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17.6. Gödel’s argument does not support his claim in Theorem XI 137
17.7. A curious interpretation of Gödel’s claim 137
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Abstract

We show how removing faith-based beliefs in current philosophies of classical and
constructive mathematics admits formal, evidence-based, definitions of constructive
mathematics; of a constructively well-defined logic of a formal mathematical language;
and of a constructively well-defined model of such a language.

We argue that, from an evidence-based perspective, classical approaches which
follow Hilbert’s formal definitions of quantification can be labelled ‘theistic’; whilst
constructive approaches based on Brouwer’s philosophy of Intuitionism can be
labelled ‘atheistic’.

We then adopt what may be labelled a finitary, evidence-based, ‘agnostic’
perspective and argue that Brouwerian atheism is merely a restricted perspective
within the finitary agnostic perspective, whilst Hilbertian theism contradicts the
finitary agnostic perspective.

We then consider the argument that Tarski’s classic definitions permit an
intelligence—whether human or mechanistic—to admit finitary, evidence-based,
definitions of the satisfaction and truth of the atomic formulas of the first-order
Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto
unsuspected and essentially different, ways.

We show that the two definitions correspond to two distinctly different—not
necessarily evidence-based but complementary—assignments of satisfaction and
truth to the compound formulas of PA over N.

We further show that the PA axioms are true over N, and that the PA rules of
inference preserve truth over N, under both the complementary interpretations; and
conclude some unsuspected constructive consequences of such complementarity for
the foundations of mathematics, logic, philosophy, and the physical sciences.
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Preface

I shall attempt to offer an integrated—albeit, pardonably, occasionally disjointed
and näıve—evidence-based perspective of a lay, rather than professional, scholar
encompassing fifty years of investigation into various inter-connected, but seemingly
independent, grey areas in the foundations of mathematics, logic, philosophy, and
the physical sciences.

This investigation is essentially rooted in the evidence-based perspective towards
‘provability’ and ‘truth’ introduced in the paper [An16], ‘The Truth Assignments
That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-
Based Argument for Lucas’ Gödelian Thesis’.

The paper appeared in the December 2016 issue of Cognitive Systems Research,
and addressed the philosophical challenge—briefly, albeit arguably, highlighted
in a contemporary, computational, context by Peter Wegner and Dina Goldin in
[WG06]—that arises when an intelligence—whether human or mechanistic—accepts
arithmetical propositions as true under an interpretation—either axiomatically or
on the basis of subjective self-evidence—without any specified methodology for
evidencing such acceptance in the sense of Chetan Murthy and Martin Löb:

“It is by now folklore . . . that one can view the values of a simple functional
language as specifying evidence for propositions in a constructive logic . . . ”.
. . . Chetan. R. Murthy: [Mu91], §1 Introduction.

“Intuitively we require that for each event-describing sentence, φoιnι
say (i.e. the concrete object denoted by nι exhibits the property expressed
by φoι ), there shall be an algorithm (depending on I, i.e. M∗) to decide the

truth or falsity of that sentence.”

. . . Martin H Löb: [Lob59], p.165.

By evidence-based reasoning (Chapter 1, Definition 1.1), I intend reasoning
which accepts arithmetical propositions as true under an interpretation if, and only
if, there is some specified methodology for objectively evidencing such acceptance.

For the purposes of the investigation I shall make (see Chapter 23) an arbitrary
distinction between (compare [Ma08]; see also [Fe99]):

• The natural scientist’s hat , whose wearer’s responsibility is recording—
as precisely and as objectively as possible—our sensory observations (corre-
sponding to computer scientist David Gamez’s ‘Measurement’ in [Gam18],
Fig.5.2, p.79) and their associated perceptions of a ‘common’ external
world (corresponding to Gamez’s ‘C-report’ in [Gam18], Fig.5.2, p.79;
and to what some cognitive scientists, such as Lakoff and Núñez in [LR00],
term as ‘conceptual metaphors’);

xiii
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• The philosopher’s hat , whose wearer’s responsibility is abstracting a
coherent—albeit informal and not necessarily objective—holistic perspec-
tive of the external world from our sensory observations and their associated
perceptions (corresponding to Carnap’s explicandum in [Ca62a]; and to
Gamez’s ‘C-theory’ in [Gam18], F, p.79); and

• The mathematician’s hat , whose wearer’s responsibility is providing
the tools for adequately expressing such recordings and abstractions in
a symbolic language of unambiguous communication (corresponding to
Carnap’s explicatum in [Ca62a]; and to Gamez’s ‘P-description’ and
‘C-description’ in [Gam18], Fig.5.2, p.79).

That this distinction may not reflect conventional wisdom is highlighted in §25,
where I argue that:

— if mathematics is to serve as a lingua franca for the physical sciences,

— then it can only represent physical phenomena unambiguously by insistence
upon evidence-based reasoning (in the sense of Chapter 5)

— which, in some cases, may prohibit us from building a mathematical theory
of a physical process

- based on the assumption that the limiting behaviour of every physical
process which can be described by a Cauchy sequence

- must be taken to correspond to the behaviour of the classically defined
Cauchy limit of the sequence.

The above attempts to crystalise Hermann Weyl’s perspective that (see also Chapter
44):

“. . . I believe the human mind can ascend toward mathematical concepts only

by processing reality as it is given to us. So the applicability of our science
is only a symptom of its rootedness, not a genuine measure of its value. It

would be equally fatal for mathematics—this noble tree that spreads its
wide crown freely in the ether, but draws its strength from the earth of real
intuitions and perceptions (Anschauungen und Vorstellungen)—if it were

cropped with the shears of a narrow-minded utilitarianism or were torn out
of the soil from which it grew.”

. . . Weyl: [We10], p.10.

Without attempting to address the issue in its broader dimensions, I shall also
argue from the perspective that:

(i) Mathematics is to be considered as a set of precise, symbolic, languages;

(ii) Any language of such a set is intended to express—in a finitary, unam-
biguous, and communicable manner—relations between elements that are
external to the language;

(iii) Moreover, each such language is two-valued if I assume that a specific
relation either holds or does not hold externally under any valid, evidence-
based interpretation of the (symbolic) language.

The importance of recognising mathematics as a language of expression and
communication of external, evidence-based, content is that we cannot then admit
arguments such as:
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That our universe is approximately described by Sanskrit means that some
but not all of its properties are Sanskrit. That it is Sanskrit means that all
of its properties are Sanskrit; that it has no properties at all except Sanskrit
ones.

which highlights, for instance, the incongruity of Max Tegmark’s perspective in
[Teg14]:

“The idea of spacetime does more than teach us to rethink the meaning of
past and future. It also introduces us to the idea of a mathematical universe.

Spacetime is a purely mathematical structure in the sense that it has no

properties at all except mathematical properties, for example the number
four, its number of dimensions. In my book Our Mathematical Universe, I

argue that not only spacetime, but indeed our entire external physical reality,
is a mathematical structure, which is by definition an abstract, immutable

entity existing outside of space and time.

What does this actually mean? It means, for one thing, a universe that can

be beautifully described by mathematics. That this is true for our universe

has become increasingly clear over the centuries, with evidence piling up
ever more rapidly. The latest triumph in this area is the discovery of the

Higgs boson, which, just like the planet Neptune and the radio wave, was

first predicted with a pencil, using mathematical equations.

That our universe is approximately described by mathematics means that
some but not all of its properties are mathematical. That it is mathematical

means that all of its properties are mathematical; that it has no properties
at all except mathematical ones. If I’m right and this is true, then it’s good
news for physics, because all properties of our universe can in principle be

understood if we are intelligent and creative enough. It also implies that
our reality is vastly larger than we thought, containing a diverse collection
of universes obeying all mathematically possible laws of physics.”

. . . Tegmark: [Teg14].

From such an evidence-based perspective, eliminating ambiguity in critical cases—
such as communication between mechanical artefacts, or a putative communication
between terrestrial and/or extra-terrestrial intelligences (whether mechanical or
organic)—seems to me to be the very raison d’être of mathematical activity.

I would view such activity:

(1) First, as the construction of richer and richer mathematical languages that
can symbolically express those of our abstract concepts (corresponding to
Lakoff’s conceptual metaphors considered in Chapter 43, and Carnap’s ex-
plicandum considered in Chapter §14) which can be subjectively addressed
unambiguously.

Languages such as, for instance, the first-order Set Theory ZF, which can
be well-defined formally but which have no constructively well-defined
model (see Appendix A) that would admit evidence-based (in the sense of
Chapter 5) assignments of ‘truth’ values to set-theoretical propositions by
a mechanical intelligence.

By ‘subjectively address unambiguously’ I intend in this context that there
is essentially a subjective acceptance of identity by me between:

- an abstract concept in my mind (corresponding to Lakoff and Núñez’s
‘conceptual metaphor’ in [LR00], p.5) that I intended to express
symbolically in a language; and
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- the abstract concept created in my mind each time I subsequently
attempt to understand the import of that symbolic expression (a
process which can be viewed in engineering terms as analogous to
my attempting to formalise the specifications, i.e., explicatum, of a
proposed structure from a prototype; and which, by the ‘Sapir-Whorf
Hypothesis’, then determines that my perception of the prototype is,
to an extent, essentially rooted in the symbolic expression that I am
attempting to interpret).

(2) Second, the study of the ability of a mathematical language to precisely
express and objectively communicate the formal expression (corresponding
to Carnap’s explicatum considered in Chapter 14) of some such concepts
effectively.

A language such as, for instance, the first order Peano Arithmetic PA,
which can not only be well-defined formally, but which has a finitary model
(Corollary 9.8 and Corollary 9.9) that admits evidence-based assignments
of ‘truth’ values to arithmetical propositions by a mechanical intelligence,
and which is categorical (albeit, with respect to algorithmic computability—
Corollary 11.1).

By ‘objectively communicate effectively’ I intend in this context that there
is essentially:

(a) first, an objective (i.e., on the basis of evidence-based reasoning in the
sense of Chapter 5) acceptance of identity by another mind between:

- the abstract concept created in the other mind when first
attempting to understand the import of what I have expressed
symbolically in a language; and

- the abstract concept created in the other mind each time it sub-
sequently attempts to understand the import of that symbolic
expression (a process which can also be viewed in engineering
terms as analogous to confirming that the formal specifications,
i.e., explicatum, of a proposed structure do succeed in uniquely
identifying the prototype, i.e., explicandum);

and:

(b) second, an objective acceptance of functional identity between ab-
stract concepts that can be ‘objectively communicated effectively’
based on the evidence provided by a commonly accepted doctrine
such as, for instance, the view that a simple functional language can
be used for specifying evidence for propositions in a constructive
logic ([Mu91]).

Moreover, I shall argue that we need to recognise explicitly the limitations imposed
by evidence-based reasoning on:

– the ability of highly expressive mathematical languages such as ZF to
effectively communicate abstract concepts (Lakoff and Núñez’s conceptual
metaphors), such as, for instance, those involving Cantor’s first limit
ordinal ω (as detailed in §43.2);

and:
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– the ability of effectively communicating mathematical languages such as
PA to adequately express such concepts (see §20.7).

I shall argue, further, that from an evidence-based perspective, the notorious
semantic and logical paradoxes (Chapter 24) arise out of a blurring of this distinction,
and an attempt to ask of a language more than it is designed to deliver.

They dissolve once we accept that the ontology of any interpretation of a
language is determined not by the ‘logic’ of the language—which, contrary to
conventional wisdom, I take as intended solely to assign unique ‘truth’ values to
the declarative sentences of the language (in the sense of the proposed Definitions
21.3 to 21.7)—but by the rules (Theorem 11.10) that determine the ‘terms’ which
can be admitted into the language without inviting contradiction, in the broader
sense of how, or even whether, the brain—viewed as the language defining and logic
processing part of any intelligence—can address contradictions (§23.11).

