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Abstract

In 2011, Hibbard suggested an intelligence measure for agents who compete in an
adversarial sequence prediction game. We argue that Hibbard’s idea should actually be
considered as two separate ideas: first, that the intelligence of such agents can be measured
based on the growth rates of the runtimes of the competitors that they defeat; and second,
one specific (somewhat arbitrary) method for measuring said growth rates. Whereas
Hibbard’s intelligence measure is based on the latter growth-rate-measuring method, we
survey other methods for measuring function growth rates, and exhibit the resulting
Hibbard-like intelligence measures and taxonomies. Of particular interest, we obtain
intelligence taxonomies based on Big-O and Big-Theta notation systems, which taxonomies
are novel in that they challenge conventional notions of what an intelligence measure should
look like. We discuss how intelligence measurement of sequence predictors can indirectly
serve as intelligence measurement for agents with Artificial General Intelligence (AGIs).

1. Introduction

In his insightful paper, Hibbard (2011) introduces a novel intelligence measure (which we
will here refer to as the original Hibbard measure) for agents who play a game of adversarial
sequence prediction (Hibbard, 2008) “against a hierarchy of increasingly difficult sets of”
evaders (environments that attempt to emit 1s and 0s in such a way as to evade prediction).
The levels of Hibbard’s hierarchy are labelled by natural numbers, and an agent’s original
Hibbard measure is the maximum n ∈ N such that said agent learns to predict all the
evaders in the nth level of the hierarchy, or implicitly1 an agent’s original Hibbard measure
is ∞ if said agent learns to predict all the evaders in all levels of Hibbard’s hierarchy.

The hierarchy which Hibbard uses to measure intelligence is based on the growth rates
of the runtimes of evaders. We will argue that Hibbard’s idea is really a combination of
two orthogonal ideas. First: that in some sense the intelligence of a predicting agent can
be measured based on the growth rates of the runtimes of the evaders whom that predictor

1. Hibbard does not explicitly include the ∞ case in his definition, but in his Proposition 3 he refers to
agents having “finite intelligence”, and it is clear from context that by this he means agents who fail to
predict some evader somewhere in the hierarchy.
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learns to predict. Second: Hibbard proposed one particular method for measuring said
growth rates. The growth rate measurement which Hibbard proposed yields a corresponding
intelligence measure for these agents. We will argue that any method for measuring growth
rates of functions yields a corresponding adversarial sequence prediction intelligence measure
(or ASPI measure for short) provided the underlying number system provides a way of
choosing canonical bounds for bounded sets. If the underlying number system does not
provide a way of choosing canonical bounds for bounded sets, the growth-rate-measure will
yield a corresponding ASPI taxonomy (like the big-O taxonomy of asymptotic complexity).

The particular method which Hibbard used to measure function growth rates is not very
standard. We will survey other ways of measuring function growth rates, and these will
yield corresponding ASPI measures and taxonomies.

The structure of the paper is as follows.

• In Section 2, we review the original Hibbard measure.

• In Section 3, we argue that any method of measuring growth rates of functions yields
an ASPI measure or taxonomy, and that the original Hibbard measure is just a special
case resulting from one particular method of measuring function growth rate.

• In Section 4, we consider Big-O notation and Big-Θ notation and define corresponding
ASPI taxonomies.

• In Section 5, we consider solutions to the problem of measuring growth rates of
functions using majorization hierarchies, and define corresponding ASPI measures.

• In Section 6, we consider solutions to the problem of measuring growth rates of
functions using more abstract number systems, namely the hyperreal numbers and the
surreal numbers. We do not assume previous familiarity with these number systems.

• In Section 7, we give pros and cons of different ASPI measures and taxonomies.

• In Section 8, we summarize and make concluding remarks.

2. Hibbard’s original measure

Hibbard proposed an intelligence measure for measuring the intelligence of agents who
compete to predict evaders in a game of adversarial sequence prediction (we define this
formally below). A predictor p (whose intelligence we want to measure) competes against
evaders e. In each step of the game, both predictor and evader simultaneously choose a
binary digit, 1 or 0. Only after both of them have made their choice do they see which
choice the other one made, and then the game proceeds to the next step. The predictor’s
goal in each round is to choose the same digit that the evader will choose; the evader’s goal
is to choose a different digit than the predictor. The predictor wins the game (and is said
to learn to predict e, or simply to learn e) if, after finitely many initial steps, eventually the
predictor always chooses the same digit as the evader.

Definition 1 By B, we mean the binary alphabet {0, 1}. By B∗, we mean the set of all
finite binary sequences. By 〈〉 we mean the empty binary sequence.
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Definition 2 (Predictors and evaders)

1. By a predictor, we mean a Turing machine2 p which takes as input a finite (possibly
empty) binary sequence (x1, . . . , xn) ∈ B∗ (thought of as a sequence of evasions) and
outputs 0 or 1 (thought of as a prediction), which output we write as p(x1, . . . , xn).

2. By an evader, we mean a Turing machine e which takes as input a finite (possibly
empty) binary sequence (y1, . . . , yn) ∈ B∗ (thought of as a sequence of predictions)
and outputs 0 or 1 (thought of as an evasion), which output we write as e(y1, . . . , yn).

3. For any predictor p and evader e, the result of p playing the game of adversarial
sequence prediction against e (or more simply, the result of p playing against e) is
the infinite binary sequence (x1, y1, x2, y2, . . .) defined as follows:

(a) The first evasion x1 = e(〈〉) is the output of e when run on the empty prediction-
sequence.

(b) The first prediction y1 = p(〈〉) is the output of p when run on the empty evasion-
sequence.

(c) For all n > 0, the (n + 1)th evasion xn+1 = e(y1, . . . , yn) is the output of e on
the sequence of the first n predictions.

(d) For all n > 0, the (n+ 1)th prediction yn+1 = p(x1, . . . , xn) is the output of p on
the sequence of the first n evasions.

4. Suppose r = (x1, y1, x2, y2, . . .) is the result of a predictor p playing against an evader
e. For every n ≥ 1, we say the predictor wins round n in r if xn = yn; otherwise, the
evader wins round n in r. We say that p learns to predict e (or simply that p learns
e) if there is some N ∈ N such that for all n > N , p is the winner of round n in r.

Note that if e simply ignores its inputs (y1, . . . , yn) and instead computes e(y1, . . . , yn)
based only on n, then e is essentially a sequence. Thus Definition 2 is a generalization of
sequence prediction, which many authors have written about (such as Legg (2006), who
gives many references). In the future, it could be interesting to consider variations of the
game involving probability in various ways, for example, where the predictor wins if his
guesses have > 50% win rate, or where the predictor states how confident he is about each
guess, or other such variations.

In the following definition, we differ from Hibbard’s original paper because of a minor
(and fortunately, easy-to-fix) error there.

Definition 3 Suppose e is an evader. For each n ∈ N, let te(n) be the maximum number
of steps that e takes to run on any length-n sequence of binary digits. In other words, te(0)
is the number of steps e takes to run on 〈〉, and for all n > 0,

te(n) = max
b1,...,bn∈{0,1}

(number of steps e takes to run on (b1, . . . , bn)).

2. The measures we introduce in this paper would also work if we defined predictors as not-necessarily-
computable functions B∗ → B, but this would not add much insight. We prefer to emphasize the duality
between predictors and evaders when each is a Turing machine.
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Example 4 Let e be an evader. Then te(2) is equal to the number of steps e takes to run
on input (0, 0), or to run on input (0, 1), or to run on input (1, 0), or to run on input
(1, 1)—whichever of these four possibilities is largest.

