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Guessing, Mind-changing, and the Second Ambiguous
Class

Samuel Alexander

Abstract In his dissertation, Wadge defined a notion of guessability on sub-
sets of the Baire space and gave two characterizations of guessable sets. A set is
guessable iff it is in the second ambiguous class (∆∆∆0

2), iff it is eventually annihi-
lated by a certain remainder. We simplify this remainder andgive a new proof
of the latter equivalence. We then introduce a notion of guessing with an ordinal
limit on how often one can change one’s mind. We show that for every ordinal
α, a guessable set is annihilated byα applications of the simplified remainder if
and only if it is guessable with fewer thanα mind changes. We use guessability
with fewer thanα mind changes to give a semi-characterization of the Hausdorff
difference hierarchy, and indicate how Wadge’s notion of guessability can be
generalized to higher-order guessability, providing characterizations of∆∆∆0

α for
all successor ordinalsα > 1.

1 Introduction

Let NN be the set of sequencess : N → N and letN<N be the set∪nN
n of finite

sequences. Ifs∈ N
<N, we will write [s] for { f ∈ N

N : f extendss}. We equipNN

with a second-countable topology by declaring[s] to be a basic open set whenever
s∈ N

<N.
Throughout the paper,S will denote a subset ofNN. We say thatS∈ ∆∆∆0

2 if S is
simultaneously a countable intersection of open sets and a countable union of closed
sets in the above topology. In classic terminology,S∈ ∆∆∆0

2 just in caseS is bothGδ
andFσ .

The following notion was discovered by Wadge [9] (pp. 141–142) and indepen-
dently by this author [1]. 1
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2 S. Alexander

Definition 1.1 We sayS is guessableif there is a functionG : N<N →{0,1} such
that for everyf ∈ N

N,

lim
n→∞

G( f ↾ n) = χS( f ) =

{

1, if f ∈ S,
0, if f 6∈ S.

If so, we sayG guesses S, or thatG is anS-guesser.

The intution behind the above notion is captured eloquentlyby Wadge (p. 142,
notation changed):

Guessing sets allow us to form an opinion as to whether an element f of NN is
in Sor Sc, given only a finite initial segmentf ↾ n of f .

Game theoretically, one envisions an asymmetric game whereII (the guesser) has
perfect information,I (the sequence chooser) has zero information, andII ’s winning
set consists of all sequences(a0,b0,a1,b1, . . .) such thatbi → 1 if (a0,a1, . . .)∈Sand
bi → 0 otherwise.

The following result was proved in [9] (pp.144–145) by infinite game-theoretical
methods. The present author found a second proof [1] using mathematical logical
methods.

Theorem 1.2 (Wadge) S is guessable if and only if S∈ ∆∆∆0
2.

Wadge defined (pp. 113–114) the following remainder operation.

Definition 1.3 For A,B ⊆ N
N, define Rm0(A,B) = N

N. For µ > 0 an ordinal,
define

Rmµ(A,B) =
⋂

ν<µ

(

Rmν(A,B)∩A∩Rmν(A,B)∩B
)

.

(Here• denotes topological closure.) Write Rmµ(S) for Rmµ(S,Sc).

By countability considerations, there is some (in fact countable) ordinalµ , de-
pending onS, such that Rmµ(S) = Rmµ ′(S) for all µ ′ ≥ µ ; Wadge writes RmΩ(S)
for Rmµ(S) for such aµ . He then proves the following theorem:

Theorem 1.4 (Wadge, attributed to Hausdorff) S∈ ∆∆∆0
2 if and only ifRmΩ(S) = /0.

In Section2, we introduce a simpler remainder(S,α) 7→ Sα and use it to give a
new proof of Theorem1.4.

In Section3, we introduce the notion ofSbeing guessable while changing one’s
mind fewer thanα many times (α ∈ Ord) and show that this is equivalent toSα = /0.

In Section4, we show that forα > 0, S is guessable while changing one’s mind
fewer thanα +1 many times if and only if at least one ofSor Sc is in theαth level
of the difference hierarchy.

In Section5, we generalize guessability, introducing the notion ofµ th-order
guessability (1≤ µ < ω1). We show thatS is µ th-order guessable if and only if
S∈ ∆∆∆0

µ+1.

