Self-graphing equations

July 4, 2013
Y

Can you find an zy-equation that, when graphed, writes itself on the plane?
This idea became internet-famous when a Wikipedia article on Tupper’s self- F(X/ Y) = 1
referential formula went viral in 2012. Under scrutiny, the question has two
flaws: it is meaningless (it depends on fonts) and it is trivial. To see the latter, €
let F: R? — {0,1} be the function such that the graph F(z,y) = 1 is given by Figure 1:

Figure 1. The equation F'(z,y) = 1 is self-graphing by construction. (Objection: The graph used to de-
this equation is not in closed form! But what does that mean? Closed form is fine F: R2 — {0,1}.
not a formally defined, or universally agreed upon, notion [2].) In Section 1 we Tt consists of thirteen
fix these two flaws by formalizing the problem. In Sections 2 and 3 we use math- Jine segments—two ver-
ematical logic to prove existence of self-graphing equations in a conceptual way tjcal, five horizontal and
(no messy details required). The proof resembles the abstract proof that there gjx diagonal—and two
are self-printing computer programs (or quines). Bézier curves, arranged

in a particular layout.

1 Formalization

“What was a compelling proof in 1810 may well not be now; what is a fine closed form in 2010
may have been anathema a century ago.”—J. Borwein and R. Crandall [2]

Definition 1. If A # () is a finite alphabet, let A<N be the set of finite strings from A. By a notion of
equations we mean a finite alphabet A together with a graphing function Gr: A<N — 22(R?) assigning to
every 0 € A<N a subset Gr(c) of R? called the graph of .

If A contains symbols z, y, 2, +, =, and 1, Gr(z? + y? = 1) might (or might not) be the unit circle in
R%. Gr(y = +) might (or might not) be the empty set, or even an error message written on the plane.

Definition 2. By a glyphed notion of equations we mean a triple (A4, Gr, Gl) where (A, Gr) is a notion of
equations and Gl: A — £([0,1]?) is an injective function assigning to each a € A a distinct Gl(a) C [0, 1]?
called the glyph of a.

If A contains a symbol X, GI(X) might (or might not) be the union of the line segment from (0,0) to
(1,1) and the line segment from (0, 1) to (1,0).

Definition 3. If X CR? and n € R, let X_,,, = {(x +n,y) : (x,y) € X} be the result of translating X to
the right by n units. Let (A, Gr, Gl) be a glyphed notion of equations. For each finite string o = 0q...0, in
AN let Gl(o) € Z(R x [0,1]) be the union

Gl(op)—o U -+ UGl(on)—n-

Thus Gl(o) is the result of writing o out in the zy-plane, using the glyphs of A and writing from left to
right starting at the origin.

Definition 4. Given a glyphed notion (A, Gr, Gl) of equations, a self-graphing equation is a string o € A<N
such that Gr(o) = Gl(0o).

Disregarding canonicity, one can arbitrarily choose a glyphed notion of equations and go to work. Say
that o is weakly self-graphing if Gr(o) is a translation of Gl(o) after rescaling some symbols. With enough
arbitrary choices, constructing weakly self-graphing equations is doable. Jakub Travnik found [7] such an
equation (or rather, an inequality) in three evenings. Tupper claims [9] such an inequality with arithmetic,
floors, moduli, absolute values, and ~1800 decimal digits (see Figure 2). Would 500 digits suffice? Are
absolute values necessary? (Incidentally, it was a simpler inequality of Tupper’s, from [8] or [5], that went
viral. Despite the name Tupper’s self-referential formula, it is not self-referential. Its graph includes all
possible j x 17 bitmaps, and the formula is merely one. Tupper’s actual self-referentials [9] are less known.)

o 1234557s9°>||_x]-99|e|-|1-lmd(l,-e1112“‘l"l"“"flPJ«“:',zJJI-||~2[-:::-551)+9095]-|_md|:[y+|112'55"""':lP*'”“"l"éﬂ'1923f‘°:"'“'":“l*l'lPst5',2]"4[,.&11]-(1319 —dig‘il’- GOI’lSt&llt)|
]

