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Chapter 1

Introduction

According to the general wisdom there should not be any problem with the classi-

cal limit of quantum mechanics. After all, in any textbook of quantum mechanics

one can easily find a section where the solution to this problem is explained (see

e.g. [37]). Usually, Ehrenfest theorem, WKB approximation or simply the ob-

servation that the canonical commutation relations become Poisson brackets are

presented as providing a definite answer to the problem of understanding how

the classical laws of Newtonian mechanics emerge from the more basic laws of

quantum mechanics. There is also an enormous amount of mathematical work,

called semiclassical analysis or, in more modern terms, microlocal analysis (see,

e.g., [31]), in which the limit h̄ → 0 of Schrödinger evolutions is rigorously stud-

ied1. Moreover, in the recent years, books and articles are appearing claiming

that “decoherence” is the key for understanding the appearance of the classical

world. There are two lines of thinking: those who believe that decoherence is

necessary to explain the emergence of the classical world (see [23] and references

therein) and those who think that it is not only necessary but also sufficient (see,

e.g., [43], [4], [34]).

From the above overview, one might easily get the impression [33], that it is

only a matter of putting all known results into order for obtaining a clear and

1For nonspecialists we remark that the heart of semiclassical analysis is the stationary phase

method. For Schrödinger evolutions of the usual kind this method is well developed while,

for Hamiltonians which are not quadratic in the momentum operator but are more general

expressions, it has been generalized to what is now called microlocal analysis.

7



8 CHAPTER 1. INTRODUCTION

rigorous derivation of classical mechanics from quantum mechanics.

Is this true?

1.1 What Converges to What?

What is the relevant physical quantity whose convergence “in the classical limit”

asserts in a satisfactory way that the classical world arises?

To came to grips with this issue, it is convenient to distinguish the various re-

lated problems associated them with classical limit of quantum mechanics and to

group them into “easy” and “hard” problems. The easy problems include explain-

ing how quantum probability distributions, say of position, in a certain regime,

are governed by the classical laws; how the statistics of quantum observables con-

verge to the ”Liouville-statistics” 2 of corresponding classical observables; how

the asymptotic of energy eigenstates for high quantum numbers converges to the

classical values; how, in an appropriate limit, the non commutative algebra of

observables converges to the classical commutative one, etc.

The “hard” problem consists in explaining how the world of familiar experi-

ence, made of bodies with definite positions and velocities, moving along definite

trajectories according to Newtonian laws, arises from the basic principles of quan-

tum mechanics.

Classical physics is about real objects, like apples falling from trees, whose

motion is governed by Newtonian laws.

Whatever the mathematical or physical h̄-small arguments prove, they cannot

prove, by themselves, that an apple falls to earth along its Newtonian path. While

mathematical expressions can look classical, there is nothing like an apple and

nothing from which the apple can be derived. It is important to appreciate that

the solutions to the easy problems cannot provide, by themselves, a solution to

the hard problem.

In order to predict trajectories, one would need quantum trajectories con-

2That is, one proves the convergence of the quantum distribution at a given time to the

classical distribution at that time, where the time dependence is such, that it allows propagation

by a classical flow. We shall comment on the status of such assertions which hold true in very

general circumstances in more detail in sections 8 and in appendix 8.3.
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Figure 1.1: Newton and the apple.

verging to classical trajectories, i.e. to trajectories obeying Newtonian laws. But

what are quantum trajectories?

Consider, for example, the standard explanation of why the center of mass

of a body x follows a classical trajectory. If the initial wave function ψ0(x) is a

narrow wave packet, it remains concentrated along the classical trajectory. This

can be shown by the Ehrenfest theorem (that we shall recall in section 5.3), which

states that the time evolution of the mean values of position and momentum are

given by
d〈x〉
dt

=
〈p〉
m

,
d〈p〉
dt

= −〈∇V (x)〉, (1.1)

where 〈〉 denotes the average with respect to an initial wave function ψ0. If one

supposes that initially the wave function of the position x of the center of mass

is a narrow wave packet, we have

〈∇V (x)〉 � ∇V (〈x〉), (1.2)

then

m
d2〈x〉
dt

� −∇V (〈x〉). (1.3)

Thus the (average) position of the center of mass evolves (approximately) accord-

ing to Newtonian law.
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What’s wrong with the above explanation?

First of all, a wave packet typically spreads, so that (1.1) will hold only up

to a certain time (depending on the mass of the body) after which the classical

approximation (1.3) will break down.

Actually, it can be shown that for very massive bodies (such as planets) the

wave packet will remain concentrated for times much longer than the life of

the universe.3 But consider those macroscopic bodies subjected to non linear

interaction leading to chaotic behavior (think e.g. of an asteroid subjected to

strong gravitational perturbation [4]). Then, even if at a certain time the spread

of the wave function is very small on the macroscopic scale, due to the sensitive

dependence to initial conditions (positive Lyapunov exponent), we have that in a

very short time the wave function spreads out. Moreover, we expect the classical

limit to hold even for not very massive objects (think, e.g., of a particle’s beam in

an accelerator). In these cases we don’t even need to invoke chaos. In fact, in a

scattering experiment, a very localized initial wave function becomes very quickly

a well delocalized wave function. Thus we can conclude that interactions of one

particle with a very generic potential generate very spread out wave functions.

Secondly, why should the wave function of the position of the center of mass

of the body be initially narrow? Why should the wave function of a macroscopic

body, a many particle system, factorize into a product wave function of the center

of mass and the relative coordinates?

Third, from the foregoing considerations about the Ehrenfest theorem, it

seems that the classical behavior is something deeply connected to the fact that

3In fact we can give some estimate for the growth of σ in time considering for simplicity a

free Gaussian wave packet

σt = σ0

√
1 +
(

h̄t

2mσ2
0

)2

= σ0

√
1 +
(
t

τ

)2

, (1.4)

where τ = 2mσ2
0

h̄
. The spread will become greater that the initial spread σ0 for times t � τ .

Suppose that the initial wave function of a medium–weight planet of mass, for example, M �
1027 Kg is a wave packet. Simple calculations show that it will remain narrow for a time much

longer than the life of the Universe (1010 years almost). In fact, for an initial spread of the

order of σ0 = 10−10 m, we get τ � 1044s, which correspond to almost 1037 years. So it seems

that Ehrenfest theorem is valid for enough time to ensure classical limit for planets.
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I think you should be more explicit here in step two...

Figure 1.2: Then a miracle occurs

the wave function must be narrow at a certain time. But, for what we have just

seen, Schrödinger’s dynamics makes it a very transient feature, while we know

from the world around us that the classical behavior is very stable. So, what’s

going on? How can we explain the trajectories of the classical world?

1.2 The Appeal to Decoherence

It has become quite common to believe that these objections are easily taken care

of by recalling that no system is truly isolated but interacts with an environment

which constantly “measures” the position of the particle and produces in this way

a narrow wave packet (see [23], and references therein) an effect called nowadays

decoherence.

Does taking into account the interaction with the environment really provide

an answer to the problem of the emergence of the classical world without the
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need of the collapse like it has been sometimes claimed? (Some examples of this

belief can be found in [42], [4], [34] and [43].) The answer is no: in fact, by

including the environment and considering the wave function evolving according

to Schrödinger’s equation as all there is in the theory, we simply shift the problem

one level up. In fact the composite system formed by the subsystem of interest

and by its environment is a closed system and Schrödinger’s evolution of this

system tends to produce spreading over configuration space. In this way the

wave function of the composite system will typically evolve to a wave function

supported by distinct and vastly different macroscopic configurations. This is the

case of the Schrödinger cat in which Schrödinger’s equation leads to the grotesque

macroscopic superposition of a dead and an alive cat. Thus, decoherence is not

sufficient to explain the emergence of the classical world from ordinary quantum

mechanics: the collapse must be added to the usual axioms as an additional rule.

1.3 Beyond Standard Quantum Mechanics

However, as is well known and as Bell has often emphasized [3], Schrödinger’s

evolution correlated with the collapse is not a precise microscopic theory if the

division between microscopic and macroscopic world (where the collapse has to

take place) is not part of the theory. Moreover, coming back to our initial question

(how can we derive classical mechanics, a theory formulated in terms of particles

and their trajectories, in a framework in which they don’t exist?), the following

conclusion seems inevitable: quantum mechanics does not contain the means for

describing the classical world in any approximate sense and one needs to go be-

yond quantum mechanics. There are only two possibilities for mending ordinary

quantum mechanics: either the wave function is not all there is, or, Schrödinger’s

equation is wrong (for a proposal of modification of Schrödinger’s equation, see

[22] ). In this thesis we’ll formulate the problem of the classical limit within the

framework of Bohmian mechanics, a theory in which the observer doesn’t play any

crucial role. It is a theory about reality, not about the result of measurements:

it is about point particles which evolve according to a dynamical law generated

by a function, the wave function ψ, which follows Schrödinger’s equation (for the

original article see [6] and for further development, see, e.g., [15],[13],[24], [12] and
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[25]. For a complete review, see [11], unfortunately in german). Both Bohmian

mechanics and classical mechanics are theories about the motion of particles.

Without that, to answer the question of how the classical world can be part of

the quantum world becomes a rather formidable task. Remember, in fact, that

in quantum mechanics only the wave function exists: particles and trajectories

do not. Therefore they must be deduced in some suitable sense in some suitable

limit to obtain classical mechanics as a limit. The question when have we got

the classical limit? in Bohmian terms becomes very simple:when do the Bohmian

trajectories converge to Newtonian ones?

From the above discussion, one might now come to believe that (even in the

framework of Bohmian mechanics) to solve the problem of the classical limit one

just needs to rephrase what there is in the physics and mathematics literature to

get the convergence of the Bohmian trajectories to classical ones. But this is still

far from being true, and these other reasons we shall explain next.

1.4 Classical Limit as a Scaling Limit

Since h̄ is known to be nonzero, the limit h̄ → 0 must be understood as taking

a scaling limit in which the relevant ”action” of the problem is much bigger

than h̄. In other words, the classical limit should be understood in terms of an

dimensionless parameter, that we shall call ε, which will be a combination of

definite relevant physical quantities such that the classical laws emerge whenever

ε is small. This small parameter is not directly given but must be extracted

from the physics of the situation (see e.g. [29]). The common understanding is

that ε = λ
L
, where λ is the ”wave length of the particle” and L is some relevant

”macroscopic length scale”. This is very reminiscent of how geometric optics can

be deduced from wave optics and thus seems reasonable, but to really pinpoint

the λ and the L in a given physical situation is not an easy task. While in some

situations it may be more or less clear what is meant by the “wave length of the

particle” and the “macroscopic length scale” L, in general, however, the wave

length depends on the wave function ψ, that is λ = λ(ψ), and L is some length

scale defined by the potential V, that is L = L(V ).

The dimensionless parameter ε may thus depend in general on a combination
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of various quantities x, y, z, ..., which relate to the potential and to the wave

function. Thus ε(x, y, z...) → 0 can be taken along different paths (different

sequences) in the x, y, z... space. Therefore, it turns out that the limit h̄ → 0 is

only a special case of the limit ε → 0: it is only one special sequence and it is

not able to cover the complexity of the classical world as a whole. It is however

natural to conjecture quite generally that classical physics applies on appropriate

space and time scales whenever ε → 0, that is, we put forward that a classical

limit on appropriate time and length scales (depending on ε) arises uniformly

as long as λ
L
→ 0. To show this is a mathematically hard problem, as we shall

explain in section 3.2. How can one actually be sure that the extracted ε is small

enough, i.e. that the physical situation is close to the limit ε = 0? In truth ε

is just some constant (or some function on the macroscopic scale) which is not

equal to zero, but small, and the question is: is it small enough for classical laws

to apply to the motion of the particles? This is a very hard problem, probably

the hardest of them all.

We note by the way that this situation has an analogue in statistical physics.

Consider for example in kinetic gas theory in which one for example “derives”

Boltzmann’s equation in some scaling limit, like the Boltzmann-Grad-limit for

hard spheres [38]. The limit is of course only taken for definiteness, and it is

hoped that the real situation is well approximated by the limit. In which sense

it is so is again a very hard technical question, unsolved in general. Moreover,

in realistic physical situations, the gas molecules do not only interact via elastic

collisions (so that not only diameter, mean free path, density are the obvious

physical scales) but also through potentials, which makes the findings of the

right scales more involved.

We shall find that the crucial feature of the classical limit is the production of

a “local plane wave”, a wave which may be naturally partioned into wave packets

each of which guides the Bohmian trajectory along a classical path. Thus for

our question of having the Bohmian trajectory converge to a Newtonian one, it

is sufficient to follow the evolution of the actual guiding packet, the evolution of

which may be subjected to Ehrenfest’s theorem. The λ will in some natural way

be associated with such local plane waves and we suggest further that L can be

extracted from a condition arising from Ehrenfest’s theorem.
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1.5 Organization of the Thesis

We shall start with a chapter introducing Bohmian mechanics, trying to explain

what has been the reason to formulate such a theory and how it can be of help

in solving in general the problems arising in standard quantum mechanics and in

particular those associated with the classical limit.

In the third chapter we shall discuss what we mean by the classical limit and

we shall analyze a very simple model of a system composed by several macro-

scopic bodies composed of N point–like particles in an external potential. Our

basic conjecture is that we have classical behavior, on suitable macroscopic scales,

provided that the dimensionless parameter ε defined as the ratio of the two rele-

vant length scales of the situation, ε = λ
L
, is small, i.e. ε � 1. The macroscopic

scales on which the motion is classical are defined by λ and L. The first length

scale λ, as we already anticipated, is roughly the mean de Broglie wave length

derived by the mean kinetic energy or, more precisely, it can be defined as a func-

tion of the initial wave function of the particle. The other relevant scale L is the

scale on which the potential varies that we will define according to an argument

based upon the Ehrenfest theorem.

We shall show, in the fourth chapter, the emergence of the classical limit in the

case of special families of initial wave functions and potentials. We will see how,

in these cases, the dynamics tends to create a particular form of wave function, a

local plane wave, whose formation we believe is crucial for the emergence of the

classical world.

In the fifth chapter we will describe how this happens and we will arrive at

the conclusion that on the macroscopic scales in which the motion is classical,

provided that λ � L, the local plane wave forms. The fundamental feature of

the local plane wave is that it can be thought of as a sum of non-interacting

“virtual” wave packets with definite local wave length, such that only one of

them is relevant for the dynamics of the trajectory of a given particle and we can

forget the effects of the rest of the wave function.

As soon as we have a potential, caustics appear: they are associated with

configurations for which the velocity field is mutivalued. In the sixth chapter

we shall see what is the role of the external environment (the decoherence) in
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suppressing interference produced by the presence of caustics.

Finally, in the seventh chapter, we shall analyze what happens if the approx-

imation of motion in an external potential is abandoned. We will show that the

general structure of the classical limit for a more realistic scenario in which the

environment and the internal degrees of freedom of a macroscopic body are taken

into account is again the emergence of local plane wave structure, as it has been

established in the external potential approximation of chapter 3. This ensures

that the classical world is something robust in structure, as we expected.

The last chapter is dedicated to comparing our work with what is actually

present in the literature about the classical limit in ordinary quantum mechanics.

There are two appendices containing more technical material which would

have distracted from the line of reasoning followed in the thesis but that can be

useful to have at hand.
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Chapter 2

A Precise Microscopic Theory:

Bohmian Mechanics

Bohmian mechanics is a “quantum” theory with a clear ontology. To make clear

what we mean by this, we shall proceed recalling what are the problems of quan-

tum mechanics and we shall see how Bohmian mechanics can overcome them.

2.1 What is Quantum Mechanics About?

The basic problem of quantum mechanics is that it is not clear what is it about, as

already stressed by Bell [3] and Goldstein [24]. Already Scrödinger pointed out,

with his famous cat paradox [36], that the state of a system cannot be described

only by the behaviour of the wave function: if the quantum phenomena are

described by quantum mechanics (Schrödinger’s equation of the wave function),

the passage from the microscopic to the macroscopic world leads to paradoxical

conclusions like, for example, a superposition between a dead and an alive cat.

It is useful to recall the Schrödinger’s cat paradox. Bell [3] has rephrased this

mental experiment in a less cruel way as follows: consider a cat in a perfectly

isolated room. Together with the cat, the experimenter has put in the room a

radioactive source and a complicated mechanism. If a radioactive nucleus decays,

the mechanism opens a source of milk such that it fills a cup and the cat can drink.

The room has no window so that what happens inside is completely obscure to

the experimenter: she doesn’t know if the cat is still hungry or if she enjoyed her

17
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Figure 2.1: The Schrödinger’s cat

meal. In this way the radioactive decay, a microscopic event, influences directly a

macroscopic event, like the presence or not of some milk molecules in the stomach

of the cat.

From the mathematical rules of quantum mechanics it follows that, given that

the wave function of the radioactive nucleus is in a superposition of decayed–non

decayed wave function, the cat is neither hungry nor filled up but she is a super-

position of both states. From ordinary experience, we know that a macroscopic

object cannot be in such a superposition of states with macroscopically disjoint

supports, so somewhere, somehow, quantum mechanics gives the wrong answer.

Note that, if the experimenter opens the door of the room, she finds out that

the cat is always in one or in the other state. As a consequence of observation

(measurement), the wave function has collapsed into one of the two possibilities.

From the Schrödinger’s cat paradox we can conclude that it is not clear what

is the role of the observer (and also who can be regarded as an observer, i.e.,

someone that is able to reduce the superposition wave function). Moreover, it is

also obscure where to put the border between the microscopic world, in which

superpositions can exist, and the macroscopic world, in which they cannot. From

these considerations Bell has drawn the conclusion that we have only two possi-

bilities. Either we add something to the wave function for the description of the

state of the system or we modify Schrödinger’s equation. Bohmian mechanics is

a theory that follows the first direction.
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2.2 The State of a System and The Dynamical

Laws

It could be useful to recall that the first step in the construction of a physical

theory is to establish what are the mathematical entities (points, fields, strings,

membranes, and so on) with which one intends to describe the physical reality.

