
Reward-Punishment Symmetric
Universal Intelligence

Samuel Allen Alexander1 and Marcus Hutter2

1 The U.S. Securities and Exchange Commission samuelallenalexander@gmail.com

https://philpeople.org/profiles/samuel-alexander/publications
2 DeepMind & AMU http://www.hutter1.net/

Abstract. Can an agent’s intelligence level be negative? We extend the
Legg-Hutter agent-environment framework to include punishments and
argue for an affirmative answer to that question. We show that if the
background encodings and Universal Turing Machine (UTM) admit cer-
tain Kolmogorov complexity symmetries, then the resulting Legg-Hutter
intelligence measure is symmetric about the origin. In particular, this im-
plies reward-ignoring agents have Legg-Hutter intelligence 0 according to
such UTMs.

Keywords: Universal intelligence · Intelligence measures · Reinforce-
ment learning.

1 Introduction

In their paper [LH07], Legg and Hutter write:

“As our goal is to produce a definition of intelligence that is as broad
and encompassing as possible, the space of environments used in our
definition should be as large as possible.”

So motivated, we investigate what would happen if we extended the universe of
environments to include environments with rewards from Q ∩ [−1, 1] instead of
just from Q∩ [0, 1] as in Legg and Hutter’s paper. In other words, we investigate
what would happen if environments are not only allowed to reward agents but
also to punish agents (a punishment being a negative reward).

We discovered that when negative rewards are allowed, this introduces a
certain algebraic structure into the agent-environment framework. The main
objection we anticipate to our extended framework is that it implies the negative
intelligence of certain agents3. We would argue that this makes perfect sense
when environments are capable of punishing agents: if the intelligence level of a

3 Thus, this paper falls under the broader program of advocating for intelligence mea-
sures having different ranges than the nonnegative reals. Alexander has advocated
more extreme extensions of the range of intelligence measures [Ale20] [AH21]; by con-
trast, here we merely question the assumption that intelligence never be negative,
leaving aside the question of whether intelligence should be real-valued.

2 S. A. Alexander & M. Hutter

reinforcement learning agent is a measure of its ability to extract large rewards
on average across many environments, then an agent who instead extracts large
punishments should have a negative intelligence level.

This paper advances the practical pursuit of AGI by suggesting (in Section 4)
certain symmetry constraints which would narrow down the space of background
UTMs, thereby refining at least one approach to intelligence measurement. In
particular these constraints are one answer to Leike and Hutter, who asked: “But
what are other desirable properties of a UTM?” [LH15].

The structure of the paper is as follows:

– In Section 2, we give preliminary definitions.
– In Section 3, we introduce what we call the dual of an agent and of an

environment, and prove some algebraic theorems about these.
– In Section 4, we show the existence of UTMs yielding Kolmogorov com-

plexities with certain symmetries, and show that the resulting Legg-Hutter
intelligence measures are symmetric too.

– In Section 5 we consider the absolute value of Legg-Hutter intelligence as an
alternative intelligence measure.

– In Section 6, we summarize and make concluding remarks, including re-
marks about how these ideas might be applied to certain other intelligence
measures.

2 Preliminaries

In defining agent and environment below, we attempt to follow Legg and Hutter
[LH07] as closely as possible, except that we permit environments to output
rewards from Q∩ [−1, 1] rather than just Q∩ [0, 1] (and, accordingly, we modify
which well-behaved environments to restrict our attention to).

Throughout the paper, we implicitly fix a finite set A of actions, a finite set
O of observations, and a finite set R ⊆ Q∩ [−1, 1] of rewards (so each reward is
a rational number between −1 and 1 inclusive), with |A| > 0, |O| > 0, |R| > 0.
We assume that R has the following property: whenever R contains any reward
r, then R also contains −r. We assume A, O, and R are mutually disjoint
(i.e., no reward is an action, no reward is an observation, and no action is an
observation). By 〈〉 we mean the empty sequence.

Definition 1 (Agents, environments, etc.)

1. By (ORA)∗ we mean the set of all finite sequences starting with an observa-
tion, ending with an action, and following the pattern “observation, reward,
action, ...”. We include 〈〉 in this set.