Definition 5 Suppose f : N→ N and g : N→ N. We say f majorizes g, written f � g, if
there is some n0 ∈ N such that for all n > n0, f(n) > g(n).

Definition 6 Suppose f : N → N. We define Ef to be the set of all evaders e such that
f � te.

Definition 7 (The original Hibbard measure) Let g1, g2, . . . be the enumeration of the
primitive recursive functions given by Liu (1960). For each m > 0, define fm : N → N
by

fm(k) = max
0<i≤m

max
j≤k

gi(j).

For any predictor p, we define the original Hibbard intelligence of p to be the maximum
m > 0 such that p learns to predict e for every e ∈ Efm (or 0 if there is no such m, or ∞
if p learns to predict e for every e ∈ Efm for every m > 0).

The following result shows that the measure in Definition 7 does not overshoot the
agents being measured.

Proposition 8 For any integer m ≥ 1, there is a predictor p with original Hibbard measure
≥ m.

Proof This is part of Proposition 3 of Hibbard (2011), but we give a self-contained proof
here because we will state similar results about other measures below.

For each computable f : N → N, let pf be the predictor who proceeds as follows when
given evasion-sequence (x1, . . . , xn) ∈ B∗ as input.

First, by calling itself recursively on inputs

〈〉, (x1), (x1, x2), . . . , (x1, . . . , xn−1),

pf determines the prediction-sequence (y1, . . . , yn) as in Definition 2.
Next, pf considers the first n Turing machines, T1, . . . , Tn. For 1 ≤ i ≤ n, say that Ti is

an nth-order e-lookalike if the following requirements hold:

• If Ti halts in ≤ f(0) steps on input 〈〉, then Ti outputs x1 on that input.

• If Ti halts in ≤ f(1) steps on input (y1), then Ti outputs x2 on that input.

• If Ti halts in ≤ f(2) steps on input (y1, y2), then Ti outputs x3 on that input.

• . . .

• If Ti halts in ≤ f(n − 1) steps on input (y1, . . . , yn−1), then Ti outputs xn on that
input.

• Ti halts in ≤ f(n) steps on input (y1, . . . , yn) with some output Xi,n.
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By simulating T1, . . . , Tn as needed (which only requires finitely many steps), pf determines
if any Ti is an nth-order e-lookalike. If so, pf outputs pf (x1, . . . , xn) = Xi,n for the minimal
such i. If not, pf outputs 0.

Claim: For every computable f : N→ N, for every evader e, if (x1, y1, x2, y2, . . .) is the
result of pf playing against e, then for all-but-finitely-many n ∈ N, if f(n) > te(n) then
xn+1 = yn+1.

Let f, e, (x1, y1, . . .) be as in the claim and assume f(n) > te(n). Being an evader, e is a
Turing machine, say, the kth Turing machine. Since f(n) > te(n), it follows that Tk is an
nth-order e-lookalike. It follows that, on input (x1, . . . , xn), pf will play the output given
by some nth-order e-lookalike Tk′ , k

′ ≤ k.
For any k′ < k, say that pf is tricked by Tk′ on input (x1, . . . , xn) if, on said input, p

identifies Tk′ as the first nth-order e-lookalike and so plays yn+1 = Xk′,n but Xk′,n 6= xn+1

(loosely speaking: pf is led to believe the evader is Tk′ , and this false belief causes pf to
incorrectly predict the evader’s next digit). It follows that pf will not identify Tk′ as an
n′th-order e-lookalike when run on (x1, . . . , xn′) for any n′ > n. Thus, pf can only be
tricked at most once by Tk′ for any particular k′ < k. If pf is not so tricked, then either
pf identifies Tk′ as the first nth-order e-lookalike for some k′ < k (in which case pf plays
yn+1 = Xk′,n = xn+1, lest pf be tricked by Tk′), or else pf identifies Tk as the first nth-order
e-lookalike, in which case pf plays yn+1 = Xk,n = xn+1 since e = Tk. Either way, after
possibly finitely many exceptions caused by being tricked, pf always plays yn+1 = xn+1

whenever f(n) > te(n), proving the claim.
We claim pfm has original Hibbard measure ≥ m. To see this, let e ∈ Efm , we must

show p learns e. Let (x1, y1, . . .) be the result of pfm playing against e. Since e ∈ Efm ,
fm � te, so for-all-but-finitely-many n ∈ N, fm(n) > te(n). And, by the above Claim, with
at most finitely many exceptions, whenever fm(n) > te(n), xn+1 = yn+1. It follows that
pfm learns e, as desired.

Unfortunately, the original Hibbard measure is not computable (unless the background
model of computation is contrived), as the following proposition shows3.

Proposition 9 Assume the background model of computation is well-behaved enough that
there is an evader e0 which always outputs 0 and whose runtime te0 is bounded by some
primitive recursive function. Then the original Hibbard measure is not computable: there
is no effectively computable procedure, given a predictor, to compute its original Hibbard
measure. In fact, there is not even an effectively computable procedure to tell if one given
predictor has a higher original Hibbard measure than another given predictor.

Proof Let p1 be a predictor which always outputs 1, and let m be its original Hibbard
measure. By the existence of e0, it follows that m <∞ since certainly p1 does not learn e0.
Let p be a predictor with original Hibbard measure > m (Proposition 8).

If the proposition were false, then we could solve the halting problem as follows. Given
any Turing machine M , in order to determine whether or not M halts, proceed as follows.

3. In fact, assuming a non-contrived background model of computation, for any strictly increasing total
computable function f , even the following can be shown to be non-computable: given an evader e, to
determine whether or not f � te.
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Let pM be the predictor which, on input (x1, . . . , xn), outputs p(x1, . . . , xn) if M halts in
≤ n steps, or 1 otherwise. Clearly, M halts if and only if pM has a higher original Hibbard
measure than p1.

Likewise, the variations on Hibbard’s measure which we present in this paper are also
non-computable. To quantify their precise degrees of computability (e.g., where they fall
within the arithmetical hierarchy) would be beyond the scope of this paper. We will,
however, state one conjecture. If we modified the original Hibbard measure by replacing
Liu’s enumeration of the primitive recursive functions by an enumeration of all total
computable functions, then we conjecture the resulting measure would be strictly higher
in the arithmetical hierarchy (i.e., would require strictly stronger oracles to compute),
essentially because the set of total computable functions is not computably enumerable,
whereas the primitive recursive functions are.

2.1 Predictor intelligence and AGI intelligence

Definition 7, and similar measures and taxonomies which we will define later, quantify
the intelligence of predictors in the game of adversarial sequence prediction. But any
method for quantifying the intelligence of such predictors can also approximately quantify
the intelligence of (suitably idealized) agents with Artificial General Intellience (that is, the
intelligence of AGIs).

The idealized AGIs we have in mind should be capable of understanding, and obedient
in following or trying to follow, commands issued in everyday human language4 (this is not
to say that all AGIs must necessarily be obedient, merely that for the purposes of this paper
we restrict our attention to obedient AGIs). For example, if such an idealized AGI were
commanded, “until further notice, compute and list the digits of pi,” it would be capable of
understanding that command, and would obediently compute said digits until commanded
otherwise5.