These mathematical entities are what the theory is about and they are often

called the ontology of the theory (a rather complicated word with a deep and

simple physical meaning).

In Bohmian mechanics the world is described by point–like particles which

follow trajectories determined by a law of motion. The evolution of the config-

urations of these particles is guided by the wave function which iteslf evolves

according to Schrödinger’s equation. In other words, in Bohmian mechanics

the complete description of the state of an N point–like particle system is the

couple (Ψt, Qt), where Ψt = Ψt(q) is the wave function of the system and

Qt = (Q1(t), ..., QN(t)) is a point in the configuration space IR3N . Each Qk(t)

is the position of the k-th particle at time t in ordinary space IR3. This is a

very big difference with ordinary quantum mechanics in which the state of the

same system is given only by the wave function and there is no position and no

trajectory whatsoever.

We can think of Bohmian mechanics as a dynamical system and from this

point of view we can compare it with classical mechanics. We all know that

in Newtonian mechanics the dynamics of the point particles is determined by a

second order differential equation

Q̈t =
1

m
F (Qt), (2.1)

in which F (Q) is a force field that in some cases can be derived from a potential

φ as F (Q) = −∇φ. In Bohmian mechanics the dynamics is given by a first order

differential equation
dQt

dt
= vΨ(Qt), (2.2)

where vΨ = (vΨ
1 , ..., v

Ψ
N) is a velocity field on the configuration space. This field is

generated by the wave function Ψ which itself evolves according to Schrödinger’s
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equation

ih̄
∂Ψ

∂t
= HΨ , (2.3)

where

H = −
N∑

k=1

h̄2

2mk
∇2

k + V

is the Hamiltonian.

The velocity field is determined by reasons of simplicity and symmetry (see,

e.g., [15]):

vΨ
k =

h̄

mk
Im
[∇kΨ

Ψ

]
. (2.4)

The factor h̄
m
comes from the requirement of Galilei invariance, the imaginary part

is a consequence of invariance for time reversal, the gradient is from rotational

invariance and the fact that one has to divide for Ψ derives from the homogeneity

of degree zero of the velocity field. If we have a magnetic field we should take ∇k

as the covariant derivative. If the wave function is a spinor, we should rewrite

the velocity field as

vΨ
k =

h̄

mk
Im
[
Ψ∗∇kΨ

Ψ∗Ψ

]
, (2.5)

when now in the numerator and denominator appears the scalar product in

the spinor space. The global existence of Bohmian dynamics has been proven

with full mathematical rigor in [7] where it has been shown that for a large

class of Schrödinger Hamiltonians, including Coulomb with arbitrary charges

and masses, and sufficiently regular initial datum ψ0 of (2.3) the solution of (2.2)

exists uniquely and globally in time for |ψ0|2-almost all initial configurations Q0.

Equations (2.3) and (2.2) form a complete specification of the theory. What

we have in Bohmian mechanics is a dynamical system for the dynamical variables

(Ψ, Q). Without any other axiom, all the results obtained in the framework of

non relativistic quantum mechanics follows from the analysis of the dynamics.

2.3 Bohmian Mechanics and Newtonian Me-

chanics

Note that the analogy we have done between Newtonian mechanics and Bohmian

mechanics doesn’t mean that Bohmian mechanics is a way of rephrasing quantum
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mechanics in classical terms.

First of all, Bohmian mechanics is a first order theory while Newtonian me-

chanics is a second order one. This means that in Bohmian mechanics, given the

position at a time t, we can compute the trajectory. In classical mechanics, on

the contrary, we need both the velocity and the position to specify the motion.

A consequence of this facts is that Bohmian mechanics trajectories cannot cross

in configuration space, while there is no such restriction in Newtonian mechanics.

The only similarity between classical and Bohmian mechanics is that they are

dynamical systems dealing with point particles. In the original work by Bohm [6]

he tries to rewrite quantum mechanics as a second order theory. But this attempt

may be misleading in the same sense as it would be rewriting Newton’s equation

as a third order equation. (See section 2.7 for further comments on that.) Note

that the configurations Q of the particles composing the system are the primary

objects of the theory, while the wave function is only a derivative concept.

2.4 Nonlocality and Hidden Variables

In the literature it is common to refer to Bohmian mechanics as a theory of hidden

variables. This is a consequence of the famous EPR paper [19] in which Einstein,

Podolsky and Rosen argued that quantum mechanics might be incomplete. Their

proposal was to look for some non measurable variables (somehow hidden) to

complete the theory.

It should be stressed that the problem faced by Einstein, Podolsky and Rosen

in their paper was about the locality of quantum theory: they assumed implicitly

that reality is local, i.e. action at a distance is impossible, and proposed a mental

experiment (that we shall not recall here). Their conclusions were that, if reality is

local, quantum mechanics is incomplete and there is need of some extra variables

to take this into account. From the violation of Bell’s inequality (see [3], [2]) it

followed that their assumption was wrong: reality is non local and therefore from

their reasoning we cannot conclude anything concerning the existence of hidden

variables.

We should enphatize that the reason for introducing the configuration of the

particles as an extra variable in quantum mechanics has nothing to do with
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nonlocality. This has created and indeed still creates a lot of confusion in under-

standing which are the consequences of the violation of Bell’s inequality –that

reality is nonlocal and that any completion of quantum mechanics with local hid-

den variable is impossible. This is not the case of Bohmian mechanics, in which

nonlocality follows directly from the fact that the wave function is a function in

configuration space, not in ordinary space. This means that the velocity of each

particle of a system composed of N particles, independently on how far are they.

The degree of action at distance depends on the degree of entanglement.

It is interesting to note, as a side remark, that the true “hidden” variable is

actually the wave function. In fact, it is not stressed sufficiently that it is indeed

the wave function that cannot be measured. This can be seen as follows. A

completely general experiment can be described by:

• a unitary map U transforming the initial state of system and apparatus

ψ0(x)⊗φ0(y) into a final state Ψ(x, y) = U (ψ0(x)⊗ φ0(y)) (x refers to the

configurations of the system and y those of the apparatus);

• a pointer function Z = F (y) representing the pointer orientation in terms

of the microscopic configuratins y of the apparatus.

It can be shown that the probability distribution of Z must be a quadratic func-

tion of ψ0
1 . (This is a direct consequence of quantum equilibrium and linearity

of Schrödinger’s equation, see [17]). If the wave function were measurable, the

statistics of the pointer measuring the wave function would be formally given by

µZ(dψ) = δ(ψ − ψ0)dψ, (2.6)

which, however, is not a quadratic function of ψ0 and thus the wave function is

not measurable.

1Measured–valued quadratic forms on the Hilbert space of wave function are mathematically

equivalent to positive operator–valued measures (POVM) and self–adjoint operators (which

are, by the spectral theorem, in one to one corespondence with projector–valued measures)

are therefore a particular class of POVM. In physical terms: general quantum observables are

described by POVM and self-adjoint operators as observables are a very idealized notion coming

from the special class of repeatable measurements [17].
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2.5 The Quantum Equilibrium Hypothesis and

the Experimental Predictions

Bohmian mechanics makes the same predictions as does non relativistic ordinary

quantum mechanics for the results of any experiment, provided that we assume

a random distribution for the configuration of the system and the apparatus at

the beginning of the experiment given by ρ(q, t) = |Ψ(q, t)|2. In fact, consider
the quantum continuity equation

∂ρ

∂t
+ div JΨ = 0, (2.7)

which is, by itself, a simple consequence of Schrödinger’s equation. Here JΨ =

(JΨ
1 , . . . , J

Ψ
N ) is the quantum probability current

JΨ
k =

h̄

mk

Im [Ψ∗∇kΨ] = |Ψ|2vΨ
k . (2.8)

Equation (2.7) becomes the classical continuity equation

∂ρ

∂t
+ div ρ vΨ = 0 (2.9)

for the system dQt/dt = vΨ and it governs the evolution of the probability density

ρ under the motion defined by the guiding equation (2.2) for the particular choice

ρ = |Ψ|2. In other words, if the probability density for the configuration satisfies
ρ(q, t0) = |Ψ(q, t0)|2 at some time t0, then the density to which this is carried

by the motion (2.7) at any time t is also given by ρ(q, t) = |Ψ(q, t)|2. This is
an extremely important property of any Bohmian system. In fact it expresses a

compatibility between the two equations of motion defining the dynamics, which

we call the equivariance of |Ψ|2.
The above assumption, which guarantees agreement between Bohmian me-

chanics and quantum mechanics regarding the results of any experiment, is what

we call the quantum equilibrium hypothesis: when a system has a wave function Ψ,

its configuration Q is random with probability distribution given by the measure

(for a complete discussion of this, see [13])

IPΨ(q) ≡ ρΨ(q)(dq) = |Ψ(q)|2dq. (2.10)
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It has sometimes been claimed that it is possible to experimentally discrimi-

nate between Bohmian mechanics and quantum mechanics. This claim is however

totally unfounded: what we have just shown is that there must be experimental

agreement as a consequence of quantum equilibrium.2

The experimental equivalence of Bohmianmechanics with quantum mechanics

might appear, somehow, as a little frustrating fact. While, on the one hand,

all the experimental evidence confirms Bohmian mechanics as well as quantum

mechanics, on the other hand it would be easier if the experimental predictions

were different. In fact, if there was a crucial experiment able to discriminate

between the two theories, there would be something objective to establish which

is the correct theory. We should make clear, however, that the experimental

equivalence of Bohmian mechanics with quantum mechanics holds as long as the

predictions of quantum mechanics are not ambiguous. There are in fact a variety

of experimental issues that don’t fit comfortably within the standard operator

quantum formalism, such as dwell and tunneling times [30], escape times and

escape positions [10], scattering theory [16], but are easily handled by Bohmian

mechanics.

Actually, after the discussion of the previous sections, it should be clear that

the comparison should not be made only on the level of experimental prediction

but, on the contrary, the decision of what is the right theory should be taken on

the deeper level of the ontology of the theory.

2.6 The Wave Function of a Subsystem and the

Collapse

The existence of configurations in Bohmian mechanics allows for a natural and

clear notion for the definition of the wave function of a subsystem. In fact,

consider a complex system composed of a sub-system and by its environment. If

2Note that the quantum equilibrium hypothesis is a physical condition which might not be

satisfied in our world. However, this would imply an experimental violation of the quantum

mechanical predictions, which, given all the experimental evidence collected so far, is not the

case. Indeed, all the experimental verifications of quantum mechanics give support to the

quantum equilibrium hypothesis.
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Qt = (Xt, Yt), where Xt is the actual (i.e. what really is) configuration of the

sub-system and Yt the one of its environment, we can define the conditional wave

function for the x-system at time t as follows

ψt(x) = Ψt(x, Yt), (2.11)

that is, the wave function of the whole universe (the biggest system of all) Ψt

calculated in the actual configuration of the environment. Under appropriate

conditions, on which we’ll focus later (see chapter 7), ψt(x) satisfies Schrödinger’s

equation in x. In this case it is indeed the effective wave function for the x-system,

that is, the collapsed wave function that the ordinary quantum formalism assigns

to the subsystem after a quantum measurement. In fact, suppose Ψ has the

structure occurring in a measurement situation

Ψt(x, y) = ψt(x)φt(y) + Ψ
⊥
t (x, y), (2.12)

where φt(y) and Ψ
⊥
t (x, y) (the part of Ψt which is not ψt(x)φt(y)) have macro-

scopically disjoint y-supports. If Yt belongs to the support of φt(y), ψt(x) is the

effective wave function of the x-system at time t. (For a clear exposition of this,

see [15] or [13].)

Basically, from the above discussion the collapse of the wave function can

be deduced from Bohmian mechanics without introducing any active role to the

observer. Consider, again, the cat paradox in the original version, were the two

superposing states are dead and alive cat. In Bohmian mechanics at any time t

the cat is something real, she is dead or alive, independently of who is looking

at her. Note that she can be in a superposition state because the wave function

evolves according to Schrödinger’s equation, but in Bohmian mechanics the state

of the system is given by the couple (Ψ, Q) of the wave function and the configu-

rations Q = (q1, ..., qn) of all the particles composing the system (the cat). Thus,

according to which support Q belongs to (to those of the wave function Ψdead de-

scribing the dead cat or to those of the wave function Ψalive describing the alive

cat), the cat is actually dead or alive. Note that superpositions exist on all scales

(from micro to macro) but don’t influence at all the fact that the cat is this or

that. At this point a question could arise: due to the presence of a superposition

wave function, could it be possible that the cat, who at some time is dead, returns
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alive? The cat has an actual configuration, belonging (in our example) to the

support of Ψdead, and its evolution is guided by the wave function. There seems

to be nothing to prevent Q from being guided to the support of Ψalive, making

the dead–alive transition possible. Actually, this is very unlikeky to happen since

the supports of the two wave functions are macroscopically distinguishable. By

this we mean that the macroscopic variables, like, e.g., the temperature, assume

different values in the two states, even if the microscopic quantities from which

they have been derived might be similar. The temperature of a dead cat and

of a live cat are, in general, different. Thus, if Q at some time belongs to the

support of Ψdead, the effect of Ψalive is completely negligible: we can forget it for

the dynamics of Q. The dead–alive transition could be possible if we could bring

the two wave functions close to each other again. But the probability of having

success in this would be even less probable than the fact that all the molecules

of perfume we have sprayed in a room would come back spontaneously in the

neighbourhood of the bottle: it is possible but extremely improbable.

2.7 Bohmian Mechanics and the Quantum Po-

tential

To point out some interesting features of Bohmian mechanics, it can be useful to

write the wave function Ψ in the polar form

Ψ = Re
i
h̄
S (2.13)

and then rewrite Schrödinger’s equation in terms of these new variables. (This

is what Bohm originally did in his 1952 paper [6].) In this way one obtains from

(2.3) a pair of coupled equations: the continuity equation for R2,

∂R2

∂t
+ div

(∇kS

m

)
R2 = 0, (2.14)

which suggests that ρ = R2 can be interpreted as a probability density, and a

modified Hamilton-Jacobi equation for S

∂S

∂t
+
(∇kS)

2

2m
+ V −

∑
k

h̄2

2mk

∇2
kR

R
= 0 (2.15)
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Note that this equation differs from the usual classical Hamilton-Jacobi equation

∂S

∂t
+
(∇kS)

2

2m
+ V = 0 (2.16)

only by the appearance of an extra term, the quantum potential

VQ ≡ −
∑
k

h̄2

2mk

∇2
kR

R
. (2.17)

This modified Hamilton-Jacobi equation can be used, together with the continuity

equation for R, to define particle trajectories identifying the velocity with vk =
∇kS
m
. In this way the resulting motion is precisely what would have been obtained

classically if the particles were subjected to the force generated by the quantum

potential in addition to the usual forces.

As we have already anticipated, this rewriting of Schrödinger’s equation

through the polar variables (R, S) is somehow misleading. In fact, first of all,

there is an increase in complexity: Schrödinger’s equation is a linear equation

while the modified Hamilton-Jacobi equation is highly nonlinear and still requires

the continuity equation for its closure. Note that, since in Bohmian mechanics

the dynamics is completely defined by Schrödinger’s equation (2.3) and the guid-

ing equation (2.2), there is no need of any further axioms involving the quantum

potential and thus it should not be regarded as the most basic structure defining

Bohmian mechanics.

Moreover, it is important to recall that Bohmian mechanics is not simply

classical mechanics with an additional force term. In Bohmian mechanics the

velocities are not independent of positions, as they are classically, but are con-

strained by the guiding equation (2.2). The correct way of regarding to Bohmian

mechanics is as a first-order theory, in which the fundamental quantity is the

velocity, which is specified directly and simply by the theory. In Bohmian me-

chanics the second-order (Newtonian) concepts of acceleration and force, work

and energy play no fundamental role, and are emergent notions like the quan-

tum potential. On the contrary, they are fundamental to the theory to which

Bohmian mechanics converges in the classical limit, namely Newtonian mechan-

ics. It might be objected that mass is also a second-order concept and it does

play an important role in Bohmian mechanics. Note that the masses appear in
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the basic equations only in the combination mk/h̄ ≡ µk. Thus equation (2.2)

could more efficiently be written as

dQk

dt
=
1

µk
Im

[
ψ∗∇kψ

ψ∗ψ

]
. (2.18)

If we divide Schrödinger’s equation by h̄ we get

i
∂ψ

∂t
= −

∑N

k=1

1

2µk
∇2

kψ + V̂ ψ, (2.19)

with V̂ = V/h̄. Thus it seems more appropriate to regard the naturalized masses

µk, rather than the original masses mk, as the fundamental parameters of the

theory. Note that if we naturalize also all other parameters, including also the

electric charge ê = e/
√
h̄, h̄ disappears from this formulation. Planck’s constant

remains only in the equations mk = h̄µk and e2 = h̄ê2 relating the masses and

the charges in the microscopic units with those in the macroscopic scales [15].

In any case, regardless of whether or not we think of the quantum potential as

fundamental, it can be useful. One sees from equation (2.15) that the quantum

potential provides a rough measure of the deviation of Bohmian mechanics from

its classical approximation. In fact the law of motion is

mẌt = −∇[V (Xt) + VQ(Xt)]. (2.20)

Equation (2.20) shows that all the deviations from classicality are embodied in

the quantum force FQ = −∇VQ, so that, whenever FQ is negligible, there is

classical motion. In section 3.2 we’ll see that our basic notion of deviation from

classicality is simply a way to make clear and precise this concept.