2. By (ORA)∗OR we mean the set of all sequences of the form s _ o _ r
where s ∈ (ORA)∗, o ∈ O and r ∈ R (_ denotes concatenation).

3. By an agent, we mean a function π with domain (ORA)∗OR, which as-
signs to every sequence s ∈ (ORA)∗OR a Q-valued probability measure,
written π(•|s), on A. For every such s and every a ∈ A, we write π(a|s) for
(π(•|s))(a). Intuitively, π(a|s) is the probability that agent π will take action
a in response to history s.

Reward-Punishment Symmetric Universal Intelligence 3

4. By an environment, we mean a function µ with domain (ORA)∗, which
assigns to every s ∈ (ORA)∗ a Q-valued probability measure, written µ(•|s),
on O×R. For every such s and every (o, r) ∈ O×R, we write µ(o, r|s) for
(µ(•|s))(o, r). Intuitively, µ(o, r|s) is the probability that environment µ will
issue observation o and reward r to the agent in response to history s.

5. If π is an agent, µ is an environment, and n ∈ N, we write V πµ,n for the
expected value of the sum of the rewards which would occur in the sequence
(o0, r0, a0, . . . , on, rn, an) randomly generated as follows:

(a) (o0, r0) ∈ O × R is chosen randomly based on the probability measure
µ(•|〈〉).

(b) a0 ∈ A is chosen randomly based on the probability measure π(•|o0, r0).

(c) For each i > 0, (oi, ri) ∈ O ×R is chosen randomly based on the proba-
bility measure µ(•|o0, r0, a0, . . . , oi−1, ri−1, ai−1).

(d) For each i > 0, ai ∈ A is chosen randomly based on the probability
measure π(•|o0, r0, a0, . . . , oi−1, ri−1, ai−1, oi, ri).

6. If π is an agent and µ is an environment, let V πµ = limn→∞ V πµ,n. Intuitively,
V πµ is the expected total reward which π would extract from µ.

Note that it is possible for V πµ to be undefined. For example, if µ is an
environment which always issues reward (−1)n in response to the agent’s nth
action, then V πµ is undefined for every agent π. This would not be the case if
rewards were required to be≥ 0, so this is one way in which allowing punishments
complicates the resulting theory.

Definition 2 An environment µ is well-behaved if µ is computable and the
following condition holds: for every agent π, V πµ exists and −1 ≤ V πµ ≤ 1.

Note that reward-space [0, 1] can be transformed into punishment-space [−1, 0]
either via r 7→ −r or via r 7→ r− 1. An advantage of r 7→ −r is that it preserves
well-behavedness of environments (we prove this below in Corollary 7)4.

4 It is worth mentioning another difference between these two transforms. The hypo-
thetical agent AIµ with perfect knowledge of the environment’s reward distribution
would not change its behavior in response to r 7→ r − 1 (nor indeed in response to
any positive linear scaling r 7→ ar + b, a > 0), but it would generally change its
behavior in response to r 7→ −r. Interestingly, this behavior invariance with respect
to r 7→ r − 1 would not hold if AIµ were capable of “suicide” (deliberately ending
the environmental interaction): one should never quit a slot machine that always
pays between 0 and 1 dollars, but one should immediately quit a slot machine that
always pays between −1 and 0 dollars. The agent AIXI also changes behavior in
response to r 7→ r − 1, and it was recently argued that this can be interpreted in
terms of suicide/death: AIXI models its environment using a mixture distribution
over a countable class of semimeasures, and AIXI’s behavior can be interpreted as
treating the complement of the domain of each semimeasure as death, see [MEH16].

4 S. A. Alexander & M. Hutter

3 Dual Agents and Dual Environments

In the Introduction, we promised that by allowing environments to punish agents,
we would reveal algebraic structure not otherwise present. The key to this addi-
tional structure is the following definition.