L’GBS‘BSBS?S'}'}BQ&S.‘ Y T1E501105 190451335792 DEZITPEL0ESD: CEE YT LA S eSS TR0 SEE Y EEC 1 93 EEEEER0T PHE0TESYYIE L 120 EEETESY PTTHIYECEE0
SE01VI0SYPE 1EE J0EE YOG 1ZZEVEZES 1D IYETERE EE ANV EEEE RO EOOYEE SR 1Z2E 16V E 1180 1IEYE 1S A0S EEOHYOIEE0S Y EE 106 1EIECE 1ZS S0 E0A I4Z 10145 237EE
SAFEI0FTOEIEHZZ0EY Ti7TE 1391661053501 B4 P I AE I O E R EEEE S POV 1EZ I Ve O S e O e S A E R e eV 11 EEE S S I S0EEERE FEE 1M PP 18205V IFE QY0 L1EEEPEY L

02 1FE0E 195212094 15 1730193 PFE0ESPIELEZAEY: ZEPEE0SE1V ZEEHITET C1EO4EZEEEYI1EE 7 4 ESe AEE e A 1 S0EY AZE0E0EEERE0Z20SEY01E 1ZE2TEE127VEY D

10E0EEEEEY 1SS0 EHHYY P2 33 1 104 HETEEY T REEE AOZEZEOZYE AITO0ED: EEZE VI AEAGEHEHEYI0SE 1007 ISEESEVIOHESSOPEEEY 1 IEHEEYTEEYSE0E 1EEEE0NEE
TAIFEOHIZEESAE] 5 1EZ47E199 1 187HEH04 70 GETHZETD EEED: AYEPFZEFH Y11 12 A1 VS0 1SV L1 aEEET AT S AYS0ZAFEE PSS TTE 16 123
SEE 1YY IHZHZ0OY 1053 10513 93EE3EEVIRREE VTV E7IIE07HET! ZZHEITTY ZEEH TP EEEEEEE IR IS ZEVH IO 1504 I ASE 1 VE0EY0E 11950 R0ET T TOGY 1612
SUESHOYETIGTTEEL FECOWI A0S0 1S0EETEPES FAA107E0ZE: EE0AT0E L CEEZ0E I4EE 1E0SY FOESEE 1ICSEEHYY S PO PEEHEESE 1EETEZ IEEEE 10230 1 ZEHEEZEHE0
1Z7VEEESZ IHSAVETET TEFIZEFAHEE 14 1SEEVTILE 173 3E%Z09a0! TEFE1EEY FAHATEHZEZE0OOYOEZS 1ZE0EE 110S1S09SSE03EY 1AFE2EE 1270 1SYE I4E 123306 13930
SHEZVOITEITISEETPL ETHETIESITET IS T4 T 103 FEE0FTY ZHY I3 1E Y ZEHEISEOHEER1E I IEY 1ZHE PHETE IS E0Z0EEY 107E 6712206 19EY01EEE Y 1524 1982
0S4 FEEE A L0S04FE00E I a4 ZEE00E 71 FEETESTPEE 1B EE 1GE0SFE0ATEYS: ZEAEZEIEY0 1194 E 1EF007 10EEEY P Z 1 G004 EAH007 1GHE 1 1 A4 0E0ZE S AP A4S 200963215
G2AIYEE01 7001023190232 183 7EE 77 TH111929:: YZEZZ 42 a4 1625 VEFIIE0FEEYEY PO LTIHESHSHI0SSE0CYY TP 1R EESE 1SEE 12012 10VETHOSES 122016
0418701719200 1054070127 e EEa9E e FE 00 I4E 0T 22 1 ZE e A0EY P o8PV 17 aEEEEE TR e EHZE ZREPEHOSEHY ZHEH 1117HPEESE D IEETEE 107000927 I RITETET 1413220

Figure 2: An inequality (and its graph, rearranged) due to Jeff Tupper (used with his kind permission).

2 A Constructive Existence Proof

For self-containment, we will informally describe some computability theoretical notions. For rigorous details
see [1], [6], or any computability theory textbook. Casually, a Turing machine is a finite set of states and rules
according to which an automaton reads and writes values (from some alphabet) on an infinitely long tape.
Mike Davey recently filmed a physical model of Turing machines [3]. Such machines can do any computation
that can be described by an effective, unambiguous algorithm. This computational power is independent of
arbitrary choices such as the particular alphabet printed on the tape. In the following definition we exploit
that alphabetic freedom.