2 Guessable Sets and Remainders

In this section we give a new proof of Theorem1.4. We find it easier to work with
the following remainder2 which is closely related to the remainder defined by Wadge.
For X ⊆ N

<N, we will write [X] to denote the set of infinite sequences all of whose
finite initial segments lie inX.
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Definition 2.1 Let S⊆ N
N. We defineSα ⊆ N

<N (α ∈ Ord) by transfinite recur-
sion as follows. We defineS0 = N

<N, andSλ = ∩β<λ Sβ for every limit ordinalλ .
Finally, for every ordinalβ , we define

Sβ+1 = {x∈ Sβ : ∃x′,x′′ ∈ [Sβ ] such thatx⊆ x′, x⊆ x′′, x′ ∈ S, x′′ 6∈ S}.

We writeα(S) for the minimal ordinalα such thatSα = Sα+1, and we writeS∞ for
Sα(S).

ClearlySα ⊆ Sβ wheneverβ < α. This remainder notion is related to Wadge’s as
follows.

Lemma 2.2 For each ordinalα, Rmα(S) = [Sα ].

Proof Since Sα ⊆ Sβ wheneverβ < α, for all α, we haveSα = ∩β<αSβ+1

(with the convention that∩ /0 = N
<N). We will show by induction onα that

Rmα(S) = [Sα ] = [∩β<αSβ+1].
Supposef ∈ [∩β<αSβ+1]. Let β < α. Let U be an open set aroundf , we

can assumeU is basic open, soU = [ f0], f0 a finite initial segment off . Since
f ∈ [∩β<αSβ+1], f0 ∈ Sβ+1. Thus there arex′,x′′ ∈ [Sβ ] extending f0 (hence in
U ), x′ ∈ S, x′′ 6∈ S. In other words,x′ ∈ [∩γ<β Sγ+1]∩S andx′′ ∈ [∩γ<β Sγ+1]∩Sc.
By induction, x′ ∈ Rmβ (S) ∩ S and x′′ ∈ Rmβ (S) ∩ Sc. By arbitrariness ofU ,

f ∈ Rmβ (S)∩S∩Rmβ (S)∩Sc. By arbitrariness ofβ , f ∈ Rmα(S).
The reverse inclusion is similar.

Note that Lemma2.2 does not say that Rmα(S) = /0 if and only if Sα = /0. It is (at
least a priori) possible thatSα 6= /0 while [Sα ] = /0. Lemma2.2does however imply
that RmΩ(S) = /0 if and only if S∞ = /0, since it is easy to see that if[Sα ] = /0 then
Sα+1 = /0. Thus in order to prove Theorem1.4it suffices to show thatS is guessable
if and only if S∞ = /0. The⇒ direction requires no additional machinery.

Proposition 2.3 If S is guessable then S∞ = /0.

Proof Let G : N<N → {0,1} be an S-guesser. Assume (for contradiction)
S∞ 6= /0 and letσ0 ∈ S∞. We will build a sequence on whose initial segments
G diverges, contrary to Definition1.1. Inductively suppose we have finite se-
quencesσ0 ⊂ 6= · · · ⊂ 6= σk in S∞ such that∀0 < i ≤ k, G(σi) ≡ i mod 2. Since
σk ∈S∞ =Sα(S) =Sα(S)+1, there areσ ′,σ ′′ ∈ [S∞], extendingσk, with σ ′ ∈S, σ ′′ 6∈S.
Chooseσ ∈ {σ ′,σ ′′} with σ ∈ S iff k is even. Then limn→∞ G(σ ↾ n)≡ k+1 mod 2.
Let σk+1 ⊂ σ properly extendσk such thatG(σk+1)≡ k+1 mod 2. Noteσk+1 ∈ S∞
sinceσ ∈ [S∞].

By induction, there areσ0 ⊂ 6= σ1 ⊂ 6= · · · such that fori > 0, G(σi) ≡ i mod 2.
This contradicts Definition1.1since limn→∞ G((∪iσi) ↾ n) ought to converge.

The⇐ direction requires a little machinery.

Definition 2.4 If σ ∈ N
<N, σ 6∈ S∞, let β (σ) be the least ordinal such that

σ 6∈ Sβ (σ).

Note that wheneverσ 6∈ S∞, β (σ) is a successor ordinal.

