Could This Be Fermat's Lost 'Proof' of FLT?

Bhupinder Singh Anand*

May 10, 2023

Theorem 1 $x^p + y^p \neq z^p$ for any prime p > 2, where $x, y, z, p \in \mathbb{N}$ and x, y, z are co-prime.

Fermat's Lost 'Proof' In any mathematical model of a universe U_p where a fundamental particle is not *treated* as a *point* particle, but as a *p*-D hypercube¹ of side $\frac{2}{p}$ and volume $(\frac{2}{p})^p$ —where $\frac{2}{p}$ is a fundamental constant like, say, Planck's constant \hbar —we cannot find natural numbers $(\frac{px}{2})^p$, $(\frac{py}{2})^p$, $(\frac{pz}{2})^p$, where x, y, z are co-prime, such that $(\frac{2}{p})^p(\frac{px}{2})^p + (\frac{2}{p})^p(\frac{py}{2})^p = (\frac{2}{p})^p(\frac{pz}{2})^p$ if p > 2. The theorem follows.

^{*}Non-institutional research (Mumbai, India). ORCID: https://orcid.org/0000-0003-4290-9549. Email: bhup.anand@gmail.com.

¹See https://en.wikipedia.org/wiki/Hypercube.