Chapter 3

Classical Limit in Bohmian

Mechanics

From the last remarks of the prevous chapter it follows that in the framework

of Bohmian mechanics, the classical behavior of a body should emerge when

the quantum potential is small. In this way it seems that the classical limit

is something trivial: ensure the quantum potential is somehow small and then

classical mechanics arises from Bohmian mechanics. What is not at all trivial is

to understand what are the physical conditions corresponding to the smallness

of the quantum potential. The goal of our work is indeed to show that there

exists a well defined limit that, in turns, defines macroscopic scales in which the

time evolution is approximately classical. With this we mean that the deviation

from classicality (the quantum force) on those macroscopic scales in that limit is

“almost” zero, as we shall make precise in section 3.2.

In the present chapter we shall discuss a simple model of a macroscopic body

moving in an external potential and we shall see in which limit and on which

macroscopic scales classical behavior should arise. In chapter 6 we shall study

the general structure of the classical limit for more realistic models in which the

approximation of motion in an external potential will be abandoned.

29
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3.1 Motion in an External Potential

Consider a body composed of N particles, with positions (x1, ..., xN), subjected

only to internal forces, i.e. with Hamiltonian

H =
∑
i

p2
i

2mi

+
∑
i>j

U(xi, xj).

The center of mass of the body is defined as

x =

∑
i mixi∑
i mi

(3.1)

and yi is some suitable relative coordinate of the i-th particle. In the new coor-

dinates (x, y = (y1, ..., yN−1)), the Hamiltonian factorizes as

H = H
(0)
CM +Hrel,

where H
(0)
CM is the kinetic energy of the center of mass. Note that the inter-

nal potential is only a function of the relative coordinates, U(x, y1, ..., yN−1) =∑
i>j W (yi − yj), and the total kinetic energy is given by the sum of the kinetic

energy of the center of mass and the one of the relative coordinates, that is

KE = KECM + KErel. (The first fact is true for any relative coordinate, not

only for those with respect to the center of mass, while the second one is true

only for those relative to the center of mass.) This means that the motion of the

center of mass is not affected by internal forces, that is, it moves freely. Thus, if

the total initial wave function of the total system factorizes as

Ψ0(q) = ψ0(x)⊗ φ0(y), (3.2)

where q = (x, y), ψ0 is the wave function of the center of mass and φ0 is the

wave function of the internal degrees of freedom, then this product form will be

preserved by the dynamics and the motion of the center of mass can be completely

decoupled from the internal coordinates y.

If in addition to the internal force the particles interact are also subjected to

an external potential, the potential energy in the Hamiltonian will be of the form

U =
∑
i<j

U(xi, xj) +
∑
i

Vi(xi) .
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Nparticles
in one
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body
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Pair

Interaction

Potential
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on the size
of the body

Figure 3.1: Motion in an external potential of N point–like particles composing

a single massive body

Then under the change of variables q = (x, y) the Hamiltonian assumes the form

H =
(
H(0) + V

)
CM

+Hrel +HI
int, (3.3)

where VCM ≡ ∑
i Vi(x) and HI

int is the interaction between the center of mass and

the relative coordinates due to internal degrees of freedom. Thus the product form

(3.2) is not preserved by the dynamics. If Vi are slowly varying on the size of the

body, Hi
int can be treated as a small perturbation, and, in first approximation,

neglected. Thus, if Ψ = ψ(x) ⊗ φ(y), at some time, the time evolution of the

center of mass decouples from that of the relative coordinates and we end up with

a very simple one particle problem: the wave function ψ of the center of mass

evolves according to one-particle Schrödinger’s equation.

Note that we would have obtained the same conclusion considering several

(M) macroscopic bodies composed of N particles subjected to a sufficiently slowly

varying pair interaction U and to an external potential V , slowly varying in

the size of each body. Assuming that the pair interaction is slowly varying is

necessary to neglect any coupling between particles belonging to different bodies.

An example of a system like this is the solar system.

Therefore, in this approximation, the product structure of the wave function

is still preserved (assuming the product form at some “initial” time). In this way

we end up with a very simple one body problem: the wave function ψ(x) of the
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Nparticles
in M bodies

Small
Pair

Interaction

Potential
slowly varying

on the size
of each body

Figure 3.2: Motion in an external potential of N point–like particles composing

M massive bodies

center of mass evolves according to

ih̄
∂ψ(x, t)

∂t
= Hψ(x, t), (3.4)

where

H =
(
H(0) + V

)
CM

is the Hamiltonian of the center of mass of the body and the time evolution of

the center of mass of the body Xt is given by

dXt

dt
=

h̄

m
Im

[
∇ψ(Xt, t)

ψ(Xt, t)

]
. (3.5)

We want to underline that this is an approximation which is allowed whenever

the external potential V is slowly varying on the size of the body. We will see

later in section 6 how all our analysis can be generalized when we don’t neglect

the interaction term and when the product structure of the wave function is no

longer preserved.

3.2 Conjecture on Classicality

Usually physicists consider the limit h̄ → 0, meaning by this h̄ � A0, where

A0 is some characteristic action of the corresponding classical motion (see, e.g.,

[32],[37],[4]). In this regard one should observe that, while ψ doesn’t have any
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limit as h̄ goes to zero, the couple (R, S) defined by the h̄-dependent change of

variables (2.13), does have a limit. Formally, this limit can be read by setting

h̄ ≡ 0 in equations (2.14) and (2.15). In this way one has that the couple (R, S)

becomes the pair (R0, S0), where R0 satisfies the classical continuity equation

and S0 the classical Hamilton-Jacobi equation, i.e.

∂R02

∂t
+ div

(
∇S0

m

)
R02

= 0, (3.6)

∂S0

∂t
+

(∇S0)2

2m
+ V = 0. (3.7)

The condition h̄ � A0 is often regarded as equivalent to another standard

condition of classicality which involves the length scales of the motion (see, e.g.,

[29]): if the de Broglie wave length λ is small with respect to the characteristic

dimension L determined by the scale of variation of the potential, the behavior

of the system should be close to the classical behavior in the same potential.

We regard this as the most natural condition of classicality since it relates in a

completely transparent way a property of the state, namely its de Broglie wave

length, and a property of the dynamics, namely the scale of variation of the

potential. We believe that this condition should not depend too much on any

detailed characterization of λ and L. In particular, the wave length λ could be

taken as a function of the initial wave function ψ0, i.e., λ ≡ λψ0 . A rough estimate

can be made in terms of the mean kinetic energy, that is1

λψ0 =
h̄√

2mEkin,ψ0

=
h̄√

2m〈ψ0,− h̄2

2m
∇2ψ0〉

2. (3.8)

We will see in section 5.4 that a suitable definition of L should be the following

L =

√
V ′

V ′′′ , (3.9)

where V ′ and V ′′′ are, respectively, the first and the third derivative of the po-

tential V (see section 5.3 for more details).

1 From now on, we shall denote by λ both the wave length and the wave length divided by

2π since the 2π-factor doesn’t play any role in our analysis.
2Note that in formula (7) h̄ and m cancel each other such that λ = 1

〈ψ0,−∇2ψ0〉 but the h

dependance is inside the wave function
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But, regardless of the precise characterization of λ and L (a problem that we

shall address later on), one should observe that they provide natural macroscopic

scales for describing the motion. The macroscopic scales defined by λ and L are

in fact

(x′, t′) =
(
x

L
,
t

T

)
. (3.10)

The time scale T is defined as T = L
v
and v is the speed defined by λ,

v =
h̄

mλ
.

The scales L and T tell us what are the fundamental units of measure for the

motion: L is the scale in which the potential varies and T is the time necessary

for the particle to see its effects. We expect the Bohmian motion on these scales

to look classical when the dimensionless parameter ε ≡ λ
L
is getting smaller

and smaller. This means in particular that we expect the quantum potential to

become negligible (with respect to the kinetic energy) whenever ε → 0. Thus,

it seems appropriate to formulate the emergence of classicality in terms of the

deviation from classicality,

D = |Ẍ ′

t′ − Ẍ
′0
t′ | =

mLλ2

h̄2

∣∣∣∇VQ(X
′

t′L, t
′T )
∣∣∣ , (3.11)

expressing the quantum force FQ = −∇VQ, with VQ defined by equation (2.17), on

the macroscopic scales (3.10). X
′0
t′ and X

′
t′ denote the classical and the Bohmian

motion on the same scales3. (In the following, whenever there will be no ambi-

guity, we will replace the prime notation x′ by x.)

Then a first rough notion of classical limit can be phrased as follows: D → 0

on the macroscopic scales (3.10) whenever ε → 0. This condition involves however

some subtleties which we shall now address.

First of all, note that the limits ε → 0 is much more general than merely

requiring h̄ → 0. In fact

ε =
λ

L
=

h̄

pL
,

where p = mv is the momentum. So, keeping fixed L and p, the limit h̄ → 0

implies ε → 0. But there are several ways in which ε could go to zero according to

3Note that the classical trajectory is the one that passes through that point at that time,

not the classical trajectory with same initial position and velocity as the Bohmian trajectory.
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the combination of λ and L. In other words, the classical limit is a two-parameter

limit, λ and L, and special cases like h̄ → 0 cannot explain all the classical

behavior. Note that the two parameters themselves live on infinite dimensional

spaces since λ = λψ0 , with ψ0 varying in the Hilbert space of system’s wave

functions, and L = LV , with V varying in the class of admissible one particle

potentials (that is, potentials leading to a self-adjoint Hamiltonian).

Secondly, observe that demanding D → 0 whenever ε → 0 is probably too

strong a requirement. In fact, some special examples can be found in which,

even if ε is small, D is not small. In appendix B we shall see, with the simple

and completely controllable example of a free Gaussian wave packet, what is

the behavior of the deviation from classicality D in the limit ε → 0 on the

macroscopic scales as a function of all the parameters occurring in the problem.

These parameters are in this example the massm, the initial velocity u, the initial

position spread σ0 and the Planck’s constant h̄, then we have the macroscopic

scales Lo and T = mLoλ
h̄
. We’ll see that there is no uniformity of the convergence.

In fact there is a special combination of parameters for whichD doesn’t go to zero

even if ε is small. This is connected to the fact that requiring that the deviation

from classicality converges to zero for any initial condition is too much. In fact

different initial conditions have different probabilities to happen. Therefore a

conjecture on the emergence of the classical limit could be very generally stated

as follows:

Let IPψ be the probability distribution (2.10) on the space of initial

conditions Ω, induced by the initial wave function ψ0. D, given by

(3.11), is a random variable on the probability space (Ω, IPψ). Then,

for any δ > 0, the probability of D being greater than δ goes to zero,

IPΨ(D > δ)→ 0,

when the dimensionless parameter ε goes to zero,

ε ≡ ε(ψ0, V ) =
λψ0

LV

→ 0,

uniformly in ψ0 and V .

(3.12)
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The above conjecture involves a notion of uniformity. By this we mean the

following: let (Vn, ψn) be any sequence for which εn =
λn

Ln
→ 0, where λn = λ(ψn),

e.g. with λ given by (7), and Ln = L(Vn). Then the Bohmian motion on the

macroscopic scales (3.10) defined by Vn and ψn is approximatively classical with

deviation from classicality D tending to zero in probability as n → +∞. (We
recall the definition of convergence in probability: let (Xn) be a sequence of

random variables and let X be a random variable, we say that Xn → X in

probability if for every η > 0,

P (|Xn −X| > η)→ 0

as n → +∞.) The conjecture can be equivalently formulated as follows: for any
η > 0 and for any δ > 0, there exists an ε0 > 0 such that the probability of D

being greater than δ, IPψ(D > δ), is smaller than η, for any ε < ε0.

Note that, though we have estimated λ by (7) and emphasized that it depends

on ψ0, λ in general could also depend on the initial condition x0 and therefore be

a random variable on (Ω, IPψ). Taking this into account requires a refinement of

the above conjecture that we will address in section 5.6.

Moreover, note that if the potential is uniform or constant (free particle) one

expects that its scale of variation is L = +∞. Since for this latter case λ is

always smaller than L, it is always possible to find a macroscopic scale in which

the motion is classical. More precisely, if ε = 0, our conjecture must be modified

as follows: if L = +∞, let Lo be any length scale chosen by the experimenter

and To the corresponding time scale To =
Lo

v
. Then the motion is classical on the

macroscopic scales ( x
Lo
, t
To
), i.e. for any δ > 0 the probability of D being greater

than δ goes to zero, IPΨ(D > δ) → 0, when the dimensionless parameter ε goes

to zero

ε = ε(ψ0, Lo) =
λψ0

Lo
→ 0, (3.13)

uniformity in ψ0 and Lo.

We would like to underline that the above conjecture is really very hard to

prove because it requires a lot of uniformity both in the initial wave function

ψ0 and in the potential V . Just to have an idea of the difficulty in proving it,

one may think of the analogous problem in statistical mechanics, namely the
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problem of studying the deviations from thermodynamic behavior of a large but

finite system.

We should then observe that proving the conjecture is difficult but it is still

not completely satisfactory from a physical point of view. In fact the conjecture

states only that D depends on ε in such a way that D → 0 as ε → 0 uniformly

in all the other parameters appearing in the initial wave function and in the

potential. The result that we would like to prove would involve estimating D not

just showing that it goes to zero but how rapidly: like ε, like ε2 and so on. Notice

that this last result is the only one of practical value: given V and ψ0 it provides

an estimate for the deviation from classicality, while other results do not quite

do this.

Finally, note that the conjecture (3.12) captures, of course, also the notion of

classical limit for microscopic systems as an electron or an atom, whenever the

approximation of motion in an external potential is appropriate.

To sum up, a mathematical derivation of the classical limit is a very difficult

problem. One may hope to get a handle on it by separating it into a series of

steps of growing difficulty:

1. Fix a particular sequence of initial wave functions and external potentials

(ψλ
0 , V

L) such that ε = λ/L → 0. For example, fix all the parameters but

the scale of variation of the potential L which is going to infinity such that

ε � 1
L
→ 0. Another example is to fix everything but λ which goes to zero

such that ε � λ → 0. Show that D goes to zero as ε gets small on the

macroscopic scales (x′, t′).

2. Consider any sequence of initial wave function and external potential

(ψλ
0 , V

L) for which ε = λ/L → 0. Show that D is small with high prob-

ability as ε goes to zero on the macroscopic scales (x′, t′) uniformly in all

the parameters (those characterizing the initial wave function ψ0 and the

macroscopic scales L and T ).

3. For any sequence of initial wave function and external potential (ψλ
0 , V

L)

for which ε = λ/L → 0, show how the deviation from classicalityD depends

upon ε in the limit ε → 0.
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In the next chapter we shall study two one-parameter families representing an

example of the first step, that is two special cases of the limit ε → 0. The first is

the usual limit h̄ → 0, in which the mean de Broglie wave length λ of the initial

wave function ψ0 is going to zero, while the scale of variation of the potential is

kept fixed. The second example is a limit connected to a slow variation of the

potential. In this case, the initial wave function ψ0 is fixed, while the scale of the

variation of the potential L is going to infinity.

3.3 Closeness of Laws and Closeness of Trajec-

tories

From a physical point of view, the main content of our conjecture is that, for ε →
0, the quantum laws of motion converge to the corresponding classical ones (on the

appropriate scales described in the previous section). We have different possible

notions of this kind of convergence. The most natural one is the convergence of

modified Newton’s equation to classical Newton’s equation

mẍt = −∇ [V (xt) + VQ(xt)]→ mẍt = −∇V (xt). (3.14)

This happens when the quantum force FQ = −∇VQ is going to zero. Equiva-

lently, we may have convergence of the modified Hamilton-Jacobi equation to the

classical Hamilton-Jacobi equation

∂S

∂t
+

(∇S)2

2m
+ V + VQ = 0→ (3.15)

∂S0

∂t
+

(∇S0)2

2m
+ V = 0, (3.16)

where S0 is the classical action. This is a limit in which the quantum potential

VQ = − h̄2

m
∇R2

R
is going to zero. Finally, one may have the convergence of the

quantum velocity field to the classical one

v =
∇S

m
→ v0 =

∇S0

m
. (3.17)

Note that convergence of laws of motion per se doesn’t imply convergence of

the corresponding trajectories. But showing that two laws of motion are “close”,
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that is they are equal except for a small error, suggests that one can use classical

or quantum equations indifferently.

It is just in the rules of physics to use approximate laws to describe the world.

Think, for example, of the large variety of cases in which physicists trust the

validity of their approximations, e.g. Newtonian gravity as an approximation of

Einsteinian gravity or the use of reversible Newtonian laws whenever dissipative

and viscous forces are negligible. In this regard, one should not forget that the

rigorous mathematical justifications of the validity of these approximations might

be in general a very difficult task (think, e.g., of the problem of showing that the

solutions of Navier-Stokes equations converge to the solutions of Euler equations

in the limit of small viscosity). The mathematical work gives us precise infor-

mation on the time scales of validity of the approximation and this is really a

relevant thing to know. But one should remember that mathematical sophistica-

tion should not be regarded as a substitute of the very physical reason for which

we believe in these approximations.

Be that as it may, we are aware of the mathematical difficulties involved in a

rigorous proof of the convergence of the Bohmian trajectories to the corresponding

classical ones. In this regard we observe that convergence of trajectories from

convergence of laws, at least for sufficiently short times, may follow from standard

theorems of ordinary differential equation theory (see, e.g. [20]) concerning the

dependence of solutions on initial values and other parameters.