Definition 3 (Dual Agents and Dual Environments)

1. For each sequence s, let s be the sequence obtained by replacing every reward
r in s by −r.

2. Suppose π is an agent. We define a new agent π, the dual of π, as follows:
for each s ∈ (ORA)∗OR, for each action a ∈ A,

π(a|s) = π(a|s).

3. Suppose µ is an environment. We define a new environment µ, the dual of
µ, as follows: for each s ∈ (ORA)∗, for each observation o ∈ O and reward
r ∈ R,

µ(o, r|s) = µ(o,−r|s).

Lemma 4 (Double Negation) If x is a sequence, agent, or environment, then
x = x.

Proof. Follows from the fact that for every real number r, −− r = r. ut

Theorem 5 Suppose µ is an environment and π is an agent. Then

V πµ = −V πµ

(and the left-hand side is defined if and only if the right-hand side is defined).

Proof. By Definition 1 part 6, it suffices to show that for each n ∈ N, V πµ,n =
−V πµ,n. For that, it suffices to show that for every s ∈ ((ORA)∗)∪((ORA)∗OR),
the probability X of generating s using π and µ (as in Definition 1 part 5) equals
the probability X ′ of generating s using π and µ. We will show this by induction
on the length of s.

Case 1: s is empty. Then X = X ′ = 1.
Case 2: s terminates with an action. Then s = t _ a for some t ∈ (ORA)∗OR.

Let Y (resp. Y ′) be the probability of generating t (resp. t) using π and µ (resp.

π and µ). We reason: X = π(a|t)Y = π(a|t)Y = π(a|t)Y by definition of π. By
induction, Y = Y ′, so X = π(a|t)Y ′, which by definition is X ′.

Case 3: s terminates with a reward. Similar to Case 2. ut

Corollary 6 For every agent π and environment µ,

V πµ = −V πµ

(and the left-hand side is defined if and only if the right-hand side is defined).

Reward-Punishment Symmetric Universal Intelligence 5

Proof. If neither side is defined, then there is nothing to prove. Assume the
left-hand side is defined. Then

V πµ = V πµ (Lemma 4)

= −V πµ , (Theorem 5)

as desired. A similar argument holds if we assume the right-hand side is defined.
ut

Corollary 7 For every environment µ, µ is well-behaved if and only if µ is
well-behaved.

Proof. We prove the ⇒ direction, the other is similar. Since µ is well-behaved,
µ is computable, so clearly µ is computable. Let π be any agent. Since µ is well-
behaved, V πµ is defined and −1 ≤ V πµ ≤ 1. By Corollary 6, V πµ = −V πµ is defined,
implying −1 ≤ V πµ ≤ 1. By arbitrariness of π, this shows µ is well-behaved. ut

4 Symmetric Intelligence

Agent π acts as agent π would act if π confused punishments with rewards and
rewards with punishments. Whatever ingenuity π applies to maximize rewards,
π applies that same ingenuity to maximize punishments. Thus, if Υ measures
intelligence as performance averaged in some way5, it seems natural that we
might expect the following property to hold (∗): that whenever Υ (π) 6= 0, then
Υ (π) 6= Υ (π). Indeed, one could argue it would be strange to hold that π manages
to extract (say) positive rewards on average, and at the same time hold that π
(which uses π to seek punishments) extracts the exact same positive rewards
on average. To be clear, we do not declare (∗) is an absolute law, we merely
opine that (∗) seems reasonable and natural. Now, assuming (∗), we can offer an
informal argument for a stronger-looking symmetry property (∗∗): that Υ (π) =
−Υ (π) for all π. The informal argument is as follows. Let π be any agent. Imagine
a new agent ρ which, at the start of every environmental interaction, flips a coin
and commits to act as π for that whole interaction if the coin lands heads, or to
act as π for the whole interaction if the coin lands tails. Probabilistic intuition
suggests Υ (ρ) = 1

2 (Υ (π) +Υ (π)), so if Υ (ρ) = 0 then Υ (π) = −Υ (π). But maybe
the reader doubts Υ (ρ) = 0. In that case, define ρ′ in the same way except
swap “heads” and “tails”. It seems there is no way to meaningfully distinguish
ρ from ρ′, so it seems we ought to have Υ (ρ) = Υ (ρ′). But to swap “heads”
and “tails” is the same as to swap “π” and “π”. Thus ρ′ = ρ. Thus Υ (ρ) 6= 0
would contradict (∗). In conclusion, while we do not declare it an absolute law,
we do consider (∗∗) natural and reasonable, at least if Υ measures intelligence
as performance averaged in some way. In this section, we will show that Legg
and Hutter’s universal intelligence measure satisfies (∗∗), provided a background
UTM and encoding are suitably chosen.