It is unclear how an AGI ought to respond if given an impossible command, such as
“write a computer program that solves the halting problem”, or Yampolskiy’s “Disobey!”
(Yampolskiy, 2020). But an AGI should be capable of understanding and attempting to obey
an open-ended command, provided it is not impossible. For example, we could command
an AGI to “until further notice, write an endless poem about trees,” and the AGI should
be able to do so, writing said poem line-by-line until we tell it to stop. This is despite
the fact that the command is open-ended and under-determined (there are many decisions
involved in writing a poem about trees, and we have left all these decisions to the AGI’s
discretion). The AGI’s ability to obey such open-ended and under-determined commands
exemplifies its ability to “adapt with insufficient knowledge and resources” (Wang, 2019).
One well-known example of an open-ended command which an AGI should be perfectly

4. It is somewhat unclear how explicitly an AGI would obey certain commands. To use an example of
Yampolskiy (2020), if we asked a car-driving AGI to stop the car, would the AGI stop the car in the
middle of traffic, or would it pull over to the side first? We assume this ambiguity does not apply when
we ask the AGI to perform tasks of a sufficiently abstract and mathematical nature.

5. Our thinking here is reminiscent of some remarks of Yampolskiy (2013).
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capable of attempting to obey (perhaps at peril to us) is Bostrom’s “manufacture as many
paperclips as possible” (Bostrom, 2003).

In particular, such an idealized AGI X should be capable of obeying the following
command: “Act as a predictor in the game of adversarial sequence prediction”. By giving
X this command, and then immediately filtering out all X’s sensory input except only for
input about the digits chosen by an evader, we would obtain a formal predictor in the sense
of Definition 2. This predictor might be called “the predictor generated by X”. Strictly
speaking, if the command is given to X at time t, then it would be more proper to call
the resulting predictor “the predictor generated by X at time t”: up until time t, the
observations X makes about the universe might have an effect on the strategy X chooses
to take once commanded to act as a predictor; but as long as we filter X’s sensory input
immediately after giving X the command, no further such observations can so alter X’s
strategy. In short, to use Yampolskiy’s terminology (Yampolskiy, 2012), the act of trying
to predict adversarial sequence evaders is AI-easy.

Thus, any intelligence measure (or taxonomy) for predictors also serves as an intelligence
measure (or taxonomy) for suitably idealized AGIs. Namely: the intelligence level of an
AGI X is equal to the intelligence level of X’s predictor. Of course, a priori, X might
be very intelligent at various other things while being poor at sequence prediction, or vice
versa, so this only approximately captures X’s true intelligence.

Of course, the same could be said for any competency measure on any task: we do not
make any claims that when we measure X’s intelligence via X’s predictor’s performance,
that this is in any sense “the one true intelligence measure”. One could just as well measure
X’s intelligence in terms of the Elo ranking X would obtain if one ordered X to compete at
chess. We would offer two motivations to consider adversarial sequence prediction ability
as a particularly interesting proxy for AGI intelligence measurement:

1. There seem to be high-level connections between intelligence and prediction in
general (Hutter, 2004), of which adversarial sequence prediction is an elegant and
parsimonious example.

2. Adversarial sequence prediction ability is not bounded above, in the sense that for
any particular predictor p, one can easily produce a predictor p+ that learns all the
evaders which p learns and at least one additional evader.

3. Quantifying growth rates of functions

The following is a general and open-ended problem.

Problem 10 Quantify the growth-rate of functions from N to N.

The definition of the original Hibbard measure (Definition 7) can be thought of as
implicitly depending on a specific solution to Problem 10, which we make explicit in the
following definition.

Definition 11 For each m > 0, let fm be as in Definition 7. For each f : N → N, we
define the original Hibbard growth rate H(f) to be min{m > 0 : fm � f} if there is any
such m > 0, and otherwise H(f) =∞.
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In order to generalize the original Hibbard definition in a uniform way, we will rearrange
notation somewhat. We have, in some sense, more notation than necessary, namely the
notation in (Hibbard, 2011) and synonymous notation which is modified to generalize more
readily.

Lemma 12 For every natural m > 0 and every f : N → N, H(f) ≤ m if and only if
fm � f .

Proof Straightforward.

Definition 13 For every m ∈ N, let EHm be the set of all evaders e such that H(te) ≤ m.

Lemma 14 For every natural m > 0, EHm = Efm.

Proof Let e be an evader. By Definition 13, e ∈ EHm if and only if H(te) ≤ m. By Lemma
12, H(te) ≤ m if and only if fm � te. But by Definition 6, this is the case if and only if
e ∈ Efm .

Corollary 15 For every predictor p, the original Hibbard measure of p is equal to the
maximum natural m > 0 such that p learns e whenever e ∈ EHm , or is equal to 0 if there is
no such m, or is equal to ∞ if p learns e whenever e ∈ EHm for all m > 0.

Proof Immediate by Lemma 14 and Definition 7.

In other words, if S is the set of all the m as in Corollary 15, then the original Hibbard
measure of p is the “canonical upper bound” of S, where by the “canonical upper bound”
of a set of natural numbers we mean the maximum element of that set (or ∞ if that set is
unbounded).

Remark 16 Corollary 15 shows that the definition of the original Hibbard measure can
be rephrased in such a way as to show that it depends in a uniform way on a particular
solution to Problem 10, namely on the solution proposed by Definition 11. For any solution
H ′ to Problem 10, we could define evader-sets EH

′
m in a similar way to Definition 13, and,

by copying Corollary 15, we could obtain a corresponding intelligence measure given by H ′

(provided there be some way of choosing canonical bounds of bounded sets in the underlying
number system—if not, we would have to be content with a taxonomy rather than a measure,
a predictor’s intelligence falling into many nested taxa corresponding to many different upper
bounds, just as in Big-O notation a function can simultaneously be O(n2) and O(n3)). This
formalizes what we claimed in the Introduction, that Hibbard’s idea can be decomposed into
two sub-ideas, firstly, that a predictor’s intelligence can be classified in terms of the growth
rates of the runtimes of the evaders it learns, and secondly, a particular method (Definition
11) of measuring those growth rates (i.e., a particular solution to Problem 10).
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3.1 A theoretical note on the difficulty of Problem 10

In this subsection, we will argue that in order for a solution to Problem 10 to be much good,
it should probably measure growth rates using some alternative number system to the real
numbers. Essentially, this is because the real numbers have the Archimedean property (the
property that for any positive real r > 0 and any real y, there is some n ∈ N such that
nr > y), a constraint which does not apply to function growth rates.

Definition 17 Let NN be the set of all functions N → N. A well-behaved real-measure of
NN is a function F : NN → R satisfying the following requirements.

1. (Monotonicity) For each f, g : N→ N, if f � g, then F (f) > F (g).

2. (Nontriviality) For each r ∈ R, there is some f : N→ N such that F (f) > r.

Theorem 18 There is no well-behaved real-measure of NN.

Proof Assume F : NN → R is a well-behaved real-measure of NN. By Nontriviality,
there are f0, f1, . . . : N → N such that each F (fn) > n. Define g : N → N by
g(n) = f0(n) + · · · + fn(n). Clearly, for every n ∈ N, g � fn. By the Archimedean
property of the real numbers, there is some n ∈ N such that n > F (g). By Monotonicity,
F (g) > F (fn), but by choice of fn, F (fn) > n > F (g), a contradiction.