While we take for granted that convergence of laws implies convergence of

the corresponding trajectories, we observe that there are indeed different mathe-

matical notions which express such a convergence and capture different physical

notions of closeness of trajectories:

1. One may demand that, given the Bohmian trajectory on the macroscopic

scales Xε
t , there is a classical trajectory X0

t such that, in the limit ε → 0,

the quantum trajectory Xε
t is closed to X0

t , that is

lim
ε→0

∣∣∣Xε
t −X0

t

∣∣∣ = 0. (3.18)

Note that X0
t itself depends on ε, in the sense that it is the classical motion

on the macroscopic scales defined by λ and L.
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2. One could also ask for both the macroscopic quantum velocities and the

quantum trajectories to be close to the classical ones, that is

lim
ε→0

∣∣∣Xε
t −X0

t

∣∣∣ = 0 , lim
ε→0

∣∣∣Ẋε
t − Ẋ0

t

∣∣∣ = 0. (3.19)

3. One can also add the convergence of the macroscopic quantum accelerations

to their classical counterparts

lim
ε→0

∣∣∣Xε
t −X0

t

∣∣∣ = 0 , lim
ε→0

∣∣∣Ẋε
t − Ẋ0

t

∣∣∣ = 0 , lim
ε→0

∣∣∣Ẍε
t − Ẍ0

t

∣∣∣ = 0. (3.20)

4. We can even consider the closeness of higher order derivatives of the

Bohmian trajectory to the corresponding derivatives of the classical tra-

jectory

lim
ε→0

∣∣∣Xε
t −X0

t

∣∣∣ = 0 , ... , lim
ε→0

∣∣∣Xε(n)
t −X0(n)

t

∣∣∣ = 0. (3.21)

The first notion is the weakest one: quantum velocity and acceleration do not

need to converge to their classical counterparts. On the contrary the other cases,

requiring closeness also of higher order derivatives of quantum and classical trajec-

tory, maybe are too stringent in their requirements. In fact, consider for example

a turning point: it is unreasonable to expect the existence of a classical velocity

and a classical acceleration close to the quantum ones while there is a classical

trajectory close to the Bohmian trajectory, at least for a one dimensional motion.

Finally we note that, since the trajectories are random on the probability

space (Ω, IPψ), one should also specify the kind of probabilistic convergence. For

example, one may have (uniformly in t, t ∈ (0, T ) for some T ), for Y denoting

the trajectory or its time derivatives,

1. Pointwise convergence

lim
ε→0

∣∣∣Y ε
t − Y 0

t

∣∣∣ = 0, (3.22)

almost everywhere with respect to IPΨ defined by equation (2.10).

2. L2 convergence

lim
ε→0

∥∥∥Y ε
t − Y 0

t

∥∥∥
2
= 0, (3.23)

that is, the convergence of the variance.
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3. Convergence in Probability

lim
ε→0

IPΨ
(∣∣∣Y ε

t − Y 0
t

∣∣∣) = 0. (3.24)

Note that our conjecture (3.12) characterize classicality in terms of conver-

gence in probability for Y = Ẍ .

3.4 On the Hamilton-Jacobi Formulation

Consider the convergence of the modified Hamilton-Jacobi equation (2.15) to the

classical Hamilton-Jacobi equation (3.7). Recall from classical mechanics [1] that

the solution of the classical Hamilton-Jacobi equation is

S0(x, t) = S0
0(x0(x, t)) +

∫ t

0
L(ẋ(τ ), x(τ ), τ )dτ, (3.25)

where

L(ẋ(τ ), x(τ ), τ ) = ẋ2

2m
− V (x)

is the Lagrangian, S0
0 is the initial classical action, and the initial and the final

configurations are x(0) = x0(x, t) and x(t) = x. With this we mean that the

function x0(x, t) is the initial condition which in the time t evolves into the

configuration x. The momentum corresponding to the initial condition x0 is

pt =
∂S0

∂x
. The function pt(x) is not in general single-valued for all times. In fact,

at a certain time tc, it can happen that more than one classical trajectory arrives

at the same final point x at time tc. We shall call this time the “first caustic time”

[32]. This time is an upper bound for the time interval in which we can expect

convergence of Bohmian trajectories to classical trajectories. We shall explain

how our analysis concerning the emergence of the classical laws from Bohmian

mechanics can be extended to times bigger than tc in chapter 6.
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Chapter 4

Special Families

In this chapter we shall study two one-parameter families, which are examples of

a fixed sequence ε = λ
L
. We shall show that, provided that ε → 0, the motion is

classical on the macroscopic scales ( x
L
, t
T
), where L is the scale of variation of the

potential and T is the corresponding time scale, T = L
v
= mLλ

h̄
.

4.1 Quasi Classical Wave Functions

Consider a family of wave functions depending on h̄ of the short wave form

ψh̄
0 (x) = R0(x)e

i
h̄
S0(x), (4.1)

where R0(x) and S0(x) are functions not depending on h̄ and R(x) is compactly

supported. The limit h̄ → 0 of this kind of wave function has been studied by

many people (see, e.g., [32]) and corresponds to a mathematical trick to simulate

the limit in which the mean de Broglie wave length λ ≡ λψ0 is tending to zero

as h̄ → 0. In fact, by a straightforward computation it follows that, for ψ0 given

by equation (4.1), the mean de Broglie wave length λψ0 → 0 as h̄ → 0 1. So this

limit, called short wave length limit, is a special case of the limit ε = λ/L → 0

in which the wave length is getting small and the external potential is fixed such

that L is also fixed.

Observe that the limit h̄ → 0 also simulates the limit of large masses (in which

m → +∞) for which the potential rescales as V = mV̂ . In fact in this case m

1 Note that this limit is equivalent to time dependent WKB [32].

43
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and h̄ play the same role in the Schrödinger’s equation

i
∂ψ

∂t
=

[
− h̄

2m
∇2 +

m

h̄
V̂

]
ψ. (4.2)

In the short wave length limit, to see the classical limit, one should go to the

macroscopic coordinates given by
(

x
L
, t
T

)
. Note that both L and T are constant so

that there is no substantial difference between the microscopic and macroscopic

scale. Therefore, there is no need to rescale the wave function to see the emergence

of the classical behavior in this case.

The approximate solution of Schrödinger’s equation in the short wave limit is

given by [32]

ψ(0)(x, t) = R(0)(x, t)e
i
h̄
S(0)(x,t) +O(h̄), (4.3)

where S(0)(x, t) = S(0)(x0) +
∫ t
0 L(ẋ(τ ), x(τ ), τ )dτ is the classical action. The

initial position is X
(0)
0 = x0 and the initial velocity is given by V

(0)
0 = ∇S(0)(x0,0)

m
.

The amplitude of the wave function is given by R(0)(x) = |dx/dx0|−1/2R0(x0).

This is the evolution at time t of the initial amplitude R0(x) according to the

classical laws, i.e. according to the classical continuity equation (2.14). Note that

the shape of the initial wave function (4.1) is preserved by the dynamics.

Observe that in this case we have convergence to classical laws according to

all the different notions we have discussed above in section 3.3. We see in fact

that the velocity field, as h̄ → 0, is the classical one

v(0)(x, t) =
1

m
∇S(0)(x, t) +O(h̄2), (4.4)

given that S(0) is the classical action. Moreover, the quantum potential

V
(0)
Q = − h̄2

m

∇2R(0)

R(0)

is zero because R(0) doesn’t depend on h̄, so that we have convergence of the mod-

ified Hamilton-Jacobi equation to the classical Hamilton-Jacobi equation. Also

the quantum force is zero, just because it is the derivative of the quantum poten-

tial. Using the Hamilton-Jacobi equation, in fact, we can rewrite the equation for

the velocity field given by equation (4.4) as a system of two coupled first order

differential equations for position and velocity as follows{
mẊ

(0)
t = ∇S(0)(X

(0)
t , t) +O(h̄2)

mV̇
(0)
t = −∇V (X

(0)
t ) +O(h̄2)

(4.5)
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which corresponds to the second order equation

mẌ
(0)
t = −∇V (X

(0)
t ) +O(h̄2). (4.6)

As we have seen previously in section 3.3, the convergence of quantum laws to

classical laws ensure the convergence of Bohmian trajectories to classical trajec-

tories, in force of those theorems of ordinary differential equations theory about

the convergence of an integral curve of a function to the integral curve of the

limit function.

4.2 Slowly Varying Potentials

Another special case of the limit ε → 0 is given by the situation in which we have

a slowly varying external potential. A slowly varying potential can be written as

V (x) = V ( x
L
), where its scale of variation L is very big. Given that ε = λ/L,

we see that the slowly varying potential limit is a special limit corresponding to

keeping fixed the initial wave function and letting L → +∞. To see the classical
motion we should go on the macroscopic scales

(
x
L
, t
T

)
, where T = L

v
= mLλ

h̄
.

Note that this limit is equivalent to a long time limit. In fact, if the potential is

slowly varying, that is L → +∞, to see its effect the particle has to wait a time
of order T = mLλ

h̄
→ +∞. Note that both time and space rescalings are of the

same order. Then it is useful, only for convenience of notation, not to define the

macroscopic scales (as we have done previously) as x′ = x
L
and t′ = t

T
. Instead

we shall rescale space and time with the dimensionless parameter ε = λ
L
such

that the macroscopic coordinates are x′ = xε, t′ = tε and the initial conditions

become

ψε
0(x) = ε−1/2ψ0(x/ε), xε

0 = x0/ε. (4.7)

Under this transformation, it is easy to show that Bohmian equations become

the usual equations of motion for ψε(x, t) with h̄ substituted by h̄ε

ih̄ε
∂ψε(x, t)

∂t
= − h̄2ε2

2m
∇2ψε(x, t) + V (x)ψε(x, t), (4.8)

dXε
t

dt
= vε(Xε

t , t) =
h̄ε

m
Im

[
∇ψε(Xε

t , t)

ψε(Xε
t , t)

]
. (4.9)
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Note that in the limit ε → 0 the initial position tends to zero and the initial

wave function converges to a delta function centered at the origin 2

{
xε

0 → 0

|ψε
0(x)|2 → δ(0)

(4.10)

The solution ψε(x, t) of the Schrödinger equation in the macroscopic coordinate

can be expressed in terms of the propagator in which h̄ is replaced by h̄ε and the

Fourier transform of the initial wave function. Let’s recall that the propagator is

the solution of the Schrödinger’s equation for an initial wave function that is a

δ-function. In terms of the rescaled propagator Kε(x, t; x0, 0) and of the Fourier

transform of the initial wave function ψ̂ε
0(k), the wave function at time t is given

by

ψε(x, t) =
1

(2πε)d/2

∫ ∫
Kε(x, t; x0, 0)e

i
x0·k

ε ψ̂0(k)d
dx0d

dk, (4.11)

where d is the dimension of the space. In general, the asymptotic form of the

propagator in the limit ε → 0 is [32]

Kε(x, t; x0, 0) =
1

(2πih̄ε)d/2

√
C(x, x0; t)e

i
h̄ε

S0(x,t;x0,0)[1 + h̄εz], (4.12)

where z = z(t, x0, x, ε) and ||z||L2(IRd) ≤ c where c is a constant. This means that,

taking the expression

Kε(x, t; x0, 0) =
1

(2πih̄ε)d/2

√
C(x, x0; t)e

i
h̄ε

S0(x,t;x0,0), (4.13)

we are forgetting terms of order ε. S0 is the classical action, X0
t is the classical

path with boundary conditions X0
0 = x0, X

0
t = x and

C(x, x0; t) =
∣∣∣−∇2

x,x0
S0(x, t; x0, 0)

∣∣∣ .
This approximate expression of the propagator is valid when there is only one

path joining x0 to x in the same time t, that is when we have no caustics. Let’s

remember that a caustic is a point in which the velocity field is multivalued. In

order to find the asymptotic ε → 0 of ψε(x, t), we apply the method of stationary

2This is not a limitation, in fact we could have rescaled the wave function in a different way,

i.e. ψ0 → ψε0(ε(x − x̄
ε
)), and in this case the wave function would have been converging to a

δ-function centered in x̄.
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phase: the main contribution to ψε(x, t) comes from the x0 and the k which make

stationary the phase φ(x0, k) =
1
h̄
[S0(x, t; x0, 0) + x0 · h̄k]. They are

x0 = 0 and k0(x, t) = −1
h̄
∇x0S

0(x, t; x0, 0)
∣∣∣
x0=0

. (4.14)

So we have

ψ(0)(x, t) =
√
C(x, 0; t)

(
i

h̄

)d/2

ψ̂0(k0(x, t))e
i

h̄ε
S0(x,t;0,0)|+O(ε). (4.15)

We can rewrite this as

ψ(0)(x, t) = R0(x, t)e
i

h̄ε
S0(x,t) +O(ε2), (4.16)

where

R0(x, t) =
√
C(x, 0; t)

(
i

h̄

)d/2

ψ̂0(k0(x, t)) (4.17)

and S0 is the classical action. Always in the limit ε → 0, for any time t > 0, the

velocity field becomes

v(0)(x, t) =
1

m
∇xS

0(x, t; x0, 0)
∣∣∣
x0=0

+O(ε2). (4.18)

Also in this case we have convergence of laws of motion. In fact, given that S0 is

the classical action, we have that (4.18) is the classical velocity field. Moreover,

we have convergence of the modified Hamilton-Jacobi equation to the classical

Hamilton-Jacobi equation. In fact, in the limit ε → 0, the quantum potential in

the macroscopic scales is given by

V
(0)
Q = − h̄2ε2

m

∇2R0

R0

where R0 doesn’t depend on ε, so that VQ → 0 as ε → 0. Just as before, we have

convergence of the modified Newton’s equation to Newton’s equation since the

quantum force is zero. Indeed, from equation (4.18) and from those theorems of

ordinary differential equations theory about the convergence of an integral curve

of a function to the integral curve of the limit function in the limit ε → 0, we can

conclude that the Bohmian trajectories converge to the classical ones.

Note that this limit is, as the previous case of section 4.1, a limit in which

ε → 0 but the wave function is rescaled in a different way. The effect on the

motion equations is the same but the effect on the initial conditions is completely

different.
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4.3 Convergence of Probability Distributions

As a byproduct of our analysis, we obtain convergence of the quantum probability

distributions to the corresponding classical ones.

Consider first convergence at the initial time t = 0. In the case of the familiy

of quasi classical wave functions, in the limit h̄ → 0, the initial position X
(0)
0 is

distributed according to

ρ(x, 0) = |R0(x)|2, (4.19)

that is the classical probability distribution, and the initial velocity V
(0)
0 =

1
m
∇S0(X(0), 0) is distributed according to the classical probability distribution

induced by the initial position X
(0)
0 .

In the case of a slowly varying potential, the situation about the probability

distributions of initial conditions is as follows. The initial conditions are

X
(0)
0 = lim

t→0
lim
ε→0

Xε
t = 0, (4.20)

V
(0)
0 = lim

t→0
lim
ε→0

Xε
t

t
. (4.21)

The limit trajectory at time t X
(0)
t = limε→0 X

ε
t is distributed according to

ρ(x, t) =
C(x, 0; t)

h̄d |ψ̂0(k0(x, t))|2, (4.22)

where k0(x, t) is defined by equation (4.14). The initial velocity is a random

variable whose probability distribution is the one induced by the probability

distribution of Xε
t given by equation (4.22) in the limit t → 0. Note that

lim
t→0

C(x, 0; t) = lim
t→0

Cfree(x, 0; t) =
[
m

t

]d
(4.23)

so that

ρ(v, 0) =
(
m

h̄

)d ∣∣∣∣ψ̂0

(
mv

h̄

)∣∣∣∣2 , (4.24)

which is the classical distribution of the initial velocity if the classical probability

distribution of position at time t is given by (4.22).

On the basis of the results concerning the convergence of trajectories in both

cases of quasi classical wave functions and slowly varying potentials (see sections

4.1 ad 4.2), the time evolution of the probability distributions is given, in the

limit, by the transport along the classical paths. We shall briefly recall the

classical laws of transport in the next section.
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4.4 Propagation of Classical Probability Distri-

butions

Consider the differential equation

dQt

dt
= v(Qt), (4.25)

where v = v(q), q ∈ IRn, is a field v : IRn → IRn (velocity field) and Qt ∈ IRn is

the state of the system at time t. The solution of the equation (4.25) is a function

ft : IR
n → IRn (parametrized by t ∈ IR) such that to each initial condition Q0 at

time t = 0 assigns the state of the system at time t,

Qt = ft(Q0).

Assume now that the velocity field v is conservative, that is the dynamics

of the system is reversible. Observing the duality between “observables”, i.e.

functions f(q) on the state space, and probability distributions ρ(q),∫
ρt(q)f0(q)dq =

∫
ρ0(q)ft(q)dq,

the following theorem follows almost immediately

Theorem: Let ft : IR
n → IRn be a map solution of the equation (4.25). If the

probability distribution of the initial state is ρ0, then the distribution of the state

at time t is given by

ρt(q) = ρ0(f
−1
t (q))Jt(q)

−1, (4.26)

where Jt is the Jacobian of ft.

Note that ρt given by equaton (4.26) is the general solution of the transport

(continuity) equation
∂ρt

∂t
+∇q · vρt = 0. (4.27)

Consider now a Hamiltonian system for which q = (x, p) and v is a Hamilto-

nian field

v(x, p) =

(
∂H

∂p
,−∂H

∂x

)
, (4.28)

where H = H(x, p) is the Hamiltonian. In this case we have the important [1]
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Theorem (of Liouville) : The Hamiltonian evolution preserves the volume in

the phase space. In other words, the Jacobian Jt of the map ft, solution of a

Hamiltonian system, is equal to 1.