5 Note that measuring intelligence as averaged performance might conflict with certain
everyday uses of the word “intelligent”, see Section 5.

6 S. A. Alexander & M. Hutter

We write 2∗ for the set of finite binary strings. We write f :⊆ A → B to
indicate that f has codomain B and that f ’s domain is some subset of A.

Definition 8 (Prefix-free universal Turing machines)

1. A partial computable function f :⊆ 2∗ → 2∗ is prefix-free if the following
requirement holds: ∀p, p′ ∈ 2∗, if p is a strict initial segment of p′, then f(p)
and f(p′) are not both defined.

2. A prefix-free universal Turing machine (or PFUTM) is a prefix-free partial
computable function U :⊆ 2∗ → 2∗ such that the following condition holds.
For every prefix-free partial computable function f :⊆ 2∗ → 2∗, ∃y ∈ 2∗

such that ∀x ∈ 2∗, f(x) = U(y _ x). In this case, we say y is a computer
program for f in programming language U .

Environments do not have domain ⊆ 2∗, and they do not have codomain
2∗. Rather, their domain and codomain are (ORA)∗ and the set of Q-valued
probability measures on O ×R, respectively. Thus, in order to talk about their
Kolmogorov complexities, one must encode said inputs and outputs. This low-
level detail is usually implicit, but we will need (in Theorem 11) to distinguish
between different kinds of encodings, so we must make the details explicit.

Definition 9 By an RL-encoding we mean a computable function u : (ORA)∗∪
M → 2∗ (where M is the set of Q-valued probability-measures on O ×R) such
that for all x, y ∈ (ORA)∗ ∪M (with x 6= y), u(x) is not an initial segment of
u(y). We say u is suffix-free if for all x, y ∈ (ORA)∗ ∪M (with x 6= y), u(x)
is not a terminal segment of u(y). We write pxq for u(x).

Note that in Definition 9, it makes sense to encode M because O and R
are finite (Section 2). Notice that suffix-freeness is, in some sense, the reverse
of prefix-freeness. The existence of encodings that are simultaneously prefix-free
and suffix-free is well-known. For example, elements of the range of u could
be composed of 8-bit blocks (bytes), such that every element of the range of u
begins and ends with the ASCII closed-bracket characters [and], respectively,
and such that these closed-brackets do not appear anywhere in the middle.

Definition 10 (Kolmogorov Complexity) Suppose U is a PFUTM and u is an
RL-encoding.

1. For each computable environment µ, the Kolmogorov complexity of µ given
by U,u, written KuU (µ), is the smallest n ∈ N such that there is some com-
puter program of length n, in programming language U , for some function
f :⊆ 2∗ → 2∗ such that for all s ∈ (ORA)∗, f(psq) = pµ(•|s)q (note this
makes sense since the domain of u in Definition 9 is (ORA)∗ ∪M).

2. We say U is symmetric in its u-encoded-environment cross-section (or sim-
ply that U is u-symmetric) if KuU (µ) = KuU (µ) for every computable envi-
ronment µ.

Theorem 11 For every suffix-free RL-encoding u, there exists a u-symmetric
PFUTM.

Reward-Punishment Symmetric Universal Intelligence 7

Proof. Let U0 be a PFUTM, we will modify U0 to obtain a u-symmetric PFUTM.
For readability’s sake, write POS for 0 and NEG for 1. Thinking of U0 as a
programming language, we define a new programming language U as follows.
Every program in U must begin with one of the keywords POS or NEG. Outputs
of U are defined as follows.