My concerns in these areas have been those commonly shared by scholars of all
disciplines—including challenged graduate-level students—with a more than passing
interest in the reliability, for their intended individual purposes, of the mathematical
languages which any scientific enquiry—by implicit definition—finds essential for
attempting unambiguous expression of abstract thought and, subsequently, its
unequivocal communication to an other.

I shall argue the thesis—in relatively elementary terms—that the obstacles to
such expression and communication are rooted in the disconcerting perceptions of
mutual inconsistency between various ‘classical’ and ‘constructive’ philosophies of
mathematics vis à vis the disquieting, and seemingly ‘omniscient’, status accorded
classically to both mathematical truth and mathematical ontologies (highlighted by
Krajewski in [Kr16] and Lakoff and Núñez in [LR00]); and that such perceptions
are, at heart, illusions.

They merely reflect the circumstance that, to date, all such philosophies—
whether due to explicitly or implicitly held beliefs—do not unambiguously define
the relations between a language and the ‘logic’ (in the sense of Definitions 21.5,
21.6 and 21.7) that is necessary to assign unequivocal truth-values of ‘satisfaction’
and ‘truth’ to the propositions of the language under a well-defined interpretation.

I argue, moreover, that an epistemically grounded perspective of conventional
wisdom—as articulated, for instance, in [LR00] or [Shr13]—ignores the distinction
between the multi-dimensional nature of the logic of a formal mathematical language
(Definition 21.5), and the one-dimensional nature of the veridicality of its assertions.

Similarly, classical conventional wisdom based on Hilbert’s approach to, and
development of, proof theory too fails (see [RS17]; also [Mycl]) to adequately
distinguish that:

(α) Whereas the goal of classical mathematics, post Peano, Dedekind and
Hilbert, has been:

– to uniquely characterise each informally defined mathematical struc-
ture S (e.g., the Peano Postulates and its associated classical predicate
logic)
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– by a corresponding formal first-order language L, and a set P of
finitary axioms/axiom schemas and rules of inference (e.g., the first-
order Peano Arithmetic PA and its associated first-order logic FOL)

– which assign unique provability values (provable/unprovable) to each
well-formed proposition of the language L;

(β) The goal of constructive mathematics, post Brouwer and Tarski, has been:

– to assign unique, evidence-based, truth values (true/false) to each
well-formed proposition of the language L,

– under a constructively well-defined interpretation I over the domain
D of the structure S (when viewed as a ‘conceptual metaphor’ in the
terminology of [LR00]),

– such that the provable formulas of L are true under the interpretation.

In other words, whilst the focus of proof theory can be viewed as seeking
to ensure that any mathematical language intended to represent our conceptual
metaphors is unambiguous, and free from contradiction, the focus of constructive
mathematics can be viewed as seeking to ensure that any such representation does,
indeed, uniquely identify such metaphors.

The goals of the two activities ought to, thus, be viewed as necessarily com-
plementing each other, rather than being independent of, or in conflict with, each
other as to which is more ‘foundational’—as is implicitly argued, for instance, in the
following remarks of constructivist Errett Bishop1 (and also by Penelope Maddy’s
perspective in [Ma18], [Ma18a]):

“ The use of a formal mathematical system as a programming language
presupposes that the system has a constructive interpretation. Since most

formal systems have a classical, or nonconstructive, basis (in particular, they
contain the law of the excluded middle), they cannot be used as programming

languages.

The role of formalisation in constructive mathematics is completely distinct
from its role in classical mathematics. Unwilling—indeed unable, because of

his education—to let mathematics generate its own meaning, the classical
mathematician looks to formalism, with its emphasis on consistency (either

relative, empirical, or absolute), rather than meaning, for philosophical

relief. For the constructivist, formalism is not a philosophical out; rather
it has a deeper significance, peculiar to the constructivist point of view.
Informal constructive mathematics is concerned with the communication
of algorithms, with enough precision to be intelligible to the mathematical

community at large. Formal constructive mathematics is concerned with

the communication of algorithms with enough precision to be intelligible to
machines.”

. . . Bishop: [Bi18], pp.1-2.

In this investigation I shall, therefore, seek to establish such complementarity,
culminating in the Provability Theorem for PA in Chapter 10, which bridges formal
arithmetic provability and interpreted, evidence-based, arithmetic truth.

I shall then investigate some of its consequences, and how these relate to
various unsettling philosophical issues, by identifying and removing the root of

1We note that Bishop erroneously (see Corollary 9.11) treats the law of the excluded middle—
ergo the classical first-order logic FOL in which this law is a theorem—as ‘nonconstructive’.
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a critical ambiguity—essentially an ambiguity in Brouwer-Heyting-Kolmogorov
realizability (as highlighted in Chapter 21)—which seems to inhibit recognition of
the complementary roles of classical and constructive mathematics.

It is an ambiguity with far-reaching ramifications which, I argue, tolerates
unsustainable beliefs whose illusory ‘self-evidentiary’ appeal (for instance, the
‘obviousness’ of an isomorphism between the structure of the natural numbers and
that of the finite ordinals in Goodstein’s curious argumentation in Chapter 22)
could reasonably be viewed as owing more, perhaps, to psychological factors than
to mathematical ones—as Bauer ([Ba16]) insightfully suggests in another context.

From a psychological perspective, I would thus argue (§23.2) that, both qualita-
tively and quantitatively, any piece of information (i.e., the perceived content of a
well-defined declarative sentence) that we treat as a ‘fact’2 is necessarily associated
with a suitably-defined truth assignation which must fall into one or more of the
following three categories:

(a) information that we zealotly believe to be ‘true’ in an, absolute, Platonic
sense, and have in common with others holding similar beliefs zealotly;

(b) information that we prophetically hold to be ‘true’—short of Platonic
belief 3—since it can be treated as self-evident, and have in common with
others who also hold it as similarly self-evident ;

(c) information that we scientifically agree to define as ‘true’ on the basis of
an evidence-based convention, and have in common with others who accept
the same convention for assigning truth values to such assertions.

Clearly the three categories of information have associated truth assignations
with increasing degrees of objective (i.e., on the basis of evidence-based reasoning)
accountability that must, in turn, influence the perspective—and understanding (in
the cognitive sense of §43.1)—of whoever is exposed to a particular category at a
particular moment of time.

In mathematics, for instance, Platonists who hold even axioms which are not
immediately self-evident as ‘true’ in some absolute sense—such as Gödel ([Go51])
and Saharon Shelah ([She91])—might be categorised as accepting all three of (a),
(b) and (c) as definitive; those who hold axioms as reasonable hypotheses only if
self-evident—such as Hilbert ([Hi27])—as holding only (b) and (c) as definitive; and
those who hold axioms as necessarily evidence-based propositions—such as Brouwer
([Br13])—as accepting only (c) as definitive.

In the first case, it is obvious that contradictions between two intelligences,
that arise solely on the basis of conflicting beliefs—such as, for instance, the
classical debate between ‘creationists’ and ‘evolutionists’4 or, currently, that between
proponents of the theory of ‘alternative facts’ and those of ‘scientific facts’, as
addressed by physicists Steven Vigdor and Tim Londergan in their June 27, 2017,

2For the purposes of this investigation, we ignore the nuances involved in such a concept as
detailed, for instance, in [SP10].

3But see also, for instance, §C.2.
4Typical of a phenomena whose topical dimensions are insightfully—and sensitively—addressed

by Harvey Whitehouse for a lay audience—from the perspective of Cognition and Evolutionary
Anthropolgy—in an interview in [Gal18].



xx PREFACE

blogpost ‘Debunking Denial: The War Against Facts ’—cannot yield any productive
insight on the nature of the contradiction.

Although not obvious, it is the second case—of contradictions between two
intelligences that arise on the basis of conflicting ‘reasonability’, such as:

• the perceived conflict detailed in Chapter 4 between Hilbert’s and Brouwer’s
interpretation of quantification; or

• the perceived conflict detailed in §9.3 between Hilbert and Poincaré on the
finitary interpretability of the axiom schema of induction of the first-order
Peano Arithmetic PA; or

• the perceived conflict detailed in Chapter 28 between Bohr and Einstein
on whether the mathematical representation of some fundamental laws
of nature can only be expressed in terms of functions that are essentially
unpredictable, or whether all the laws of nature can be expressed in terms
of functions that are essentially deterministic;

which yields the most productive insight on the nature of the contradiction.

Reason: Such conflicts compel us to address the element of implicit subjectivity
in the individual conceptual metaphors (see [LR00]) underlying the contradictory
perspectives that, then, motivates us to seek (c) for an appropriate resolution of the
corresponding contradiction, as in the case of:

• the argument in [An15] that Hilbert’s and Brouwer’s interpretations of
quantification are complementary and not contradictory; and

• the dissolving of the Hilbert-Poincaré debate by virtue of Lemma 9.4 and
Corollary 9.11;

• the dissolving of the Bohr-Einstein debate by the argument in [An13]
and [An15a] that any mathematical representation of a law of nature
is necessarily expressed in terms of functions that are algorithmically
verifiable—hence deterministic—but that such functions need not be algo-
rithmically computable—and therefore predictable.

The third case (c) is thus the holy grail of communication (critically so in the
search for extra-terrestrial intelligence—see §23.4)—one that admits unambiguous
and effective communication without contradiction; and which is the focus of this
investigation.

Specifically, I shall attempt to address, from the perspective of stringently
constructive—in the sense (see Chapter 5) of evidence-based—mathematics, some
grey areas in the standard interpretations of the formal reasoning and conclusions
of classical first order theory:

— based primarily on the seminal works of Cantor, Hilbert, Brouwer, Gödel,
Tarski, and Turing,

— which appeal to Tarski’s Theorem (see §8.1) that arithmetical truth cannot
be defined algorithmically, and

— which seem to implicitly, but misleadingly, assume that:

https://debunkingdenial.com/
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- The satisfiability and truth—as defined by Tarski—of the propositions
of any formal mathematical language which is rich enough to express
the arithmetic of the natural numbers is necessarily subjective,

- in the sense of being essentially unverifiable constructively,

- under any well-defined interpretation of the language.

However, in Chapter 7 I review the evidence-based definition of algorithmically
verifiable arithmetical truth introduced in §5.1, and show that it is such ‘verifiability’
(corresponding to Hilbert’s concept of ‘verifiability’ as analysed in §15.4) that
actually underpins the classically standard—but what can now be seen to be a
weak—interpretation M of PA (as introduced in [An12] and developed in [An16]).

I note as its immediate consequence that PA is weakly consistent (Theorem 7.7),
and that Hilbert’s and Bernays’ ‘informal’ proof of the consistency of arithmetic
in the Grundlagen der Mathematik—as analysed in [SN01] (see §15.4)—can be
viewed as essentially outlining a proof of Theorem 7.7.

I then show in §8.1 the—hitherto unsuspected and, as I show in Chapter 14,
also far-reaching—consequence (Theorem 8.5) that PA is not ω-consistent (an
independent proof of which is given in Corollary 11.6).

Moreover, in Chapter 9 I detail an evidence-based definition of algorithmically
computable arithmetical truth under a strong finitary interpretation B of PA, which
not only establishes the consistency of PA finitarily (as sought by Hilbert in the
second of his Millennium problems in [Hi00]), but establishes PA as a language of
unambiguous expression and effective communication (in the sense of §23.1) for the
physical sciences (as considered briefly in Chapter 27).

In other words, I conclude (from the Provability Theorem 10.2) that although a
set theory such as ZF may be the appropriate language for the symbolic expression of
Lakoff and Núñez’s ‘conceptual metaphors’, by which an individual’s ‘embodied mind
brings mathematics into being’ (see [LR00]), it is the strong finitary interpretation
of the first-order Peano Arithmetic PA (see Theorem 9.7) that makes PA a stronger
contender for the role of a lingua franca of adequate expression and effective
communication of such ‘conceptual metaphors’ in contemporary mathematics and
its foundations.