In this case we have

ft(x, p) ≡ (Xt(x, p), Pt(x, p)) , (4.29)

and, from (4.26) and the theorem of Liouville, it follows that the transport law

of probability becomes

ρt(x, p) = ρ0 (X−t(x, p), P−t(x, p)) . (4.30)

Set x0 ≡ X−t(x, p) and p0 ≡ P−t(x, p). If x and p represents the position and the

momentum at time t, then x0 and p0 are the initial conditions that after a time

t evolve to the final conditions x and p. So we can write

ρt(x, p) = ρ0 (x0, p0) (4.31)

In the application to the classical limit of quantum mechanics, we are inter-

ested to the distribution of position ρt(q). Given that ρt(x, p) represents the joint

probability of position and momentum at time t, the distribution ρt(x) is given

by ρt(x, p) integrating away the momentum

ρt(x) =
∫
ρt(x, p)dp, (4.32)

from which we get

ρt(x) =
∫
ρ0(x0, p0)dp. (4.33)

Now p0 is a function of x and p and, for a fixed x, is an invertible function of p.

By change of variable in the previous integral, we get

ρt(x) =
∫
ρ0(x0, p0)

∣∣∣∣∣ dpdx0

∣∣∣∣∣ dx0. (4.34)

The function p = p(x, x0) represents the momentum of the system of a configu-

ration starting at time t = 0 in x0 and arriving at time t in x. If S = S(x, x0; t)

is the action

S(x, x0; t) =
∫ t

0
L(x(s), ẋ(s))ds, where x(0) = x0, x(t) = x, (4.35)
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we have

p =
∂S

∂x
(4.36)

and then ∣∣∣∣∣ dpdx0

∣∣∣∣∣ =
∣∣∣∣∣ ∂2S

∂x∂x0

∣∣∣∣∣ ≡ C. (4.37)

Suppose that the initial position is fixed and that the initial momentum is random

with distribution ρ0(p), that is the initial distribution is ρ0(x, p) = δ(x− x̄0)ρ0(p).

Then, from (4.34), we get

ρt(x) = C(x, x̄0, t)ρ0(p0) = C(x, x̄0, t)ρ0 (Pt (x, p(x, x̄0))) , (4.38)

which is indeed the probability distribution associated with the wave function

(4.15) in the limit ε → 0.
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Chapter 5

Local Plane Wave Structure

From the examples given in the previous chapter, quasi classical wave functions

and slowly varying potentials, we can conclude that there is a particular structure

of the wave function that emerges when we are in the classical regime. This

structure is what we call a local plane wave, a wave function that locally can be

regarded as a plane wave having a local wave length.

5.1 The Notion of Local Plane Wave

A precise notion of local plane wave can be given starting from the usual notion of

wave length λ, that is the spatial period. (We consider here, for sake of simplicity,

such a characterization for the one dimensional case.) This means that λ(x, t)

should be slowly varying over a distance of order λ

|∇λ(x, t)| � 1 (5.1)

and, for ψ(x, t) = R(x, t)ei
S(x,t)

h̄ , the following relations should hold

R(x, t) � R(x + λ, t), (5.2)

S(x, t) � S(x+ λ, t) + 2πh̄. (5.3)

By expanding in Taylor series in λ the right hand side of equation (5.2) one gets

R(x + λ, t) = R(x, t)

[
1 +

∣∣∣∣∣∇R(x, t)

R(x, t)

∣∣∣∣∣λ(x, t)12
∣∣∣∣∣∇2R(x, t)

R(x, t)

∣∣∣∣∣λ2(x, t) + ...

]
(5.4)

53
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so that equation (5.2) implies∣∣∣∣∣∇R(x, t)

R(x, t)

∣∣∣∣∣λ(x, t) � 1, (5.5)

1

2

∣∣∣∣∣∇2R(x, t)

R(x, t)

∣∣∣∣∣λ2(x, t) � 1, ... (5.6)

Similarly, for S(x, t) we obtain

S(x+ λ, t) = S(x, t) + |∇S(x, t)|λ(x, t) + 1
2

∣∣∣∇2S(x, t)
∣∣∣λ2(x, t) + ... (5.7)

The comparison of the expansion (5.7) with equation (5.3) gives, up to the first

order terms, the definition of the local wave length λ(x, t)

λ(x, t) =
h̄

|∇S(x, t)|. (5.8)

The smallness of the second order term, together with equation (5.8), expresses

the compatibility with equation (5.1).

To sum up, a local plane wave ψ(x, t) = R(x, t)ei
S(x,t)

h̄ is characterized by a

local wave length, defined by equation (5.8) and slowly varying in the sense of

equation (5.1), and with a slowly varying amplitude R(x, t) satisfying equations

(5.5) and (5.6).

Note that, in the slowly varying potential case, these conditions are verified,

as shown by equation (4.15), while in the short wave limit we start from a wave

function for which they are satisfied from the very beginning and this shape is

preserved by the dynamics.

From the very notion of local plane wave, it follows that, at any given time

t, a local plane wave ψ(x, t) can be thought as composed of a sum of “virtual”

wave packets.

Consider in fact a partition of physical space into a union of disjoint sets ∆k

chosen in such a way that the local wave length λ(x, t) doesn’t vary appreciably

inside of each of them. Denote by λk the almost constant value λ(x, t) for x ∈ ∆k.

Let χ∆k
be the characteristic function of the set ∆k (X∆k

(x) = 1 if x ∈ ∆k and

0 otherwise). Since
∑

k χ∆k
= 1, we have

ψ(x, t) =
∑
k

χ∆k
(x)ψ(x, t) =

∑
k

ψk(x, t). (5.9)
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Local plane wave as
a sum of virtual
wave packetrs

Bohmian
Trajectory

wave fronts

Effective
guiding
wave
packet

∆k~σk~λk

λk=λ(x,t), xε∆k

Figure 5.1: A local plane wave as a sum of “virtual” wave packets

The last equality defines the “virtual” wave packets ψk with wave length λk and

with disjoint position and momentum supports. We call them “virtual” because

they depend upon a partition which is arbitrary: provided that λ(x, t) is almost

constant in ∆k, the magnitude of these sets can be of the order of several wave

lengths down to a minimal size σk � |∆k|1/3 of the same order of λk. This

means in particular that it is not necessary that the wave packets decomposition

at time t′ > t is the time evolution of the wave packets decomposition at time

t. (Note that the use of characteristic functions may introduce an undesirable

lack of smoothness of the wave packets, but this can be easily taken care of by

substituting the χ∆k
with functions θk forming a smooth partition of unity [9].)

Note that in the particular case of a wave function like ψ(x, t) = R(x, t)e
S(x,t)

h̄ ,

where S � h̄, discussed in section 4.1, it can be shown that each ψk is actually

a wave packet. Indeed, rewrite the wave function as

ψε(x, t) = R(x, t)e
i
ε
Φ(x,t), (5.10)

where ε = λ
L
and Φ(x, t) � ε. Then the Fourier transform of the asymptotic of
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ψε(x, t) in the limit ε → 0 is again a local plane wave [32]

ψ̂ε(k, t) =
1∣∣∣∂2Φ(x(k))

∂x2

∣∣∣1/2R(x(k))e
i
ε
Φ̃(x(k)), (5.11)

where Φ̃(x(k)) is the Legendre transform of Φ, if Φ is convex. In this way there

is a one to one correspondence between position and momentum. In particular,

disjoint position supports correspond to disjoint momentum supports.

5.2 Local Plane Waves and the Quantum Po-

tential

It should be stressed that condition (5.6) directly implies that

h̄2

2m

∣∣∣∣∣∇2R(x, t)

R(x, t)

∣∣∣∣∣� 1

2m
|∇S(x, t)|2 , (5.12)

that is, the quantum potential is smaller than the kinetic energy for a given

time t which, in its turn, implies the validity of the classical Hamilton-Jacobi

equation. We may then conclude that the association between the emergence of

classical behavior and the formation of local plane waves is indeed the hallmark

of the classical limit. This conclusion receives further support from observing the

expansive character of the Laplacian in Schrödinger’s equation which tends to

produce spreading of the wave function whenever the potential energy is domi-

nated by the kinetic energy (that is, for bounded motion in a potential, far from

the turning points).

Moreover, observe that, to have a classical limit, equation (5.12) should be

valid not only at a fixed time t but also for a sufficiently large time interval. In

other words, classicality requires that the local plane wave structure should be

preserved by the dynamics. In this chapter we shall try to support this argument

on the basis of the Ehrenfest theorem.
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5.3 The Ehrenfest–Goldstein Argument

In this section we shall provide an argument 1 for our conjecture of classicality

(3.12), which will rely on

1. the fact that, as soon as λψ0 � L, the local plane wave is quickly produced,

2. the fact that the local plane wave is a sum of non interacting “virtual” wave

packets, to each of which can be applied the Ehrenfest theorem;

3. the fact that, if λψ0 � L, at time t a local plane wave gets formed with a

local wave length λ(x, t)� L on the macroscopic time scale.

We will deal with the first issue in section 5.7, while in this section we’ll concen-

trate on the last two issues, basically assuming that a local plane wave is formed

whenever λψ0 � L. Our argument will shed light on the appropriate notion of

the length scale L as well as providing support for the the stability of the local

plane wave structure and therefore for the validity of equation (5.12) at any time.

The Ehrenfest theorem states that, for a sufficiently narrow wave packet, we

have

m
d2

dt2
〈X〉 = −〈∇V (X)〉, .

where 〈〉 denotes the average with respect to a the system wave function ψ. By

expanding F (x) = −∇V (x) in Taylor series around 〈X〉 one obtains

m
d2

dt2
〈X〉 = F (〈X〉) + 1

2

∑
i,j

∆j,k
∂2F

∂xj∂xk
(〈X〉) + ..., (5.13)

where

∆j,k = 〈XjXk〉 − 〈Xj〉〈Xk〉

is of order σ2, where σ is the diameter of the packet. Therefore, the mean particle

position will satisfy classical Newton equation whenever

σ2

∣∣∣∣∣ ∂3V

∂xi∂xi∂xj

∣∣∣∣∣�
∣∣∣∣∣∂V∂xi

∣∣∣∣∣ , (5.14)

i.e.,

σ �
√∣∣∣∣ V ′

V ′′′

∣∣∣∣ (5.15)

1 S. Goldstein, private communication
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where V ′ and V ′′′ denotes respectively suitable estimates of the first and third

derivatives (e.g., by taking a sup over the partial derivatives). Note that, for at

most quadratic potentials, V ′′′ ≡ 0 and we can see that the Ehrenfest theorem

ensures classicality without any restriction.

Consider now a wave function ψ which is a local plane wave at some time t,

i.e. of the form (5.9). Note that, wherever the particle is initially located, at time

t the position Xt of the particle will be in the support of one of the wave packets

ψk. If the condition (5.15) for σk holds, then at time t Newton’s equation holds

for the mean value 〈X〉 of the position of the particle. Therefore, at time t, we
have classical behavior of the particle. However, since the minimal size of the

wave packet can be taken to be of order λ(x, t), the condition ensuring classicality

at time t becomes

λ(x, t)�
√√√√∣∣∣∣∣ V ′(x)

V ′′′(x)

∣∣∣∣∣. (5.16)

Note that if

L = L(x) ≡

√√√√∣∣∣∣∣ V ′(x)

V ′′′(x)

∣∣∣∣∣ (5.17)

is interpreted as the scale of variation of the potential, equation (5.16) becomes

λ(x, t)� L(x). (5.18)

The above conclusion provides support for our conjecture provided that we can

ensure that λψ0 � L implies not only that a local plane wave is formed (as

we already assumed) but also that the local wave length of such a local plane

wave is such that λ(x, t) � L. In this regard, it should be noted that the local

λ(x, t) � L is actually implied by the global condition λψ0 � L, at least for a

sufficient amount of time and at most with the exceptions of periods of times

which are small on the macroscopic scales, basically by appealing to conservation

of energy. In fact, the only problem may arise from the phase of deceleration

of the particle due to motion in a potential with turning points. If we have a

potential that speeds up the particle, λ(x, t) decreases such that λ � L is not

destroyed by the potential but holds better than before. But if we have turning

points, where the particle inverts its direction, the situation is different since at

the turning point λ may increase dramatically. However, this is a real problem
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only in one dimension, because this is the only situation in which the particle

really stops. The times for which the condition λ(x, t)� L ceases to be valid will

be typically so short that cannot influence its general validity on the macroscopic

character of the motion.

5.4 Some Remarks on the Scale of Variation of

the Potential

The Ehrenfest–Goldstein argument has given us a strong criterion to find a sen-

sible definition of the scale of variation of the potential L. Independently of

the Ehrenfest–Goldstein argument, one may argue that there are other possible

definitions of L, more familiar than (5.17). One could consder, for example,

L1 = 1/

[
1

E

dV

dx

]
, L2 = 1/

[
1

V

dV

dx

]
, (5.19)

where E is the mean kinetic energy of the particle.

Concerning this, it should be emphasized that, if the potential is periodic, then

L1 and L2 don’t give the period. On the other hand, the L given by equation

(5.17) is exactly the period for the special cases in which V is a sinusoidal function

and gives a rough estimate of the period for more general periodic functions.

The scale of variation of the potential should be only a function of V , not of

the particle, whose characteristics are already in λ: for this reason L1 should not

be a good choice.

If in the definition of L2, V means the potential function V (x), then L2 is

not uniquely defined because it inherits the dependence on an arbitrary constant

from the potential. If V means some difference between the maximum and the

minimum of the potential, the resulting notion of length scale is too restrictive

because it can be defined only in the case of bounded potentials.

Be that as it may, all sensible choices of L must be of the same order and

indeed they are of the same order whenever the kinetic energy is of the order of

the variation of the potential on a distance L, which is typically the case. Thus,

to probe the appropriateness of one or another definition, we need to consider

atypical situations.



60 CHAPTER 5. LOCAL PLANE WAVE STRUCTURE

Consider

ε =
λ

L1

and suppose E → +∞ so that L1 → +∞. Then λ � L1 (ε � 1) is compatible

with λ � LV , where LV is the period of the potential, but in this case the particle

won’t notice the details of V . So, in the scales defined by
(

x
L1
, t
T1

)
, where T1 =

L1

v
,

the motion will not be the classical motion corresponding to the Bohmian motion

in the same potential. Therefore, we cannot conclude that we have a classical

limit if ε → 0. On the other hand, suppose E → 0, such that L1 → 0 (ε → +∞).
This is compatible with local plane wave structure with λ � LV , which would

suffice for classical motion even if λ > L1, that is we have classical motion even

if ε doesn’t go to zero. We can then conclude that L1 is not the right choice to

see the classical motion.

However, in any case, the Ehrenfest–Goldstein argument provides by itself

the strongest support to the correctness of L given by equation (5.17) as giving

the notion of scale of variation of the potential.

Note that, for quadratic potentials, from the definition (5.17) one sees that

L = +∞ and thus ε ≡ 02. This means, as we have already observed in section

3.2, that for these cases the motion is always classical on suitable macroscopic

scales. This is in complete agreement with the standard understanding of the

classical limit in terms of the Wigner function, Feynman path integrals or Weyl

quantization [35]. In fact, for Hamiltonians which are polynomials of degree ≤ 2

on phase space, Egorov’s theorem (see section 8.3) holds without error, i.e. Weyl

quantization commutes with the time evolution.

5.5 Some Simple Examples of L

It can be useful to compute directly in some simple special cases what is the small

dimensionless parameter ε relevant for the classical behavior.

Consider, first of all, the free case. We have just seen in the previous section

that L = +∞, so that in this case we always have classical motion: the experi-
2By quadratic potential we mean V (x) = ax2 + bx + c (for simplicity in one dimension).

Linear and constant potentials are included as limiting cases respectively for a only and a and

b going to zero.
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menter can choose any length scale Lo. We then have classical behavior as soon

as

ε =
λ

Lo

� 1. (5.20)

The same can be established in the cases of the gravitational and of the harmonic

potential. Given that they are a linear and a quadratic potential, L = +∞, i.e.
ε ≡ 0, so there is always classical motion on the scale Lo, provided that λ � Lo.

A more interesting example is the case of a particle in a Coulomb potential

V (r) =
qq′

r
. (5.21)

We find that L is

L � r (5.22)

If we consider the bound states of the hydrogen atom (with small spread in energy

as is the case, e.g., for coherent states), L becomes of the order of the Bohr radius

a0. Thus, given that λ/a0 =
1
n
tells how many times the wave length λ is varying

in the scale a0 of the variation of the potential, we have

ε � λ

a0
� 1

n
, (5.23)

where n is the principal quantum number. Therefore, the classical limit as a

limit of high quantum numbers is a particular case of our general analysis. For

scattering states, L � r, where r is simply the distance from the scattering center.

This means that the scale on which the motion is classical is varying, not fixed.

Consider now the case of the Yukawa potential, that is

V (r) =
e−µr

r
. (5.24)

The scale of variation of this potential, according to definition (5.17), is

L �
√

(µr + 1)r2

6 + µ3r3 + 3µ2r2 + 6µr
(5.25)

For large distances, i.e. r → +∞ (scattering states), we can say L � 1
µ
, the

range of the potential; for small distances, i.e. x → 0, we have L � r, as in the

Coulomb case.
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Figure 5.2: Effective guiding wave packet

5.6 Refinement of the Conjecture

It is important to observe that the Ehrenfest theorem not only suggests a natural

way to define the scale on which the potential varies but also provides an expla-

nation of the classical limit for spread out wave functions. In fact, in Bohmian

mechanics each particle has its own trajectory and, for this reason, the local plane

wave, at a fixed time t, undergoes a sort of collapse such that not all the wave

function is relevant for the dynamics but there is an effective guiding wave packet

for the particle, which is the part of the wave function in a local neighborhood of

the trajectory at the time t. At a later time t′ = t+∆t, the local plane wave may

be decomposed into a different sum of wave packets. If ∆t is much smaller than

the time needed for σ to become of order L (i.e. to ensure that the Ehrenfest

theorem is valid), then the guiding wave packet at this time t′ is the one in whose

support the trajectory of the particle has evolved classically from time t.

