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Abstract. We propose that, for the purpose of studying theoretical
properties of the knowledge of an agent with Artificial General Intel-
ligence (that is, the knowledge of an AGI), a pragmatic way to define
such an agent’s knowledge (restricted to the language of Epistemic Arith-
metic, or EA) is as follows. We declare an AGI to know an EA-statement
φ if and only if that AGI would include φ in the resulting enumeration
if that AGI were commanded: “Enumerate all the EA-sentences which
you know.” This definition is non-circular because an AGI, being capa-
ble of practical English communication, is capable of understanding the
everyday English word “know” independently of how any philosopher
formally defines knowledge; we elaborate further on the non-circularity
of this circular-looking definition. This elegantly solves the problem that
different AGIs may have different internal knowledge definitions and yet
we want to study knowledge of AGIs in general, without having to study
different AGIs separately just because they have separate internal knowl-
edge definitions. Finally, we suggest how this definition of AGI knowledge
can be used as a bridge which could allow the AGI research community
to import certain abstract results about mechanical knowing agents from
mathematical logic.

Keywords: AGI · machine knowledge · quantified modal logic

1 Introduction

It is difficult to define knowledge, or what it means to know something. In Plato’s
dialogues, again and again Socrates asks people to define knowledge1, and no-
one ever succeeds. Neither have philosophers reached consensus even in our own
era [15].

At the same time, the problem is often brushed aside as something only
philosophers care about: pragmatists rarely spend time on this sort of debate.
One exception is in the study of agents with Artificial General Intelligence (AGIs,
or Type II AIs in the terminology of [7]), where even the staunchest pragmatists
admit the importance of the question.

In this paper, we narrow down the question “what is knowledge” and offer
a simple answer within that narrow context: we propose a definition of what

1 Perhaps the best example being in the Theaetetus [18].
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it means for a suitably idealized AGI to know a mathematical sentence2 in the
language of Epistemic Arithmetic [21] (hereafter EA). EA is the language of
Peano Arithmetic along with an additional modal operator K for knowledge. To
be precise:

– EA-terms are built up from variables x, y, . . . and a constant symbol for 0,
the unary function symbol S for the successor function, and binary function
symbols for addition and multiplication.

– EA-formulas are built up from atomic EA-formulas (which are of the form
s = t where s and t are EA-terms), propositional connectives→,¬, universal
quantifiers ∀x,∀y, . . ., existential quantifiers ∃x,∃y, . . ., and modal operator
K.

The EA-sentence K(1 + 1 = 2) might be read “I know 1 + 1 = 2” or “the
knower knows 1 + 1 = 2”. Our proposed definition is parsimonious (at the price
of appearing deceptively circular). We say that an AGI knows an EA-sentence φ
if and only if φ would be among the sentences which that AGI would enumerate
if that AGI were commanded:

“Enumerate all the EA-sentences which you know.”

This is non-circular because an AGI, being capable of practical English com-
munication, is therefore capable of understanding the everyday English word
“know” in the above command, independently of how any philosopher formally
defines knowledge. We discuss this further in Subsection 3.1.

A primary motivation for this paper was the author’s experience in the AGI
research community where applications of mathematical logic are hindered by
questions like “What does it mean for an AGI to know something?” For exam-
ple, philosophers have long known that a suitably idealized mechanical knowing
agent cannot know its own code and its own truthfulness3. But in informal
conversations, we find AGI researchers struggle with this assertion, and we can
hardly blame them, since, without agreeing what it means for the AGI to know
something, of course the question arises, “What does it mean for an AGI to know
something?” Likewise, we have proposed [6] an AGI intelligence measure based
on the AGI’s knowledge, and this, too, often provokes the response “What does
it mean for an AGI to know something?” In Section 5 we will consider these
examples, and related examples from the same area, using our proposed defini-
tion to translate them into a more concrete form, not in terms of what the AGI
knows, but in terms of the AGI’s stimulus-responses.

The structure of this paper is as follows.