Reason: PA allows us to bridge arithmetic provability and arithmetic com-
putability, in the sense that a PA formula [F (x)] is PA-provable if, and only if,
[F (x)] is algorithmically computable as true in N under B (Chapter 10).

Before considering the wider implications of the Provability Theorem 10.2, and
to place this investigation in perspective against current and classical approaches
towards determining the strictures that a formal system must embrace in order to
be considered constructive, I review:

• first, from an evidence-based perspective, in Chapters 13 and 14, Andrej
Bauer’s unusual, psychologically oriented, recent survey of constructive
mathematics; and,

• second, in Chapter 15, David Hilbert’s, Paul Bernays’, and Kurt Gödel’s
classical attempts to ground mathematical reasoning on a sound, finitary,
footing as conceived originally in Hilbert’s Programme which, for better
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or worse, have not been pursued as aggressively after around 1939, when
these three influential logicians apparently diluted their original vision as
a result of the perceived (but misleading, as we establish in Corollary 11.9)
implications of Gödel’s unexpected ‘undecidability theorems’ in 1931.

I then aim in Chapters 16 to 29 of this investigation at a narrow analysis, rather
than at a broad review, of some immediate consequences for constructive mathe-
matics of the Provability Theorem 10.2—and of the significance of evidence-based
reasoning for some grey areas in the foundations of classical logic, mathematics,
philosophy and the physical sciences—from an applied, rather than abstract, per-
spective.

Amongst the more unsuspected—and startling—consequences of evidence-based
reasoning for the applied sciences is the possibility of physical phenomena which
are mathematically describable by Cauchy sequences where, however, the limiting
behaviour of the phenomena need not correspond to the mathematical limit of the
sequence (§24.3)!

In other words, for natural phenomena, the essential completability of metric
spaces that obey Cauchy convergence—a bedrock of our mathematical representation
of the real numbers used to describe physical phenomena—may, in the absence of
evidence that such a limit either exists or must be accepted as existing, be merely a
psychologically comforting mathematical myth (see §25) which lulls our psyche into
an illusory sense of epistemological security within our intellectual comfort zone.

An equally unexpected consequence of evidence-based reasoning for the math-
ematical sciences is that explicit recognition of algorithmically verifiable number-
theoretic functions which are not algorithmically computable admits—contrary to
conventional wisdom—a proof that the prime divisors of an integer are mutually
independent (Theorem 31.9; also, independently, Corollary 36.11).

The result has significant implications:

• for the P v NP problem in Computational Complexity (Chapter 30.1),

– since it immediately implies that factorisation is not polynomial-time
(Corollary 32.5);

• for the non-heuristical estimation of prime counting functions in Number
Theory (Chapter 33)—such as those that estimate:

– the number π(n) of primes less than a given integer n (Lemmas 37.5
and 37.8);

– the number of primes in arithmetical progressions (Theorem 38.11);

– the number of twin primes (Theorem 39.9).

An interesting consequence of evidence-based reasoning for cognitive science,
which emerges from Lakoff and Núñez’s analysis in [LR00], is (Thesis 44.1) that
all the abstract mathematical concepts dissected in Chapters 5 to 14 of [LR00]—
including concepts involving ‘potential’ and ‘actual’ infinities—can be viewed as
conceptual metaphors which are expressible (if treated as Carnap’s explicandum)
in the language of the first-order Set Theory ZFC; a perspective that would lend
legitimacy to conventional wisdom which—as addressed in Chapter 18—is that all
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‘mathematical’ concepts are definable (even if only debatably unambiguously) in
ZFC.

In conclusion, it may be pertinent to emphasise that the roots of all the
ambiguities sought to be addressed in this investigation lie in the unquestioned, and
untenable (Corollary 15.11) assumption that Aristotle’s particularisation is valid
over infinite domains.

Aristotle’s particularisation is defined (Definition 3.1) as the postulation that,
in any formal language L which subsumes the first-order logic FOL, the L-formula
‘[¬(∀x)¬F (x)]—also denoted by [(∃x)F (x)]—is provable in L’ can unrestrictedly be
interpreted as the assertion ‘There exists an unspecified object a such that F ′(a) is
true under any well-defined interpretation I of L’, where F ′(x) is the interpretation
of [F (x)] under I.

Following Hilbert’s formalisation of it in terms of his ε-operator in [Hi25],
the assumption—as noted in §3.1 (footnote)—has been subsequently sanctified by
prevailing wisdom in published literature and textbooks at such an early stage
of any classical mathematical curriculum, and planted so deeply into students’
minds, that thereafter most cannot even detect its presence—let alone need for its
justification—in a proof sequence!

It would not be unreasonable to conclude that such a sub-conscious assumption,
especially where provably invalid (see, for instance, Corollary 15.11), has continued
for over ninety years to unconsciously dictate, mislead, and so limit the perspective
of not only active, but also emerging, scientists of any ilk who have depended
upon classical mathematics for providing a language of adequate representation and
effective communication for their abstract concepts (in the sense of Chapter 23).

Since faith in the assumption can, also not unreasonably, be viewed as rooted in
an unreasonably persisting influence of Hilbert’s finitism (see §15.9 and §15.2), and
his, apparently unquestioning, belief in the validity of Aristotle’s particularisation
over infinite domains—which he sought to formalise through his ε-operator (see
§4.1)—the restricted availability of Hilbert’s consolidated argumentation on finitism
in only non-English editions of the Grundlagen der Mathmatik has been a handicap
to those—such as the author—unfamiliar with the language of such editions.

Moreover, as the Grundlagen has apparently been considered passé for some
time now, Professor Claus-Peter Wirth’s labour of love in a better-late-than-never
attempt to produce a definitive bi-lingual German-English translation [HB34] of
the Grundlagen under the auspices of The Hilbert Bernays Project is all the more
commendable, and deserves all encouragement and financial support of the academic
community in ensuring that the Project overcomes its intermittent stoppages due
to lack of resources and facilities, and that both Volume I—Preface and Sections
1-7 already reported as completed—and Volume II are brought to print.

Bhupinder Singh Anand
Mumbai

2nd July 2018

http://wirth.bplaced.net/p/hilbertbernays/demos.html




CHAPTER 1

Overview

Please forget everything you have learned [sic] in school; for you haven’t

learned it. Please keep in mind at all times the corresponding portions of
your school curriculum; for you haven’t actually forgotten them. . . . my

daughters have been studying (chemistry) for several semesters, think they

have learned differential and integral calculus at school, and yet even today
dont know why ‘x.y = y.x’ is true.

. . . Professor Yehezkel-Edmund Landau: ([La29], Preface to the student).

This investigation adopts, extends, and seeks to consider some constructive conseq-
uences—for the foundations of mathematics, logic, philosophy, and the physical
sciences—of, the evidence-based perspective towards ‘provability’ and ‘truth’ in-
troduced in the paper [An16], ‘The Truth Assignments That Differentiate Human
Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas’
Gödelian Thesis’.

The paper appeared in the December 2016 issue of Cognitive Systems Re-
search, and addressed the philosophical challenge1 that arises when an intelligence—
whether human or mechanistic—accepts arithmetical propositions as true under
an interpretation—either axiomatically or on the basis of subjective self-evidence—
without any specified methodology for evidencing such acceptance in the sense of
Chetan Murthy and Martin Löb:

“It is by now folklore . . . that one can view the values of a simple functional
language as specifying evidence for propositions in a constructive logic . . . ”.

. . . Chetan. R. Murthy: [Mu91], §1 Introduction.

“Intuitively we require that for each event-describing sentence, φoιnι
say (i.e. the concrete object denoted by nι exhibits the property expressed
by φoι ), there shall be an algorithm (depending on I, i.e. M∗) to decide the

truth or falsity of that sentence.”

. . . Martin H Löb: [Lob59], p.165.

1.1. Part 1: Evidence-based reasoning

We attempt to fill this lacuna by defining:

Definition 1.1 (Evidence-based reasoning in Arithmetic). Evidence-based
reasoning accepts arithmetical propositions as true under an interpretation if,
and only if, there is some specified methodology for objectively evidencing such
acceptance.

We then argue (in Chapters 3 and §4) that, from the evidence-based perspective
of [An16], classical philosophies (e.g., that of Kurt Gödel in his seminal 1931 paper

1For a brief recent review of such challenges, see [Fe06], [Fe08]; also [An04] and Rodrigo
Freire’s informal essay on ‘Interpretation and Truth in Cantorian Set Theory’.

1



2 1. OVERVIEW

on formally undecidable arithmetical propositions [Go31]) which admit—either
explicitly or implicitly—David Hilbert’s formal, ε-operator based, definitions of
quantification ([Hi27]; see also §4.1) can be labelled ‘theistic’, since they implicitly
believe—without providing evidence-based criteria for interpreting quantification
constructively—both that:

(a) the standard first-order logic FOL2 is consistent; and

(b) Aristotle’s particularisation (see Definition 3.1)—which we take as the
postulation that the FOL formula ‘[¬∀¬F (x)]’3 can unrestrictedly be
interpreted as ‘there exists an unspecified instantiation of F ∗(x)’—holds
under any interpretation of FOL.

– The significance of the qualification ‘unrestrictedly’ is that it does
not admit the—hitherto unsuspected—possibility (see §11.6) that
an unspecified instantiation may sometimes be unspecifiable— in the
sense of Definition 4.1 and Theorem 11.10—within the parameters of
some formal system that subsumes FOL.

In sharp contrast, simply constructive philosophies (such as, for instance, Andrej
Bauer’s perspective of constructive mathematics in [Ba16]) which admit—either
explicitly or implicitly—L. E. J. Brouwer’s philosophy of Intuitionism, can be
labelled ‘atheistic’ because they—also without providing evidence-based criteria for
interpreting quantification constructively:

(i) deny the belief that FOL is consistent (since they deny the Law of The
Excluded Middle LEM, which is a theorem of FOL), and:

(ii) deny the belief that Aristotle’s particularisation holds under any interpre-
tation of FOL that has an infinite domain.

However, we adopt what may be labelled a finitary, i.e. evidence-based4, ‘agnostic’
perspective which will establish that:

(1 ) FOL is finitarily consistent (Corollary 9.11);

(2 ) although, if Aristotle’s particularisation holds in an interpretation of FOL
then LEM must also hold in the interpretation (since LEM is a theorem
of FOL), the converse is not true, i.e., LEM does not entail Aristotle’s
particularisation (see §14.1);

(3 ) Aristotle’s particularisation does not hold under any interpretation of FOL
that has an infinite domain (an immediate consequence of Corollary 15.11).

2For purposes of this investigation we take FOL to be a first order predicate calculus such as
the formal system K defined in [Me64], p.57.

3Notation: Following the practice briefly used by Gödel in his informal sketch of the main

ideas of his formal proof of formally undecidable arithmetical propositions ([Go31], p.8, fn.13), we

shall use square brackets to differentiate between a symbolic expression—such as [(∃x)P (x)]—which
denotes a formula of a formal language L (treated as an interpreted string without any associated
meaning), and the symbolic expression—such as (∃x)P ∗(x)—that denotes its meaning under a

well-defined interpretation; we find such differentiation useful in order to avoid the possibility of
confusion between the two, particularly when (as is not uncommon) the same symbolic expressions

are used to denote—or are common to—the two.
4Notation: In the rest of this investigation we shall treat the terms ‘finitary’ and ‘evidence-

based’ as synonymous.
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Our argument (in §3.4) is that:

• Brouwerian atheism is merely a restricted perspective within the finitary
agnostic perspective; whilst

• Hilbertian theism contradicts the finitary agnostic perspective.

