha}$.

We will prove Theorem 4.2 by a sequence of smaller results.
Definition 4.3 For $\alpha, \beta \in$ Ord, write $\alpha \equiv \beta$ to indicate that $\alpha$ and $\beta$ have the same parity (that is, $2 \mid n-m$, where $\alpha=\lambda+n$ and $\beta=\kappa+m, n, m \in \mathbb{N}, \lambda$ a limit ordinal or $0, \kappa$ a limit ordinal or 0 ).

Proposition 4.4 Let $\alpha>0$. If $S \in D_{\alpha}$, say $S=D_{\alpha}\left(\left(A_{\eta}\right)_{\eta<\alpha}\right)\left(A_{\eta} \subseteq \mathbb{N}^{\mathbb{N}}\right.$ open $)$, then $S$ is guessable with $<\alpha+1$ mind changes.

Proof Define $G: \mathbb{N}^{<\mathbb{N}} \rightarrow\{0,1\}$ and $H: \mathbb{N}<\mathbb{N} \rightarrow \alpha+1$ as follows. Suppose $\sigma \in \mathbb{N}^{<\mathbb{N}}$. If there is no $\eta<\alpha$ such that $[\sigma] \subseteq A_{\eta}$, let $G(\sigma)=0$ and let $H(\sigma)=\alpha$. If there is an $\eta<\alpha$ (we may take $\eta$ minimal) such that $[\sigma] \subseteq A_{\eta}$, then let

$$
G(\sigma)=\left\{\begin{array}{ll}
0, & \text { if } \eta \equiv \alpha ; \\
1, & \text { if } \eta \not \equiv \alpha,
\end{array} \quad H(\sigma)=\eta\right.
$$

Let $f: \mathbb{N} \rightarrow \mathbb{N}$.
Claim $1 \lim _{n \rightarrow \infty} G(f \upharpoonright n)=\chi_{S}(f)$.
If $f \notin \cup_{\eta<\alpha} A_{\eta}$, then $f \notin D_{\alpha}\left(\left(A_{\eta}\right)_{\eta<\alpha}\right)=S$, and $G(f \upharpoonright n)$ will always be 0 , so $\lim _{n \rightarrow \infty} G(f \upharpoonright n)=0=\chi_{S}(f)$. Assume $f \in \cup_{\eta<\alpha} A_{\eta}$, and let $\eta<\alpha$ be minimum such that $f \in A_{\eta}$. Since $A_{\eta}$ is open, there is some $n_{0}$ so large that $\forall n \geq n_{0},[f \upharpoonright n] \subseteq A_{\eta}$. For all $n \geq n_{0}$, by minimality of $\eta$, $[f \upharpoonright n] \nsubseteq A_{\eta^{\prime}}$ for any $\eta^{\prime}<\eta$, so $G(f \upharpoonright n)=0$ if and only if $\eta \equiv \alpha$. The following are equivalent.

$$
\begin{aligned}
f \in S & \text { iff } f \in D_{\alpha}\left(\left(A_{\eta}\right)_{\eta<\alpha}\right) \\
& \text { iff } \eta \not \equiv \alpha \\
& \text { iff } G(f \upharpoonright n) \neq 0 \\
& \text { iff } G(f \upharpoonright n)=1 .
\end{aligned}
$$

This shows $\lim _{n \rightarrow \infty} G(f \upharpoonright n)=\chi_{S}(f)$.
Claim $2 \forall n \in \mathbb{N}, H(f \upharpoonright(n+1)) \leq H(f \upharpoonright n)$.
If $H(f \upharpoonright n)=\alpha$, there is nothing to prove. If $H(f \upharpoonright n)<\alpha$, then $H(f \upharpoonright n)=\eta$ where $\eta$ is minimal such that $[f \upharpoonright n] \subseteq A_{\eta}$. Since $[f \upharpoonright(n+1)] \subseteq[f \upharpoonright n]$, we have $[f \upharpoonright(n+1)] \subseteq A_{\eta}$, implying $H(f \upharpoonright(n+1)) \leq \eta$.
Claim $3 \forall n \in \mathbb{N}$, if $G(f \upharpoonright(n+1)) \neq G(f \upharpoonright n)$, then $H(f \upharpoonright(n+1))<H(f \upharpoonright n)$.
Assume (for sake of contradiction) $H(f \upharpoonright(n+1)) \geq H(f \upharpoonright n)$. By Claim 2, $H(f \upharpoonright(n+1))=H(f \upharpoonright n)$. By definition of $H$ this implies that $\forall \eta<\alpha$, $[f \upharpoonright(n+1)] \subseteq A_{\eta}$ if and only if $[f \upharpoonright n] \subseteq A_{\eta}$. This implies $G(f \upharpoonright(n+1))=G(f \upharpoonright n)$, contradiction.
By Claims $1-3, G$ and $H$ witness that $S$ is guessable with $<\alpha+1$ mind changes.