Definition 5. (See Figure 3) Let A be a finite nonempty alphabet, _ ¢ A a blank symbol. An A-Turing
machine is a Turing machine over alphabet A U {_}. We fix an effective ordering of the A-Turing machines
and write T2 for the nth one. For each n, ¢2 denotes the following function. The domain of ¢/ is
{o € A<N: TA halts on input ¢}. For ¢ € domain(¢?), ¢ (c) € A<N is the output of T4 on input 0. A
function f: CA<N — A<N (ie., f: X — A<N for some X C A<N) is computable if f = ¢ for some n (we
call n a code for f), and f is total computable if in addition domain(f) = A<N. The notions of computability
and total computability extend to functions f: CN — A<N and f: C N — N by identifying N with A<N via
some canonical bijection.

Figure 3: An A-Turing machine in action.
We will show the following condition is sufficient for existence of self-graphing equations.

Definition 6. A glyphed notion & = (A, Gr, Gl) of equations is Turing complete if there is a computable
(i.e. given by an effective non-ambiguous algorithm) function f: N — A<N such that Vn € N, if T4 halts on
input () then Gr(f(n)) = Gl(p2(0)). (If T2 runs forever on input), the output of f(n) is unimportant.)

Thus, <7 is Turing complete if there is an algorithm that takes (the index of) an A-Turing machine 7}
and produces an equation f(n) whose graph is the output of 74 if 74 halts when run on empty input (if
not, f(n) can be anything, but must be defined). Hereafter, when we say that a machine halts, we mean it
halts on empty input.

There do exist Turing complete glyphed notions of equations not too far from our intuition of Cartesian
equations. In Section 3 we sketch an argument that such a notion is provided by basic arithmetic, decimal
digits, absolute values, and infinite series or products.

Theorem 1. For any Turing complete glyphed notion & = (A, Gr, Gl), there is a self-graphing equation.

To prove Theorem 1 we will use two theorems from computability theory.

Informally, one thinks of algorithms as being made of

very simple instructions like “Add 1 to a” or “Goto line 1. Take input n.

20”. Glossed informally, computability theory’s Smn The- 2. Let x be (a code of) the algorithm:
orem says that it is safe for algorithms to include complex 1’. Take input m.
meta-instructions of the form “Let 2 be (a numerical encoding 2”. Ignore m. Run A on input n.
of) the following algorithm: ...”. To avoid detour, we only 3. Output z.

formally state one special case. Loosely speaking, if we have
an algorithm Ay for f: CN — A<N_ then we can form the
algorithm in Figure 4.

Figure 4: Pseudocode for a special case of
the Smn Theorem.

Lemma 2. (The Smn Theorem, special case) For any total computable f: N — A<N| there is a total
computable F': N — N such that Vn, (p?(n)(ﬁ)) = f(n).

We will also use the Recursion Theorem, surely one of computability theory’s most treasured jewels.
Informally, it says it is safe for algorithms to include self-referential meta-instructions of the form “Let x be
a numerical code for this algorithm.”

Lemma 3. (The Recursion Theorem) For any total computable F': N — N there is some n € N such that
A A
Yn = Prn)

Note that the function g@ﬁ given by Lemma 3 is not necessarily total. A fun informal way to see this is
as follows. Using the informal interpretations of Lemmas 2 and 3, there is a function p2: CA<N — A<N
(given by Lemma 3) with the following pseudocode: “Take input m. Ignore m. Let x be a code for this
algorithm. Simulate 77! on empty input. If it halts with output y, then output the next A-string after y
lexicographically.” What is ¢/ (0)? If it exists, it is the next string after o2 (@). Impossible.

Proof of Theorem 1. Since <7 is Turing complete, there is a total computable f: N — A<N such that Vn € N,
if 2 (0) is defined then Gr(f(n)) = Gl(p2(0)).