Lemma 2.5 Supposeσ ⊆ τ are finite sequences. Ifτ ∈ S∞ thenσ ∈ S∞. And if
σ 6∈ S∞, thenβ (τ)≤ β (σ).
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Proof It is enough to show that∀β ∈ Ord, if τ ∈ Sβ then σ ∈ Sβ . This is by
induction onβ , the limit and zero cases being trivial. Assumeβ is successor. If
τ ∈ Sβ , this meansτ ∈ Sβ−1 and there areτ ′,τ ′′ ∈ [Sβ−1] extendingτ with τ ′ ∈ S,
τ ′′ 6∈ S. Sinceτ ′ andτ ′′ extendτ, andτ extendsσ , τ ′ andτ ′′ extendσ ; and since
σ ∈ Sβ−1 (by induction), this showsσ ∈ Sβ .

Lemma 2.6 Suppose f: N→ N, f 6∈ [S∞]. There is some i such that for all j≥ i,
f ↾ j 6∈ S∞ andβ ( f ↾ j) = β ( f ↾ i). Furthermore, f∈ [Sβ ( f ↾i)−1].

Proof The first part follows from Lemma2.5 and the well-foundedness of
Ord. For the second part we must showf ↾ k ∈ Sβ ( f ↾i)−1 for every k. If k ≤ i,
then f ↾ k ∈ Sβ ( f ↾i)−1 by Lemma2.5. If k ≥ i, thenβ ( f ↾ k) = β ( f ↾ i) and so
f ↾ k∈ Sβ ( f ↾i)−1 since it is inSβ ( f ↾k)−1 by definition ofβ .

Definition 2.7 If S∞ = /0 then we defineGS : N<N → {0,1} as follows. Let
σ ∈ N

<N. SinceS∞ = /0, σ 6∈ S∞, so σ ∈ Sβ (σ)−1\Sβ (σ). Sinceσ 6∈ Sβ (σ), this
means for every two extensionsx′,x′′ of σ in [Sβ (σ)−1], eitherx′,x′′ ∈ Sor x′,x′′ ∈Sc.
So either all extensions ofσ in [Sβ (σ)−1] are inS, or all such extensions are inSc.

(i) If there are no extensions ofσ in [Sβ (σ)−1], and length(σ) > 0, then let
GS(σ) = GS(σ−) whereσ− is obtained fromσ by removing the last term.

(ii) If there are no extensions ofσ in [Sβ (σ)−1], and length(σ) = 0, letGS(σ) = 0.
(iii) If there are extensions ofσ in [Sβ (σ)−1] and they are all inS, define

GS(σ) = 1.
(iv) If there are extensions ofσ in [Sβ (σ)−1] and they are all inSc, define

GS(σ) = 0.

Proposition 2.8 If S∞ = /0 then GS guesses S.

Proof AssumeS∞ = /0. Let f ∈ S. I will show GS( f ↾ n) → 1 asn → ∞. Since
f 6∈ [S∞], let i be as in Lemma2.6. I claim GS( f ↾ j) = 1 wheneverj ≥ i. Fix j ≥ i.
We haveβ ( f ↾ j) = β ( f ↾ i) by choice ofi, and f ∈ [Sβ ( f ↾i)−1] = [Sβ ( f ↾ j)−1]. Since
f ↾ j has one extension (namelyf itself) in both[Sβ ( f ↾ j)−1] andS, GS( f ↾ j) = 1.

Identical reasoning shows that iff 6∈ S then limn→∞ GS( f ↾ n) = 0.

Theorem 2.9 S∈ ∆∆∆0
2 if and only if S∞ = /0. That is, Theorem1.4is true.

Proof By combining Propositions2.3and2.8and Theorem1.2.

3 Guessing without changing one’s Mind too often

In this section our goal is to tease out additional information about∆∆∆0
2 from the

operation defined in Definition2.1.

Definition 3.1 For each functionG with domainN<N, if G( f ↾ (n+1)) 6=G( f ↾ n)
( f ∈ N

N, n∈ N), we sayG changes its mind on f↾ (n+1). Now let α ∈ Ord. We
sayS is guessable with< α mind changesif there is anS-guesserG along with a
functionH : N<N → α such that the following hold, wheref ∈ N

N andn∈ N.

(i) H( f ↾ (n+1))≤ H( f ↾ n).
(ii) If G changes its mind onf ↾ (n+1), thenH( f ↾ (n+1))< H( f ↾ n).

This notion bears some resemblance to the notion of a setZ ⊆ N being f -c.e. in
[4], or g-c.a. in [7].



Guessing and Mind-changing 5

Theorem 3.2 For α ∈ Ord, S is guessable with< α mind changes if and only if
Sα = /0.