– In Section 2 we discuss the AGIs whose knowledge we are attempting to
define.

2 By a sentence, we mean a formula with no free variables. Thus, x2 > 0 is not a
sentence, but ∀x(x2 > 0) is.

3 Often phrased more like “cannot know its own code”, with knowledge-of-own-
truthfulness taken for granted.
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– In Section 3 we propose a knowledge definition for AGIs for EA-sentences.
– In Section 4 we extend our knowledge definition to formulas with free vari-

ables.
– In Section 5 we use this knowledge definition as a bridge to translate some

ideas from mathematical logic into the field of AGI.
– In Section 6 we summarize and make concluding remarks.

2 Idealized AGIs

In this paper, we approach AGI using what Goertzel [13] calls the Universalist
Approach: we adopt “...an idealized case of AGI, similar to assumptions like
the frictionless plane in physics”, hoping that by understanding this “simplified
special case, we can use the understanding we’ve gained to address more realistic
cases.” At the same time, an AGI might serve as a kind of hyper-idealized proxy
for human cognition, and we hope that the development of the logic of AGI
may serve as a step toward development of “new forms of logic as the basis of
cognitive and substrate-independent studies of intelligent interaction” [11].

We do not have a formal definition for what an AGI is, but whatever it is, we
assume an AGI is a deterministic machine which repeatedly reads sensory input
from its environment and outputs English words based on what sensory inputs
it has received so far4. When we say that this AGI is a “deterministic machine”,
we mean that said outputs (considered as a function of said inputs) could be
computed by a Turing machine. We further assume the AGI can understand
English commands and is capable of practical English communication. Thus, if
we were to command the AGI in English, “Tell us the value of 1 + 1”, the AGI
would respond in English and reply “2”, or “1 + 1 = 2”, or something along
those lines5.

We assume an AGI is capable of everyday English discussions which would
cause no difficulty to a casual English speaker, even if these discussions involve
topics, such as “knowledge”, which might be philosophically tricky. A casual
English speaker does not get stuck in philosophical questions about the nature of
knowledge just in order to answer a question like “Do you know that 1+1 = 2?”,
and therefore neither should our AGI.

We also assume an AGI is better than a casual human English speaker in
certain ways. We assume an AGI would have no objections to performing tedious
tasks indefinitely, if so commanded. If we asked a casual human English speaker
to begin computing and reciting all the prime numbers until further notice,

4 We should note that, with the AGI research field being so young, there is little
consensus even on basic things. Some researchers would consider some things to be
AGI which have no communication ability (applying the term to entities who have
certain adaptation abilities or pattern-matching abilities, for example, even if those
entities have no means of communicating), however, we believe that to be a minority
opinion.

5 We assume the AGI explicitly follows commands (that it is “under explicit control”,
to use Yampolskiy’s terminology [24]).
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and then we waited silently forever listening to the results, said human would
eventually get tired of the endless tedium and would disobey our command (and
would probably make arithmetic errors along the way). We assume an AGI has
no such limitations and would happily compute and recite prime numbers for all
eternity, if so commanded (without arithmetic mistakes). Of course, in reality
the AGI would eventually run out of memory, terminate when the world ends,
etc., but we are speaking of idealized AGI here and we intentionally ignore such
possibilities, in the same way a Turing machine is assumed to have infinite tape
and infinite time to run.

3 An elegant definition of mathematical knowledge

The following definition may initially look circular, but we will argue it is not.

Definition 1. Let X be an AGI. For any EA-sentence φ, we say that X knows
φ if and only if X would eventually include φ in the resulting enumeration if X
were commanded:

“Enumerate all the EA-sentences which you know.”

Definition 1 is non-circular because the AGI is capable (see Section 2) of prac-
tical English communication, including that involving everyday English words
such as the word “know”, independently of how any philosophers formally define
things6. More on this in Subsection 3.1.