– U(POS _ x) = U0(x).
– To compute U(NEG _ x), find s ∈ (ORA)∗ such that x = y _ psq for

some y (if no such s exists, diverge). Note that s is unique by suffix-freeness
of u. If U0(y _ p s q) = pmq for some Q-valued probability-measure m on
O×R, then let U(NEG _ x) = pm q where m(o, r) = m(o,−r). Otherwise,
diverge.
• Informally: If x appears to be an instruction to plug s into computer

program y to get a probability measure µ(•|s), then instead plug s into
y and flip the resulting probability measure so that the output ends up
being the flipped version of µ(•|s), i.e., µ(•|s).

By construction, whenever POS _ y is a U -computer program for a function f
satisfying f(psq) = pµ(•|s)q, NEG _ y is an equal-length U -computer program
for a function g satisfying g(psq) = pµ(•|s)q, and vice versa. It follows that U is
u-symmetric. ut

The proof of Theorem 11 proves more than required: any PFUTM can be
modified to make a u-symmetric PFUTM if u is suffix-free. In some sense, the
construction in the proof of Theorem 11 works by eliminating bias: reinforcement
learning itself is implicitly biased in its convention that rewards be positive and
punishments negative. We can imagine a pessimistic parallel universe where RL
instead follows the opposite convention, and the RL in that parallel universe is
no less valid than the RL in our own. To be unbiased in this sense, a computer
program defining an environment should specify which of the two RL conventions
it is operating under (hence the POS and NEG keywords). This trick of using
an initial bit to indicate reward-reversal was previously used in [LV13].

Definition 12 Let W be the set of all well-behaved environments. Let W = {µ :
µ ∈W}.

Definition 13 For every PFUTM U , RL-encoding u, and agent π, the Legg-
Hutter universal intelligence of π given by U,u, written ΥuU (π), is

ΥuU (π) =
∑
µ∈W

2−K
u
U (µ)V πµ .

The sum defining ΥuU (π) is absolutely convergent by comparison with the
summands defining Chaitin’s constant (hence the prefix-free UTM requirement).
Thus a well-known theorem from calculus says the sum does not depend on which
order the µ ∈W are enumerated.

Legg-Hutter intelligence has been accused of being subjective because of its
UTM-sensitivity [LH15] [HO15] [Hib09]. More optimistically, UTM-sensitivity

8 S. A. Alexander & M. Hutter

could be considered a feature, reflecting the existence of many kinds of intelli-
gence. It could be used to measure intelligence in various contexts, by choosing
UTMs appropriately. One could even use it to measure, say, chess intelligence,
by choosing a UTM where chess-related environments are easiest to program.

Theorem 14 (Symmetry about the origin) For every RL-encoding u, every u-
symmetric PFUTM U , and every agent π,

ΥuU (π) = −ΥuU (π).

Proof. Compute:

ΥuU (π) =
∑
µ∈W

2−K
u
U (µ)V πµ (Definition 13)

= −
∑
µ∈W

2−K
u
U (µ)V πµ (Corollary 6)

= −
∑
µ∈W

2−K
u
U (µ)V πµ (U is u-symmetric)

= −
∑
µ∈W

2−K
u
U (µ)V πµ (Change of variables)

= −
∑
µ∈W

2−K
u
U (µ)V πµ (By Corollary 7, W = W)

= −ΥuU (π). (Definition 13)

ut

The above desideratum, that Υ (π) = −Υ (π), applies to numerical intelligence
measures. If one is merely interested in binary intelligence comparators (such
as those in [Ale19]), the desideratum can be weakened into a non-numerical
comparator form: If π is more intelligent than ρ, then π should be less intelligent
than ρ. The following corollary addresses this desideratum.

Corollary 15 For every RL-encoding u, every u-symmetric PFUTM U , for all
agents π and ρ, if ΥuU (π) > ΥuU (ρ) then ΥuU (π) < ΥuU (ρ).

Proof. By Theorem 14 and basic algebra. ut

The following corollary addresses another obvious desideratum. This corol-
lary is foreshadowed in [LV13].