In this regard we would like to underline two important points. First, observe

that, while in standard quantum mechanics the emergence of some classicality

is always connected to the permanence of a narrow wave function during the

motion, what arises from the above discussion is that the crucial feature of the
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classical limit is the formation of a very spread out wave function: the local

plane wave. Only in the framework of Bohmian mechanics, given that we also

have configurations and not just the wave function, can we apply the Ehrenfest–

Goldstein argument to spread out wave functions, thus explaining the emergence

of the classical behavior in a coherent way.

Secondly, the fact that the relevant wave packet moves classically suggests

very strongly that, when the condition (5.15) is satisfied, the local plane wave

structure should be stable, i.e. it should not be destroyed by further motion in

the potential. We have seen at the beginning of section 5.2 that it follows directly

from the definition of local plane wave that the classical Hamilton-Jacobi equation

is valid at a fixed time t. If the local plane wave structure is preserved, then the

classical Hamilton-Jacobi equation is valid also for any time and the motion is

really classical.

An important consequence of the Ehrenfest–Goldstein argument and of the

above discussion is that the relevant wave length should be regarded as deter-

mined by the initial condition x0. Suppose that the initial wave function is such

that a local plane wave is produced at a certain time t (which is guaranteed by

the condition λψ0 � L as we shall argue in the next section). Then the Bohmian

motion starting from x0 tends to get attached to the piece of local plane wave

characterized by

λ̃ = λ̃(ψ0, x0) = λ(Xt(x0), t), (5.26)

where λ(Xt(x0), t) is the local wave length given by (5.8) computed along the

Bohmian trajectory starting from x0. In other words, the parameter ε entering

in the conjecture (3.12) should be regarded in general as a random variable de-

pending on the initial condition x0 and therefore the conjecture should be refined

as follows :

For any δ > 0, IPΨ(D > δ)→ 0 when the dimensionless parameter

ε ≡ ε(ψ0, V ) =
λ̃(ψ0, x0)

LV

goes to zero in probability, uniformly in ψ0 and V .

(5.27)
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5.7 Local Plane Wave Formation

If λψ0 � L, the particle doesn’t feel in a substantial way the effect of the potential

up to the macroscopic time T . During this time, the kinetic energy dominates the

potential energy and the free evolution is a good approximation. This produces,

asyptotically in time, a local plane wave of the form

ψ(t) � [constant]ei
m
h̄

x2

2t ψ̂0(k0(x)) (5.28)

(which foollows from equation (4.15)).

Moreover, it turns out that, if λψ0 � L, the local plane wave is produced in

a very short time. This time, however, is very difficult to determine because it

depends on the initial conditions, both the initial position and the initial wave

function. We can give a rough estimate of this time by considering the local plane

wave as a sum of non interacting “virtual” wave packets with disjoint position and

momentum supports. Consider the simple example of an initial wave function

composed of two overlapping wave packets with the same position spread σx and

with opposite momenta p and −p. The time this wave function needs to become

a local plane wave is just the time needed to cover a space equal to σx, i.e.

τ � h̄

〈E〉 , (5.29)

where 〈E〉 � p2

2m
is the mean kinetic energy, because σx � h̄

σp
and σp � 2p. We

can assume that this rough estimate of τ is somehow of general validity.

σx

σx

p-p

Figure 5.3: Time of formation of a local plane wave
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Now consider the classical limit, that is λ � L. Given that T = L
v
and

v = h̄
mλ
, this implies

τ � T. (5.30)

That is, taking the length scale L to be much greater than the mean de Broglie

wave length λ is equivalent to considering times T much greater than the time

τ of formation of a local plane wave. In other words, on the macroscopic scales(
x
L
, t
T

)
on which we see classical behavior, the local plane wave has formed.
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Chapter 6

Classical Limit and Decoherence

In this chapter we shall address the problem of extending our analysis to times

greater than the first caustic time (see section 3.4).

6.1 The Problem of Caustics

To show how caustics can be a problem for the emergence of the classical in

our model, consider, for example, the slowly varying potential case that we have

discussed previously in section 4.2. In this case we have to write the propagator as

the sum of propagators one for each path starting form the same initial position

x0 at time t = 0 and arriving at the same final position x with the same time t,

so we have [26]

Kε(x, t; x0, 0) =
∑
j

1

(2πih̄ε)d/2

√
Cj(x, x0; t)e

i
h̄ε

S0
j (x,t;x0,0) +O(ε), (6.1)

where S0
j is the classical action relative to the j-th path connecting x with x0 in a

fixed time t. If the propagator is a sum of different paths, Kε =
∑

j K
ε
j , then the

wave function is a sum of different terms of the same kind as those appearing in

equation (4.15). If we then apply the stationary phase method to each of them

we obtain a velocity field that contains interference terms. In the limit ε → 0,

this field has no limit but on the average we can define an average velocity field

given by the weighted sum of the classical velocities, i.e.

v =
1

m

∑
j

√
Cj(x, 0; t)|ψ̂0(k0j(x, t))|2∇S0

j (x, t; 0, 0)∑
j

√
Cj(x, 0; t)|ψ̂0(k0j(x, t))|2

. (6.2)
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This is not the classical velocity so we can conclude that, when we have interfer-

ence, we haven’t got the classical limit. Thus, starting from a problem describing

one particle in an external potential, we are able to explain classical behavior only

up to times shorter than the time tc necessary to reach the first caustic. To sum

up, caustics are a problem because different portions of the same wave function

interfere with each other and we lose the classical behavior, even if λ � L.

6.2 Decoherence and the Problem of Caustics

We shall show that caustics do not do not cause any problems as they arise

only in the highly idealized model we have considered so far: up to now we

have neglected the interaction between the center of mass x of the body and

the relative coordinates y (see section 3.1), as well as any perturbation due to

the unavoidable interaction of the body with the external environment. These

interactions produce entanglement between the center of mass x of the system and

the other degrees of freedom y (where now y includes both the relative coordinates

and the degrees of freedom of the environment). The effect of taking into account

these interactions is what nowadays people call decoherence ([28],[23],[42],[43],

[34]), which however is nothing but an effective description of all the effects that

cannot be described by the external potential acting on the center of mass x.

More precisely, this means that the right setting for discussing the dynamics of

the body is to go beyond the approximation of motion in an external potential

considered so far and to describe the system in terms of the Hamiltonian

H = HCM +H
(0)
rel,I +H

(0)
rel,E +HI

int +HE
int, (6.3)

where HCM =
(
H(0) + V

)
CM

is the Hamiltonian of the center of mass coordinate

x including the external potential, H
(0)
rel,I and H

(0)
rel,E are the “free” Hamiltonians

of the relative coordinates and of the environment respectively, and the last two

terms are interaction Hamiltonians between the center of mass and the internal

as well as the external degrees of freedom. Those last two terms are the source

of what could be called internal and external decoherence respectively.

Assume that

Hint = HI
int +HE

int (6.4)
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such a small perturbation of the unperturbed Hamiltonian

H0 ≡ HCM +H
(0)
rel,I +H

(0)
rel,E , (6.5)

that the initial product structure

Ψ0(x, y) = ψ0(x)⊗ φ0(y) (6.6)

is approximatively preserved by the dynamics, at least for sufficiently localized

wave packets ψ0(x). Then, it is reasonable to expect that the effect of the per-

turbation is only that of selecting one of the “virtual” wave packets composing

the local plane wave which is formed in absence of perturbation, forbidding in

this way any kind of interference due to the caustics 1. This is not unreasonable

to expect, since one of the main achievements of the research on decoherence

of the last years is to show how the elimination of these interference terms may

occur. This has been proven for different models of environment, showing in this

way the universality of the phenomenon of decoherence. To get a handle on how

this may come about, one may consider an idealized model in which the center

of mass is modelled by a material point and all the effect of the external and

internal environment is described by n light particles hitting the center of mass

of the body (see section 6.3).

In conclusion we may say that, for a system of N point–like particles com-

posing a single macroscopic body with a small pair interaction U between the

particles, in an external potential V , also slowly varying on the size of the body,

and with an interactionHint between the x coordinate and the y coordinate which

is sufficiently small, we have classical limit on the macroscopic scales (3.10), if

λ � L, because the local plane wave has been formed in the coordinate x of

the center of mass of the body and decoherence avoids interference by selecting

only small pieces of it. The same happens for a system of N point–like particle

composing M macroscopic bodies with small pair interaction terms between the

center of mass of the bodies and in an external potential which is almost constant

for each particle of each body.

1 Presumably, to solve the problem of caustics one does not need to appeal to any kind of

external environment but for an extended macroscopic body HI
int alone should be sufficient to

eliminate the superpositions due to caustics.
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td<tc

V(x)

tr

-p p

Selected
traj.

Decoherence
action

x=0

tc=2tr

Figure 6.1: Decoherence avoids interference

Consider the example of an infinite potential well in two dimensions (one

space and one time) centered around the origin and take two trajectories starting

at t = 0 from the middle of the well (x = 0) with initial momenta p1 = p and

p2 = −p of the same norm but with opposite directions, the first going to the

right and the second to the left. After at a certain time tr in x = 0 the two

trajectories are reflected from the walls of the well potential. At a certain time

tc = 2tr, the two classical trajectories meet again at x = 0. This is an example

in which two paths starting from the same point x = 0 at t = 0 and arriving

in the same point x = 0 at the same time tc, join each other. This means that

there are two velocity vectors tangent to the trajectory, p1 on the left side and

p2 on the right, that is there is a caustic. Include now an external environment

in the description of the system. To avoid interference at time tc, it is sufficient

that decoherence acts within a time td < tc in such a way that only one of the

possible paths joining in x = 0 at time tc is selected.

6.3 Simple Model of Decoherence

Consider the conditional wave function of the macroscopic body ψ(x, t) as com-

posed by two wave packets with opposite velocities. At a certain time the two

wave packets interfere with each other. Let’s analyse the effect of the interaction
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term Hint = HI
int+HE

int. As a first crude model, one could take the variables y as

describing the n light particles of mass µ much smaller than the mass M of the

macroscopic body. In the approximation of absence of recoil of the macroscopic

body after the scattering of a microscopic particle of the environment, one could

argue [28] that the only effect of the environment is to select one of the two wave

packets of ψ(x, t). In fact, if ψ0(x) = ψ1,0(x)+ψ2,0(x) where ψ1,0 is a wave packet

centered around x̄1 and ψ2,0 is centered around x̄2, after a single scattering of a

light particle belonging to the environment, it can be shown [28] that the total

wave function Ψ0(q) evolves as

Ψ0(q) = ψ0(x)⊗ φ0(y)→ ψ1(x, t)⊗ φx̄1(y, t) + ψ2(x, t)⊗ φx̄2(y, t). (6.7)

In the above expression φx̄i = Sφi, where S is the scattering matrix, which

influences only the φ-functions because we are in the no recoil approximation.

Note that this is not a measurement-like process because 〈φx̄1(y), φx̄2(y
′)〉 � 1−δ,

where δ is a small quantity. But, as a result of a very big number n of isotropic

scattering, it can be shown that [28] (see also [39]), in the limit of n big,

〈φx̄1(y), φx̄2(y
′)〉 �

n∑
i=1

(1− δ)i � e−δ → 0, (6.8)

because δ is a small quantity. In this way we do have the same structure of a

measurement process and we can conclude that the environment measures the

body. It selects one of the two wave packets composing the conditional wave

function of the macroscopic body.

The previous argument by Joos and Zeh is similar to the one given by Bohm

and Hiley [8]. In fact, consider for example a planet exposed to the light from a

star. Assume that either the photon hits the planet and is absorbed or there is no

interaction between the photon and the planet. The wave function of each photon

can be considered a plane wave but, after the interaction with the planet, it will

be modified in such a way that beyond the planet, it forms a shadow (the wave

function will be zero in the shadow and a plane wave elsewere). This shadow

beyond the object is a cone limited by the diffraction angle α. Interference is

possible if the wave functions of the light particles overlap and the number F of

photons which don’t give rise to overlap is given by the ratio of the volume of

the cylinder whose base is the planet and whose height is h � R
α
, where R is the
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radius of the planet, and the total volume V = L3 (consider everything enclosed

in an imaginary box of size L). It can be shown that, if one considers only one

incident particle, then the probability of having no interference P1 = F is small

(it is proportional to 1/V ), while for n incoming particles with n very large, we

have that the probability to destroy interference is

Pn = (1− F )n � e−nF → 0. (6.9)

It can be easily shown that nF = n
V
Vcone, where V is the total volume of the

imaginary box and Vcone is the volume of the shadow cone, that is the probability

of having no interference is proportional to the number of particles in the shadow.

Note the similarity of the two approaches comparing equation (6.9) with equation

(6.8).



Chapter 7

General Structure of the

Classical Limit

So far we have assumed that the environment and the internal degrees of freedom

are coupled to the center of mass so weakly that in a first approximation we

can consider their contribution to the motion of the center of mass as totally

negligible (reduction of the motion to the motion of the center of mass to a

one body problem in an external potential), and, in a second approximation, as

providing a very small perturbation to the one body problem, so that their effects

are simply that of cancelling undesired interference terms. Both approximations

rely on the assumption that the interaction Hamiltonian Hint is so small that

the complete dynamical evolution does not generate any entanglement with the

environment (that we call the y-system from now on) for a narrow wave packet

in the center of mass coordinate (the y-system from now on).

7.1 Instability with Respect to Perturbations

We would like to now give a quantitative estimate of how smallthe effect of the

environment should be in order that a narrow wave packet evolves autonomously

according to Schrödinger’s equation. Suppose the total initial wave function is a

product and that the initial wave function ψ0 of the x-system is a wave packet as

in equation (6.6). Let ψ0(x) be a narrow wave packet, say with support of order

λ, and let U
(x,y)
t be the evolution operator generated by the total Hamiltonian

73
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H = HCM + Hrel +Hint, where Hrel = H
(0)
rel,I +H

(0)
rel,E as in equation (6.3). We

ask under which conditions the approximation

Ψt(x, y) = U
(x,y)
t (ψ0(x)⊗ φ0(y)) �

(
U

(x)
t ψ0

)
(x)⊗

(
U

(y)
t φ0

)
(y) (7.1)

is justified. First of all, one should observe that this question is meaningful only

if we specify the time T up to which we demand equation (7.1) to be valid. It is

in fact rather clear that if we choose the time t very large, no matter how small

Hint is, then the effect of Hint will in general be far from being negligible and

(7.1) will break down. In our case, T is indeed fixed by our conjecture on the

emergence of classicality: T must be of the order of the macroscopic time

T =
L

v
, v =

h̄

mλψ0

, (7.2)

which fixes the time scale on which we expect classical behavior, provided that

λ � L. So we demand

U
(x,y)
T (ψ0(x)⊗ φ0(y)) �

(
U

(x)
T ψ0

)
(x)⊗

(
U

(y)
T φ0

)
(y), (7.3)

with T given by (7.2). For sake of concreteness, consider the interaction between

the environment and the x-system as modelled by elastic collisions of light par-

ticles with the x-system [28] and assume that the rate of collision is 1/T . The

momentum transfer to the center of mass is of order p, where p is the incoming

momentum of the light particle (for sake of simplicity we’ll restrict to one dimen-

sional motion). Therefore, assuming for simplicity free motion, in the time T the

center of mass has covered the distance

L̄ = L+
p

m
T

Thus, assuming transport of the wave packet along the classical trajectories (since

λ � L), we have that at time T the wave packet is centered in L̄ (if initially

centered in zero).

Now, if
p

m
T ≥ λ , i.e. , p ≥ λm

T
=

h̄

L
,

the support of ψT (x) will be disjoint from that of U
(x)
T ψ0(x) which has support

around L and thus ψT will be orthogonal to U
(x)
T ψ0(x). In other words, for
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p

L=L+(p/m)T

Figure 7.1: Minimal momentum transfer to destroy Schrödinger’s equation

momentum transfer

p
>∼ h̄

L
≡ pcrit (7.4)

in the time [0, T ], the Schrödinger’s equation for the center of mass alone ceases

to be a good approximation in the time scale T . Whenever (7.4) holds, we cannot

describe the motion of the center of mass within the approximation of the one

body problem in an external potential but we have to consider the effect of the

complete dynamics given by the Hamiltonian H = HCM +Hrel +Hint.

An estimate of the critical momentum to destroy Schrödinger’s equation can

also be deduced from a very elementary argument based on a pure stationary

analysis. Roughly, one can proceed in the following way: consider a particle in a

one dimensional box of size L. Then the spacing among energy levels is

∆E � h̄2n2

mL2

and the minimal momentum transfer necessary to produce a transition is p = h̄
L
.

7.2 Classical Limit in the General Case

In realistic situations, Hint is small but not so much to preserve Schrödinger’s

evolution. We shall then consider the Heisenberg equations for the center of

mass x, which are more stable than Schrödinger’s equation under perturbations1,
1 While the distance of the two wave functions with and without the perturbation is big in

the time scale T , the distance between the operators with and without the perturbation in the

same temporal scale T is of the order of the perturbation.
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such that we can consider Hint as a real perturbation of H0. The Heisenberg

equations for the center of mass of the body are

ẋt =
pt
m
, ṗt = F (xt) + Fint(xt, yt), (7.5)

where Fint = −∇Vint. These two coupled first order equations can be written in

terms of a second order equation

mẍt = F (xt) + Fint(xt, yt) (7.6)

where Fint is small. When we take the mean value on the total initial wave

function Ψ0(q) we obtain

m〈ẍt〉 = 〈F (xt)〉. (7.7)

Now the question is: under which conditions can we conclude that the actual

motion of the center of mass is approximatively classical, that is

mẌt � F (Xt)? (7.8)

If Ψ(q, t) is a local plane wave in x, slowly varying in y 2, that is if

λ(x, y, t) =
h̄

|∇xS(x, y, t)|
, ∇xλ(x, y)� 1, (7.9)∣∣∣∣∣∇2

xR(x, y)

R(x, y)

∣∣∣∣∣λ(x, y)� 1 ,

∣∣∣∣∣∇2
xS(x, y)

S(x, y)

∣∣∣∣∣λ(x, y)� 1, (7.10)

where R(x, y), S(x, y) and λ(x, y) are slowly varying function in y, then we can

divide the local plane wave in a sum of wave packets in x and apply, provided

that λ � L, to each of them the Ehrenfest–Goldstein argument of section 5.4 at

a fixed time t to conclude that Newton’s equation holds for a given time.