Corollary 4.5 Let $\alpha>0$. If $S \in D_{\alpha}$ or $S^{c} \in D_{\alpha}$ then $S$ is guessable with $<\alpha+1$ mind changes.

Proof If $S \in D_{\alpha}$ this is immediate by Proposition 4.4. If $S^{c} \in D_{\alpha}$ then Proposition 4.4 says $S^{c}$ is guessable with $<\alpha+1$ mind changes, and this clearly implies that $S$ is too.

Lemma 4.6 Suppose $S$ is guessable with $<\alpha$ mind changes. Let $G: \mathbb{N}<\mathbb{N} \rightarrow\{0,1\}$, $H: \mathbb{N}<\mathbb{N} \rightarrow \alpha$ be a pair of functions witnessing as much (Definition 3.1). There is an $H^{\prime}: \mathbb{N}<\mathbb{N} \rightarrow \alpha$ such that $G, H^{\prime}$ also witness that $S$ is guessable with $<\alpha$ mind changes, with $H^{\prime}(\emptyset)=H(\emptyset)$, and with the additional property that for every $f: \mathbb{N} \rightarrow \mathbb{N}$ and every $n \in \mathbb{N}$,

$$
H(f \upharpoonright(n+1)) \equiv H(f \upharpoonright n) \text { if and only if } G(f \upharpoonright(n+1))=G(f \upharpoonright n) .
$$

Proof Define $H^{\prime}(\sigma)$ by induction on the length of $\sigma$ as follows. Let $H^{\prime}(\emptyset)=H(\emptyset)$. If $\sigma \neq \emptyset$, write $\sigma=\sigma_{0} \frown n$ for some $n \in \mathbb{N}(\frown$ denotes concatenation). If $G(\sigma)=G\left(\sigma_{0}\right)$, let $H^{\prime}(\sigma)=H^{\prime}\left(\sigma_{0}\right)$. Otherwise, let $H^{\prime}(\sigma)$ be either $H(\sigma)$ or $H(\sigma)+1$, whichever has parity opposite to $H^{\prime}\left(\sigma_{0}\right)$.

By construction $H^{\prime}$ has the desired parity properties. A simple inductive argument shows that $(*) \forall \sigma \in \mathbb{N}<\mathbb{N}, H(\sigma) \leq H^{\prime}(\sigma)<\alpha$. I claim that for all $f: \mathbb{N} \rightarrow \mathbb{N}$ and $n \in \mathbb{N}, H^{\prime}(f \upharpoonright(n+1)) \leq H^{\prime}(f \upharpoonright n)$, and if $G(f \upharpoonright(n+1)) \neq G(f \upharpoonright n)$ then $H^{\prime}(f \upharpoonright(n+1))<H^{\prime}(f \upharpoonright n)$.

If $G(f \upharpoonright(n+1))=G(f \upharpoonright n)$, then by definition $H^{\prime}(f \upharpoonright(n+1))=H^{\prime}(f \upharpoonright n)$ and the claim is trivial. Now assume $G(f \upharpoonright(n+1)) \neq G(f \upharpoonright n)$. If $H^{\prime}(f \upharpoonright(n+1))=H(f \upharpoonright(n+1))$ then $H^{\prime}(f \upharpoonright(n+1))<H(f \upharpoonright n) \leq H^{\prime}(f \upharpoonright n)$ and we are done. Assume