One of the strengths of Definition 1 is that it is uniform across different
AGIs: many different AGIs might internally operate based on different definitions
of knowledge, but Definition 1 works equally well for all these different AGIs
regardless of those different internal knowledge definitions7. We can contrast this
with difficulties that could arise from a more experimental approach. Scientists
could carefully examine one particular AGI and eventually discover how that
AGI’s knowledge works, and attempt to define AGI knowledge accordingly, for
example, they might define knowledge in terms of the contents of Memory Bank
35, which exists in that particular AGI. But then another AGI might come along
which functions completely differently than the first AGI, and does not even have
said Memory Bank 35 at all. Definition 1 is not tied to the particular form of
the AGI, just so long as the AGI obediently follows English commands.

Remark 1. In Definition 1 when we speak of what the AGI would do if given
such a command, implicitly we intend this to be understood as what the AGI
would do if given such a command and then allowed to respond to the command
in isolation, without outside distractions. An AGI could potentially update its
knowledge based on observations of the world, and so its knowledge might change

6 This is reminiscent of Williamson’s contextualism [23].
7 This is reminiscent of Elton’s proposal that instead of trying to interpret an AI’s

outputs by focusing on specific low-level details of a neural network, we should
instead let the AI explain itself [12].
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from one time to the next: its knowledge at a given instant is defined by Definition
1 to consist of what the AGI would enumerate if the AGI were so commanded
at that particular instant (and immediately secluded from further distracting
observations).

Although Definition 1 may differ significantly from a particular AGI X’s own
internal definition of knowledge, the following theorem states that materially the
two definitions have the same result.

Theorem 1. Suppose X is an AGI. For any EA-sentence φ, the following are
equivalent:

1. X is considered to know φ (based on Definition 1).
2. X knows φ (based on X’s own internal understanding of knowledge).

Proof. By Definition 1, (1) is equivalent to the statement that X would include
φ in the list which X would output if X were commanded:

“Enumerate all the EA-sentences which you know.”

Since we have assumed (in Section 2) that X is obedient, X would output φ in
the resulting list if and only if (2). ut

Theorem 2. Let X be an AGI. The set of EA-sentences φ such that X knows
φ (based on Definition 1) is computably enumerable.

Proof. This follows from our assumption (in Section 2) that X is a deterministic
machine. ut

3.1 Non-Circularity of Definition 1

‘What is said by a speaker (what she meant to say, her “meaning-
intention”) is understood or misunderstood by a hearer (“an interpreter”).’
—Albrecht Wellmer [22]

Definition 1 is non-circular because an AGI’s response to an English com-
mand only depends on how the AGI understands the words in that command,
not on how we (the speakers) understand those words. Recall from Section 2
that we are assuming an AGI is a deterministic machine which outputs English
words based on sensory inputs from its environment. Those outputs depend only
on those environmental inputs, and not on any decisions made by philosophers.

If the reader wants to further convince themselves of the non-circularity of
Definition 1, we need only point out that the apparent circularity would disap-
pear if we changed Definition 1 to define what it means for X to “grok” sentence
φ, rather than to “know” sentence φ (without changing the command itself). In
other words, we could define that X “groks” φ if and only if X would include φ
in the list of sentences that would result if X were commanded,

“Enumerate all the EA-sentences which you know.”
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This would make the non-circularity clearer, because the word “grok” does not
appear anywhere in the command.

We will further illustrate the non-circularity of Definition 1 with two exam-
ples.

– (The color blurple) Bob could (without Alice’s awareness) define “blurple”
to be the color of the card which Alice would choose if Bob were to run up to
Alice, present her a red card and a blue card, and demand: “Quick, choose
the blurple card! Do it now, no time for questions!” There is nothing circular
about this, because Alice’s choice cannot depend on a definition which Alice
is unaware of.

– (Zero to the zero) If asked to compute 00, some calculators output 1, and
some output an error message or say the result is undefined8. For any cal-
culator X, it would be perfectly non-circular to define “the 00 of X” to
be the output which X outputs when asked to compute 00. Said output is
pre-programmed into the calculator; the calculator does not read the user’s
mind in order to base its answer on any definitions that exist there.