Corollary 16 Let u be an RL-encoding, let U be a u-symmetric PFUTM and
suppose π is an agent which ignores rewards (by which we mean that π(•|s) does
not depend on the rewards in s). Then ΥuU (π) = 0.

Proof. The hypothesis implies π = π, so by Theorem 14, ΥuU (π) = −ΥuU (π). ut

Reward-Punishment Symmetric Universal Intelligence 9

Corollary 16 illustrates why it is appropriate, for purposes of Legg-Hutter
universal intelligence, to choose a u-symmetric PFUTM6. Consider an agent πa
which blindly repeats a fixed action a ∈ A. For any particular environment µ,
where πa earns total reward r by blind luck, that total reward should be cancelled
by µ, where that blind luck becomes blind misfortune and πa earns total reward
−r (Corollary 6). If KuU (µ) 6= KuU (µ), the different weights 2−K

u
U (µ) 6= 2−K

u
U (µ)

would prevent cancellation.

We conclude this section with an exercise, suggesting how the techniques of
this paper can be used to obtain other structural results.

Exercise 17 (Permutations)

1. For each permutation P : A → A of the action-space, for each sequence s,
let Ps be the result of applying P to all the actions in s. For each agent π,
let Pπ be the agent defined by Pπ(a|s) = π(Pa|Ps). For each environment
µ, let Pµ be the environment defined by Pµ(o, r|s) = µ(o, r|Ps). Show that
in general V πµ = V PπP−1µ and V Pπµ = V πPµ.

2. Say PFUTM U is u-permutable if KuU (µ) = KuU (Pµ) for every computable
environment µ and permutation P : A → A. Show that if u is suffix-free
then any given PFUTM can be transformed into a u-permutable PFUTM.

3. Show that if U is a u-permutable PFUTM, then ΥuU (Pπ) = ΥuU (π) for every
agent π and permutation P : A → A.

4. Modify this exercise to apply to permutations of the observation-space.

5 Whether to take absolute values

Definition 13 assigns negative intelligence to agents who consistently minimize
rewards. This is based on the desire to measure performance: agents who con-
sistently minimize rewards have poor performance. One might, however, argue
that |ΥuU (π)| would be a better measure of the agent’s intelligence: if mathe-
matical functions could have desires, one might argue that when ΥuU (π) < 0, we
should give π the benefit of the doubt, assume that π desires punishment, and
conclude π is intelligent. This would more closely align with Bostrom’s orthog-
onality thesis [Bos12]. In the same way, a subject who answers every question
wrong in a true-false IQ test might be considered intelligent: answering every
question wrong is as hard as answering every question right, and we might give
the subject the benefit of the doubt and assume they meant to answer wrong7.
Rather than take a side and declare one of ΥuU or |ΥuU | to be the better measure,

6 An answer to Leike and Hutter’s [LH15] “But what are other desirable properties of
a UTM?”

7 To quote Socrates: “Don’t you think the ignorant person would often involuntar-
ily tell the truth when he wished to say falsehoods, if it so happened, because he
didn’t know; whereas you, the wise person, if you should wish to lie, would always
consistently lie?” [Pla97]

10 S. A. Alexander & M. Hutter

we consider them to be two equally valid measures, one of which measures per-
formance and one of which measures the agent’s ability to consistently extremize
rewards (whether consistently positively or consistently negatively).

If one knew that π’s Legg-Hutter intelligence were negative, one could derive
the same benefit from π as from π: just flip rewards. This raises the question:
given π, can one computably determine sgn(ΥuU (π))? Or more weakly, is there
a procedure which outputs sgn(ΥuU (π)) when ΥuU (π) 6= 0 (but, when ΥuU (π) = 0,
may output a wrong answer or get stuck in an infinite loop)? One can easily
contrive non-u-symmetric PFUTMs where sgn(ΥuU (π)) is computable from π—
in fact, without the u-symmetry requirement, one can arrange that ΥuU (π) is
always positive, by arranging that ΥuU (π) is dominated by a low-K environment
that blindly gives all agents +1 total reward. On the other hand, one can contrive
a u-symmetric PFUTM such that sgn(ΥuU (π)) is not computable from π even in
the weak sense8. We leave it an open question whether there is any u-symmetric
PFUTM U where sgn(ΥuU (π)) is computable (in the strong or weak sense).