This conclusion reflects the fact (see Chapter 5; cf. [An16], §3) that Tarski’s
classic definitions5 permit an intelligence—whether human or mechanistic—to admit
finitary definitions of the satisfaction and truth of the atomic formulas of the
first-order Peano Arithmetic PA over the domain N of the natural numbers in two,
essentially different, ways:

(A) in terms of weak algorithmic verifiabilty (Definition 5.2; cf. [An16],
Definition 1, p.37; compare also with Definition 21.1); and:

(B) in terms of strong algorithmic computability (Definition 5.2; cf. [An16],
Definition 2, p.37; compare also with Definition 21.2).

We then note (in Chapter 6) how the two definitions correspond to two distinctly
different—not necessarily evidence-based—assignments of satisfaction and truth,
TM and TB respectively, to the compound formulas of PA over the domain N of the
natural numbers.

1.2. Part 2: Evidence-based interpretations of PA

We further note (in Chapters 7 and 9 respectively) that the PA axioms interpret as
true over N, and that the PA rules of inference preserve truth over N, under both
TM and TB .

We conclude that:

(α) If we assume the satisfaction and truth of the compound formulas of
PA are always non-finitarily decidable under TM , then this assignment
corresponds (Chapter 7) to the weak standard6 interpretation M of PA
over the domain N; from which we may constructively, but not finitarily,
conclude that PA is weakly consistent (Theorem 7.7).

We note, moreover, that Hilbert’s and Bernays’ ‘informal’ proof of the
consistency of arithmetic in the Grundlagen der Mathematik—as analysed
in [SN01] (see §15.4)—can be viewed as essentially outlining a proof of
Theorem 7.7.

and that:

(β) The satisfaction and truth of the compound formulas of PA are always
finitarily decidable under TB , and so the assignment corresponds (Chapter
9) to a strong finitary interpretation B of PA over the domain N; from
which, however, we may finitarily conclude that (as sought by Hilbert in
the second of his Millennium problems in [Hi00]) PA is strongly consistent
(Theorem 9.10; cf. [An16], Theorem 6.8, p.41).

5For standardisation and convenience of expression, we follow the formal exposition of Tarski’s

definitions given in [Me64], p.50 (see §A, Appendix A); however, see also [Ta35] and [Ho01] for

an explanatory exposition.
6As defined in §A, Appendix A; see also [Me64], p.49
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We note that Lemma 9.4 and Corollary 9.11 appear to dissolve the Poincaré-
Hilbert debate ([Hi27], p.472; also [Br13], p.59; [We27], p.482; [Pa71], p.502-503)
since:

(i) the algorithmically verifiable, non-finitary, weak standard interpretation
M of PA validates Poincaré’s argument that the PA Axiom Schema
of Finite Induction could not be justified finitarily (i.e., with respect to
algorithmic computability) under the classical weak standard interpretation
of arithmetic;

whilst:

(ii) the algorithmically computable, finitary, strong interpretation B of PA
validates Hilbert’s belief that a finitary justification of the Axiom Schema
was possible under some strong finitary interpretation of an arithmetic
such as PA.

We then note (in Chapter 10) how this yields a Provability Theorem for PA (The-
orem 10.2; cf. [An16], Theorem 7.1, p.41) which formally corresponds arithmetical
provability and arithmetical truth.

We note that this establishes PA as a language of unambiguous expression
and effective communication (in the sense of §23.1) for the physical sciences (as
considered briefly in Chapter 27).

1.3. Part 3: Evidence-based reasoning and the Church-Turing thesis

We conclude (in Chapters 11 and 12) some—also hitherto unsuspected, and seemingly
heretical—consequences of the Provability Theorem for PA (Theorem 10.2 for
evidence-based mathematics such as:

• PA is categorical with respect to algorithmic computability (Corollary
11.1);

• There are no formally undecidable arithmetical sentences (Corollary 11.9);

• The appropriate inference to be drawn from Gödel’s 1931 paper on un-
decidable arithmetical propositions is that we can define PA formulas
which—under interpretation—are algorithmically verifiable as always true
over N, but not algorithmically computable as always true over N (Corollary
11.5);

• PA is not ω-consistent (Corollary 11.6);

• It is always possible to determine whether a Turing machine will halt or
not when computing any partial recursive function F (Theorem 12.6);

• The classical Church-Turing thesis is false (Corollary 12.8).

1.4. Part 4: Evidence-based reasoning and constructive mathematics

We further identify (in Chapters 13 to §20)—from the evidence-based perspective
of [An16]—some grey areas in constructive mathematics, based specifically on
logician Andrej Bauer’s novel, and remarkably candid, psychological approach (in
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[Ba16]) to the understanding of constructive mathematics through the five stages
of: Denial, Anger, Bargaining, Depression and Acceptance.

We specifically address the necessity of some critical, self-imposed, constraints
in—and their consequences for—Bauer’s perspective of constructive mathematics
(BPCM).

In particular, we note that the most noteworthy feature of BPCM is the, albeit
tacit, acknowledgment that a major constraint of constructive mathematics—denial
or acceptance of the law of excluded middle (LEM)—is an optional belief that is
open to persuasion!

We endorse this view and—against the backdrop in Chapter 15.1 of the wider
classical efforts to ground mathematical reasoning on only sound, finitary argumen-
tation as envisaged in Hilbert’s Programme—conclude (in Chapter 21) that such
constraints merely reflect some commonly-held, albeit illusory, perceptions of an
uncritically assumed mutual inconsistency between:

• Classical mathematical philosophies, and

• Constructive mathematical philosophies,

vis à vis their differing perspectives of mathematical truth and mathematical
ontologies.

We argue, moreover, that such illusions reflect as much their tacit endorse-
ment of uncritically-held, faith-based, beliefs, as their failure to explicitly—and
unambiguously—demand evidence-based definitions of the relations between a lan-
guage and the logic that is necessary to assign unequivocal truth-values to the
propositions of the language.

We show how eliminating faith-based beliefs :

• Admits formal, evidence-based, definitions:

– of a constructively well-defined logic of a formal language (Definition
21.5);

– of constructive mathematics (Definition 21.6); and

– of a constructively well-defined model of such a language (Definition
21.7);

• Eliminates the self-imposed limitations—chiefly the consequences of deny-
ing the Law of the Excluded Middle—within which constructive mathe-
matics strains to justify its finitist rigour;

• Entails some far-reaching and unexpected consequences which challenge
specific conventional wisdom that has, hitherto, been accepted as almost
self-evident; consequences such as:

– Rosser’s implicit assumption of his Rule C in his proof of undecidabil-
ity in [Ro36] is equivalent to Gödel’s assumption of ω-consistency in
[Go31] (§15.6);

– Cohen’s postulation of an unspecified element in his forced model ‘N ’
of ZF in [Co63] is a stronger postulation than the Axiom of Choice
(§18.2);
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– ℵ0 ←→ 2ℵ0 in constructive mathematics (§19.3);

– Conventional arguments (e.g., [Ka91]) for non-standard structures
under any interpretations of PA violate evidence-based reasoning
(§20.1).

1.5. Part 5: Evidence-based reasoning and logic

In Chapters 21 to 23 we consider the significance of evidence-based reasoning for
some grey areas in the foundations of logic, mathematics and philosophy, where:

• We highlight (in Chapter 21) an ambiguity that is implicit in the rules—
such as those of Brouwer-Heyting-Kolmogorov realizability—which seek to
constructively assign unique truth values to the quantified propositions of
a mathematical language.

– We show how removing the ambiguity allows us to formally define
constructive mathematics and its goal (§21.2) by defining a finite set λ
of rules as a constructively well-defined logic of a formal mathematical
language L if, and only if, λ assigns unique, evidence-based, truth-
values:

(a) Of provability/unprovability to the formulas of L; and

(b) Of truth/falsity to the sentences of the Theory T (U) which is
defined semantically by the λ-interpretation of L over a given
structure U that may, or may not, be constructively well-defined;

such that

(c) The provable formulas interpret as true in T (U).

– We then show that PA has a constructively well-defined logic (Theorem
21.17).

• We further challenge (in Chapter 22) specific conventional wisdom that
has, hitherto, been accepted as almost self-evident, and consider some
consequences of evidence-based reasoning such as:

– The subsystem ACA
0

of second-order arithmetic is not a conservative
extension of PA (Theorem 22.1);

– Goodstein’s sequence Go(mo) over the finite ordinals in any putative
model M of ACA

0
terminates with respect to the ordinal inequality

‘>o’ even if Goodstein’s sequence G(m) over the natural numbers does
not terminate with respect to the natural number inequality ‘>’ in M
(Theorem 22.3).

1.6. Part 6: Evidence-based reasoning and effective communication

In Chapter 23 we briefly consider the significance of evidence-based reasoning for
some inter-disciplinary philosophical issues such as:

• Is there a universal language that admits unambiguous and effective
communication without contradiction (Query 23.1)?



1.6. PART 6: EVIDENCE-BASED REASONING AND EFFECTIVE COMMUNICATION 7

• Can we responsibly seek communication with an extra-terrestrial intel-
ligence actively (as in the 1974 Aricebo message) or is there a logically
sound possibility that we may be initiating a process which could imperil
humankind at a future date (Query 23.4)?

• How does the human brain address contradiction?

and argue that:

• We can only communicate with an essentially different form of extra-
terrestrial intelligence in a platform-independent language of a mechanisti-
cally reasoning artificial intelligence (Premise 23.6);

• Nature is not malicious and so, for an ETI to be malevolent towards
us, they must perceive us as an essentially different form of intelligence
that threatens their survival merely on the basis of our communications
(Premise 23.7);

• The language of algorithmically computable functions and relations is
platform-independent (Premise 23.8);

• All natural phenomena which are observable by human intelligence, and
which can be modelled by deterministic algorithms, are interpretable
isomorphically by an extra-terrestrial intelligence (Premise 23.9);

• Every deterministic algorithm can be formally expressed by some formula
of a first-order Peano Arithmetic, PA (Lemma 23.12);

• Any two mechanical intelligences will interpret the satisfaction, and truth,
of the formulas of PA under a constructively well-defined interpretation
of PA in precisely the same way without contradiction (§11.4, Corollary
11.1);

• Whilst human reasoning (and, presumably, other organic intelligences)
can accommodate algorithmically computable truths which do not admit
contradiction, it can also accommodate algorithmically verifiable, but not
algorithmically computable, truths that admit contradictory statements
without inviting inconsistency until it can be factually determined (by
events that lie outside the database of the reasoning at any moment7)
which of the two statements is to be treated as consistent with, and added
to, the existing set of algorithmically verifiable truths, and which is not;
whence:

– all genuine contradictions—i.e., those which do not reflect contradic-
tions in existing truth assignations—imply only a lack of sufficient
knowledge (as argued by Einstein, Podolsky and Rosen in [EPR35])
within a system for assigning a truth assignment consistently (§23.11).

• We show (in Chapter 24) that the semantic and logical paradoxes—as also
the seeming paradoxes associated with ‘fractal’ constructions such as the
Cantor ternary set (§24.3)—seem to arise out of an attempt to ask of a
language more than it is designed to deliver.

7Such as, for example, under the weak classical ‘standard’ interpretation of the first-order
Peano Arithmetic PA defined in Chapter 7.



8 1. OVERVIEW

– For instance, we show (in §24.4 and §24.5) that—and why—the numer-
ical values of some algorithmically computable Cauchy sequences may
need to be treated as formally specifiable, first-order, non-terminating
processes which cannot be uniquely identified with a putative ‘Cauchy
limit’ without limiting the ability of such sequences to model phase-
changing physical phenomena faithfully.