These considerations hinge on the AGI being separate from the reader. The
human reader can apply Definition 1 to AGIs which she creates, but not to
herself. An AGI X could apply Definition 1 to child AGIs that X created, but
X could not apply the definition to X’s own knowledge9.

3.2 Sentences using the Knowledge Operator

Definition 1 is particularly interesting when φ itself makes use of EA’sK operator
for knowledge.

Example 1. Applying Definition 1, we consider an AGI X to know K(1 + 1 = 2)
if and only if X would output K(1 + 1 = 2) when commanded to enumerate all
the EA-sentences he knows. X would (when so commanded) output K(1+1 = 2)
if and only if X knows (in his own internal sense of the word “know”) that he
knows (in his own internal sense of the word “know”) 1 + 1 = 2.

3.3 A Simpler Definition, and Why It Does Not Work

“It is difficult to be aware of whether one knows or not. For it is difficult
to be aware of whether we know from the principles of a thing or not—
and that is what knowing is. (...) Let that demonstration be better which,

8 Which is incorrect—see [16].
9 This is reminiscent of a recent argument [17] that humans maintain superiority over

the AIs they create, as, for example, today’s latest and greatest chess-playing AI is
better at tactically playing individual games of chess, but is incapable of designing
its own replacement (tomorrow’s latest and greatest chess-playing AI), which will
instead be designed by humans (making humans still better at chess in a higher-level
sense).
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other things being equal, depends on fewer postulates or suppositions.
For if they are equally familiar, knowing will come about more quickly
in this way; and that is preferable.” —Aristotle [8]

The reader might wonder why we would not further simplify Definition 1
and declare that X knows φ if and only if X would respond “yes” if X were
asked: “Do you know φ? (Yes or no)”. We will argue that this would be a poor
candidate for an idealized knowledge definition.

Definition 2. If X is an AGI and φ is an EA-sentence, say that X quick-knows
φ if and only if X would respond “yes” if X were asked, “Do you know φ? (Yes
or no)”.

The following should be contrasted with Theorem 2.

Theorem 3. Let X be an AGI. The set of EA-sentences φ such that X quick-
knows φ is computable.

Proof. This follows from our assumption (in Section 2) that X is a deterministic
machine. ut

By Theorem 3, it seems that if we used Definition 2 as a knowledge definition,
it would contradict Aristotle’s claim that “it is difficult to be aware of whether
one knows or not”. It is more plausible that knowledge be computably enumerable
(as in Theorem 2) than that knowledge be computable. A prototypical example of
a set which is computably enumerable but not computable is: the consequences
of Peano arithmetic10 (hereafter PA). Said consequences cannot be computable,
lest they could be used to solve the Halting Problem (because a Turing machine
halts if and only if PA proves that it halts).

Theorem 4. Let X be an AGI and assume X does not quick-know any false-
hoods. At least one of the following is true:

1. There is an axiom of PA which X does not quick-know.
2. There exist PA-sentences φ and ψ such that X quick-knows ψ and X quick-

knows ψ → φ, but X does not quick-know φ.

Proof. It is well-known that a sentence φ is provable from PA if and only if there
is a sequence φ1, . . . , φn such that:

1. φn is φ.
2. For every i, either φi is an axiom of PA, or else there are j, k < i such that
φk is φj → φi.

(Loosely speaking: proofs from PA can be carried out using no rules of inference
besides Modus Ponens.) For any formula φ which PA proves, let |φ| be the
smallest n such that there is a sequence φ1, . . . , φn as above.

10 We assume Peano arithmetic is true.
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Call a PA-sentence φ elusive if PA proves φ but X does not quick-know φ.
By Theorem 3, the fact that X does not quick-know any falsehoods, and the
unsolvability of the Halting Problem, it follows that some elusive φ exists—
otherwise, to computably determine whether or not a given Turing machine M
halts, we could simply ask X, “Do you know Turing machine M halts? (Yes or
no)”.