6 Conclusion

By allowing environments to punish agents, we found additional algebraic struc-
ture in the agent-environment framework. Using this, we showed that certain
Kolmogorov complexity symmetries yield Legg-Hutter intelligence symmetry.

In future work it would be interesting to explore how these symmetries man-
ifest themselves in other Legg-Hutter-like intelligence measures [Gav13] [Goe06]
[HOD10]. The precise strategy we employ in this paper is not directly applica-
ble to prediction-based intelligence measurement [Hib11] [AH21] [Gam21], but
a higher-level idea still applies: an intentional mis-predictor underperforms a
0-intelligence blind guesser.

Acknowledgments

We acknowledge José Hernández-Orallo, Shane Legg, Pedro Ortega, and the
reviewers for comments and feedback.

References

[AH21] Samuel Allen Alexander and Bill Hibbard. Measuring intelligence and growth
rate: Variations on Hibbard’s intelligence measure. JAGI, 12(1):1–25, 2021.

8 Arrange that Υu
U is dominated by µ and µ̄ where µ is an environment that initially

gives reward .01, then waits for the agent to input the code of a Turing machine T ,
then (if the agent does so), gives reward −.51, then gives rewards 0 while simulating
T until T halts, finally giving reward 1 if T does halt. Then if sgn(Υu

U (π)) were
computable (even in the weak sense), one could compute it for strategically-chosen
agents and solve the Halting Problem.

Reward-Punishment Symmetric Universal Intelligence 11

[Ale19] Samuel Allen Alexander. Intelligence via ultrafilters: structural properties of
some intelligence comparators of deterministic Legg-Hutter agents. JAGI,
10(1):24–45, 2019.

[Ale20] Samuel Allen Alexander. The Archimedean trap: Why traditional reinforce-
ment learning will probably not yield AGI. JAGI, 11(1):70–85, 2020.

[Bos12] Nick Bostrom. The superintelligent will: Motivation and instrumental ratio-
nality in advanced artificial agents. Minds and Machines, 22(2):71–85, 2012.

[Gam21] David Gamez. Measuring intelligence in natural and artificial systems. Jour-
nal of Artificial Intelligence and Consciousness, 2021.

[Gav13] Vaibhav Gavane. A measure of real-time intelligence. JAGI, 4(1):31–48, 2013.
[Goe06] Ben Goertzel. Patterns, hypergraphs and embodied general intelligence. In

IJCNNP. IEEE, 2006.
[Hib09] Bill Hibbard. Bias and no free lunch in formal measures of intelligence. JAGI,

1(1):54, 2009.
[Hib11] Bill Hibbard. Measuring agent intelligence via hierarchies of environments.

In CAGI, 2011.
[HO15] José Hernández-Orallo. C-tests revisited: Back and forth with complexity. In

CAGI, 2015.
[HOD10] José Hernández-Orallo and David L Dowe. Measuring universal intelligence:

Towards an anytime intelligence test. AI, 174(18):1508–1539, 2010.
[LH07] Shane Legg and Marcus Hutter. Universal intelligence: A definition of ma-

chine intelligence. Minds and machines, 17(4):391–444, 2007.
[LH15] Jan Leike and Marcus Hutter. Bad universal priors and notions of optimality.

In Conference on Learning Theory, pages 1244–1259. PMLR, 2015.
[LV13] Shane Legg and Joel Veness. An approximation of the universal intelligence

measure. In Algorithmic Probability and Friends: Bayesian Prediction and
Artificial Intelligence, pages 236–249. Springer, 2013.

[MEH16] Jarryd Martin, Tom Everitt, and Marcus Hutter. Death and suicide in uni-
versal artificial intelligence. In CAGI, 2016.

[Pla97] Plato. Lesser Hippias. In John M Cooper, Douglas S Hutchinson, et al.,
editors, Plato: complete works. Hackett Publishing, 1997.