In light of Theorem 18, we are motivated to investigate solutions to Problem 10 using
alternatives to the real numbers, which will yield ASPI measures (or taxonomies) in terms
of those alternatives.

An informal argument could be made that real numbers might be inadequate for
measuring AGI intelligence in general6. It at least seems plausible that there are AGIs
X1, X2, . . . such that each Xi+1 is significantly more intelligent than Xi, and another AGI
Y such that Y is more intelligent than each Xi. At least, if this is not true, it is not obvious
that it is not true, and it seems like it would be nontrivial to argue that it is not true7. Now,
if “significantly more intelligent” implies “at least +1 more intelligent”, then it follows that
the intelligence levels of Y and of X1, X2, . . . could not all be real numbers, or else one of
the Xi would necessarily be more intelligent than Y .

If, as the above argument suggests, the real numbers might potentially be too constrained
to perfectly measure intelligence, what next? How could we measure intelligence other than
by real numbers? A key motivation for the measures and taxonomies we will come up
with below is to provide examples of intelligence measurement using alternative number
systems. It is for this reason that we do not, in this paper, consider variations on Hibbard’s
intelligence measure that arise from simply replacing Liu’s enumeration of the primitive
recursive functions with various other N-indexed lists of functions (for example, the list of
all total computable functions).

6. This argument was pointed out by Alexander (2019b), and by Alexander (2020b) again, the latter amidst
a wider discussion of Archimedean and non-Archimedean measures.

7. To do so would require arguing that ∀X1, X2, . . ., if each Xi+1 is significantly more intelligent than Xi,
then ∀Y , ∃i such that Y is at most as intelligent as Xi.
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4. Big-O and Big-Θ intelligence

One of the most standard solutions to Problem 10 in computer science is to categorize
growth rates of arbitrary functions by comparing them to more familiar functions using
Big-O notation or Big-Θ notation. Knuth (1976) defines these as follows (we modify the
definition slightly because we are only concerned here with functions from N to N).

Definition 19 Suppose f : N→ N. We define the following function-sets.

• O(f(n)) is the set of all g : N → N such that there is some real C > 0 and some
n0 ∈ N such that for all n ≥ n0, g(n) ≤ Cf(n).

• Θ(f(n)) is the set of all g : N → N such that there are some real C > 0 and C ′ > 0
and some n0 ∈ N such that for all n ≥ n0, Cf(n) ≤ g(n) ≤ C ′f(n).

Note that Definition 19 does not measure growth rates, but rather categorizes growth
rates into Big-O and Big-Θ taxonomies. For example, the same function can be both O(n2)
and O(n3), the former taxon being nested within the latter.

By Remark 16, Definition 19 yields the following elegant taxonomy of predictor
intelligence.

Definition 20 Suppose p is a predictor, and suppose f : N→ N.

• We say p has Big-O ASPI measure O(f(n)) if p learns every evader e such that te is
O(f(n)).

• We say p has Big-Θ ASPI measure Θ(f(n)) if p learns every evader e such that te is
Θ(f(n)).

Proposition 21 For any computable function f : N→ N, there is a predictor p with Big-O
ASPI measure O(f(n)) and Big-Θ ASPI measure Θ(f(n)).

Proof Define g : N→ N by g(n) = nf(n) + 1, and let pg be as in the proof of Proposition
8. We claim pg has Big-O ASPI measure O(f(n)). To see this, let e be any evader such
that te is O(f(n)). Thus there is some C ∈ R such that for all-but-finitely-many n ∈ N,
te(n) ≤ Cf(n). It follows that g � te. By the Claim in the proof of Proposition 8, for all-
but-finitely-many n ∈ N, if g(n) > te(n) then xn+1 = yn+1, where (x1, y1, . . .) is the result
of pg playing against e. So in all, with only finitely many exceptions, each xn+1 = yn+1, as
desired. The proof that pg has Big-Θ ASPI measure Θ(f(n)) is similar.

5. ASPI measures based on majorization hierarchies

Majorization hierarchies (Weiermann, 2002) provide ordinal-number-valued measures for
the growth rates of certain functions. A majorization hierarchy depends on many infinite-
dimensional parameters. We will describe two majorization hierarchies up to the ordinal
ε0, using standard choices for the parameters, and the ASPI measures which they produce.
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Definition 22 (Classification of ordinal numbers) Ordinal numbers are divided into three
types:

1. Zero: The ordinal 0.

2. Successor ordinals: Ordinals of the form α+ 1 for some ordinal α.

3. Limit ordinals: Ordinals which are not successor ordinals nor 0.

For example, the smallest infinite ordinal, ω, is a limit ordinal. It is not zero (because
zero is finite), nor can it be a successor ordinal, because if it were a successor ordinal, say,
α+ 1, then α would be finite (since ω is the smallest infinite ordinal), but then α+ 1 would
be finite as well.

Ordinal numbers have an arithmetical structure: two ordinals α and β have a sum α+β,
a product α · β, and a power αβ. It would be beyond the scope of this paper to give the
full definition of these operations. We will only remark that some care is needed because
although ordinal arithmetic is associative—e.g., (α+β) +γ = α+ (β+γ), and similarly for
multiplication—it is not generally commutative: α + β is not always equal to β + α, and
α · β is not always equal to β · α. For this reason, one often sees products like α · 2, which
are not necessarily equivalent to the more familiar 2 · α.

The ordinal ε0 is the smallest ordinal bigger than the ordinals ω, ωω, ωω
ω
, . . .. It satisfies

the equation ε0 = ωε0 and can be intuitively thought of as

ε0 = ωω
ω
..

.

.

Ordinals below ε0 include such ordinals as ω, ωω+1 + ωω + ω5 + 3,

ωω
ωωω

+ ωω
ωω

+ωω·2+1+ω4+3 + ωω
5+ω3

+ ω8 + 1,

and so on. Any ordinal below ε0 can be uniquely written in the form

ωα1 + ωα2 + · · ·+ ωαk

where α1 ≥ · · · ≥ αk are smaller ordinals below ε0—this form for an ordinal below ε0 is
called its Cantor normal form. For example, the Cantor normal form for ωω·2 · 2 +ω · 3 + 2
is

ωω·2 · 2 + ω · 3 + 2 = ωω·2 + ωω·2 + ω1 + ω1 + ω1 + ω0 + ω0.

Definition 23 (Standard fundamental sequences for limit ordinals ≤ ε0) Suppose λ is a
limit ordinal ≤ ε0. We define a fundamental sequence for λ, written (λ[0], λ[1], λ[2], . . .),
inductively as follows.

• If λ = ε0, then λ[0] = ω, λ[1] = ωω, λ[2] = ωω
ω

, and so on.

• If λ has Cantor normal form ωα1 + · · ·+ ωαk where k > 1, then each

λ[i] = ωα1 + · · ·+ ωαk−1 + (ωαk [i]).

11
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• If λ has Cantor normal form ωα+1, then each λ[i] = ωα · i.

• If λ has Cantor normal form ωλ0 where λ0 is a limit ordinal, then each λ[i] = ωλ0[i].

Example 24 (Fundamental sequence examples)

• The fundamental sequence for λ = ω = ω0+1 is ω0 · 0, ω0 · 1, ω0 · 2, . . ., i.e., 0, 1, 2, . . ..

• The fundamental sequence for λ = ω5 is 0, ω4, ω4 · 2, ω4 · 3, . . ..