We have now to guarantee the validity of Newton’s equation for later times:

differently from what we had previously in section 5.3, we need that at different

times the different guiding wave packets are selected according to classical laws.

In fact now the local plane wave depends also on y and we must forbid the

Bohmian trajectory to jump from one wave packet to the other in some weird way.

But we know that, because of the formation of local plane waves in x, p evolves

2This is due to the fact that, to be in the conditions in which we have classical motion, we

need that the environment doesn’t perturb too much the local plane wave structure.
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according to ∇xS, where the classical action S = S0 is also a slowly varying

function of y. It is this requirement on p(x, y) = ∇xS
0(x, y) that guarantees that

the Bohmian motion is really classical.

7.3 Local Plane Wave as a General Structure

There is an open question, in general very difficult to answer to, which is why

should a local plane wave in x, slowly varying in y, be produced as soon as

λ � L. We can give an elementary argument partially supporting this claim. If

the perturbation is small, then we can assume that the wave function is given by

Ψt(x, y) �
∫ ∫

Kx(x, x0; t, 0)Ky(y, y0; t, 0)Ψ0(x0, y0)dx0dy0 = (7.11)

=
∫
Ky(y, y0; t, 0)Ψ̃0(x, y0)dy0, (7.12)

where Ki, i = x, y are the free propagators (starting from x0 and y0 at time t = 0

and arriving in x and y at time t) and

Ψ̃t(x, ȳ) =
∫
Kx(x, x0; t, 0)Ψt(x0, ȳ)dx0. (7.13)

If Ψ0 is a slowly varying function in y, then Ψt is a local plane wave in x, slowly

varying in y. In fact, consider the long time asymptotic form of Ψ̃t(x, ȳ) (suppose

that the time needed to become a local plane wave in x is much shorter than the

time needed for the perturbation to modify the structure)

Ψ̃t(x, ȳ) � [cost]ei
m
h̄

x2

2t ψ̂0(k0(x, ȳ)), (7.14)

where k0 � m
h̄

x
t
+O(ȳ): it is a local plane wave in x for any initial condition x0.

Then, if Ψ̃ is slowly varying in y, we have approximatively 3 that

Ψt(x, y) � Ψ̃t(x, y). (7.15)

7.4 As Matters Stand

To sum up, we have seen what happens (chapters 3 and 4) to an initial product

wave function in the external potential approximation. Our conjecture is that we
3Using some regularizer in the propagator.
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have classical motion on the macroscopic scales
(

x
L
, t
T

)
defined by (3.10) for any

sequence of initial wave functions and external potentials, provided that λ � L.

Moreover, we have seen in chapter 5 that the emergence of local plane wave

structure is crucial to establish the classical limit, almost in that approximation.

After that we showed that the structure of the emergence of the classical motion

remains almost the same even if we consider an initial product wave function in

a more realistic model in which the coupling between the center of mass and the

other degrees of freedom is taken into account. It has been shown in this chapter

that Schrödinger’s evolution for the conditional wave function of the x-system

is quickly destroyed. Nevertheless, the conjecture is still valid, that is there is

production of local plane waves in the center of mass x of the body, with weak

dependence on the other degrees of freedom y. This leads to the classical motion

for the x-system on the macroscopic scales defined above in the limit ε → 0.

Then the general structure of the classical limit is captured by our conjecture

independently of the presence or not of the environment. Given that, due to

Schrödinger’s evolution, the initial wave function spreads, and the role of the

environment is just to cut it into wave packets which evolve classically because

of the Ehrenfest theorem.

The key ingredient of our analysis for the explanation of the emergence of

the classical world is that with each initial configuration x0, as soon as the local

plane wave has formed, is associated a guiding wave packet with a definite wave

length λ(x, t) which locally determines the particle dynamics according to the

local de Broglie relation p(x, t) = h̄
λ(x,t)

, which, for λ � L, evolves according

to the classical laws. This means that the classical limit can be symbolically

expressed as

(Ψ, X)→ (P,X), (7.16)

where (Ψ, X) is the complete quantum state description and (P,X) is the com-

plete classical state description in terms of momentum P and position X. All the

relevant macroscopic information contained in the couple (Ψ, X), in the limit, is

embodied in the couple (P,X), which is the only robust quantity. In other words,

as far as the macroscopic dynamics of X is concerned, only the information car-

ried by P is relevant.
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x(t)

(p,x)

Figure 7.2: The quantum state (Ψ, X) becomes the classical stare (P,X) in the

limit ε → 0

7.5 On the Typicality of the Classical World

We have seen that the local plane wave structure is the shape of the wave func-

tion corresponding to the emergence of the classical world. Now let’s ask if the

classicality is a general feature or not. Does a typical (generic) initial condition

of the universe lead to a classical world or must we have special initial conditions

to ensure that? This is equivalent to asking ourselves if a wave function that is a

local plane wave is developed by the dynamics starting from the majority of the

initial conditions of the universe.

If we consider an infinite universe, the expanding character of Schrödinger’s

equation makes the set of local plane waves an “attractor” for the dynamics.

Thus, in this case, the local plane wave plays the role of the “equilibrium” wave

function. On the other hand, for a compact universe (as is suggested by all

present cosmological models) the equilibrium wave function is a wave function

composed of a sum of local plane waves. This is due to interference between the

waves reflected by the ”edges” of the universe. Given that the states which give

rise to equilibrium are the great majority and given that local plane wave is not

an equilibrium wave function, we can conclude that, within a compact universe,

the classical world is somehow special, atypical because it is produced by a very

special kind of wave function, the local plane wave.
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There are other questions that we could ask ourselves: is the atypicality of the

classical world connected with the second law of thermodynamics? Is it connected

with the emergence of life (see, e.g., [21])? We believe that these are relevant and

interesting questions but they are beyond the scope of this work.

7.6 Quantum Chaos and the Classical World

Classical dynamics is often chaotic, that is it shows sensitive dependence on

initial conditions, while quantum mechanics doesn’t. But classical mechanics is,

in some sense, a limit of quantum mechanics, therefore one should explain how

chaos arises in the macroscopic world, given that the ”true” microscopic theory

is quantum mechanics.

It has been often claimed (see, e.g., [4]) that it is the singularity of the classical

limit, interpreted simply as the limit h̄ → 0, that produces chaos in the classical

world as emerging from quantum mechanics. But what exactly do they mean by

”singular limit”? Consider a dynamics depending on a given parameter α. We

say that the limit α → 0 is singular when the features of the dynamics changes

dramatically before and after the limit. With this we mean that there is no

anticipation whatsoever of the behavior of the system for α > 0 in the behavior

of the system for α = 0. So we are dealing with some discontinuous function in

α = 0.

First of all, one should realize that, if h is a constant of nature, it cannot be

exactly zero. Thus it is impossible that some features of the classical world are

strictly dependent on the singularity of the limit h̄ → 0. In other words, the

singular behavior reveals itself only for h̄ exactly equal to zero and, given that

h̄ = 1.054·10−27 erg·s, nothing of physical relevance can be deduced from the

singularity of the limit.

As for the emergence of classical chaotic behavior, it has been shown in [14]

that, while ordinary quantum mechanics is unable to explain the emergence of

classical chaos, in Bohmian mechanics classical chaotic behavior naturally arises

from the fact that the configurations are randomly distributed according to the

Born statistical rule. So - without any misguided singularity argument - one can

account also for chaos in the classical world within the framework of Bohmian
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mechanics.
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Chapter 8

Related Works

As we mentioned several times, one of the standard ways to look at the classical

limit is that the distribution of quantum observables at a given time converges to

the distribution of the corresponding classical observables, the latter being func-

tions on phase space (see Egorov’s theorem in section 8.3 for a detailed statement).

In the same category of results fall those which show that the Wigner function

converges to a classical distribution.

We would like to remark that such results on a quantum system imply that

the one time distributions of the configuration of the Bohmian system converges

to the classical distribution. If one starts to prove theorems about the classical

limit along the lines we proposed, such convergences of single time distributions

would be the first thing one should try. One must be aware however, that these

results are much too weak to assert classical behaviour in the limit.

8.1 Convergence of Probability Distributions

From our Bohmian perspective, convergence of probability distributions follow

straightforwardly from the convergence of trajectories. Convergence of probabil-

ity distributions is not sufficient to explain the emergence of classical laws for

the general reasons we have already pointed out in the introduction. Moreover,

convergence of probability distributions is not even necessary in our model of

a particle in external potential. In this regard we would like to make some re-

marks: consider the family of slowly varying potentials (see section 4.2). If we
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cl.traj.1
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a) b)

B.traj.1
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x=0

tc=2tr
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Figure 8.1: Classical and Bohmian trajectories in a one dimensional infinite well

potential

look at the probability distribution of position in the presence of caustics, we see

that, differently from what happens to the velocity field, the interference terms

cancel each other such that the probability distributions converge to the classical

distributions. In fact

|ψε(x, t)|2 =
∑
j

Cj(x, 0; t)
(
i

h̄

)d

|ψ̂0(k0j(x, t))|2 +O(ε). (8.1)

The fact that the probability distribution of position converges to the classical

one while the quantum velocity field doesn’t converge to the classical velocity

field (as shown at the beginning of this section) seems confusing but it can be

explained as follows.

Consider the example we gave in section 6.2 of a one dimensional infinite

potential well.

The classical trajectory followed by the particle with momentum p1 = p should

cross the classical trajectory followed by the particle with momentum p2 = −p.

The first, arriving from the right part of the well, should go on to the left, while

the second, after having crossed the first, should go on to the right. From equa-

tion (6.2), we have v = 0 at the time tc, so that Bohmian trajectories, differently

from what happens classically, don’t cross each other at time tc but are reflected
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as from an invisible wall positioned in the center of the well. In this way, the

Bohmian trajectory coming from the right continues to propagate in the right side

while the one on the left stays on the left side. Bohmian trajectories, therefore,

follow the classical ones except for those times t > tc after which the Bohmian

trajectory of the particle with momentum p1 follows the classical trajectory of the

particle with momentum p2 and vice versa. The probability distribution doesn’t

distinguish between different trajectories followed by different initial momenta,

because actually it is the sum of both of them. This fact allows the quantum

probability distribution to converge to the classical one, even if, for times longer

tha caustic time formation tc, we don’t have classical behavior (Bohmian trajec-

tories don’t converge to classical trajectories). This convergence of probability

distributions should not be regarded as an explanation of the classical limit, as

shown by the discussion of the previous example, where the motion is highly non

classical (as decoherence is not taken into account).

V(x)

tr

tc=2tr

x=0

Probability
distribution

Figure 8.2: Classical and Bohmian probability distributions in a one dimensional

infinite well potential
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8.2 Connection with Stationary WKB

First of all, it must be stressed that the scope of WKB is to show how probability

distributions become the classical ones. By itself, it tells nothing (given that it

has been formulated within the framework of ordinary quantum mechanics) about

the convergence between quantum and classical trajectories, as clarified in section

8.1. Nevertheless, there must be a connection between our analysis and the one

given by WKB. We have just stressed in section 4.1 that the Maslov results

[32] and the time dependent WKB are basically the same, but what about time

independent WKB? In this case, the wave function is stationary and it is of the

local plane wave form ψ(x, t) = R(x, t) e
S(x,t)

h̄ . In the limit h̄ → 0, it is such that S

is the classical action and |R(x, t)|2 is the classical probability distribution. The
basic condition of validity of the WKB approximation is [29]

h̄ |∇V |
[2m(E − V )]3/2

� 1, (8.2)

together with other conditions involving higher derivatives of V (see, e.g. [37]).

Condition (8.2) is equivalent to having a slowly varying local wave length such

that ∇λ � 1. Recall that the local plane wave can be written as a sum of

“virtual” wave packets. In the case of WKB, they may evolve in such a way

that ψ remains stationary. Each effective wave packet doesn’t necessarily move

classically because WKB conditions by themselves do not imply the Ehrenfest

condition λ �
√

V ′

V ′′′ . The role of the WKB conditions is, thus, not just that of

preserving the local plane wave structure but, more strongly, that of requiring

stationarity.

8.3 Convergence of Observables

Time dependent and time independent WKB are only very special ways of han-

dling the classical limit in the framework of standard quantum mechanics. A more

general way is in terms of convergence of the Wigner function or, equivalently, of

expectations of semiclassical observables. Since this approach is mathematically

well understood and easy to describe we give, for completeness, a short overview.
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The Wigner transform W h̄(ψ)(q, p) [5],[40] of a wave function ψ ∈ L2(IRd) is

the distribution on the classical phase space IR2d defined through

W h̄(ψ)(q, p) =
1

(2π)d

∫
IRd

dy ψ∗(q + h̄y/2)ψ(q − h̄y/2) eixy·p. (8.3)

One often would like to think of W h̄(ψ)(q, p) as a probability distribution on

phase space, but since W h̄(ψ)(q, p) may be negative this interpretation makes no

sense. It should be noted that, though ψh̄ does not have any limit for h̄ → 0,

one can show that, for a large class of families ψh̄, the Wigner transform of ψh̄,

W h̄(ψε)(dq dp), converges (weakly on suitable test functions) to some probability

measure µψh̄
on the phase space in the limit h̄ → 0. In this sense one might

associate a classical distribution µψh̄
with a family of wave functions ψh̄ in the

limit h̄ → 0.

Furthermore, if ψh̄
t (q) is the solution of the time-dependent Schrödinger equa-

tion

ih̄
∂

∂t
ψh̄

t = − h̄2

2m
∇2ψh̄

t + V ψh̄
t (8.4)

with initial condition ψh̄
0 (q), then the weak limit w-limh̄→0 W

h̄(ψh̄
0 ) = µ0 is a

probability measure on phase space. Therefore, the Wigner transform at later

times converges to µt = µ0 ◦ Φ−t
cl , i.e.

w − lim
h̄→0

W h̄(ψh̄
t ) = µt = µ0 ◦ Φ−t

cl , (8.5)

where Φt : IR2d → IR2d denotes the classical flow generated by the classical

Hamiltonian H(q, p) = p2

2m
+ V (q).

In this sense such a family ψh̄ does not only define a distribution on phase

space, but time evolutions and the limit h̄ → 0 commute.

Actually, the convergence of theWigner transform follows easily from Egorov’s

theorem [18], which we shall now explain. Let a ∈ C∞
b (IR

2d, IR) be a “classical

observable”, i.e. a function on phase space. Then its Weyl quantization [35] âh̄ is

a bounded operator on L2(IRd) whose action on wave functions ψ ∈ S(IRd) (the

Schwartz space of fastly decreasing functions on IRd), is given by

(âεψ)(x) =
1

(2π)d

∫
IR2d

dy dpa ((x+ y)/2, h̄p) e−i(x−y)·p ψ(y) . (8.6)

The concept of Weyl quantization is dual to the Wigner transform in the sense

that

〈ψ, âh̄ψ〉L2(IRd) =
∫
IR2d

dq dpW h̄(ψ)(q, p) a(q, p), (8.7)
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i.e. the quantum mechanical expectation value of the Weyl quantization of a

function on phase space equals, by construction, the expectation of the function

with respect to the Wigner distribution.

The statement of Egorov’s theorem is, to leading order in h̄, that time evolu-

tion and “quantization” commute. More precisely one has

Egorov’s Theorem: Let a ∈ C∞
b (IR

2d, IR) and H h̄ = − h̄2

2m
∇2 + V (q) with

V ∈ C∞
b (IR

d, IR), then for each T < ∞ there is a constant CT such that for

t ∈ [−T, T ] ∥∥∥eiHh̄t/h̄ âh̄ e−iHh̄t/h̄ − ̂a ◦ Φt
∥∥∥ ≤ CT h̄, (8.8)

where ‖...‖ denotes the uniform norm on the bounded operators in L2(IRd) .

As remarked before, from Egorov’s theorem the statement about the conver-

gence of Wigner distributions follows immediately. However, Egorov’s theorem

is a much stronger statement because of its uniformity, but it has a surprisingly

simple proof, see, e.g., [35]. Furthermore, one can also compute higher order in

h̄ “quantum”-corrections to the classical time evolution and all in all it appears

to be an extremely strong result.

However, as emphasized before, the convergence of distributions does in no

way imply anything about the convergence of the underlying trajectories in

Bohmian mechanics. And indeed, we saw in section 8.1 that at caustics in

configuration space the Bohmian trajectories are not even approximately clas-

sical, while the “semiclassical” distributions do not even see the caustics. This

is, roughly speaking, due to the fact that the semiclassical distributions and the

semiclassical observables are sensible only to “macroscopic” features of the wave

function.



Appendix A

Simple Examples

It might be useful to see in a simple example what happens to a particular wave

function in those special classical limits we have previously analyzed in section 4.

Consider a free Gaussian wave packet centered at zero with initial position

spread σ0 and an initial velocity u =
h̄k̄
m

ψ0(x) =
1

[2πσ2
0]

d/4
exp

[
− x2

4σ2
0

+ i
m

h̄
u · x

]
, (A.1)

where d is the dimension of the space.

For this wave function we can see, by direct calculation, that we obtain the

same results that we have claimed are valid for a more general wave function.