1.7. Part 7: Evidence-based reasoning and cosmology

We then illustrate in Chapter 25 the significance of §24.4 and §24.5 for cosmology
by arguing that:

(Thesis 25.3) The perceived barriers that inhibit mathematical modelling
of a cyclic universe, which admits broken symmetries, dark energy, and
an ever-expanding multiverse, in a mathematical language seeking unam-
biguous communication are illusory; they arise out of an attempt to ask of
the language selected for such representation more than the language is
designed to deliver.

In Chapter 26 we highlight the importance for cosmology of justifying the
increasing abstractness of mathematical reasoning—and avoiding the consequent
dangers of a gradual diminishing of its utility to societal imperatives—by insisting
that such reasoning be evidence-based in its references to reality.

1.8. Part 8: Evidence-based reasoning and quantum physics

In Chapters 27 to 29 we illustrate the significance of such evidence-based reasoning
for the physical sciences by briefly speculating upon some plausible consequences,
such as:

• Lucas’ Gödelian argument is validated if the assignment TM can be treated
as circumscribing the ambit of human reasoning about ‘true’ arithmeti-
cal propositions, and the assignment TB as circumscribing the ambit of
mechanistic reasoning about ‘true’ arithmetical propositions (Theorem
27.1);

• The concept of infinity is an emergent feature of any Turing-machine based
mechanical intelligence founded on the first-order Peano Arithmetic PA
(Thesis 27.4);

• The discovery and formulation of the laws of quantum physics lies within the
algorithmically computable logic and reasoning of a mechanical intelligence
whose logic is circumscribed by the first-order Peano Arithmetic (Thesis
27.5);

• Constructive mathematics can model a deterministic universe that is
irreducibly probabilistic (§28.1).

• The paradoxical element which surfaced as a result of the EPR argument
(due to the perceived conflict implied by Bell’s inequality between the,
seemingly essential, non-locality required by current interpretations of
Quantum Mechanics, and the essential locality required by current inter-
pretations of Classical Mechanics) may reflect merely lack of recognition
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that any mathematical language which can adequately express and ef-
fectively communicate the laws of nature may be consistent under two,
essentially different but complementary and not contradictory, logics for
assigning truth values to the propositions of the language, such that the
latter are capable of representing—as deterministic—the unpredictable
characteristics of quantum behaviour (§28.1).

• The anomalous philosophical issues underlying some current concepts of
quantum phenomena, such as:

— Indeterminacy (§29.1),

— Fundamental dimensionless constants (Thesis 29.1),

— Bell’s inequalities and the EPR paradox (§29.3),

— Uncertainty (Thesis 29.3),

— Conjugate properties (Thesis 29.4),

— Entanglement (Thesis 29.5),

— Schrödinger’s cat paradox (§29.14),

dissolve if the Laws of Classical Mechanics are expressible formally as al-
gorithmically computable (hence deterministic and predictable) functions
and relations; whilst the Laws of Quantum Mechanics are expressible for-
mally only as algorithmically verifiable, but not algorithmically computable
(hence deterministic but not predictable), functions and relations (Chapter
29: Theses 29.1 to 29.5).

1.9. Part 9: Evidence-based reasoning and computational complexity

In Chapters 30.1 to 32 we highlight the surprising significance of evidence-based
reasoning—and of the differentiation between algorithmically verifiable and algo-
rithmically computable number-theoretic functions—for Computational Complexity
by showing that:

• Conventional wisdom appears to unreasonably accept as definitive the
patently counter-intuitive conclusion (addressed in Chapter 30.1) that
whether or not a prime p divides an integer n is not independent of
whether or not a prime q 6= p divides the integer n;

– Such a perspective is ‘unreasonable’, since it appears based on seem-
ingly self-imposed barriers that reflect, and are peculiar to, only the
argument that:

∗ There is no deterministic algorithm that, for any given n, and
any given prime p ≥ 2, will evidence that the probability P(p | n)
that p divides n is 1

p , and the probability P(p 6 | n) that p does

not divide n is 1− 1
p (Theorem 30.11).

– Such a perspective does not consider the possibility that there can be
algorithmically verifiable number-theoretic functions which are not
algorithmically computable; and that:
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∗ For any given n, there is a deterministic algorithm that, given
any prime p ≥ 2, will evidence that the probability P(p | n)
that p divides n is 1

p , and the probability P(p 6 | n) that p does

not divide n is 1− 1
p (Theorem 30.12).

Admitting the above distinction between algorithmically verifiable and algorith-
mically computable number-theoretic functions now allows us to conclude—contrary
to conventional wisdom—that:

• The prime divisors of an integer n mutually independent (Theorem 31.9);

which allows us to conclude further that:

• Integer Factorising cannot be polynomial time (Theorem 32.5).

1.10. Part 10: Evidence-based reasoning and the theory of numbers

In Chapters 33 to 42 we highlight the, equally surprising, significance of evidence-
based reasoning—and of the differentiation between algorithmically verifiable and
algorithmically computable number-theoretic functions—for the Theory of Numbers
by showing that:

• Conventional number theory wisdom appears to be that the distribution
of primes suggested by the Prime Number Theorem, π(n) ∼ n

logen
, is

such that the probability P(n ∈ {p}) of an integer n being a prime p can
only be heuristically estimated as 1

logen
; and is also not capable of being

well-defined statistically independently of the Theorem.

– Moreover—whilst conceding that the heuristic probability of an integer

n being prime could also be näıvely assumed as
∏√n
i=1(1− 1

p
i
)—such

a perspective seems to argue against such näıvety, by concluding
(erroneously, as we show in §37.1, Lemma 37.5) that the number π(n)
of primes less than or equal to n suggested by such probability would
then be approximated erroneously by the prime counting function:

π
H

(n) =
∑n
j=1

∏π(
√
n)

i=1 (1− 1
p
i
) = n.

∏π(
√
n)

i=1 (1− 1
p
i
) ∼ 2.e−γn

logen
.

• From an evidence-based perspective, however, such reasoning could raise an
illusory barrier in seeking non-heuristic estimations of π(n)—and possibly
of |Li(x)− π(x)|—if, as in the case of Lemma 33.2, the following theorem
too is accepted as unsurpassable:

– There is no algorithm which, for any given n, will allow us to conclude
that the probability P(n ∈ {p}) of determining that n is prime is∏π(

√
n)

i=1
(1− 1

p
i
) (Theorem 34.2).

• Illusory, because it follows immediately from Theorem 32.1 that:

– For any given n, there is an algorithm which will allow us to conclude
that the probability P(n ∈ {p}) of determining that n is prime is∏π(

√
n)

i=1
(1− 1

p
i
) (Theorem 34.3).
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The significance of Theorem 34.3 is that, by considering the asymptotic density
(see Chapter 37) of the set of all integers that are not divisible by the first k primes
p1 , p2 , . . . , pk we shall show that the expected number of such integers in any interval
of length (p2

π(
√
n)+1
− p2

π(
√
n)

) is:

{(p2
π(
√
n)+1
− p2

π(
√
n)

)
∏k
i=1(1− 1

p
i
)}.

This then allows us to define and estimate various prime counting functions
non-heuristically, such as:

(a) For each n, the expected number of primes in the interval (1, n) is (as
illustrated in §35, Fig.1):

π
H

(n) = n
∏π(

√
n)

i=1 (1− 1
p
i
).

– The number π(n) of primes ≤ n is thus approximated non-heuristically
(Lemma 37.5 and Corollary 37.14) by:

π(n) ≈ π
H

(n) = n
∏π(

√
n)

i=1 (1− 1
p
i
) ∼ 2.e−γ . n

logen
→∞.

(b) For each n, the expected number of primes in the interval (p2
π(
√
n)
, p2

π(
√
n)+1

)

is (as illustrated in §35, Fig.2):

π
L

(p2
π(
√
n)+1

)− π
L

(p2
π(
√
n)

) = {(p2
π(
√
n)+1
− p2

π(
√
n)

)
∏π(

√
n)

i=1 (1− 1
p
i
)}.

– The number π(n) of primes ≤ n is also thus approximated non-
heuristically (Lemma 37.8 and Corollary 37.13) for n ≥ 4 by the
cumulative sum:

π(n) ≈ π
L

(n) =
∑n
j=1

∏π(
√
j)

i=1 (1 − 1
p
i
) ∼ a. n

logen
→ ∞ for some

constant a > 2.e−γ .

(c) For each n, the expected number of Dirichlet primes—of the form a+m.d
for some natural number m ≥ 1—in the interval (p2

π(
√
n)
, p2

π(
√
n)+1

) is:

{(p2
π(
√
n)+1
− p2

π(
√
n)

)
∏k
i=1

1

q
α
i

i

.
∏k
i=1(1− 1

q
i
)−1.

∏π(
√
n)

j=1 (1− 1
p
j
)}

where 1 ≤ a < d = q
α

1
1 .q

α
2

2 . . . q
α
k

k and (a, d) = 1.

– The number π
(a,d)

(n) of Dirichlet primes ≤ n is thus approximated

non-heuristically (Lemma 38.10) for all n ≥ q2
k

by the cumulative
sum:

π
(a,d)

(n) ≈
∏k
i=1

1

q
α
i

i

.
∏k
i=1(1− 1

q
i
)−1.

∑n
l=1

∏π(
√
l)

j=1 (1− 1
p
j
)→∞.

(d) For each n, the expected number of TW primes—such that n is a prime
and n+ 2 is either a prime or p2

π(
√
n)+1

—in the interval (p2
π(
√
n)
, p2

π(
√
n)+1

)

is:

{(p2
π(
√
n)+1
− p2

π(
√
n)

)
∏π(

√
n)

i=2 (1− 2
p
i
)}.

– The number π2(p2
k+1

) of twin primes ≤ p2
k+1

is thus approximated

non-heuristically (Lemma 39.8) for all k ≥ 1 by the cumulative sum:

π
2
(p2
k+1

) ≈
∑p2

k+1

j=9

∏π(
√
j)−1

i=2 (1− 2
p
i
)→∞.
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In Chapter 40 we show that the argument of Theorem 39.9 in Chapter 39 is a
special case of the behaviour as n→∞ of the Generalised Prime Counting Function∑n
j=1

∏π(
√
j)

i=a (1− b
p
i
), which estimates the number of integers ≤ n such that there

are b values that cannot occur amongst the residues rp
i
(n) for a ≤ i ≤ π(

√
j)8:

•
∑n
j=1

∏π(
√
j)

i=a (1− b
p
i
)→∞ as n→∞ if pa > b ≥ 1 (Theorem 40.1)

where 0 ≤ r
i
(n) < i is defined for all i > 1 by:

n+ r
i
(n) ≡ 0 (mod i).

1.11. Part 11: Evidence-based reasoning and the cognitive sciences

Finally, in Chapters 43 and 44, we informally—albeit critically—consider Lakoff
and Núñez’s attempt to address the nature of what is commonly accepted as the
body of knowledge intuitively viewed as the domain of abstract mathematical ideas,
by introducing the concept of mathematical idea analysis and enquiring:

Query 1.2. How can cognitive science bring systematic scientific rigor to the
realm of human mathematical ideas, which lies outside the rigor of mathematics
itself?

where they clarify that:

“ The purpose of of mathematical idea analysis is to provide a new level

of understanding in mathematics. It seeks to explain why theorems are
true on the basis of what they mean. It asks what ideas—especially what
metaphorical ideas—are built into axioms and definitions. It asks what ideas

are implicit in equations and how ideas can be expressed by mere numbers.
And finally it asks what is the ultimate grounding of each complex idea.
That, as we shall see, may require some complicated analysis:

1. tracing through a complex mathematical idea network to see what the
ultimate grounding metaphors in the network are;

2. isolating the linking metaphors to see how basic grounded ideas are
linked together;

3. figuring out how the immediate understanding provided by the indi-

vidual grounding metaphors permits one to comprehend thye complex

idea as a whole.”
. . . Lakoff and Núñez: [LR00], Chapter 15, p.338.