$$
H^{\prime}(f \upharpoonright(n+1)) \neq H(f \upharpoonright(n+1)),
$$

which forces that $(* *) H^{\prime}(f \upharpoonright(n+1))=H(f \upharpoonright(n+1))+1$. To see that

$$
H^{\prime}(f \upharpoonright(n+1))<H^{\prime}(f \upharpoonright n),
$$

assume not $(* * *)$. By Definition 3.1, $H(f \upharpoonright(n+1))<H(f \upharpoonright n)$, so

$$
\begin{array}{rlr}
H(f \upharpoonright n) & \geq H(f \upharpoonright(n+1))+1 & \text { (Basic arithmetic) } \\
& =H^{\prime}(f \upharpoonright(n+1)) & (\mathrm{By}(* *)) \\
& \geq H^{\prime}(f \upharpoonright n) & (\mathrm{By}(* * *))  \tag{***}\\
& \geq H(f \upharpoonright n) . & (\mathrm{By}(*))
\end{array}
$$

Equality holds throughout, and $H^{\prime}(f \upharpoonright(n+1))=H^{\prime}(f \upharpoonright n)$. Contradiction: we chose $H^{\prime}(f \upharpoonright(n+1))$ with parity opposite to $H^{\prime}(f \upharpoonright n)$.

Definition 4.7 For all $G, H$ as in Definition 3.1, $f \in \mathbb{N}^{\mathbb{N}}$, write $G(f)$ for $\lim _{n \rightarrow \infty} G(f \upharpoonright n)$ (so $G(f)=\chi_{S}(f)$ ) and write $H(f)$ for $\lim _{n \rightarrow \infty} H(f \upharpoonright n)$. Write $G \equiv H$ to indicate that $\forall f \in \mathbb{N}^{\mathbb{N}}, G(f) \equiv H(f)$; write $G \not \equiv H$ to indicate that $\forall f \in \mathbb{N}^{\mathbb{N}}, G(f) \not \equiv H(f)$ (we pronounce $G \not \equiv H$ as " $G$ is anticongruent to $H$ ").
Lemma 4.8 Suppose $G: \mathbb{N}^{<\mathbb{N}} \rightarrow\{0,1\}$ and $H: \mathbb{N}<\mathbb{N} \rightarrow \alpha$ witness that $S$ is guessable with $<\alpha$ mind changes. There is an $H^{\prime}: \mathbb{N}<\mathbb{N} \rightarrow \alpha$ such that $G, H^{\prime}$ witness that $S$ is guessable with $<\alpha$ mind changes, and such that the following hold.

$$
\text { If } G(\emptyset) \equiv \alpha \text { then } H^{\prime} \not \equiv G . \quad \text { If } G(\emptyset) \not \equiv \alpha \text { then } H^{\prime} \equiv G
$$

Proof I claim that without loss of generality, we may assume the following ( $*$ ):

$$
\text { If } G(\emptyset) \equiv \alpha \text { then } H(\emptyset) \not \equiv G(\emptyset) . \quad \text { If } G(\emptyset) \not \equiv \alpha \text { then } H(\emptyset) \equiv G(\emptyset)
$$

To see this, suppose not: either $G(\emptyset) \equiv \alpha$ and $H(\emptyset) \equiv G(\emptyset)$, or else $G(\emptyset) \not \equiv \alpha$ and $H(\emptyset) \not \equiv G(\emptyset)$. In either case, $H(\emptyset) \equiv \alpha$. If $H(\emptyset) \equiv \alpha$ then $H(\emptyset)+1 \neq \alpha$, and so, since $H(\emptyset)<\alpha, H(\emptyset)+1<\alpha$, meaning we may add 1 to $H(\emptyset)$ to enforce the assumption.

Having assumed (*), we may use Lemma 4.6 to construct $H^{\prime}: \mathbb{N}<\mathbb{N} \rightarrow \alpha$ such that $G, H^{\prime}$ witness that $S$ is guessable with $<\alpha$ mind changes, $H^{\prime}(\emptyset)=H(\emptyset)$, and $H^{\prime}$ changes parity precisely when $G$ changes parity. The latter facts, combined with ( $*$ ), prove the lemma.