Since some elusive φ exists, there exists an elusive φ such that |φ| is as small
as possible—that is, such that |φ| ≤ |ψ| for every elusive ψ. Fix such a φ.

Case 1: φ is an axiom of PA. Then condition (1) of the theorem is satisfied,
as desired.

Case 2: φ is not an axiom of PA. Let φ1, . . . , φ|φ| be as in the first paragraph
of this proof (so φ|φ| is φ). Then since φ is not an axiom of PA, there must be
j, k < |φ| such that φk is φj → φ|φ|. Now, the sequence φ1, . . . , φk witnesses that
PA proves φk and |φk| ≤ k < |φ|; and the sequence φ1, . . . , φj witnesses that PA
proves φj and |φj | ≤ j < |φ|. Thus, since φ was chosen to be elusive with |φ| as
small as possible, it follows that φk and φj are not elusive. Thus, X quick-knows
φj , and X quick-knows φk, but φk is φj → φ. Thus condition (2) of the theorem
is satisfied, as desired. ut

Theorem 4 shows that Definition 2 makes a poor notion of idealized knowl-
edge. An AGI should certainly know the axioms of PA, and should certainly
be capable of the minimal logical reasoning needed to conclude φ from ψ and
ψ → φ. And the way we have established the unsuitability of Definition 2 is nicely
anticipated by the words of Aristotle quoted at the beginning of this subsection.

4 Quantified Modal Logic

Definition 1 only addresses sentences with no free variables. In this section, we
will extend Definition 1 to formulas which possibly include free variables. We
are essentially adapting a trick from Carlson [10].

Definition 3. We define so-called numerals, which are EA-terms, one numeral
n for each natural number n ∈ N, by induction: 0 is defined to be 0 (the constant
symbol for zero from PA) and for every n ∈ N, n+ 1 is defined to be S(n) (where
S is the successor symbol from PA).

For example, the numeral 3 is the term S(S(S(0))).

Definition 4. If φ is an EA-formula (with free variables x1, . . . , xk), and if s
is an assignment mapping variables to natural numbers, then we define φs to be
the sentence

φ(x1|s(x1))(x2|s(x2)) · · · (xk|s(xk))

obtained by substituting for each free variable xi the numeral s(xi) for xi’s value
according to s.
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Example 2. Suppose s(x) = 0, s(y) = 1, and s(z) = 3. Then

((z > y + x) ∧ ∀x(K(z > y + x− x)))s

is defined to be
((3 > 1 + 0) ∧ ∀x(K(3 > 1 + x− x)))

(note that the numeral is not substituted for the later occurrences of x because
these are bound by the ∀x quantifier).

Definition 5. If φ is any L -formula, and s is any assignment mapping vari-
ables to N, we say that X knows φ (with variables interpreted by s) if and only
if X knows φs according to Definition 1.

Armed with Definition 5, the Tarskian notion [14] of truth can be extended
to EA.

Example 3. Assume an AGI X is clear from context. Suppose φ is an EA-
formula, of one free variable x, which expresses “the xth Turing machine even-
tually halts”. Suppose we want to assign a truth value to the formula

∃x(¬K(φ) ∧ ¬K(¬φ)).

We proceed as follows.

– Following Tarski, we should declare ∃x(¬K(φ)∧¬K(¬φ)) is true if and only
if for every assignment s mapping variables to N, ∃x(¬K(φ) ∧ ¬K(¬φ)) is
true (with variables interpreted by s).

– By the semantics of ∃, the above is true if and only if for every assignment
s, there is some n ∈ N such that ¬K(φ) ∧ ¬K(¬φ) is true (with variables
interpreted by s(x|n)), where s(x|n) is the assignment that agrees with s
except for mapping x to n.

– By Definition 5, this is the case if and only if for every assignment s there is
some n ∈ N such that X does not know φs(x|n) (according to Definition 1)
and X does not know ¬φs(x|n) (according to Definition 1).