Proof
(⇒) AssumeS is guessable with< α mind changes. LetG,H be as in Definition
3.1. We claim that for allβ ∈ Ord, if σ ∈ Sβ thenH(σ) ≥ β . This will prove (⇒)
because it implies that ifSα 6= /0 then there is someσ with H(σ)≥ α, absurd since
codomain(H) = α.

We attack the claim by induction onβ . The zero and limit cases are trivial. As-
sumeβ = γ+1. Supposeσ ∈Sγ+1. There arex′,x′′ ∈ [Sγ ] extendingσ , x′ ∈S, x′′ 6∈S.
Pickx∈{x′,x′′} so thatχS(x) 6=G(σ) and pickσ+ ∈N

<N with σ ⊆σ+ ⊆ x such that
G(σ+) = χS(x) (some suchσ+ exists sinceG guessesS). Sincex∈ [Sγ ], σ+ ∈ Sγ .
By induction,H(σ+)≥ γ. The factG(σ+) 6= G(σ) impliesH(σ+)< H(σ), forcing
H(σ)≥ γ +1.
(⇐) AssumeSα = /0. For allσ ∈ N

<N, defineH(σ) = β (σ)− 1 (by definition of
β (σ), sinceSα = /0, clearlyH(σ) ∈ α). I claim GS,H witness thatS is guessable
with < α mind changes.

By Proposition2.8, GS guessesS. Let f ∈ N
N, n ∈ N. By Lemma 2.5,

H( f ↾ (n+ 1)) ≤ H( f ↾ n). Now supposeGS changes its mind onf ↾ (n+ 1),
we must showH( f ↾ (n+ 1)) < H( f ↾ n). Assume, for sake of contradiction, that
H( f ↾ (n+ 1)) = H( f ↾ n). AssumeGS( f ↾ n) = 0, the other case is similar. By
definition ofGS, (∗) for every infinite extensionf ′ of f ↾ n, if f ′ ∈ [Sβ ( f ↾n)−1] then
f ′ ∈ Sc. SinceGS changes its mind onf ↾ (n+1), GS( f ↾ (n+1)) = 1. Thus (∗∗)
for every infinite extensionf ′′ of f ↾ (n+ 1), if f ′′ ∈ [Sβ ( f ↾(n+1))−1] then f ′′ ∈ S.
And f ↾ (n+1) does actually have some such infinite extensionf ′′, because if it had
none, that would makeGS( f ↾ (n+1)) = GS( f ↾ n) by case 1 of the definition ofGS

(Definition2.7). Being an extension off ↾ (n+1), f ′′ also extendsf ↾ n; and by the
assumption thatH( f ↾ (n+1)) = H( f ↾ n), f ′′ ∈ [Sβ ( f ↾n)−1]. By (∗), f ′′ ∈ Sc, and by
(∗∗), f ′′ ∈ S. Absurd.

It is not hard to showS is a Boolean combination of open sets if and only ifS is
guessable with< ω mind changes, so Theorem3.2and Lemma2.2give a new proof
of a special case of the main theorem (p. 1348) of [3] (see also [2]).

4 Mind Changing and the Difference Hierarchy

We recall the following definition from [5] (p. 175, stated in greater generality—we
specialize it to the Baire space). In this definition,ΣΣΣ0

1(N
N) is the set of open subsets

of NN, and theparity of an ordinalη is the equivalence class modulo 2 ofn, where
η = λ +n, λ a limit ordinal (orλ = 0), n∈ N.

Definition 4.1 Let (Aη)η<θ be an increasing sequence of subsets ofN
N with

θ ≥ 1. Define the setDθ ((Aη)η<θ )⊆ N
N by

x ∈ Dθ ((Aη )η<θ ) ⇔ x ∈
⋃

η<θ
Aη & the leastη < θ with x ∈ Aη has parity

opposite to that ofθ .

Let

Dθ (ΣΣΣ0
1)(N

N) = {Dθ ((Aη)η<θ ) : Aη ∈ ΣΣΣ0
1(N

N), η < θ}.
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This hierarchy offers a constructive characterization of∆∆∆0
2: it turns out that

∆∆∆0
2 = ∪1≤θ<ω1Dθ (ΣΣΣ0

1)(N
N)

(see Theorem 22.27 of [5], p. 176, attributed to Hausdorff and Kuratowski).
For brevity, we will writeDα for Dα(ΣΣΣ0

1)(N
N).