Proposition 4.9 Suppose $G: \mathbb{N}^{<\mathbb{N}} \rightarrow\{0,1\}$ and $H: \mathbb{N}^{<\mathbb{N}} \rightarrow \alpha+1$ witness that $S$ is guessable with $<\alpha+1$ mind changes. If $G(\emptyset)=0$ then $S \in D_{\alpha}$.

Proof By Lemma 4.8 we may safely assume the following:

$$
\text { If } G(\emptyset) \equiv \alpha+1 \text { then } H \not \equiv G . \quad \text { If } G(\emptyset) \not \equiv \alpha+1 \text { then } H \equiv G .
$$

In other words,

$$
(*) \text { If } G(\emptyset) \equiv \alpha \text { then } H \equiv G . \quad(* *) \text { If } G(\emptyset) \not \equiv \alpha \text { then } H \not \equiv G
$$

For each $\eta<\alpha$, let

$$
A_{\eta}=\left\{f \in \mathbb{N}^{\mathbb{N}}: H(f) \leq \eta\right\} . \quad(H(f) \text { as in Definition 4.7) }
$$

I claim $S=D_{\alpha}\left(\left(A_{\eta}\right)_{\eta<\alpha}\right)$, which will prove the proposition since each $A_{\eta}$ is clearly open.

Suppose $f \in S$, I will show $f \in D_{\alpha}\left(\left(A_{\eta}\right)_{\eta<\alpha}\right)$. Since $f \in S, H(f) \neq \alpha$, because if $H(f)$ were $=\alpha$, this would imply that $G$ never changes its mind on $f$, forcing $\lim _{n \rightarrow \infty} G(f \upharpoonright n)=\lim _{n \rightarrow \infty} G(\emptyset)=0$, contradicting the fact that $G$ guesses $S$.

Since $H(f) \neq \alpha, H(f)<\alpha$. It follows that for $\eta=H(f)$ we have $f \in A_{\eta}$ and $\eta$ is minimal with this property.
Case 1: $G(\emptyset) \equiv \alpha . \quad$ By $(*), H \equiv G . \quad$ Since $f \in S, \lim _{n \rightarrow \infty} G(f \upharpoonright n)=1$, so $\eta=\lim _{n \rightarrow \infty} H(f \upharpoonright n) \equiv 1$. Since $\alpha \equiv G(\emptyset)=0$, this shows $\eta \not \equiv \alpha$, putting $f \in D_{\alpha}\left(\left(A_{\eta}\right)_{\eta<\alpha}\right)$.
Case 2: $G(\emptyset) \not \equiv \alpha$. By $(* *), H \not \equiv G$. Since $f \in S, \lim _{n \rightarrow \infty} G(f \upharpoonright n)=1$, so $\eta=\lim _{n \rightarrow \infty} H(f \upharpoonright n) \equiv 0$. Since $\alpha \not \equiv G(\emptyset)=0$, this shows $\eta \not \equiv \alpha$, so $f \in D_{\alpha}\left(\left(A_{\eta}\right)_{\eta<\alpha}\right)$.
Conversely, suppose $f \in D_{\alpha}\left(\left(A_{\eta}\right)_{\eta<\alpha}\right)$, I will show $f \in S$. Let $\eta$ be minimal such that $f \in A_{\eta}$ (by definition of $A_{\eta}, \eta=H(f)$ ). By definition of $D_{\alpha}\left(\left(A_{\eta}\right)_{\eta<\alpha}\right), \eta \not \equiv \alpha$. Case 1: $G(\emptyset) \equiv \alpha$. $\mathrm{By}(*), H \equiv G$. Since $\lim _{n \rightarrow \infty} H(f \upharpoonright n)=H(f)=\eta \not \equiv \alpha \equiv G(\emptyset)=0$, we see $\lim _{n \rightarrow \infty} H(f \upharpoonright n)=1$. Since $H \equiv G, \lim _{n \rightarrow \infty} G(f \upharpoonright n)=1$, forcing $f \in S$ since $G$ guesses $S$.
Case 2: $G(\emptyset) \not \equiv \alpha$. By $(* *), H \not \equiv G$. Since

$$
\lim _{n \rightarrow \infty} H(f \upharpoonright n)=H(f)=\eta \not \equiv \alpha \not \equiv G(\emptyset)=0,
$$

we see $\lim _{n \rightarrow \infty} H(f \upharpoonright n)=0$. Since $H \not \equiv G, \lim _{n \rightarrow \infty} G(f \upharpoonright n)=1$, again showing $f \in S$.