• The fundamental sequence for λ = ωω is ω0, ω1, ω2, . . ..

• The fundamental sequence for λ = ωω + ω is ωω + 0, ωω + 1, ωω + 2, . . ..

Definition 25 (The standard slow-growing hierarchy up to ε0) We define functions gβ :
N→ N (for all ordinals β ≤ ε0) by transfinite induction as follows.

• g0(n) = 0.

• gα+1(n) = gα(n) + 1 if α+ 1 ≤ ε0.

• gλ(n) = gλ[n](n) if λ ≤ ε0 is a limit ordinal.

Here are some early levels in the slow-growing hierarchy, spelled out in detail.

Example 26 (Early examples of functions in the slow-growing hierarchy)

1. g1(n) = g0+1(n) = g0(n) + 1 = 0 + 1 = 1.

2. g2(n) = g1+1(n) = g1(n) + 1 = 1 + 1 = 2.

3. More generally, for all m ∈ N, gm(n) = m.

4. gω(n) = gω[n](n) = gn(n) = n.

5. gω+1(n) = gω(n) + 1 = n+ 1.

6. More generally, for all m ∈ N, gω+m(n) = n+m.

7. gω·2(n) = g(ω·2)[n](n) = gω+n(n) = n+ n = n · 2.

Following Example 26, the reader should be able to fill in the details in the following
example.

Example 27 (More examples from the slow-growing hierarchy)

1. gω2(n) = n2.

2. gω3(n) = n3.

3. gωω(n) = nn.

4. gωω·3+1+ω+5(n) = n3n+1 + n+ 5.

12
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5. gωωω (n) = nn
n

.

What about gε0? Thinking of ε0 as

ωω
ω
..

.

,

one might expect gε0(n) to be

nn
n
..

.

,

but such an infinite tower of natural number exponents makes no sense if n > 1. Instead,
the answer defies familiar mathematical notation.

Example 28 (Level ε0 in the slow-growing hierarchy) The values of gε0 are as follows:

• gε0(0) = 0.

• gε0(1) = 11.

• gε0(2) = 222.

• gε0(3) = 333
3

.

• And so on.

Examples 26–28 illustrate how the slow-growing hierarchy systematically provides a
family of reference functions against which any particular function can be compared. This
yields a solution to Problem 10: we can declare the growth rate of an arbitrary function
f : N → N to be the smallest ordinal β < ε0 such that gβ � f (or ∞ if there is no such
β). For any bounded set S of ordinals, there is a canonical upper bound for S, namely, the
supremum of S. Thus we obtain an ASPI measure (not just a taxonomy).

Definition 29 If p is a predictor, the ASPI measure of p given by the standard slow-
growing hierarchy up to ε0 is defined to be the supremum of S (or ∞ if ε0 ∈ S), where S is
the set of all ordinals α ≤ ε0 such that the following condition holds: for every evader e, if
gα � te, then p learns e.

In Definition 25, in the successor ordinal case, we chose to define gα+1(n) = gα(n) + 1.
The resulting majorization hierarchy is referred to as slow-growing because in some sense
this makes gα+1 just barely faster-growing than gα. Different definitions of gα+1 would yield
different majorization hierarchies, such as the following.

Definition 30 (The standard fast-growing hierarchy up to ε0, also known as the Wainer
hierarchy) We define functions hβ : N→ N (for all ordinals β ≤ ε0) by transfinite induction
as follows.

• h0(n) = n+ 1.

13
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• hα+1(n) = hnα(n), where hnα is the nth iterate of hα (so h1
α(x) = hα(x), h2

α(x) =
hα(hα(x)), h3

α(x) = hα(hα(hα(x))), and so on).

• hλ(n) = hλ[n](n) if λ is a limit ordinal ≤ ε0.

The functions in the fast-growing hierarchy grow quickly as α grows. It can be shown
(Wainer and Buchholz, 1987) that for every computable function f whose totality can be
proven from the axioms of Peano arithmetic, there is some α < ε0 such that hα � f .

Definition 31 If p is a predictor, the ASPI measure of p given by the standard fast-growing
hierarchy up to ε0 is defined to be the supremum of S (or ∞ if ε0 ∈ S), where S is the set of
all ordinals α ≤ ε0 such that the following condition holds: for every predictor e, if hα � te,
then p learns e.

Proposition 32 For each α < ε0, there is a predictor p (resp. q) whose ASPI measure
given by the standard slow-growing (resp. fast-growing) hierarchy up to ε0 is ≥ α.

Proof Similar to the proof of Proposition 8.

Between Definitions 29 and 31, the former offers a finer granularity intelligence measure
for the predictors to which it assigns non-∞ intelligence, but the latter assigns non-∞
intelligence to more intelligent predictors.

Definitions 25 and 30 are only two examples of majorization hierarchies. Both the slow-
and fast-growing hierarchies can be extended by extending the fundamental sequences of
Definition 23 to larger ordinals8, however, the larger the ordinals become, the more difficult
it is to do this, and especially the less clear it is how to do it in any sort of canonical way.
There are also other choices for how to proceed at successor ordinal stages besides gα+1(n) =
gα(n) + 1 or hα+1(n) = hnα(n)—for example, one of the oldest majorization hierarchies is
the Hardy hierarchy (Hardy, 1904), where Hα+1(n) = Hα(n + 1). And even for ordinals
up to ε0, there are other ways to choose fundamental sequences besides how we defined
them in Definition 23—choosing non-canonical fundamental sequences can drastically alter
the resulting majorization hierarchy (Weiermann, 1997). All these different majorization
hierarchies yield different ASPI measures.

5.1 A remark about ASPI measures and AGI intelligence

All the ASPI measures and taxonomies we have defined so far double as indirect intelligence
measures and taxonomies for an AGI, by the argument we made in Subsection 2.1.

For a given AGI X, a priori, we cannot say much about the predictor which X would
act as if X were commanded to act as a predictor. But there is one particularly elegant
and parsimonious strategy which X might use, a brute force strategy, namely:

• Enumerate all the computable functions f which X knows to be total, and for each
one, attempt to predict the evader e by assuming that the evader’s runtime te satisfies

8. Remarkably, the slow-growing hierarchy eventually catches up with the fast-growing hierarchy if both
hierarchies are extended to sufficiently large ordinals (Wainer, 1989; Girard, 1981), a beautiful illustration
of how counter-intuitive large ordinal numbers can be.
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f � te. If the evader proves not to be so majorized (by differing from every computable
function whose runtime is so majorized), then move on to the next known total
function f , and continue the process.

We do not know for certain which predictor X would imitate when commanded to act as a
predictor, but it seems plausible that X would use this brute force strategy or something
equivalent.

For an AGI X who uses the above brute force strategy, ASPI measures of X’s
intelligence would be determined by X’s knowledge, namely, by the runtime complexity
of the computable functions which X knows to be total. Furthermore, the most natural
way for X to know totality of functions with large runtime complexity, is for X to know
fundamental sequences for large ordinal numbers, and produce said functions by means of
majorization hierarchies9. This suggests a connection between

1. ASPI measures like that of Definition 31, and

2. intelligence measures based on which ordinals the AGI knows (Alexander, 2019b).

Indeed, Alexander (2020a) has argued that the task of notating large ordinals is one which
spans the entire range of intelligence. This is reminiscent of Chaitin’s proposal to use
ordinal notation as a goal intended to facilitate evolution—“and the larger the ordinal, the
fitter the organism” (Chaitin, 2011)—and Good’s observation (Good, 1969) that iterated
Lucas-Penrose contests boil down to contests to name the larger ordinal.