Without engaging in technical niceties regarding cognition and cognitive seman-
tics, we attempt to informally extend Lakoff and Núñez’s intent on the nature of
understanding by an individual mind of a concept created in the mind by differenti-
ating as below (compare §23.2 in Chapter 23):

(a) Subjective understanding : which we view as an individual mind’s perspec-
tive involving pattern recognition of a selected set of truth assignments by
the individual to declarative sentences of a symbolic language, based on
the individual’s uncritical personal beliefs of a correspondence between:

8Thus b = 1 yields an estimate for the number of primes ≤ n, and b = 2 an estimate for the
number of TW primes (Definition 39.1) ≤ n.
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– what is believed as true (as reflected by the truth assignments); and

– what is perceived or pronounced as ‘factual’ (reflecting uncritical
conclusions drawn from individual cognitive experience) in a common
external world;

(b) Projective understanding : which we view as an individual mind’s perspec-
tive involving pattern recognition of a selected set of truth assignments by
the individual to declarative sentences of a symbolic language, based on
the individual’s critical plausible belief of a correspondence between:

– what is assumed, or postulated, as true (as reflected by the truth
assignments); and

– what is perceived or projected as ‘factual’ (reflecting plausible con-
clusions drawn from individual cognitive experience) in a common
external world;

(c) Collaborative (objective) understanding : which we view as an individ-
ual mind’s perspective involving pattern recognition of a selected set of
truth assignments by the individual to declarative sentences of a sym-
bolic language, based on the individual’s shared evidence-based belief of a
correspondence between:

– what is accepted by convention as true (as reflected by evidence-
based truth assignments—such as those in Chapter 7, Chapter 8, and
Chapter 9); and

– what is perceived or conjectured as ‘factual’ (reflecting shared evidence-
based cognitive experiences) in a common external world.

In other words, from an evidence-based perspective, the ‘understanding’ of
an abstract mental concept—whether subjective, projective, or collaborative—is
not limited, as Lakoff and Núñez appear to suggest, in merely identifying the
conceptual metaphors that are used to describe the concept within a language; it
must encompass, further, awareness of the evidence-based assignments of truth values
to the declarative sentences of the language—in which the conceptual metaphors
are expressed—that correspond, or are believed to correspond, to what is perceived
or conjectured as ‘factual’ cognitive experiences in a common external world.

Accordingly, we treat Lakoff and Núñez’s mathematical ideas to refer not to
some putative content of some abstract structure, conceived by an individual mind
in a platonic domain of ideas some of which can be termed as of a mathematical
nature, but to the pattern recognition of some selected set of ‘truth’ assignments to
(presumed faithful9) representations—of conceptual metaphors grounded in sensory
motor perceptions—by an individual mind in an artificially constructed symbolic
language that can be termed as ‘mathematical’.

‘Mathematical’ in the sense that the language—in sharp contrast to languages
of common discourse, which embrace ambiguity as essential for capturing and
expressing the full gamut of any cognitive experience of our common external

9By some effective procedure such as, for example, Tarski’s inductive definitions of the
satisfiability and truth of the formulas of a formal mathematical language under a Tarskian
interpretation (as detailed in Chapter 6).
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world10—is designed to facilitate unambiguous pattern recognition of a narrowly
selected aspect of a cognitive experience—and its effective communication to another
mind—between the limited perception which was sought to be represented, and its
representation at any future recall.

Thus, the significance for evidence-based reasoning of Lakoff and Núñez’s analy-
sis of those conceptual metaphors which are most appropriately represented in a
mathematical language, lies in their conclusion that all representations of physical
phenomena in a mathematical language are ultimately grounded not in any ‘ab-
stract, transcendent’, genetically inherited, knowledge, but in conceptual metaphors
that import modes of reasoning reflecting, and endemic to, human sensory-motor-
experience.

Based on our above interpretation of Lakoff and Núñez’s analysis in [LR00],
we venture to express two tacit theses of this investigation as:

• Those of our conceptual metaphors which we commonly accept as of a
mathematical nature—whether grounded directly in an external reality,
or in an internally conceptualised Platonic universe of conceived concepts
(such as, for example, Cantor’s first transfinite ordinal ω)—when treated
as Carnap’s explicandum, are expressed most naturally in the language of
the first-order Set Theory ZFC (Thesis 44.1).

– This reflects the evidence-based perspective of this investigation that
(see §21.4; also Chapter 23):

∗ Mathematics is a set of symbolic languages;

∗ A language has two functions—to express and to communicate
mental concepts11;

∗ The language of a first-order Set Theory such as ZFC is sufficient
to adequately represent (Carnap’s explicatum: see Chapter
14) those of our mental concepts (Carnap’s explicandum: see
Chapter 14) which can be communicated unambiguously; whilst
the first-order Peano Arithmetic PA best communicates such
representations to an other categorically.

• The need for adequately expressing such conceptual metaphors in a mathe-
matical language reflects an evolutionary urge of an organic intelligence to
determine which of the metaphors that it is able to conceptualise can be
unambiguously communicated to another intelligence—whether organic or
mechanical—by means of evidence-based reasoning and, ipso facto, can be
treated as faithful representations of a commonly accepted external reality
(universe) (Thesis 44.2).

10The absurd extent to which languages of common discourse need to tolerate ambiguity;
both for ease of expression and for practical—even if not theoretically unambiguous and effective—

communication in non-critical cases amongst intelligences capable of a lingua franca, is briefly

addressed in Chapter 24.
11Qn: Is this reflected in the structure or activity of the brain?
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CHAPTER 2

Theological metaphors in mathematics

The significance of the theological distinction sought to be made in this investigation
is highlighted by philosopher Stanislaw Krajewski in a recent review of the unsettling
‘omniscient theological’ claims that mathematics has sought—and yet seeks—to
impose upon those whom it should seek to serve1.

2.1. Brouwer’s intuitionism seen as mysticism

For instance we note that, from Krajewski’s perspective:

“Brouwer created mathematical intuitionism and was a mystic. The relation-

ship between the two must not be excluded even though Brouwer seemed to
deny any connection. In 1915, he wrote that neither practical nor theoretical
geometry can have anything to do with mysticism. (after van Dalen, 1999,

287) On the other hand, in a 1948 lecture Consciousness, Philosophy, and
Mathematics, he summed up his famous picture of the mental or, indeed, is it
mystical? origins of arithmetic, and eventually of the whole of mathematics:

‘Mathematics comes into being, when the two-ity created by a

move of time is divested of all quality by the subject, and when
the remaining empty form of the common substratum of all two-

ities, as a basic intuition of mathematics is left to an unlimited

unfolding, creating new mathematical entities ...’ (Brouwer, 1949,
1237; or 1975, 482)”.

. . . Krajewski: [Kr16].

Whereas the ephemeral nature of Brouwer’s ‘mysticism’—and the relevance
of his, by conviction ‘mathematically inarticulable’2, intuitionistic beliefs for the
foundations of mathematics—may escape rational articulation, we show in §3.2 that
Brouwer’s philosophy could, at the very least, be labeled ‘atheistic’ in that it sought
to deny mathematical principles, such as the Law of the Excluded Middle, as an
article of faith without providing sufficient evidence-based grounds for such denial.

2.2. The unsettling consequences of belief-driven mathematics

In his review Krajewski stresses the disquieting consequences of such belief-driven
mathematics:

1‘Serve’ in the sense sought to be elaborated in §21.4 and §23
2According to van Atten and Tragesser in [AT03], which illuminates the dramatically contrast-

ing ways in which not only Brouwer, but also Gödel—although at opposite philosophical poles from

an objective perspective—perceived their own mystical beliefs and vainly strained— in the absence
of a common evidential yardstick for defining arithmetical truth—to seek subjectively sustainable

bases for their respective dogmas: namely, Brouwer’s rejection of LEM as non-constructive, and

Gödel’s believing all formal arithmetics to be ’omnisciently’ ω-consistent, both of which we show
as mistaken (the first as an immediate consequence of Corollary 9.11; and the second by Theorem
8.5 and, independently, Corollary 11.6).

17



18 2. THEOLOGICAL METAPHORS IN MATHEMATICS

“Examples of possible theological influences upon the development of mathe-
matics are indicated. The best known connection can be found in the realm

of infinite sets treated by us as known or graspable, which constitutes a
divine-like approach. Also the move to treat infinite processes as if they
were one finished object that can be identified with its limits is routine in

mathematicians, but refers to seemingly super-human power. For centuries
this was seen as wrong and even today some philosophers, for example
Brian Rotman, talk critically about “theological mathematics”. Theological

metaphors, like “God’s view”, are used even by contemporary mathemati-
cians. While rarely appearing in official texts they are rather easily invoked
in “the kitchen of mathematics”. There exist theories developing without the
assumption of actual infinity the tools of classical mathematics needed for

applications (For instance, Mycielski’s approach). Conclusion: mathematics
could have developed in another way. Finally, several specific examples of
historical situations are mentioned where, according to some authors, direct

theological input into mathematics appeared: the possibility of the ritual
genesis of arithmetic and geometry, the importance of the Indian religious
background for the emergence of zero, the genesis of the theories of Cantor
and Brouwer, the role of Name-worshipping for the research of the Moscow

school of topology. Neither these examples nor the previous illustrations of
theological metaphors provide a certain proof that religion or theology was
directly influencing the development of mathematical ideas. They do suggest,

however, common points and connections that merit further exploration.”
. . . Krajewski: [Kr16].

The disquieting, ‘reality-denying’, consequences of Krajewski’s point that:

“. . . the move to treat infinite processes as if they were one fin-
ished object that can be identified with its limits is routine in
mathematicians, but refers to seemingly super-human power.”

is seen in §24.3, where we are confronted with 2-dimensional geometrical models, of
infinite processes expressing plausible real-world examples, that have well-defined
geometrical limits which do not, however, correspond to their ‘limiting’ configurations
in a putative ‘completion’ of Euclidean Space.

As we argue in Chapter 19, since every real number is specifiable in PA (The-
orem 19.7), instead of defining real numbers as the putative limits of putatively
definable Cauchy sequences3 which ‘exist’ in some omniscient Platonic sense in the
interpretation of an arithmetic, we can alternatively define—from the perspective
of constructive mathematics, and seemingly without any loss of generality—such
numbers instead by their evidence-based, algorithmically verifiable, number-theoretic
functions (as defined in Chapter 5) that formally express—in the sense of Carnap’s
‘explication’ —the corresponding Cauchy sequences, viewed now as non-terminating
processes in the standard interpretation of the arithmetic that may, sometimes, tend
to a discontinuity (see §24.3, Case 2(a) and 2(b); also Case 25.1).

Moreover, as Krajewski further notes—and implicitly questions—the dichotomy
in accepting omniscient ‘limits’ on the basis of, seemingly subjective, ‘self-evidence’
comes at an unacceptable price: it compels the prevalent double-standards in
addressing mathematical and logical concepts that are defined in terms of ‘infinite’
processes:

3‘putatively definable’ since not all Cauchy sequences are algorithmically computable (Theorem
5.4). The significance of this distinction for the physical sciences is highlighted in §29.6 and §29.7
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“Up to the 18th century only potential infinity was considered meaningful.
For example, Leibniz believed that “even God cannot finish an infinite

calculation.” (Breger, 2005, 490) Since the 19th century we have been using
actually infinite sets, and for more than a hundred years we have been
handling them without reservations. Nowadays students are convinced that

this is normal and self-evident as soon as they begin their study of modern
mathematics. This constitutes the unbelievable triumph of Georg Cantor.
There may have been precursors of Cantor, and as early as five centuries

before him there had been ideas about completing infinite additions—as
documented in the paper by Zbigniew Król in the present volume—but clearly
it was Cantor who opened to us the realm of actually infinite structures.