Corollary 4.10 If $S$ is guessable with $<\alpha+1$ mind changes, then $S \in D_{\alpha}$ or $S^{c} \in D_{\alpha}$.

Proof Let $G, H$ witness that $S$ is guessable with $<\alpha+1$ mind changes. If $G(\emptyset)=0$ then $S \in D_{\alpha}$ by Proposition 4.9. If not, then $(1-G), H$ witness that $S^{c}$ is guessable with $<\alpha+1$ mind changes, and $(1-G)(\emptyset)=0$, so $S^{c} \in D_{\alpha}$ by Proposition 4.9.

Combining Corollaries 4.5 and 4.10 proves Theorem 4.2.

## 5 Higher-order Guessability

In this section we introduce a notion that generalizes guessability to provide a characterization for $\Delta_{\mu+1}^{0}\left(1 \leq \mu<\omega_{1}\right)$. We will show that $S \in \Delta_{\mu+1}^{0}$ if and only if $S$ is $\mu$ th-order guessable. Throughout this section, $\mu$ denotes an ordinal in $\left[1, \omega_{1}\right)$.

Definition 5.1 Let $\mathscr{S}=\left(S_{0}, S_{1}, \ldots\right)$ be a countably infinite tuple of subsets $S_{i} \subseteq \mathbb{N}^{\mathbb{N}}$.
(i) For every $f \in \mathbb{N}^{\mathbb{N}}$, write $\mathscr{S}(f)$ for the sequence $\left(\chi_{S_{0}}(f), \chi_{S_{1}}(f), \ldots\right) \in\{0,1\}^{\mathbb{N}}$.
(ii) We say that $S$ is guessable based on $\mathscr{S}$ if there is a function

$$
G:\{0,1\}^{<\mathbb{N}} \rightarrow\{0,1\}
$$

(called an $S$-guesser based on $\mathscr{S}$ ) such that $\forall f \in \mathbb{N}^{\mathbb{N}}$,

$$
\lim _{n \rightarrow \infty} G(\mathscr{S}(f) \upharpoonright n)=\chi_{S}(f)
$$

Game theoretically, we envision a game where $I$ (the sequence chooser) has zero information and $I I$ (the guesser) has possibly better-than-perfect information: $I I$ is allowed to ask (once per turn) whether $I$ 's sequence lies in various $S_{i}$. For each $S_{i}$, player $I$ 's act (by answering the question) of committing to play a sequence in $S_{i}$ or in $S_{i}^{c}$ is similar to the act (described in [6], p. 366) of choosing a $I$-imposed subgame.

Example 5.2 If $\mathscr{S}$ enumerates the sets of the form $\left\{f \in \mathbb{N}^{\mathbb{N}}: f(i)=j\right\}, i, j \in \mathbb{N}$ then it is not hard to show that $S$ is guessable (in the sense of Definition 1.1) if and only if $S$ is guessable based on $\mathscr{S}$.

Definition 5.3 We say $S$ is $\mu$ th-order guessable if there is some $\mathscr{S}=\left(S_{0}, S_{1}, \ldots\right)$ as in Definition 5.1 such that the following hold.
(i) $S$ is guessable based on $\mathscr{S}$.
(ii) $\forall i, S_{i} \in \Delta_{\mu_{i}+1}^{0}$ for some $\mu_{i}<\mu$.

Theorem 5.4 $S$ is $\mu$ th-order guessable if and only if $S \in \boldsymbol{\Delta}_{\mu+1}^{0}$.
In order to prove Theorem 5.4 we will assume the following result, which is a specialization and rephrasing of Exercise 22.17 of [5] (pp. 172-173, attributed to Kuratowski).