6. Hyperreal numbers and surreal numbers

In this section, we will exhibit an abstract ASPI taxonomy based on hyperreal numbers and
an abstract ASPI measure based on surreal numbers. We do not assume previous familiarity
with either of these number systems.

6.1 The hyperreal ASPI taxonomy

In this subsection, we will begin by considering growth rate comparison, which is a strictly
simpler problem than growth rate measurement (our proposed solution will then lead to a
numerical growth rate measure anyway). Given two functions f and g, does f outgrow g or
does f not outgrow g? We would like to say that f outgrows g if and only if f(n) > g(n)
for “a majority of” n ∈ N, but it is not clear what “majority” should mean. Certainly if
f(n) > g(n) for all but finitely many n ∈ N, it should be safe to say f outgrows g, and if
f(n) ≤ g(n) for all but finitely many n ∈ N, it should be safe to say f does not outgrow
g. But what if there are infinitely many n ∈ N such that f(n) > g(n), and infinitely many
n ∈ N such that f(n) ≤ g(n)?

Adapting the key insight from Alexander (2019a), consider each n ∈ N to be a voter in
an election to determine whether or not f outgrows g. Each n votes based on whether or
not f(n) > g(n). For example, 532 is a voter in this election. If f(532) > g(532), then 532

9. It may be possible for an AGI to be contrived to know totality of functions that are larger than the
functions produced by majorization hierarchies up to ordinals the AGI knows about, but we conjecture
that that is not the case for AGIs not so deliberately contrived.
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casts her vote for “f outgrows g”; otherwise, 532 casts her vote for “f does not outgrow g”.
This reduces the outgrowth problem to an election decision problem: f shall be considered
to outgrow g if and only if “f outgrows g” gets a winning bloc of votes.

We need to decide what it means for a set N ⊆ N to constitute a winning bloc of votes.
We reason as follows.

• ∅ should not be a winning bloc: if no-one votes for you, you lose.

• If N1 is a winning bloc and N1 ⊆ N2, then N2 should be a winning bloc: if you were
already winning, and additional voters switch their votes to you, you should still win.

• For any N ⊆ N, either N should be a winning bloc, or its complement N c = N\N
should be a winning bloc: however the election goes, either you win or your opponent
wins.

• We should insist on the outgrowth relation being transitive: if f outgrows g and g
outgrows h, then f should outgrow h. Suppose that

Nfg = {n ∈ N : f(n) > g(n)},
Ngh = {n ∈ N : g(n) > h(n)}, and

Nfh = {n ∈ N : f(n) > h(n)}.

Clearly Nfg ∩ Ngh ⊆ Nfh but, a priori, we cannot say more: one can find functions
f, g, h such that Nfg ∩ Ngh = Nfh. Thus, in order to ensure transitivity of the
outgrowth relation, we should insist on the following requirement. Whenever N1 and
N2 are winning blocs, then N1 ∩N2 should be a winning bloc.

• We could trivially satisfy the above requirements, namely: we could choose some
n0 ∈ N and declare that N ⊆ N is a winning bloc if and only if n0 ∈ N . In electoral
terms, this would amount to making n0 a dictator, whose vote decides the election
regardless how anyone else votes. In terms of the outgrowth relation, this would
amount to declaring that f outgrows g if and only if f(n0) > g(n0). That would be
a poor method of comparing growth rates. Thus, we should insist that {n0} is not a
winning bloc for any n0 ∈ N.

Is it possible to satisfy all the above requirements, or are they too demanding? It turns
out it is possible. In fact, the above requirements are exactly the requirements of a free
ultrafilter, an important device from mathematical logic.

Definition 33 An ultrafilter on N (or more simply an ultrafilter) is a set U of subsets of
N such that:

1. ∅ 6∈ U .

2. For every N1 ∈ U , for every N2 ⊆ N, if N1 ⊆ N2, then N2 ∈ U .

3. For every N ⊆ N, either N ∈ U or N c ∈ U .

4. (∩-closure) For every N1, N2 ∈ U , N1 ∩N2 ∈ U .
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An ultrafilter is free if it does not contain any singleton {n0} (n0 ∈ N).

Clearly a free ultrafilter is exactly a notion of winning blocs meeting all our requirements.
The following theorem is well-known in mathematical logic, and we state it without proof.

Theorem 34 Free ultrafilters exist.

Theorem 34 is profound because it is counter-intuitive that there should be a non-
dictatorial method of determining election winners satisfying ∩-closure. To see how counter-
intuitive ∩-closure is, suppose that in 2021 the Dog party wins the presidency and in 2022
the Cat party wins the presidency (with the same voters every year and no other parties).
Call a voter a “Dog-to-Cat switcher” if they vote Dog in 2021 and Cat in 2022. The ∩-
closure property says in order to win in 2023, it would be enough to get just the Dog-to-Cat
switchers’ votes and no others. For more on infinite-voter elections and free ultrafilters, and
especially their interplay with Arrow’s impossibility theorem, see Kirman and Sondermann
(1972).

For the remainder of the section, let U be a free ultrafilter. Unfortunately, logicians have
shown that, though free ultrafilters exist, it is impossible to concretely exhibit one. More
precisely, all known proofs of Theorem 34 are non-constructive (using non-constructive set-
theoretic axioms such as the Axiom of Choice) and logicians have proven that Theorem 34
cannot be proved constructively.

Definition 35 Suppose f, g : N→ R. We say f >U g if

{n ∈ N : f(n) > g(n)} ∈ U .

In other words: if U is thought of as a black box deciding which subsets of N are winning
blocs, then f >U g if and only if “f outgrows g” wins the election when each n ∈ N votes for
“f outgrows g” or “f does not outgrow g” depending whether f(n) > g(n) or f(n) ≤ g(n)
respectively.

Lemma 36 >U is transitive.

Proof Suppose f, g, h : N → R are such that f >U g and g >U h, we must show f >U h.
Let

Nfg = {n ∈ N : f(n) > g(n)},
Ngh = {n ∈ N : g(n) > h(n)}, and

Nfh = {n ∈ N : f(n) > h(n)}.

Since f >U g, Nfg ∈ U . Since g >U h, Ngh ∈ U . By ∩-closure, Nfg ∩ Ngh ∈ U . Clearly
Nfg ∩Ngh ⊆ Nfh, so, by (2) of Definition 33, Nfh ∈ U , that is, f >U h.

We will now explain how Definition 35 leads to a numerical growth rate measure and,
in turn, an ASPI taxonomy. We will show that by coming up with Definition 35, we have
actually done much of the work of the so-called ultrapower construction of the hyperreal
number system, studied in the field of non-standard analysis (Robinson, 1974; Goldblatt,
2012).
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Definition 37 (Compare Definition 35) Suppose f, g : N→ R. We say f ≡ g if

{n ∈ N : f(n) = g(n)} ∈ U .

In other words, f ≡ g if “f = g” wins the election (as decided by U) when each n ∈ N votes
for “f = g” or “f 6= g” depending whether f(n) = g(n) or f(n) 6= g(n) respectively.

Lemma 38 The relation ≡ (from Definition 37) is an equivalence relation.

Proof Symmetry and reflexivity are trivial. The proof of transitivity is similar to Lemma
36.