The free evolution leads to

ψ(x, t) =

exp

− (x−ut)2

4σ2
0

(
1+ ih̄t

2mσ2
0

) + im
h̄

(
u · x− u2t

2

)
[√
2πσ0(1 +

ih̄t
2mσ2

0
)
]d/2 = R(x, t)e

i
h̄
S(x,t), (A.2)

where

R(x, t) =

 1− i h̄t
2mσ2

0√
2πσ0

(
1 + ih̄t

2mσ2
0

)

d/2

exp

− (x− ut)2

4σ2
0

(
1 + ih̄t

2mσ2
0

)
 (A.3)

and

S(x, t) = m

(
u · x− u2t

2

)
+

(
h̄t

2mσ2
0

)
(x− ut)2

4σ2
0

[
1 +

(
ht

2mσ2
0

)2
] . (A.4)
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For later convenience, we will now write down some relevant characteristics of

this wave function. The spread at time t evolves as

σ2
t = σ2

0

1 + ( h̄t

2mσ2
0

)2
 , (A.5)

the velocity field v(x, t) = 1
m
∇S(x, t) is

v(x, t) = u+
(x− ut)

t

(
h̄t

2mσ2
0

)2

2σ2
0

[
1 +

(
ht

2mσ2
0

)2
] . (A.6)

By integration of the velocity field one obtains the Bohmian trajectory

X(t) = ut+ x0

√√√√1 + ( h̄t

2mσ2
0

)2

, (A.7)

where x0 is the position at time t = 0.

We would like to study the classical limit of this free Gaussian wave packet.

The conjecture (3.12) we have expressed in section 3.2 states that the degrees of

freedom (3.11) on the macroscopic scales (3.10) defined by λ and L tends to zero

as ε = λ
L
→ 0. In this case there is no potential so λ ≡ λψ0 is the de Broglie wave

length defined according to equation (7) and L ≡ Lo, as we have seen in section

3.2, is any scale chosen by the observer, provided that λ � Lo.

We shall now show how this example can be examined as an example of both

of the two special families we have discussed in the chapter 4.

A.1 Quasi Classical Wave Functions

Note that the Gaussian wave packet is a short wave length function, in fact it is

of the form ψ0(x, t) = R0(x)e
i
h̄
S0(x), as one can see from equation (A.1), where

R0(x) =
1

[2πσ2
0]

d/4
exp

[
− x2

4σ2
0

]
(A.8)

and

S0(x) = mu · x, (A.9)
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don’t depend on h̄. Consider now the limit as h̄ → 0 of this quasi classical wave

function as we have seen in section 4. The wave function on the macroscopic

scales
(

x
Lo
, t
T

)
is

ψh̄(x, t) =

exp

− (xLo−utT )2

4σ2
0

(
1+ ih̄tT

2mσ2
0

) + im
h̄

(
u · xLo − u2tT

2

)
[√
2πσ0(1 +

ih̄tT
2mσ2

0
)
]d/2 . (A.10)

Given that both T = Lo

v
and Lo are kept constant in the limit h̄ → 0, there is no

real need to go on these macroscopic scales to see classical behavior: let’s remain

on the microscopic scales.

Note that also the wave function at time t is a short wave length function,

and we can write it as

ψh̄(x, t) = Rh̄(x, t)e
i
h̄
Sh̄(x,t), (A.11)

where Rh̄ and Sh̄ are given from equations (A.3) and (A.4).

In the limit h̄ → 0, we obtain

ψ(0)(x, t) = R(0)(x, t)e
i
h̄
S(0)(x,t) +O(h̄). (A.12)

R(0)(x, t) = R0(x − ut) = | dx
dx0

|−1/2R0(x0), where x0 = x − ut, is the initial

amplitude translated along the classical trajectory

R(0)(x− ut) =
1

[2πσ2
0]

d/4
exp

[
−(x− ut)2

4σ2
0

]
, (A.13)

and S(0)(x, t) is the free classical action

S(0)(x, t) = −mu2t

2
+mu · x, (A.14)

as we expected from Maslov’s theorem.

Note that the wave packet doesn’t spread, in fact

σ
(0)
t = σ0 +O(h̄). (A.15)

Observe that the asymptotic of ψh̄(x, t) in the limit h̄ → 0 is still a wave packet

and, for this reason, a local plane wave.
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The velocity field is v(0)(x, t) = ∇S(0)

m
, that is

v(0)(x, t) = u+O(h̄2). (A.16)

The limiting Bohmian motion as h̄ → 0 is given by

X(0)(t) = ut+ x0 +O(h̄). (A.17)

Note that the initial conditions are

X
(0)
0 = x0, V

(0)
0 = u, (A.18)

in agreement with what we have established in section 4.

A.2 Slowly Varying Potentials

Consider again a free Gaussian wave packet, but now in the limit we studied in

section 4.2.

The free case is an extreme case of a slowly varying potential where the only

free parameter is L = Lo → +∞, while λ remains constant. Given that the

macroscopic scales are defined as
(

x
Lo
, t
T

)
, where T = Lo

v
= mLoλ

h̄
, in this limit

both T and Lo are going to +∞. The macroscopic scales can also be written in
terms of the dimensionless parameter ε = λ

Lo
→ 0 as

(
x λ

Lo
, t λ

Lo

)
. In this way we

rescale space and time as x′ = xε, t′ = tε and we take the limit ε → 0.

The wave function rescales as

ψε(x, t) =

exp

− (x−ut)2

4ε2σ2
0

(
1+ ih̄t

2mεσ2
0

) + im
h̄ε

(
u · x− u2t

2

)
[√
2πσ0ε(1 +

ih̄t
2mεσ2

0
)
]d/2 . (A.19)

We can rewrite it as

ψε(x, t) = Rε(x, t)e
i
h̄
Sε(x,t), (A.20)

where Rε and Sε are given by

Rε(x, t) =

 1− i h̄t
2mεσ2

0√
2πσ0

(
1 + ih̄t

2mεσ2
0

)

d/2

exp

− (x− ut)2

4ε2σ2
0

[
1 + ih̄t

2mεσ2
0

]
 (A.21)
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and

Sε(x, t) = m

[
u · x− u2t

2

]
+

(
h̄t

2mεσ2
0

)
(x− ut)2

4ε2σ2
0

[
1 +

(
h̄t

2mεσ2
0

)2
] . (A.22)

Taking the limit ε → 0, the wave packet becomes

ψ(0)(x, t) =

i
√
2

π

mσ0

th̄

d/2

exp

[
−(x− ut)2

(
mσ0

h̄t

)2

+
i

h̄ε

mx2

2t

]
+O(ε). (A.23)

We can rewrite as

ψ(0)(x, t) = R(0)(x, t)e
i

h̄ε
S(0)(x,t) +O(ε). (A.24)

We have that

R(0)(x, t) =

i
√
2

π

mσ0

th̄

d/2

exp

[
−(x− ut)2

(
mσ0

h̄t

)2
]
=

=
(
i

h̄

)d/2√
C(x, 0; t)

∣∣∣ψ̂(0)
0 (k0(x, t))

∣∣∣2 , (A.25)

where

ψ̂
(0)
0 (k0(x, t)) =

√ 2
π
σ0

d/2

exp
[
−(k0 − k̄)2σ2

0

]
=

=

√ 2
π
σ0

d/2

exp

[
−(x− ut)2

(
mσ0

h̄t

)2
]

(A.26)

is the Fourier transform of the initial wave function. In fact k̄ = m
h̄
u is the

mean initial wave number, k0 =
m
h̄

x
t
is the initial momentum which makes the

phase stationary and C(x, 0; t) =
[
m
t

]d/2
is the factor in front of the propagator.

S(0)(x, t) is the classical free action with initial position xo

S(0)(x, t) =
mx2

2t
. (A.27)

From equation (A.24) we see that the dynamics again produces a local plane

wave. The wave function is totally spread out, in fact

σε2 = σ2
0ε

2

1 + ( h̄t

2mεσ2
0

)2
 , (A.28)
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so that the limiting spread for ε → 0 is

σ
(0)
t =

h̄

2mσ0
t+O(ε). (A.29)

The velocity field is

v(0)(x, t) =
x

t
+O(ε). (A.30)

The Bohmian trajectory in the limit ε → 0 is

X(0)(t) =

[
u+

h̄

2mσ2
0

x0

]
t+O(ε). (A.31)

The initial conditions in this case are

X
(0)
0 = 0, V

(0)
0 = u+

h̄

2mσ2
0

x0. (A.32)

The probability distributions of initial conditions are given by

ρ(x0 = 0, 0) = |ψ(0)
0 (0)|2 = δ(D) (A.33)

and

ρ(v0, 0) =
(
m

h̄

)d

|ψ̂0(k0(v0))|2, (A.34)

as predicted by equation (4.24).



Appendix B

Uniformity of the Convergence in

Simple Examples

In appendix A we have shown through the examples how the one-parameter

families lead to classical behavior. What we still have not proved is the uniformity

of the convergence of the deviation from classicalityD defined by equation (3.11)

in the macroscopic scales (3.10) to zero for any sequence of initial wave function

and external potential (ψλ
0 , V

L) in the limit ε = λ
L
→ 0.

In this section we’ll analyze again the free Gaussian wave packet and we’ll

show that the probability distribution of the deviation from classicality in the

macroscopic scales tends uniformly to a delta-function centered at zero as ε → 0

for these cases.

Now we want to see in what sense the conjecture that we have stated in section

3.2 is true.

There are different conditions that might lead to classical motion, e.g.:

-A SUPER STRONG CONDITION Given the mean de Broglie wave

length λ = h̄
mv
, where v = h̄

√
〈ψ0,−∇2ψ0〉), then the deviation from classicality

on the macroscopic scales defined by λ and L D(xL, tT )→ 0 as ε → 0.

-B STRONG CONDITION Given the mean de Broglie wave length λ =
h̄

mv
, where v = h̄

√
〈ψ0,−∇2ψ0〉), then the deviation from classicality on the

macroscopic scales defined by λ and L on the Bohmian trajectoriesXt D(Xt)→ 0

as ε → 0.

-C SEMI STRONG CONDITION Given a more refined wave length func-

95
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tion of the initial condition x0 λ(x0) =
h̄

mv(x0)
, where v(x0) is the derivative of

the Bohmian trajectory in the limit ε → 0, then the deviation from classicality

on the macroscopic scales defined by λ and L D(xL, tT )→ 0 as ε → 0.

-D SEMI WEAK CONDITION Given the wave length λ(x0) =
h̄

mv(x0)
,

where v(x0) is the derivative of the Bohmian trajectory in the limit ε → 0, then

the deviation from classicality on the macroscopic scales defined by λ and L on

the Bohmian trajectories Xt D(Xt)→ 0 as ε → 0.

-E WEAK CONDITION Given the mean de Broglie wave length λ = h̄
mv
,

where v = h̄
√
〈ψ0,−∇2ψ0〉), then the probability distribution of the deviation

from classicality on the macroscopic scales defined by λ and L ρ(D) → δ(D) as

ε → 0.

Let’s calculate the quantum force FQ = −∇
[
h̄2

m
∇2R
R

]
for a free gaussian wave

function. We have, from equation (A.10), that

FQ(x, t) =
h̄2

4mσ4
0

x− ut[
1 +

(
h̄t

2mσ2
0

)2
]2 . (B.1)

The macroscopic scales in which the motion must be classical are
(

x
Lo
, t
T

)
, where

T = Lo

v
= mLoλ

h̄
.

From equation (3.11), in the macroscopic scales x = x′Lo, t = t′T defined by

λ and Lo (suppressing the primes) we have

D(x, t, λ, Lo, σ0, m, u) =

(
λLo

2σ2
0

)2
x− u

v
t[

1 +
(

λLo

2σ2
0

)2
t2
]2 , (B.2)

where

v =
h̄

mλ
and u =

h̄

mλ̄
, (B.3)

In general D is a function of x, t, all the parameters which defines the initial

wave function (namely h̄, σ0, m, u) and the relevant length scales λ and Lo.

In terms of the dimensionless parameters α = λLo

2σ2
0
, D becomes

D(x, t, α) = (x− u

v
t)

α2

[1 + α2t2]2
. (B.4)

The Bohmian trajectories on the macroscopic scales are

Xt =
u

v
t+

x0

Lo

√
1 + α2t2 (B.5)



97

such that D on the trajectories is given by

DXt(α, x0, Lo) =
x0

Lo

α2

[1 + α2t2]3/2
. (B.6)

The probability distribution of D is given by

ρ(y(x, t)) = |ψ(y(x, t))|2
∣∣∣∣∣dxdy

∣∣∣∣∣ (B.7)

where |ψ(y(x, t))|2 is computed on the macroscopic scales, that is

|ψ(y(x, t))|2 =

exp

− y2

2

[
α2

(√
2σ2

0
Lo

)
(1+α2t2)2

]2


√
2π
[√

2σ0

Lo

√
1 + α2t2

] . (B.8)

This leads to

ρ(y(x, t)) =
1√
2πσ̄0

exp

[
− y2

2σ̄2
0

]
, (B.9)

where

σ̄0 =
1

µ

α2

[1 + α2t2]3/2
, (B.10)

where µ = Lo√
2σ0
. Note that α = εµ2, given that ε = λ

Lo
.

The mean de Broglie wave length λ obtained from the mean kinetic energy

according to equation (7) is given by

λ =
h̄

mv
, (B.11)

where

v =

√√√√u2 +

[
h̄√
2mσ0

]2

. (B.12)

The more refined wave length depending on the initial condition x0 is given by

λ(x0) =
h̄

mv(x0)
(B.13)

where

v(x0) = Ẋt = u+
h̄

2mσ0

x0

σ0
. (B.14)

For those particular sequences for which ε → 0 in such a way that α = λLo

2σ2
0
is

constant, thenD � constant. Moreover,D(Xt) � x0
Lo
is constant. This expression
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is small except if x0 � Lo, that is except for those initial conditions belonging

to the tails of the gaussian. These are counterexamples of the validity of the

conjecture in the super strong and the strong sense.

To weaken the conjecture and to take into account the fact that these initial

conditions have small probability we have two possibilities.

One possibility is to assign to each initial condition a different wave length

λ ≡ λ(x0) given by equation (B.13). Then the conjecture may be true in the

following senses: D → 0 as ε → 0 for any λ = λ(x0) (semi strong sense), or on

the Bohmian trajectories D(Xt)→ 0 as ε → 0 (semi weak sense).

A second possibility is to assign to each initial condition x0 the same wave

length, that is the de Broglie wave length obtained from the kinetic energy ac-

cording to equation (7). In this case the conjecture should hold in the weak sense,

that is the probability distribution of D ρ(D)→ δ(D) as ε → 0.

It can be seen from equation (B.4) that if

α � const and
u

v(x0)
=

λ

λ̄
=

1

1 + x0

2σ2
0
λ̄
� const, (B.15)

that is, x0 � σ2
0

λ̄
, then

D �
(
x− λ

λ̄t

)
α2

[1 + α2t2]2
�→ 0 (B.16)

for ε → 0.

From equation (B.6), we an see that if

α � const and
u

v(x0)
� λ

λ̄
� const, (B.17)

then we have

D(Xt) �
λ

λ̄

α

[1 + α2t2]3/2
� const (B.18)

in the limit ε → 0. So, the conjecture in the semi weak and semi strong sense

doesn’t hold.

Now let’s analyse what happens to ρ(y(x, y)) if the wave length is the mean

de Broglie λ . We can see from equation (B.9) that ρ(D) → δ(D) any time that

σ̄0 → 0. From equation (B.10) we see that σ̄0 depends on α and µ such that we

have to prove that it goes to zero in all the possible limits in which α = εµ2 and

µ can combine each other, provided that ε → 0.
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a)ε → 0, µ � constant: this limit corresponds to λ � Lo and Lo � σ0 and

σ̄0 � ε2 → 0.

b)ε → 0, µ → 0: this limit corresponds to λ � Lo � σ0 and σ̄0 � ε2µ3 → 0.

c)ε → 0, µ → +∞, εµ → constant: this limit corresponds to λ � Lo and

λ � σ0 and σ̄0 � 1
µ
→ 0.

d)ε → 0, µ → +∞, εµ → +∞: this limit corresponds to σ0 � λ � Lo and

σ̄0 � 1
[εµ]µ2 → 0.

e)ε → 0, µ → +∞, εµ → 0: this limit corresponds to λ � σ0 � Lo and

σ̄0 �
1

µ

[εµ2]2

[1 + (εµ2)2]3/2
, (B.19)

and depends on what εµ2 does. Let’s analyze what happens in all the different

situations.

e-1)εµ2 �constant: this means λLo � σ2
0 and σ̄0 � 1

µ2 → 0.

e-2)εµ2 � 0: this means λLo � σ2
0 and σ̄0 � εµ2

µ
→ 0.

e-3)εµ2 � +∞: this means λLo � σ2
0 and σ̄0 � 1

µ[εµ2]2
→ 0.

So we can conclude that there are some initial conditions for which we haven’t

got the classical limit according to the semi strong conjecture but their proba-

bility to happen is so small that D goes to zero as ε → 0 with high probability.

Therefore, the examples we have analyzed show that the conjecture we have given

in section 3.2 is satisfied.
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[10] M. Daumer, D. Dürr, S. Goldstein, N. Zangh̀ı: On the Quantum Probability

Flux Through Surfaces, Journal of Statistical Physics 88, 967–977 (1997).

[11] D. Dürr: Bohmsche Mechanik als Grundlage der Quantenmechanik ,

Springer–Verlag, Berlin (2001).
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[14] D. Dürr, S. Goldstein, N. Zangh̀ı: Quantum Chaos, Classical Randomness

and Bohmian Mechanics , J. Stat. Phys. 68, 259-270 (1992).
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