Lemma 5.5 The following are equivalent.
(i) $S \in \Delta_{\mu+1}^{0}$.
(ii) There is a sequence $\left(A_{i}\right)_{i \in \mathbb{N}}$, each $A_{i} \in \Delta_{\mu_{i}+1}^{0}$ for some $\mu_{i}<\mu$, such that

$$
S=\bigcup_{n} \bigcap_{m \geq n} A_{m}=\bigcap_{n} \bigcup_{m \geq n} A_{m} .
$$

Proof of Theorem 5.4
$(\Rightarrow)$ Let $\mathscr{S}=\left(S_{0}, S_{1}, \ldots\right)$ and $G$ witness that $S$ is $\mu$ th-order guessable (so each $S_{i} \in \Delta_{\mu_{i}+1}^{0}$ for some $\left.\mu_{i}<\mu\right)$. For all $a \in\{0,1\}$ and $X \subseteq \mathbb{N}^{\mathbb{N}}$, define

$$
X^{a}= \begin{cases}X, & \text { if } a=1 \\ \mathbb{N}^{\mathbb{N}} \backslash X, & \text { if } a=0\end{cases}
$$

For notational convenience, we will write " $G(\vec{a})=1$ " as an abbreviation for $" 0 \leq a_{0}, \ldots, a_{m-1} \leq 1$ and $G\left(a_{0}, \ldots, a_{m-1}\right)=1$," provided $m$ is clear from context. Observe that for all $f \in \mathbb{N}^{\mathbb{N}}$ and $m \in \mathbb{N}, G(\mathscr{S}(f) \upharpoonright m)=1$ if and only if

$$
f \in \bigcup_{G(\vec{a})=1} \bigcap_{j=0}^{m-1} S_{j}^{a_{j}}
$$

Now, given $f: \mathbb{N} \rightarrow \mathbb{N}, f \in S$ if and only if $G(\mathscr{S}(f) \upharpoonright n) \rightarrow 1$, which is true if and only if $\exists n \forall m \geq n, G(\mathscr{S}(f) \upharpoonright m)=1$. Thus

$$
\begin{gathered}
f \in S \text { iff } \exists n \forall m \geq n, G(\mathscr{S}(f) \upharpoonright m)=1 \\
\text { iff } \exists n \forall m \geq n, f \in \bigcup_{G(\vec{a})=1} \bigcap_{j=0}^{m-1} S_{j}^{a_{j}} \\
\text { iff } f \in \bigcup_{n} \bigcap_{m \geq n} \bigcup_{G(\vec{a})=1}^{m-1} \bigcap_{j=0}^{m} S_{j}^{a_{j}} .
\end{gathered}
$$

So

$$
S=\bigcup_{n} \bigcap_{m \geq n} \bigcup_{G(\vec{a})=1} \bigcap_{j=0}^{m-1} S_{j}^{a_{j}}
$$

At the same time, since $G(\mathscr{S}(f) \upharpoonright m) \rightarrow 0$ whenever $f \notin S$, we see $f \in S$ if and only if $\forall n \exists m \geq n$ such that $G(\mathscr{S}(f) \upharpoonright m)=1$. Thus by similar reasoning to the above,

$$
S=\bigcap_{n} \bigcup_{m \geq n} \bigcup_{G(\vec{a})=1} \bigcap_{j=0}^{m-1} S_{j}^{a_{j}}
$$

For each $m, \bigcup_{G(\vec{a})=1} \bigcap_{j=0}^{m-1} S_{j}^{a_{j}}$ is a finite union of finite intersections of sets in $\Delta_{\mu^{\prime}+1}^{0}$ for various $\mu^{\prime}<\mu$, thus $\bigcup_{G(\vec{a})=1} \bigcap_{j=0}^{m-1} S_{j}^{a_{j}}$ itself is in $\Delta_{\mu_{m}+1}^{0}$ for some $\mu_{m}<\mu$. Letting $A_{m}=\bigcup_{G(\vec{a})=1} \bigcap_{j=0}^{m-1} S_{j}^{a_{j}}$, Lemma 5.5 says $S \in \Delta_{\mu+1}^{0}$.
$(\Leftarrow)$ Assume $S \in \Delta_{\mu+1}^{0}$. By Lemma 5.5, there are $\left(A_{i}\right)_{i \in \mathbb{N}}$, each $A_{i} \in \Delta_{\mu_{i}+1}^{0}$ for some $\mu_{i}<\mu$, such that

$$
\begin{equation*}
S=\bigcup_{n} \bigcap_{m \geq n} A_{m}=\bigcap_{n} \bigcup_{m \geq n} A_{m} \tag{*}
\end{equation*}
$$