Definition 39 The hyperreal numbers, written ∗R, are the equivalence classes of ≡. For
every f : N→ R, write f̂ for the hyperreal number (i.e., the ≡-equivalence class) containing
f . We endow ∗R with arithmetic and order as follows (where f, g : N→ R):

• We define addition on ∗R by declaring that f̂ + ĝ = ĥ where h(n) = f(n) + g(n).

• We define multiplication on ∗R by declaring that f̂ · ĝ = ĥ where h(n) = f(n)g(n).

• We order ∗R by declaring that f̂ > ĝ if and only if f >U g (Definition 35).

The following is well-known and we state it without proof.

Theorem 40 The addition, multiplication, and ordering in Definition 39 are well-defined,
and they make ∗R an ordered field.

With this machinery, we now have a trivial hyperreal solution to Problem 10.

Definition 41 (The hyperreal solution to Problem 10) For any function f : N → N, the
hyperreal growth rate of f is the hyperreal number f̂ .

Because of the non-constructive nature of free ultrafilters, the following notions are even
less practical than the measures in the previous sections. However, they could potentially
be useful for proving theoretical properties about the intelligence of predictors.

Definition 42 Suppose p is a predictor and e is an evader. Let (x1, y1, x2, y2, . . .) be the
result of p playing against e. We say p U-learns e if

{n ∈ N : p(x1, . . . , xn) = e(y1, . . . , yn)} ∈ U

(or equivalently: {n ∈ N : yn+1 = xn+1} ∈ U). In other words, p U-learns e if “p learns e”
wins the election (according to U) when every n ∈ N votes for “p learns e” or “p does not
learn e” depending whether or not p(x1, . . . , xn) = e(y1, . . . , yn).

In the following definition, rather than assigning a particular hyperreal number
intelligence to every predictor, rather, we categorize predictors into a taxonomy. This is
necessary because there is no way of choosing canonical bounds of bounded sets of hyperreal
numbers in general. For lack of a way of choosing a particular bound, we are forced to
consider many taxa corresponding to many bounds.
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Definition 43 (The hyperreal ASPI taxonomy) Let p be a predictor and let f̂ be a hyperreal
number. We say that p has hyperreal ASPI intelligence at least f̂ if and only if the following
condition holds: for every evader e, if the hyperreal growth rate of te is < f̂ , then p U-learns
e.

Now we would like to state an analog of Proposition 8 for hyperreal ASPI intelligence,
but before we can do that, we need to state the following lemma. This lemma is well-known
so we state it without proof.

Lemma 44 For any N ∈ U , for any finite N0 ⊆ N, the difference N\N0 is in U .

Proposition 45 For any computable function f : N → N, there is a predictor which has
hyperreal ASPI intelligence at least f̂ .

Proof Let pf be as in the proof of Proposition 8. We claim pf has hyperreal ASPI

intelligence at least f̂ . To see this, assume e is an evader such that the hyperreal growth
rate of te is < f̂ , we will show pf U-learns e.

Let (x1, y1, x2, y2, . . .) be the result of pf playing against e. Let

N1 = {n ∈ N : f(n) > te(n)},
N2 = {n ∈ N1 : pf (x1, . . . , xn) = e(y1, . . . , yn)},
N3 = {n ∈ N : pf (x1, . . . , xn) = e(y1, . . . , yn)}.

By the Claim in the proof of Proposition 8, for all-but-finitely-many n ∈ N, if f(n) > te(n),
then xn+1 = yn+1, i.e., pf (x1, . . . , xn) = e(y1, . . . , yn). In other words, N2 = N1\N0 for
some finite N0 ⊆ N.

Since the hyperreal growth rate of te is < f̂ , N1 ∈ U . Since N2 = N1\N0, by Lemma 44
we have N2 ∈ U . Since N2 ⊆ N3, it follows that N3 ∈ U , that is, pf U-learns e, as desired.

Whereas we showed in Proposition 9 that the original Hibbard measure is already
non-computable, we conjecture that the hyperreal ASPI taxonomy is even harder (in a
computability theoretical sense).

We mention in passing that there are other ways to approach non-standard analysis
(Hrbacek and Katz, 2020), where the free ultrafilter dependency is replaced by a dependency
on a model of a certain set of axioms.

6.2 The surreal ASPI measure

In Definition 43, we had to content ourselves with an ASPI taxonomy rather than an ASPI
measure, because there is no canonical way of choosing a preferred bound for a bounded
set of hyperreals. In this section, we will consider another number system, the surreal
numbers (Conway, 2000; Knuth, 1974; Ehrlich, 2012), in which the hyperreal numbers can
be embedded. By embedding the hyperreals within the surreals, our hyperreal solution to
Problem 10 yields a surreal solution to Problem 10, via the embedding. Unlike the hyperreal
numbers, the surreal numbers do admit a canonical way of choosing preferred bounds for
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bounded sets. Thus, our surreal solution to Problem 10 will yield an ASPI measure, not
just a taxonomy.

Formally defining the surreal numbers involves nuances touching the foundations of
mathematics, so we will only sketch the definition here. Suppose we take the following as
the guiding principle in creating a number system:

• For every set L of lower bounds in our number system, and every set R of upper bounds
in our number system, with L < R (by which we mean ` < r for all ` ∈ L, r ∈ R), we
want there to exist a canonical number L < x < R (i.e., a canonical number x such
that ` < x < r for all ` ∈ L, r ∈ R).

To simplify things, since this guiding principle only requires the existence of these canonical
numbers, we can assume no other numbers exist, only such canonical numbers. Thus,
every number in the resulting system can, recursively, be identified with a pair (L,R) of
sets of numbers, L < R. Notationally, we use {L|R} as a name for the canonical number
L < {L|R} < R between L and R, whenever L < R are sets of numbers. There are two
tricky issues with this idea:

1. A number in this number system we are building might have multiple names, so we
cannot simply take the numbers to be their names. Instead, it is necessary to take
the numbers to be equivalence classes of names. What should it mean for two names
to be equivalent?

2. If {xL|xR} and {yL|yR} are (names of) two numbers x, y (respectively) in this number
system we are building (so xL < xR and yL < yR are sets of numbers in said number
system), what does it mean to say x < y? This question seems somewhat circular,
because in order for {xL|xR} to be a valid name in the first place already requires
that xL < xR (i.e., that ` < r whenever ` ∈ xL, r ∈ xR).

To answer issue 2, we ask ourselves: what does it mean for the canonical number x between
xL and xR to be less than the canonical number y between yL and yR? With some thought,
it seems a natural way to (recursively) answer this question is to declare x < y if and only
if one of the following holds:

• There is some y′ ∈ yL such that x ≤ y′, or

• There is some x′ ∈ xR such that x′ ≤ y.

Having answered (2), we can answer (1) by declaring that two names {xL|xR} and {yL|yR}
(of x and y respectively) are equivalent if x 6< y and y 6< x.

Carrying out the above definition in full formality is tricky, because the < relation
and the equivalence relation have to be defined by simultaneous recursion in terms of each
other. To give the formal definition here would be beyond the scope of this paper10. The
equivalence classes of the above equivalence relation are called surreal numbers. It is possible
to define addition and multiplication on them in such a way that, along with the ordering
< already defined, the surreal numbers satisfy the axioms of an ordered field.

