Could This Be Fermat's Lost 'Proof' of FLT?

Bhupinder Singh Anand*

May 10, 2023

Theorem $1 x^{p}+y^{p} \neq z^{p}$ for any prime $p>2$, where $x, y, z, p \in \mathbb{N}$ and x, y, z are co-prime.

Fermat's Lost 'Proof' In any mathematical model of a universe U_{p} where a fundamental particle is not treated as a point particle, but as a p-D hypercub ϵ^{1} of side $\frac{2}{p}$ and volume $\left(\frac{2}{p}\right)^{p}$-where $\frac{2}{p}$ is a fundamental constant like, say, Planck's constant \hbar-we cannot find natural numbers $\left(\frac{p x}{2}\right)^{p},\left(\frac{p y}{2}\right)^{p},\left(\frac{p z}{2}\right)^{p}$, where x, y, z are co-prime, such that $\left(\frac{2}{p}\right)^{p}\left(\frac{p x}{2}\right)^{p}+\left(\frac{2}{p}\right)^{p}\left(\frac{p y}{2}\right)^{p}=\left(\frac{2}{p}\right)^{p}\left(\frac{p z}{2}\right)^{p}$ if $p>2$. The theorem follows.

[^0]
[^0]: *Non-institutional research (Mumbai, India). ORCID: https://orcid.org/0000-0003-42909549. Email: bhup.anand@gmail.com.
 ${ }^{1}$ See https://en.wikipedia.org/wiki/Hypercube