I claim that $S$ is guessable based on $\mathscr{S}=\left(A_{0}, A_{1}, \ldots\right)$. Define $G:\{0,1\}^{<\mathbb{N}} \rightarrow\{0,1\}$ by $G\left(a_{0}, \ldots, a_{m}\right)=a_{m}$, I will show that $G$ is an $S$-guesser based on $\mathscr{S}$.

Suppose $f \in S$. $\mathrm{By}(*), \exists n$ s.t. $\forall m \geq n, f \in A_{m}$ and thus $\chi_{A_{m}}(f)=1$. For all $m \geq n$,

$$
\begin{aligned}
G(\mathscr{S}(f) \upharpoonright(m+1)) & =G\left(\chi_{A_{0}}(f), \ldots, \chi_{A_{m}}(f)\right) \\
& =\chi_{A_{m}}(f) \\
& =1
\end{aligned}
$$

so $\lim _{n \rightarrow \infty} G(\mathscr{S}(f) \upharpoonright n)=1$. A similar argument shows that if $f \notin S$ then $\lim _{n \rightarrow \infty} G(\mathscr{S}(f) \upharpoonright n)=0$.

Combining Theorems 1.2 and 5.4 , we see that $S$ is guessable if and only if $S$ is 1 storder guessable. It is also not difficult to give a direct proof of this equivalence, and having done so, Theorem 5.4 provides yet another proof of Theorem 1.2.

## Notes

1. A third independent usage of the term guessable, with similar but not the same meaning, appears in [8] (p. 1280), where a subset $Y \subseteq \mathbb{N}^{\mathbb{N}}$ is called guessable if there is a function $g \in \mathbb{N}^{\mathbb{N}}$ such that for each $f \in Y, g(n)=f(n)$ for infinitely many $n$.
2. In general, there seems to be a correspondence between remainders on $\mathbb{N}^{\mathbb{N}}$ and remainders on $\mathbb{N}^{<\mathbb{N}}$ that take trees to trees; in the future we might publish more general work based on this observation.

## References

[1] Alexander, S., "On Guessing Whether a Sequence has a Certain Property," Journal of Integer Sequences vol. 14 (2011), 12 pp.
[2] Allouche, J., "Note on the constructible sets of a topological space," Annals of the New York Academy of Science vol. 806 (1996), pp. 1-10.
[3] Dougherty, R., and C. Miller, "Definable Boolean combinations of open sets are Boolean combinations of open definable sets," Illinois Journal of Mathematics vol. 45 (2001), pp. 1347-1350.
[4] Figueira, S., Hirschfeldt, D., Miller, J., Ng, K., and A. Nies, "Counting the changes of random $\Delta_{2}^{0}$ sets," to appear in Journal of Logic and Computation, published online 2013, doi: 10.1093/logcom/exs083.
[5] Kechris, A., "Classical Descriptive Set Theory," Springer-Verlag, 1995.
[6] Martin, D., "Borel determinacy," Annals of Mathematics vol. 102 (1975), pp. 363-371.
[7] Nies, A., "Calibrating the complexity of $\Delta_{2}^{0}$ sets via their changes," preprint, arXiv: http://arxiv.org/abs/1302.0454.
[8] Tsaban, B., and L. Zdomskyy, "Combinatorial Images of Sets of Reals and Semifilter Trichotomy," Journal of Symbolic Logic vol. 73 (2008), pp. 1278-1288.
[9] Wadge, W., "Reducibility and Determinateness on the Baire Space," PhD dissertation, UC Berkeley (1983).

## Acknowledgments

We acknowledge Tim Carlson, Chris Miller, Dasmen Teh, and Erik Walsberg for many helpful questions and suggestions. We are gratetful to a referee of an earlier manuscript for making us aware of William Wadge's dissertation.

Department of Mathematics
The Ohio State University 231 West 18th Ave
Columbus OH 43210 USA
alexander@math.ohio-state.edu