10. Technically, < and the equivalence relation are not actually relations at all, because their universes are
not sets. For this and other reasons, the formal construction of the surreals is usually carried out in
transfinitely many stages, such that at any particular stage, the surreals constructed so far form a set.
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Example 46 (Examples of surreal numbers)

• Taking L = R = ∅ yields the surreal number named {∅|∅}, usually abbreviated {|}. It
can be shown this is the surreal 0 (i.e., the unique surreal additive identity).

• Let L = {0}, R = ∅, where 0 is as above. This yields the surreal named {{0}|}. It
can be shown this is the surreal 1 (i.e., the unique multiplicative identity).

• Let L = {1}, R = ∅, where 1 is as above. This yields the surreal number named
{{1}|}. It can be shown this is 2 (i.e., 1 + 1).

• In the same way, one can obtain surreal numbers 3, 4, 5, . . ..

• Let L = {0, 1, 2, . . .} (as above), R = ∅. This yields the surreal named {{0, 1, 2, . . .}|}.
This surreal represents the smallest infinite ordinal number, ω, considered as a surreal.

• With 0 and 1 as above, {{0}|{1}} names a surreal strictly between 0 and 1. It can be
shown to be 1

2 (i.e., that its product with 2 is 1).

• With 0 and 1
2 as above, {{0}|{1

2}} names a surreal strictly between 0 and 1
2 . It can be

shown to be 1
4 .

• Similarly, one can construct surreals 1
8 ,

1
16 , . . ..

• With 0 and 1
2 ,

1
4 ,

1
8 , . . . as above, {{0}|{1

2 ,
1
4 ,

1
8 , . . .}} names a surreal larger than 0

but smaller than every 1
2 ,

1
4 ,

1
8 , . . .. This shows that the surreals include infinitesimals.

This particular infinitesimal can be shown to be 1/ω, in the sense that when multiplied
by ω, the result is 1.

The reader might object that if we let L be the set of all surreals, then {L|} seems to
name a surreal larger than all surreals, which would be absurd. This paradox is avoided
because in fact the class of all surreals is not a set, but a proper class11.

It can be shown that for any free ultrafilter U , the hyperreals constructed using U
can be embedded into the surreals. This allows us to transform our hyperreal solution to
Problem 10 into a surreal solution. Unfortunately, there are many different ways to embed
the hyperreals into the surreals, none of them canonical, so while our hyperreal solution
already depends arbitrarily on a free ultrafiler, our surreal solution further depends on an
arbitrary embedding.

Definition 47 (The surreal solution to Problem 10) Suppose U is a free ultrafilter and ∗R
is the corresponding hyperreal number system (Definition 39). Let ι be an embedding of ∗R
into the surreals. For any function f : N→ N, the surreal growth rate of f (given by U and
ι) is ι(f̂) where f̂ is the hyperreal growth rate of f (Definition 41).

The payoff of doing this is that there is a canonical way to pick a particular bound of a
bounded set of surreals, so the surreal solution to Problem 10 provides an ASPI measure,
not just an ASPI taxonomy.

11. It can be shown that the ordinal numbers can be embedded in the surreals, and so the non-sethood of the
class of surreals is strictly weaker than the non-sethood of the class of ordinals. The latter non-sethood
is referred to as the Burali-Forti paradox.
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Definition 48 (The surreal ASPI measure) Let U be a free ultrafilter, let ∗R be the
corresponding hyperreal number system, and let ι be an embedding of ∗R into the surreals.
Let ι(∗R) be the range of ι. For every predictor p, the surreal ASPI measure of p (given
by U and ι) is defined to be the surreal with name {L|}, where L is the set of all surreal
numbers ` ∈ ι(∗R) such that the following condition holds: for every evader e, if the surreal
growth rate of te is < `, then p U-learns e.

Note that in Definition 48, we require ` ∈ ι(∗R) because otherwise L would not be a set.

7. Pros and cons of different ASPI measures and taxonomies

Here are pros and cons of the ASPI measures and taxonomies which arise from different
solutions to the problem (Problem 10) of measuring the growth rate of functions.

• The original Hibbard measure (Definition 7), which arises by measuring growth rate
by comparing a function with Liu’s enumeration (Liu, 1960) of the primitive recursive
functions:

– Pro: Relatively concrete.

– Pro: Measures intelligence using a familiar number system (the natural numbers).

– Con: The numbers which the measure outputs are not very meaningful, in that
predictor p having a measure of +1 higher than predictor q tells us little about
how much more computationally complex the evaders which p learns are, versus
the evaders which q learns.

– Con: Only distinguishes sufficiently non-intelligent predictors; all predictors
sufficiently intelligent receive measure ∞.

• Big-O/Big-Θ (Definition 20), in which, rather than directly measuring the intelligence
of a predictor, instead, we would talk of a predictor’s intelligence being O(f(n)) or
Θ(f(n)) for various functions f : N→ N:

– Pro: Nearly perfect granularity (slightly coarser than perfect granularity because
of the constants C,C ′ in Definition 19).

– Pro: Computer scientists already use Big-O/Big-Θ routinely and are comfortable
with them.

– Con: A non-numerical taxonomy.

• Intelligence based on a majorization hierarchy such as the standard slow- or fast-
growing hierarchy up to ε0 (Definitions 29 and 31):

– Pro: A numerical measure, albeit less granular than the Big-O/Big-Θ tax-
onomies.

– Pro: Relatively concrete.

– Pro: The numbers which the measure outputs are meaningful, in the sense that
the degree to which a predictor p is more intelligent than a predictor q is reflected
in the degree to which p’s intelligence-measure is larger than q’s.
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– Con: The numbers which the measure outputs are ordinal numbers, which may
be unfamiliar to some users.

– Con: Only distinguishes sufficiently non-intelligent predictors; for any particular
majorization hierarchy, all predictors sufficiently intelligent receive measure ∞.

• Hyperreal intelligence (Definition 43):

– Pro: A taxonomy like Big-O/Big-Θ, but with the added benefit that the taxons
are numerical.

– Pro: Perfect granularity.

– Con: Depends on a free ultrafilter (free ultrafilters exist but cannot be concretely
exhibited).

• Surreal intelligence (Definition 48):

– Pro: An actual numerical measure (not just a taxonomy), with perfect
granularity.

– Con: The numbers which the measure outputs are surreal numbers, which are
relatively new and thus unfamiliar, and are difficult to work with in practice.

– Con: Depends on both a free ultrafilter and also an embedding of the resulting
hyperreals into the surreals.

8. Conclusion

To summarize:

• Hibbard (2011) proposed an intelligence measure for predictors in games of adversarial
sequence prediction.

• We argued that Hibbard’s idea actually splits into two orthogonal sub-ideas. First:
that intelligence can be measured via the growth-rates of the run-times of evaders that
a predictor can learn to predict. Second: that such growth-rates can be measured in
one specific way (involving an enumeration of the primitive recursive functions). We
argued that there are many other ways to measure growth-rates, and that each method
of measuring growth-rates yields a corresponding adversarial sequence prediction
intelligence (ASPI) measure or taxonomy.

• We considered several specific ways of measuring growth-rates of functions, and
exhibited corresponding ASPI measures and taxonomies. The growth-rate-measuring
methods which we considered were: Big-O/Big-Θ notation; majorization hierarchies;
hyperreal numbers; and surreal numbers.

• We also discussed how the intelligence of adversarial sequence predictors can be
considered as an approximation of the intelligence of idealized AGIs.
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