By Lemma 2, let F: N — N be total computable such that Vn € N, @I’é(n)((b) = f(n). By Lemma 3, there
is some n € N such that ¢ = goé(n). In particular,

pa(0) = 90}3(”)((?)) = f(n) is defined. (*)

Let o = f(n), then

= Gl(¢2(0)) (By * and choice of f)
= Gl(f(n)) (By *)
= Gl(o).
By Definition 4, o is a self-graphing equation. O

Theorem 1 is constructive up to applying the Smn Theorem and the Recursion Theorem. It turns out
that these two computability theoretical theorems are themselves fully constructive, making Theorem 1 fully
constructive as well. In principle, one could design an algorithm to take specifications of Turing complete
glyphed notions of equations and mechanically generate self-graphing equations from them.

3 A Turing Complete Notion of Equations

Let A ={ay,...,an} be a finite alphabet with symbols for arithmetic, decimal digits, absolute values, and
infinite series or products. For o € A<V, if ¢ is a grammatically correct xy-equation, let Gr(c) be its graph
in the ordinary sense. For grammatically incorrect o, let Gr(o) be some nonempty subset (e.g. an error

message) of the left half-plane, this will ensure Theorem 1 produces a grammatically correct equation. The
graph of
(@) + (1 -z~ [1-z)*=0

is the line segment from (0,0) to (1,0); using this it is easy to find equations for line segments with rational
endpoints. Such line segments can be combined to design glyphs (based on typography) such that Va € A
there is an equation L,(z,y) € A<V (not involving infinite series or products) with Gr(L.(,y)) = Gl(a).

Arithmetic can be used to simulate propositional logic: zy = 0 if and only if t =0or y =0; 22+ 92 =0
if and only if z = 0 and y = 0; and (see [4]) 0°" = 0 if and only if 2 # 0. Infinite series or products can
simulate logical quantifiers ranging over N, for example

0 otherwise.

oo .
Hof(i)2 _ { 1if Vo e N, f(l’) =0,
i=0

To see (A, Gr, Gl) is Turing complete, we must convince ourselves there is an algorithm that, given n € N,
produces an equation f(n) € A<N such that if T4 halts then Gr(f(n)) = Gl(¢2(0)). We can say more: there
is a fixed equation fo € (AU {n})<N (where n is a special new symbol) such that if we define f(n) to be
the result of replacing n by (the decimal digits for) n in fy, then f works. By the previous paragraph,
it suffices to find a logical formula 6(z,y,n) in the language of arithmetic and absolute values, with all
quantifiers ranging over N, such that for all z,y € R and n € N, 6(x,y,n) is true if and only if 7! halts and
(z,y) € Gl(¢2(0)). Such a formula is as follows (we use \/Q;l (k) to abbreviate “¢(1) or ...or ¥(N)”):

Im € N such that T2 halts after < m steps and 3¢ € N such that \/,CN:1 (ak is the ¢th symbol of
02 (0), and L, (x — £,y) holds [i.e., (z,y) lies in Gl(ak)_,g]).

That the subclauses “T4 halts after < m steps” and “ay is the £th symbol of 2 (())” can really be formalized
with only arithmetic, absolute values, and quantifiers ranging over N, follows from a course in first-order
mathematical logic [1].

References

[1] S. Bilaniuk, A Problem Course in Mathematical Logic, self-published, 1991, available at
http://euclid.trentu.ca/math/sb/pcml/pcml-16.pdf.

[2] J. Borwein, R. Crandall, Closed Forms: What They Are and Why We Care, Notices Amer. Math. Soc. 60
(2013) 50-65.

[3] M. Davey, A Turing Machine, Webpage published in March 2010 (accessed 30 June 2013), available at
http://aturingmachine.com/

[4] D. Knuth, Two notes on notation, Amer. Math. Monthly 99 (1992) 403-422.
[5] Self-answering Problems, Math Horizons 13 (2006) 19.
[6] M. Sipser, Introduction to the Theory of Computation, PWS Publishing, 1997.

[7] J. Travnik, Self Referential Formula in Math. Webpage published 23 Jun 2011 (accessed 6 June 2013),
available at http://jtra.cz/stuff/essays/math-self-reference/index.html

[8] J. Tupper, Reliable Two-Dimensional Graphing Methods for Mathematical Formulae with Two Free
Variables, in Proceedings of the 28th annual conference on Computer graphics and interactive techniques,
ACM, 2001, 77-86.

[9] J. Tupper, Index of /selfplot. Webpage (accessed 6 June 2013),
available at http://www.peda.com/selfplot/