Theorem 4.2 (Semi-characterization of the difference hierarchy) Letα > 0. The
following are equivalent.

(i) S is guessable with< α +1 mind changes.
(ii) S∈ Dα or Sc ∈ Dα .

We will prove Theorem4.2by a sequence of smaller results.

Definition 4.3 Forα,β ∈Ord, writeα ≡ β to indicate thatα andβ have the same
parity (that is, 2|n−m, whereα = λ +n andβ = κ +m, n,m∈ N, λ a limit ordinal
or 0,κ a limit ordinal or 0).

Proposition 4.4 Let α > 0. If S∈ Dα , say S= Dα((Aη)η<α ) (Aη ⊆ N
N open),

then S is guessable with< α +1 mind changes.

Proof Define G : N<N → {0,1} and H : N<N → α + 1 as follows. Suppose
σ ∈ N

<N. If there is noη < α such that[σ ] ⊆ Aη , let G(σ) = 0 and letH(σ) = α.
If there is anη < α (we may takeη minimal) such that[σ ]⊆ Aη , then let

G(σ) =

{

0, if η ≡ α;
1, if η 6≡ α,

H(σ) = η .

Let f : N→N.

Claim 1 limn→∞ G( f ↾ n) = χS( f ).
If f 6∈ ∪η<αAη , then f 6∈ Dα((Aη)η<α ) = S, andG( f ↾ n) will always be 0, so

limn→∞ G( f ↾ n)= 0= χS( f ). Assumef ∈∪η<αAη , and letη <α be minimum such
that f ∈ Aη . SinceAη is open, there is somen0 so large that∀n≥ n0, [ f ↾ n]⊆ Aη .
For all n≥ n0, by minimality ofη , [ f ↾ n] 6⊆ Aη ′ for anyη ′ < η , soG( f ↾ n) = 0 if
and only ifη ≡ α. The following are equivalent.

f ∈ S iff f ∈ Dα((Aη)η<α )

iff η 6≡ α
iff G( f ↾ n) 6= 0

iff G( f ↾ n) = 1.

This shows limn→∞ G( f ↾ n) = χS( f ).

Claim 2 ∀n∈ N, H( f ↾ (n+1))≤ H( f ↾ n).
If H( f ↾ n) = α, there is nothing to prove. IfH( f ↾ n) < α, thenH( f ↾ n) = η

whereη is minimal such that[ f ↾ n] ⊆ Aη . Since[ f ↾ (n+ 1)] ⊆ [ f ↾ n], we have
[ f ↾ (n+1)]⊆ Aη , implying H( f ↾ (n+1))≤ η .

Claim 3 ∀n∈ N, if G( f ↾ (n+1)) 6= G( f ↾ n), thenH( f ↾ (n+1))< H( f ↾ n).
Assume (for sake of contradiction)H( f ↾ (n+ 1)) ≥ H( f ↾ n). By Claim

2, H( f ↾ (n+ 1)) = H( f ↾ n). By definition of H this implies that∀η < α,
[ f ↾ (n+1)]⊆ Aη if and only if [ f ↾ n]⊆ Aη . This impliesG( f ↾ (n+1)) = G( f ↾ n),
contradiction.
By Claims 1–3,G andH witness thatS is guessable with< α +1 mind changes.
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Corollary 4.5 Let α > 0. If S∈ Dα or Sc ∈ Dα then S is guessable with< α +1
mind changes.

Proof If S∈ Dα this is immediate by Proposition4.4. If Sc ∈ Dα then Proposition
4.4 saysSc is guessable with< α +1 mind changes, and this clearly implies thatS
is too.

Lemma 4.6 Suppose S is guessable with<α mind changes. Let G:N<N→{0,1},
H : N<N → α be a pair of functions witnessing as much (Definition3.1). There is
an H′ : N<N → α such that G,H ′ also witness that S is guessable with< α
mind changes, with H′( /0) = H( /0), and with the additional property that for every
f : N→ N and every n∈ N,

H( f ↾ (n+1)) ≡ H( f ↾ n) if and only if G( f ↾ (n+1)) = G( f ↾ n).

Proof DefineH ′(σ) by induction on the length ofσ as follows. LetH ′( /0) =H( /0).
If σ 6= /0, write σ = σ0 ⌢ n for some n ∈ N (⌢ denotes concatenation). If
G(σ) = G(σ0), let H ′(σ) = H ′(σ0). Otherwise, letH ′(σ) be eitherH(σ) or
H(σ)+1, whichever has parity opposite toH ′(σ0).