As is well known, we handle, or at least we pretend we can handle,
with complete ease the following infinite sets (and many other ones): the set
of (all) natural numbers, real numbers etc.; the transfinite numbers—even

though the totality of all of them seems harder to master; the set of (all)
points in a given space, the sets of (all) functions, etc.

It is apparent that we behave in the way described by Boethius or
Burley as being proper to God. Infinite structures are everyday stuff for

mathematicians. What is more, we are used to handling infinite families
of infinite structures. Thus the set (class) of all models of a set of axioms
is routinely taken into account as is the category of topological spaces and

many other categories approached as completed entities. In addition, in
mathematical logic one unhesitantly considers such involved sets as the set
of all sentences true in a specific set theoretical structure or in each member

of an arbitrary family of structures.

Such behavior is so familiar that no mathematician sees it as remarkable.

But the fact is that this is like being omniscient. We do play the role of God
or, rather, the role not so long ago deemed appropriate only for God!

From where could the idea of actual infinity in mathematics have arisen?
The only other examples of talk that remind of actual infinity are religious

or theological, as the just mentioned verses from the psalms indicate. This
fact is suggestive but it does not constitute a proof that post-Cantorial
mathematics was derived from theology. Actually, we know that Cantor was

stimulated by internal mathematical problems of iterating the operation of
the forming of a set of limit points and performing the “transfinite” step in
order to continue the iteration. This fact leads to a more general issue of

infinite processes.”
. . . Krajewski: [Kr16].

2.3. Does mathematics really ‘need’ to be omniscient?

The ‘need’ for an omniscience that permits ‘reification’ of a putative infinite process—
as in the postulation of an Axiom of Choice—is frowned upon by Krajewski (also
shown as dispensable from a cognitive perspective by Lakoff and Núñez in [LR00]),
since it merely obscures the lack of well-definedness—in the sense of evidence-based
justification—of the infinite process and, ergo, of any consequences that appeal to
the Axiom:

“Another historically important example of a reification of an infinite action

is provided by the Axiom of Choice. Choosing one element from each set of
an arbitrary family of (disjoint) sets must constitute a series of movements;

if the family is infinite it must be an infinite series of operations.

If there is a single rule according to which the choice is done then the

resulting set of representatives can be defined and can be relatively safely
assumed to exist. In the case of an arbitrary family of sets there is no such
definition, and it is necessary to postulate the existence of the selection set.
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Its existence is not self-evident. The first uses of the Axiom of Choice were
unconscious, but seemed natural to the advocates of unrestricted infinite

mathematics. However, when the use of this axiom became understood,
opposition against it arose. Among the opponents were important math-
ematicians, like the French “semi-intuitionists”, who did handle infinite

operations, but felt that some limitations were necessary. For example, in
1904 Emile Borel claimed that arbitrary long transfinite series of operations
would be seen as invalid by every mathematician. According to him the

objection against the Axiom of Choice is justified since “every reasoning
where one assumes an arbitrary choice made an uncountable number of
times ... is outside the domain of mathematics”. Interestingly, against Borel,
Hadamard saw no difference between uncountable and countable infinite

series of choices. He rejected, however, an infinity of dependent choices
when the choice made depends on the previous ones. (Borel 1972, 1253)
All the just mentioned choice principles are considered obviously acceptable

and innocent by contemporary mathematicians. The former opposition was
clearly derived from the realization that an infinite number of operations is
impossible. Or, it is impossible if our power is not divine.

Another familiar example of handling the result of an infinite process
as if it was unproblematic is found in mathematical logic. Namely, we often
consider the set of all logical consequences of a set of propositions. Of course,
it is impossible to “know” all of them. It is also impossible to write down

all of them—their number is infinite and most of these consequences are too
long to be practically expressible—although when the initial set is recursive
a program can produce the list (in a given language) if it runs infinitely long

or infinitely fast. Thus, by assuming suitable idealizations we can assume
that the set of all logical consequences can be seen as “given”. Many similar
moves are routinely done in contemporary mathematical logic. An infinite

process of deriving subsequent consequences is seen as one step. We behave
as if we knew all the logical consequences. This is like being omniscient.”
. . . Krajewski: [Kr16].

2.4. Mathematicians ought to practice what they preach

Echoing Melvyn B. Nathanson’s disquiet expressed in another context (see §24),
Krajewski notes with concern the fact that there is an unhealthy divide between
what mathematicians do and what they preach:

“Occasionally traces of this way of talking can be retained in an “official” text.

Thus, as mentioned before, we can talk about performing infinitely many

acts (or even a huge finite number of steps that is practically inaccessible) as
if we had an unlimited, “divine” mind; we can refer to a complete knowledge

(for instance, taking the set of all sentences true in a given interpretation)
as if we were actually omniscient. We can also refer to paradise in Hilbert’s
sense. This paradise was challenged by Wittgenstein who built upon the

metaphor saying that rather than fear expulsion we should leave the place.
“I would do something quite different: I would try to show you that it is not

a paradise—so that you’ll leave of your own accord.” (Wittgenstein, 1976,

103)

One could say that all such figurative utterances using, directly or

indirectly, theological terms are irrelevant and should be ignored in reflections
about the nature of mathematics; they are mere chatting, present around

mathematics, but not part of it.

Yet this loose conversation does constitute a part of real mathematics,

says Reuben Hersh in (1991). His argument is ingenious: let us consider
seriously the fact that mathematics, like any other area of human activity,
has a front and a back, a chamber and a kitchen. The back is of no less



2.4. MATHEMATICIANS OUGHT TO PRACTICE WHAT THEY PREACH 21

importance since the product is made there. The guests or customers enter
the front door but the professionals use the back door. Cooks do not show

the patrons of their restaurant how the meals are prepared. The same can be
said about mathematics, and for this reason its mythology reigns supreme.

It includes, says Hersh, such “myths” as the unity of mathematics,
its objectivity, universality, certainty (due to mathematical proofs). Hersh
is not claiming that those features are false. He reminds, however, that

each one has been questioned by someone who knows mathematics from
the perspective of its kitchen. Real mathematics is fragmented; it relies on
esthetic criteria, which are subjective; proofs can be highly incomplete, and
some of them have been understood in their entirety by nobody. And it is

here where the ancient or primitive references can be retained. It is deep
at “the back” that we could say that only God knows the entire decimal
representation of the number π. If we were to say that “at the front”, we

would stress it was just a joke.

In the kitchen, mathematicians borrow liberally from religious language.

One telling example is the saying of Paul Erdös, the famous author of some
1500 mathematical papers (more than anyone else), according to which

there exists the Book in which God has written the most elegant proofs
of mathematical theorems. Erdös was very far from standard religiosity,
but he reportedly said in 1985, “You don’t have to believe in God, but you

should believe in The Book.” (Aigner & Ziegler, 2009) Probably the most
famous example of direct use of theology in mathematics can be found in
the reaction, in 1888, of Paul Gordan to Hilbert’s non-constructive proof of

the theorem on the existence of finite bases in some spaces. Gordan said,
“Das ist nicht Mathematik. Das ist Theologie.” It is worth adding that later,
having witnessed further accomplishments of Hilbert, he would admit that

even “theology” could be useful (Reid, 1996, 34, 37).

One can easily dismiss such examples. Almost everyone would say

that while the criticism of a non-constructive approach to mathematics is
a serious matter, the use of theological language is just a rhetorical device
and has no deeper significance. The same would be said about Hilbert’s

mention of “the paradise” in his lecture presenting “Hilbert’s Program”.
However, in another classic exposition of a foundational program, Rudolf
Carnap, in 1930, while talking about logicism, used the phrase “theological

mathematics.” According to him, Ramsey’s assumption of the existence of
the totality of all properties should be called “theological mathematics” in
contradistinction to the “anthropological mathematics” of intuitionists; in
the latter, all operations, definitions, and demonstrations must be finite.

When Ramsey “speaks of the totality of properties he elevates himself above

the actually knowable and definable and in certain respects reasons from the
standpoint of an infinite mind which is not bound by the wretched necessity

of building every structure step by step.” (Benacerraf & Putnam, 1983, 50)

Carnap’s statement brings us back to the issue of being omniscient,
considered above in Section II. There are other examples of religious references

which do not deal directly with infinity. In the 19th century, the trend arose
to provide foundations for mathematics, and it turned out to be very fruitful.

The very idea of the foundations of mathematics assumes the presence of
an absolute solid rock on which the building of mathematics is securely

built. This image has been challenged, and the vision of mathematics
without foundations is now favored by many philosophers of mathematics.
The question that can be asked in our context is, Whence did the idea

of foundations come from? It could have come from everyday experience.

However, the idea of absolute certainty has a theological flavor. In our world,
in our lives, foundations are hardly absolute, unchanging, unquestionable.

As soon as we hope for absolutely secure foundations we invoke a religious
dimension. The metaphor of the rock on which we can firmly stand is as
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much common human experience as it is a Biblical image: God is called the
Rock, truth means absolute reliability, etc.”

. . . Krajewski: [Kr16].

2.5. Mathematicians must always know what they are talking about

Krajewski notes with concern how such perspectives could be leading mathematicians
into a false sense of security concerning structures whose putative existence they
are able to conceive, but whose logic may not be constructively well-defined (in the
sense of the proposed Definitions 21.3 to 21.7):

“The mathematicians who established the Moscow school of mathematics,
Dimitri Egorov, Nikolai Luzin, and Pavel Florensky (who was also a priest),

unlike their French colleagues, were not afraid of infinities and contributed

in a decisive way to the creation of descriptive set theory. . . .

The connection of this practice to mathematics is supposedly to be
seen in the fact that objects like transfinite numbers exist “just from being
named.” Naming a certain infinite set using appropriate logical formula

makes sure that the set exists. Although to a modern skeptic there is hardly
a special connection between those theological views and mathematics, the
fact is that Luzin, Egorov, and some others saw the connection. In addition,

a somewhat similar view was later expressed by another mathematical genius,
Alexander Grothendieck; he stressed the importance of naming things in

order to isolate the right entities from the complex scene of mathematical

objects and “keep them in mind”. “Grothendieck, like Luzin, placed a heavy
emphasis on ‘naming,’ seeing it as a way to grasp objects even before they

have been understood.” (Graham & Kantor, 2009, 200)”

. . . Krajewski: [Kr16].

He deplores the implicit Creationism underlying the ‘creation’ of Cantor’s
paradise of transfinite sets in terms of, ultimately, a null set (nothingness), rather
than treating sets from an Evolutionary perspective as successors of a postulated
fundamental unit set (an undefined something):

“A well-known foundational approach to mathematics uncovers the role of

theological categories: the void and infinite power. In standard set theory
zero is identified with the empty set, and then 1 is defined as 0, 2 as 0, 0,
and, in general, n + 1 as 0, 1, 2, . . . , n.

This construction, introduced by John von Neumann, is the most

convenient one, but not the only way to define natural numbers as sets.

Other numbers—integers, rationals, reals, complex numbers—can be easily
defined.

Actually, in a similar way all mathematical entities investigated in
traditional mathematics—functions, structures, spaces, operators, etc.—can

be defined as “pure” sets, that is, sets constructed from the empty set.

The construction must be performed in a transfinite way. Note that the

universe of pure sets arises via a transfinite induction, indexed by ordinal
numbers.