– By Definition 4 and the fact that x is the only free variable in φ, the above
is the case if and only if there is some n ∈ N such that X does not know
φ(x|n) (according to Definition 1) and X does not know ¬φ(x|n) (according
to Definition 1).

So ultimately, we consider ∃x(¬K(φ) ∧ ¬K(¬φ)) to be true if and only if there
is some n ∈ N such that, in response to the command “Enumerate all the EA-
sentences which you know”, X would not include φ(x|n) nor ¬φ(x|n) in the
resulting enumeration.

5 Translating knowledge formulas

In this section, we will look at some formulas about knowledge and translate
them into statements about AGI stimulus-response, using Definitions 1 and 5.
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First, we will start by translating some simple axioms of knowledge, to give
the reader a feel for how this translation works. Then, we will advance to the
examples we mentioned in the Introduction, and closely related examples.

Although the statements in the following example may seem plausible, our
purpose is not to claim that every AGI must satisfy them. Rather, they serve to
classify AGIs: for each axiom schema, one can speak of AGIs who satisfy that
axiom schema, and of AGIs who do not satisfy it.

Example 4. (Basic axioms of knowledge) The following axiom schemas, in the
language of EA, are taken from Carlson [10] (we restrict them to sentences for
purposes of simplicity).

– (E1) K(φ) whenever φ is valid (i.e., true in every model). Translated for an
AGI X using Definition 1, this becomes: “If commanded to enumerate his
knowledge in EA, X will include all valid EA-sentences in the resulting list.”

– (E2) K(φ → ψ) → K(φ) → K(ψ). This becomes: “If commanded to enu-
merate his knowledge in EA, if X would include φ→ ψ and if X would also
include φ, then X would also include ψ.”

– (E3) K(φ)→ φ. This becomes: “If commanded to enumerate his knowledge
in EA, the resulting statements X enumerates would be true.”

– (E4) K(φ) → K(K(φ)). This becomes: “If commanded to enumerate his
knowledge in EA, if X would list φ, then X would also list K(φ).”

Our purpose in Example 4 is not to declare that an AGI must satisfy E1–E4.
Rather, our goal is to translate these modal logical axioms into AGI language—
note that the translations in quotation marks in Example 4 do not directly
depend on the AGI’s knowledge, but only on the AGI’s stimulus-response. When
studying AGI in broadest generality, even E3, the factivity of knowledge, might
be questioned (certain AGIs might satisfy it and other AGIs might not). By
translating E3 into a concrete statement about the AGI’s stimulus-response, we
can talk about “AGIs who satisfy E3” or “AGIs who fail E3,” without getting
stuck on hard questions like “What does it mean to know something?”

Example 5. (Reinhardt’s strong mechanistic thesis [19] [20] [10]) Reinhardt sug-
gested the EA-schema

∃e∀x(K(φ)↔ x ∈We)

as a formalization of the mechanicalness of the knower. Here, We is the eth
computably enumerable set of natural numbers11 (We can also be thought of
as the set of naturals enumerated by the eth Turing machine). For simplicity,
consider the case where x is the lone free variable of φ. Then in terms of Definition
5, the schema becomes: “If X were commanded to enumerate his knowledge in
the language of EA, then the set of n ∈ N such that X would include φ(x|n)
in the resulting list, would be computably enumerable.” If Φ is the universal

11 It can be shown that We is definable in the language of Peano arithmetic, therefore
we can use expressions like “x ∈We” in EA-formulas as shorthand.
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closure12 of the above EA-schema, then the schema K(Φ) is Reinhardt’s strong
mechanistic thesis. Reinhardt conjectured that his strong mechanistic thesis is
consistent with basic axioms about knowledge (i.e., that it is possible for a
knowing machine to know that it is a machine). This conjecture was proved by
Carlson [10] using sophisticated structural results about the ordinals [9]. See [4]
for an elementary proof of a weaker version of the conjecture.

Example 6. (Reinhardt’s absolute version of Gödel’s incompleteness theorem) If
we vary the formula from Example 5 by requiring that the knower know the
value of e, we obtain:

∃eK(∀x(K(φ)↔ x ∈We)).