By constructionH ′ has the desired parity properties. A simple inductive argu-
ment shows that (∗) ∀σ ∈ N

<N, H(σ) ≤ H ′(σ) < α. I claim that for all f : N→ N

and n ∈ N, H ′( f ↾ (n+ 1)) ≤ H ′( f ↾ n), and if G( f ↾ (n+ 1)) 6= G( f ↾ n) then
H ′( f ↾ (n+1))< H ′( f ↾ n).

If G( f ↾ (n+1))=G( f ↾ n), then by definitionH ′( f ↾ (n+1))=H ′( f ↾ n) and the
claim is trivial. Now assumeG( f ↾ (n+1)) 6=G( f ↾ n). If H ′( f ↾ (n+1))=H( f ↾ (n+1))
thenH ′( f ↾ (n+1))< H( f ↾ n)≤ H ′( f ↾ n) and we are done. Assume

H ′( f ↾ (n+1)) 6= H( f ↾ (n+1)),

which forces that (∗∗) H ′( f ↾ (n+1)) = H( f ↾ (n+1))+1. To see that

H ′( f ↾ (n+1))< H ′( f ↾ n),

assume not (∗ ∗ ∗). By Definition3.1, H( f ↾ (n+1))< H( f ↾ n), so

H( f ↾ n)≥ H( f ↾ (n+1))+1 (Basic arithmetic)

= H ′( f ↾ (n+1)) (By (∗∗))

≥ H ′( f ↾ n) (By (∗ ∗ ∗))

≥ H( f ↾ n). (By (∗))

Equality holds throughout, andH ′( f ↾ (n+1))= H ′( f ↾ n). Contradiction: we chose
H ′( f ↾ (n+1)) with parity opposite toH ′( f ↾ n).

Definition 4.7 For all G,H as in Definition 3.1, f ∈ N
N, write G( f ) for

limn→∞ G( f ↾ n) (so G( f ) = χS( f )) and writeH( f ) for limn→∞ H( f ↾ n). Write
G ≡ H to indicate that∀ f ∈ N

N, G( f ) ≡ H( f ); write G 6≡ H to indicate that
∀ f ∈ N

N, G( f ) 6≡ H( f ) (we pronounceG 6≡ H as “G is anticongruent toH”).

Lemma 4.8 Suppose G: N<N →{0,1} and H :N<N → α witness that S is guess-
able with< α mind changes. There is an H′ : N<N → α such that G,H ′ witness that
S is guessable with< α mind changes, and such that the following hold.

If G( /0)≡ α then H′ 6≡ G. If G( /0) 6≡ α then H′ ≡ G.
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Proof I claim that without loss of generality, we may assume the following (∗):

If G( /0)≡ α thenH( /0) 6≡ G( /0). If G( /0) 6≡ α thenH( /0)≡ G( /0).

To see this, suppose not: eitherG( /0) ≡ α andH( /0) ≡ G( /0), or elseG( /0) 6≡ α and
H( /0) 6≡G( /0). In either case,H( /0)≡α. If H( /0)≡α thenH( /0)+1 6=α, and so, since
H( /0)< α, H( /0)+1< α, meaning we may add 1 toH( /0) to enforce the assumption.

Having assumed (∗), we may use Lemma4.6 to constructH ′ : N<N → α such
thatG,H ′ witness thatS is guessable with< α mind changes,H ′( /0) = H( /0), andH ′

changes parity precisely whenG changes parity. The latter facts, combined with (∗),
prove the lemma.

Proposition 4.9 Suppose G: N<N → {0,1} and H : N<N → α +1 witness that S
is guessable with< α +1 mind changes. If G( /0) = 0 then S∈ Dα .

Proof By Lemma4.8we may safely assume the following:

If G( /0)≡ α +1 thenH 6≡ G. If G( /0) 6≡ α +1 thenH ≡ G.

In other words,

(∗) If G( /0)≡ α thenH ≡ G. (∗∗) If G( /0) 6≡ α thenH 6≡ G.

For eachη < α, let

Aη = { f ∈ N
N : H( f )≤ η}. (H( f ) as in Definition4.7)

I claim S= Dα((Aη )η<α), which will prove the proposition since eachAη is clearly
open.