Carlson [10] glosses this schema in English as: “I am a Turing machine, and
I know which one.” Reinhardt showed that this schema is not consistent with
basic axioms about knowledge. Following Carlson’s gloss, this shows that it is
impossible for a suitably idealized AGI to know its own code13.

Remark 2. As far as I know, AGI has not yet received much attention in the
mathematical logical literature. Instead, mathematical logicians tend to concern
themselves with knowing agents or knowing machines. Presumably, every suit-
ably idealized AGI is a knowing agent and a knowing machine, but certainly not
every knowing agent (or knowing machine) is an AGI. Thus, in general, inconsis-
tency results about knowing agents or knowing machines carry directly over to
AGIs (if no knowing agent, or no knowing machine, can satisfy some property,
then in particular no suitably idealized AGI can either). Consistency results do
not generally carry over to AGIs (it may be possible for a knowing agent or
a knowing machine to satisfy some property, but it might be that none of the
knowing agents or knowing machines which satisfy that property are AGIs).
Nevertheless, a consistency result about knowing agents or knowing machines
should at least count as evidence in favor of the corresponding consistency result
for AGIs, at least if there is no clear reason otherwise. In the examples above:

– Reinhardt’s strong mechanistic thesis (Example 5) was proven to be consis-
tent with basic knowledge axioms, so it is possible for a knowing machine
to know that it is a machine (without necessarily knowing which machine).
Since not every knowing machine is an AGI, it might still be impossible for
an AGI to know it is a machine. But the consistency of Reinhardt’s strong
mechanistic thesis at least suggests evidence that an AGI can know it is a
machine.

12 A universal closure of a formula φ is a sentence ∀x1 · · · ∀xkφ, and the universal
closure of a schema of formulas is the schema of universal closures of those formulas.

13 We have pointed out elsewhere [3] that (i) Reinhardt implicitly assumes that the
knower knows its own truthfulness; and (ii) it is possible for a knowing machine to
know its own code if it is allowed to be ignorant of its own truthfulness, despite still
being truthful. See [1] and [2] for some additional discussion.
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– Reinhardt’s absolute version of the incompleteness theorem (Example 6) is
an inconsistency result. As such, it transfers over directly to AGI, proving
that no suitably idealized AGI can know its own code14.

Example 7. (Intuitive Ordinal Intelligence) In [5] we defined an intelligence mea-
sure for idealized mechanical knowing agents (who are aware of the computable
ordinals) as follows. If A is such a knowing agent, we define the intelligence of
A to be the supremum of the set of ordinals α such that α has some code c
such that A knows that c is a code of a computable ordinal. In [6] we specialized
this to AGIs, and called it Intuitive Ordinal Intelligence. Let L be a language
like EA but including an additional predicate symbol O for the set of codes of
computable ordinals. Modifying Definition 1 accordingly, we can systematically
perform said specialization to AGIs, and it becomes: “The Intuitive Ordinal In-
telligence of an AGI X is the supremum of the set of ordinals α such that α has
some code c such that X would include O(c) in the resulting enumeration if we
asked X to enumerate all the L -sentences that he knows.”

6 Conclusion

What does it mean to know something? This is a difficult question and there
probably is no one true answer. In the field of AGI, how can we systematically
investigate the theoretical properties of knowledge, when different AGIs might
not even agree about what knowledge really means? So motivated, we have pro-
posed an elegant way to brush these philosophical questions aside. In Definition
1, we declare that an AGI knows an EA-sentence if and only if that AGI would
enumerate that sentence if commanded:

“Enumerate all the EA-sentences which you know”

(this definition might look circular at first glance but we have argued that it is
not; see Subsection 3.1). In Definition 5 we extended this to formulas with free
variables, not just sentences.

This universal knowledge definition sets the study of AGI knowledge on a
firmer theoretical footing. In Section 5 we give examples of how our definition
can serve as a bridge to translate knowledge-related formulas from mathematical
logic into the realm of AGI.
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