Supposef ∈ S, I will show f ∈ Dα((Aη )η<α). Since f ∈ S, H( f ) 6= α, because
if H( f ) were= α, this would imply thatG never changes its mind onf , forcing
limn→∞ G( f ↾ n) = limn→∞ G( /0) = 0, contradicting the fact thatG guessesS.

SinceH( f ) 6= α, H( f ) < α. It follows that forη = H( f ) we havef ∈ Aη andη
is minimal with this property.
Case 1: G( /0) ≡ α. By (∗), H ≡ G. Since f ∈ S, limn→∞ G( f ↾ n) = 1, so
η = limn→∞ H( f ↾ n) ≡ 1. Since α ≡ G( /0) = 0, this showsη 6≡ α, putting
f ∈ Dα((Aη )η<α).
Case 2: G( /0) 6≡ α. By (∗∗), H 6≡ G. Since f ∈ S, limn→∞ G( f ↾ n) = 1,
so η = limn→∞ H( f ↾ n) ≡ 0. Since α 6≡ G( /0) = 0, this showsη 6≡ α, so
f ∈ Dα((Aη )η<α).
Conversely, supposef ∈ Dα((Aη)η<α), I will show f ∈ S. Let η be minimal such
that f ∈ Aη (by definition ofAη , η = H( f )). By definition ofDα((Aη )η<α), η 6≡ α.
Case 1:G( /0)≡α. By (∗), H ≡G. Since limn→∞ H( f ↾ n)=H( f )=η 6≡α ≡G( /0)= 0,
we see limn→∞ H( f ↾ n) = 1. SinceH ≡ G, limn→∞ G( f ↾ n) = 1, forcing f ∈ Ssince
G guessesS.
Case 2:G( /0) 6≡ α. By (∗∗), H 6≡ G. Since

lim
n→∞

H( f ↾ n) = H( f ) = η 6≡ α 6≡ G( /0) = 0,

we see limn→∞ H( f ↾ n) = 0. SinceH 6≡ G, limn→∞ G( f ↾ n) = 1, again showing
f ∈ S.

Corollary 4.10 If S is guessable with< α + 1 mind changes, then S∈ Dα or
Sc ∈ Dα .
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Proof Let G,H witness thatSis guessable with<α+1 mind changes. IfG( /0) = 0
thenS∈ Dα by Proposition4.9. If not, then(1−G),H witness thatSc is guessable
with < α +1 mind changes, and(1−G)( /0) = 0, soSc ∈ Dα by Proposition4.9.

Combining Corollaries4.5and4.10proves Theorem4.2.

5 Higher-order Guessability

In this section we introduce a notion that generalizes guessability to provide a char-
acterization for∆∆∆0

µ+1 (1≤ µ < ω1). We will show thatS∈ ∆∆∆0
µ+1 if and only if S is

µ th-order guessable. Throughout this section,µ denotes an ordinal in[1,ω1).

Definition 5.1 Let S = (S0,S1, . . .) be a countably infinite tuple of subsets
Si ⊆ N

N.

(i) For everyf ∈N
N, writeS ( f ) for the sequence(χS0( f ),χS1( f ), . . .)∈{0,1}N.

(ii) We say thatS is guessable based onS if there is a function

G : {0,1}<N →{0,1}

(called anS-guesser based onS ) such that∀ f ∈ N
N,

lim
n→∞

G(S ( f ) ↾ n) = χS( f ).

Game theoretically, we envision a game whereI (the sequence chooser) has zero
information andII (the guesser) has possiblybetter-than-perfectinformation: II is
allowed to ask (once per turn) whetherI ’s sequence lies in variousSi . For eachSi ,
playerI ’s act (by answering the question) of committing to play a sequence inSi or
in Sc

i is similar to the act (described in [6], p. 366) of choosing aI -imposed subgame.

Example 5.2 If S enumerates the sets of the form{ f ∈ N
N : f (i) = j}, i, j ∈ N

then it is not hard to show that S is guessable (in the sense of Definition1.1) if and
only if S is guessable based onS .

Definition 5.3 We sayS is µ th-order guessableif there is someS = (S0,S1, . . .)
as in Definition5.1such that the following hold.

(i) S is guessable based onS .
(ii) ∀i, Si ∈ ∆∆∆0

µi+1 for someµi < µ .

Theorem 5.4 S isµ th-order guessable if and only if S∈ ∆∆∆0
µ+1.

In order to prove Theorem5.4 we will assume the following result, which is a
specialization and rephrasing of Exercise 22.17 of [5] (pp. 172–173, attributed to
Kuratowski).

Lemma 5.5 The following are equivalent.

(i) S∈ ∆∆∆0
µ+1.

(ii) There is a sequence(Ai)i∈N, each Ai ∈ ∆∆∆0
µi+1 for someµi < µ , such that

S=
⋃

n

⋂

m≥n

Am =
⋂

n

⋃

m≥n

Am.

Proof of Theorem 5.4
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(⇒) Let S = (S0,S1, . . .) and G witness thatS is µ th-order guessable (so each
Si ∈ ∆∆∆0

µi+1 for someµi < µ). For alla∈ {0,1} andX ⊆ N
N, define

Xa =

{

X, if a= 1;
N
N\X, if a= 0.

For notational convenience, we will write “G(~a) = 1” as an abbreviation for
“0 ≤ a0, . . . ,am−1 ≤ 1 andG(a0, . . . ,am−1) = 1,” providedm is clear from con-
text. Observe that for allf ∈ N

N andm∈ N, G(S ( f ) ↾ m) = 1 if and only if

f ∈
⋃

G(~a)=1

m−1
⋂

j=0

S
a j
j .

Now, given f : N→ N, f ∈ S if and only if G(S ( f ) ↾ n)→ 1, which is true if and
only if ∃n∀m≥ n, G(S ( f ) ↾ m) = 1. Thus

f ∈ S iff ∃n∀m≥ n, G(S ( f ) ↾ m) = 1

iff ∃n∀m≥ n, f ∈
⋃

G(~a)=1

m−1
⋂

j=0

S
a j
j

iff f ∈
⋃

n

⋂

m≥n

⋃

G(~a)=1

m−1
⋂

j=0

S
a j
j .

So

S=
⋃

n

⋂

m≥n

⋃

G(~a)=1

m−1
⋂

j=0

S
a j
j .

At the same time, sinceG(S ( f ) ↾ m)→ 0 wheneverf 6∈ S, we seef ∈ S if and only
if ∀n∃m≥ n such thatG(S ( f ) ↾ m) = 1. Thus by similar reasoning to the above,

S=
⋂

n

⋃

m≥n

⋃

G(~a)=1

m−1
⋂

j=0

S
a j
j .

For eachm,
⋃

G(~a)=1
⋂m−1

j=0 S
a j
j is a finite union of finite intersections of sets in∆∆∆0

µ ′+1

for variousµ ′ < µ , thus
⋃

G(~a)=1
⋂m−1

j=0 S
a j
j itself is in∆∆∆0

µm+1 for someµm< µ . Letting

Am =
⋃

G(~a)=1
⋂m−1

j=0 S
a j
j , Lemma5.5saysS∈ ∆∆∆0

µ+1.

(⇐) AssumeS∈ ∆∆∆0
µ+1. By Lemma5.5, there are(Ai)i∈N, eachAi ∈ ∆∆∆0

µi+1 for some
µi < µ , such that

S=
⋃

n

⋂

m≥n

Am =
⋂

n

⋃

m≥n

Am. (∗)

I claim thatS is guessable based onS = (A0,A1, . . .). DefineG : {0,1}<N → {0,1}
by G(a0, . . . ,am) = am, I will show thatG is anS-guesser based onS .

Supposef ∈S. By (∗), ∃n s.t.∀m≥ n, f ∈Am and thusχAm( f ) = 1. For allm≥ n,

G(S ( f ) ↾ (m+1)) = G(χA0( f ), . . . ,χAm( f ))

= χAm( f )

= 1,

so limn→∞ G(S ( f ) ↾ n) = 1. A similar argument shows that iff 6∈ S then
limn→∞ G(S ( f ) ↾ n) = 0.
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Combining Theorems1.2and5.4, we see thatS is guessable if and only ifS is 1st-
order guessable. It is also not difficult to give a direct proof of this equivalence, and
having done so, Theorem5.4provides yet another proof of Theorem1.2.

Notes

1. A third independent usage of the termguessable, with similar but not the same meaning,
appears in [8] (p. 1280), where a subsetY ⊆ N

N is called guessable if there is a function
g∈ N

N such that for eachf ∈Y, g(n) = f (n) for infinitely manyn.

2. In general, there seems to be a correspondence between remainders onNN and remainders
onN

<N that take trees to trees; in the future we might publish more general work based
on this observation.
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