In other words, from zero we can create “everything,” or rather the uni-
verse of sets sufficient for the foundations of mathematics. The construction

assumes the reality of the infinity of ordinal numbers, which means that in
order to create from zero we need infinite power. Nothing, emptiness, is

combined with infinite power and a kind of unrestricted will to continue the

construction ad infinitum. Together they give rise to the realm of sets where
mathematics can be developed. This is a rather normal way of describing the
situation. Mathematicians would reject suggestions that this has something
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to do with theology. Yet terms like “infinite power,” “all-powerful will” are
unmistakably theological. If Leibniz had known modern set theory, he would

have rejoiced, both as a theologian and as a mathematician. He claimed that
“all creatures derive from God and nothing.” (Breger, 2005, 491) When he
introduced the binary notation, he gave theological significance to zero and

one: “It is true that as the empty voids and the dismal wilderness belong to
zero, so the spirit of God and His light belong to the all-powerful One.””

. . . Krajewski: [Kr16].

2.6. Explicit omniscience in set theory

Such visions of omniscience are also reflected in the following remarks, where it is not
obvious whether set-theorist Saharon Shelah makes a precise distinction between:

• the authority that derives from vision-based, intuitive ‘truth’ (in the sense
of paragraph (i) in §23.2); and

• the authority that derives from Tarski’s formal, classical, definitions of
the ‘truth’ of the formulas of a formal system under a constructively well-
defined, i.e., evidence-based, interpretation (in the sense, for instance, of
Chapters 5 and 6; as also of Definitions 21.5 to 21.7),

since he remarks that:

“I am in my heart a card-carrying Platonist seeing before my eyes the universe

of sets . . . (regarding) the role of foundations, and philosophy . . . I do not
have any objection to those issues per se, but I am suspicious . . . My feeling,
in an overstated form, is that beauty is for eternity, while philosophical value
follows fashion.”

. . . Shelah: [She91].

As we seek to establish in this investigation, Shelah’s faith—in the ability of
intuitive truth to faithfully reflect relationships between elements of a seemingly
Platonic universe of sets—may be as misplaced as his assumption that such truth
cannot be expressed in a constructive, and effectively verifiable, manner (see §8.1).

In other words, the question of intuitive truth may be linked to that of the
consistent introduction of mathematical concepts into first-order languages such as
ZF, through axiomatic postulation, in ways that—as explicated by cognitive scientists
Lakoff and Núñez in [LR00] (see also Chapter 43)—may not be immediately obvious
to a self-confessed Platonist such as Shelah; even if we grant him the vision that is
implicit in his following remarks:

“From the large cardinal point of view: the statements of their existence
are semi-axioms, (for extremists - axioms). Adherents will probably say:

looking at how the cumulative hierarchy is formed it is silly to stop at stage

ω after having all the hereditarily finite sets, nor have we stopped with
Zermelo set theory, having all ordinals up to ℵω , so why should we stop at

the first inaccessible, the first Mahlo, the first weakly compact, or the first of

many measurables? We are continuing the search for the true axioms, which
have a strong influence on sets below (even on reals) and they are plausible,

semi-axioms at least.

A very interesting phenomenon, attesting to the naturality of these

axioms, is their being linearly ordered (i.e., those which arise naturally),
though we get them from various combinatorial principles many of which
imitate ℵ0 , and from consistency of various “small” statements. It seems
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that all “natural” statements are equiconsistent4 with some large cardinal
in this scale; all of this prove their naturality.

This raises the question:

ISSUE: Is there some theorem explaining this, or is our vision
just more uniform than we realize?

Intuition tells me that the power set and replacement axioms

hold, as well as choice (except in artificial universes), whereas it

does not tell me much on the existence of inaccessibles. According
to my experience, people sophisticated about mathematics with

no knowledge of set theory will accept ZFC when it is presented

informally (and well), including choice but not large cardinals.
You can use collections of families of sets of functions from the

complex field to itself, taking non-emptiness of cartesian products
for granted and nobody will notice, nor would an ω-fold iteration

of the operation of forming the power set disturb anybody. So

the existence of a large cardinal is a very natural statement (and
an interesting one) and theorems on large cardinals are very
interesting as implications, not as theorems (whereas proving you

can use less than ZFC does not seem to me very interesting).
. . . Shelah: [She91].

That Shelah’s Platonism is reflective of a continuing widespread practice, if not
belief—decried by Krajewski5—is seen in this 1997 observation by mathematician
Reuben Hersh:

“The working mathematician is a Platonist on weekdays, a formalist on
weekends. On weekdays, when doing mathematics, he’s a Platonist, con-

vinced he’s dealing with an objective reality whose properties he’s trying to
determine. On weekends, if challenged to give a philosophical account of this
reality, it’s easiest to pretend he doesn’t believe in it. He plays formalist,

and pretends mathematics is a meaningless game.”
. . . Hersh [Hr97].

which echoed an unusually frank—seemingly unrepentant—confession of double
standards made 27 years earlier by Jean Dieudonné:

“On foundations we believe in the reality of mathematics, but of course, when
philosophers attack us with their paradoxes, we rush to hide behind formalism
and say ‘mathematics is just a combination of meaningless symbols,’... Finally

we are left in peace to go back to our mathematics and do it as we have

always done, with the feeling each mathematician has that he is working
with something real. The sensation is probably an illusion, but it is very

convenient.”
. . . Dieudonné [Di70].

4We note that if—as Shelah appears to imply—we may treat the subsystem ACA0 of second-
order arithmetic as a conservative extension of PA that is equiconsistent with PA, then we are led

to the curious conclusion—since PA is finitarily consistent by Theorem 9.10—that (see Theorem
22.3 in Chapter 22) Goodstein’s sequence Go(mo) over the finite ordinals in ACA0 terminates

with respect to the ordinal inequality ‘>o’ even if Goodstein’s sequence G(m) over the natural

numbers in ACA0 does not terminate with respect to the natural number inequality ‘>’ in any

putative model of ACA0 .
5And uneasily accepted by Bauer in [Ba16] (see §13.4).
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2.7. Do mathematicians practice a ‘faith-less’ platonism?

An intriguing perspective on the implicit ‘platonism’ of a practicing mathemati-
cian is offered by philosopher John Corcoran in his thought-provoking 1973 paper
[Cor73]: ‘Gaps between logical theory and mathematical practice’.

”The view of mathematics adopted here can be called neutral platonism.

It understands mathematics to be a class of sciences each having its own
subject-matter or universe of discourse. Set theory is a science of objects
called sets. Number theory is about the natural numbers. Geometry pre
supposes three universes of objects: points, lines and planes. String theory

or Semiotik is about strings of ciphers (digits or characters). Group theory
presupposes the existence of complex objects called groups.

Following Bourbaki, Church, Hardy, Gödel and many other mathemati-
cians, it holds that these objects exist and that they are independent of the
human mind in the sense that

(1) their properties are fixed and not subject to alteration and

(2) they are not created by any act of will.

In a word: mathematical truth is discovered, not invented; mathematical

objects are apprehended, not created.

According to this view the unsettled propositions of mathematics (Gold-

bach’s problem, the twin prime problem, the continuum problem and the like)
are each definitely true or definitely false and when their truth-values are
derived it will be by discovery and not by convention and not by invention.

Foundations of mathematics is usually discussed in a metalanguage of
mathematical languages, as has been the case here. Platonism, purely and

simply, makes in the metalanguage the presuppositions that mathematicians
make in their object languages. What the mathematician lets his object
language variables range over the platonist lets his metalanguage variables

range over. The neutral platonist differs from the platonist by distinguishing
the foundations of the foundations of mathematics from the foundations of
mathematics. With regard to foundations, simply, the neutral platonist is

a platonist, simply. With regard to the foundations of the foundations the
neutral platonist is neutral. Using the metalanguage the neutral platonist
agrees that numbers exist but adds, using the meta-metalanguage, that he
does not know how such assertions should be ultimately understood. The

question of the existence of mathematical objects is answered affirmatively

but the question of the ultimate nature of that existence is not answered at
all. To the neutral platonist the various philosophies of mathematics which

have been offered are all considered as interesting hypotheses concerning
foundations of foundations each of which may be true, false or meaningless—
indeed the neutral platonist admits that foundations of foundations may

be meaningless. Contrast neutral platonism with extreme formalism. The

extreme formalist claims that foundations of mathematics is contentful but
that mathematics itself is meaningless. The neutral platonist claims that

both foundations and mathematics are meaningful but offers no view on
foundations of foundations.”
. . . Corcoran: [Cor73], §1, pp.23-25.

Viewed from the evidence-based perspective of a thesis (Thesis 44.1) of this
investigation—that the objects of mathematics can broadly be identified as the terms
(Carnap’s explicatum in [Ca62a]), of a first-order mathematical language which
seeks to faithfully express what Lakoff and Nunez ([LR00]) term as the conceptual
metaphors (Carnap’s explicandum in [Ca62a]) of an individual intelligence—the
question arises:
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• Could one today generically substitute a term such as, for instance, ‘sub-
jective platonism’ for ‘neutral platonism’, whose domain/s may then be
taken as those conceptual metaphors of an individual intelligence which
can be faithfully expressed in a first-order mathematical language such as
the set theory ZFC; and

• Reserve the term ‘neutral platonism’ or, say, ‘objective platonism’ for
only those conceptual metaphors of an individual intelligence that can be
both faithfully expressed and unambiguously communicated to an other
intelligence in a categorical first-order mathematical language such as the
Peano Arithmetic PA?

If so, could one then justifiably claim that the philosophy underlying the practice
of mathematics is a ‘faith-less’ platonism (in Corcoran’s foundational sense) since it
admits of mathematical objects that:

(a) their properties are fixed by the immutable symbols (semiotic strings) in
which an individual intelligence’s conceptual metaphors are grounded, and
are therefore not subject to alteration; and

(b) they are not created by any act of will of an individual intelligence, but by
an agreed upon convention (for the generation of the semiotic strings);

(c) mathematical truth is discovered (as a property assigned by convention to
the semiotic strings), not re-invented;

(d) mathematical objects (semiotic strings) are apprehended, not created?

Or would this stretch an analogy too far from the intent of the original?



CHAPTER 3

Three perspectives of logic

We shall now argue that the common perceptions of a mutual inconsistency between
classical and constructive mathematical philosophies—vis à vis ‘omniscient’ mathe-
matical truth, and ‘omniscient’ mathematical ontologies decried by Krajewski—are
illusory; they merely reflect the circumstance that, to date, all such philosophies do
not explicitly—and unambiguously—define the relations between a language and
the logic that is necessary to assign unequivocal, evidence-based, truth-values to the
propositions of the language (in the sense of the proposed Definitions 21.3 to 21.7).

We shall argue, for instance, that classical perspectives which admit Hilbert’s
formal definitions of quantification can be labelled ‘theistic’, since they implicitly
assume—without providing objective (i.e., on the basis of evidence-based reasoning)
criteria for interpreting quantification constructively—both that:

(a) the first-order logic FOL is consistent, and that

(b) Aristotle’s particularisation (see Definition 3.1)—which postulates that
‘[¬∀¬x]’ can unrestrictedly be interpreted as ‘there exists an unspecified
instantiation of x’—holds under any interpretation of FOL.

In sharp contrast, constructive perspectives based on Brouwer’s philosophy of
Intuitionism can be labelled ‘atheistic’ because they:

(i) deny that FOL is consistent (since they deny the Law of The Excluded
Middle LEM, which is a theorem of FOL) and

(ii) deny that Aristotle’s particularisation holds under any interpretation of
FOL that has an infinite domain.

However, we shall adopt what may be labelled as an ‘agnostic’, finitary, per-
spective by showing that:

(1) FOL is finitarily consistent (Theorem 9.10); and

(2) although, if Aristotle’s particularisation holds in an interpretation of FOL
then LEM must also hold in the interpretation (since LEM is a theorem
of FOL), the converse is not true, i.e., LEM does not entail Aristotle’s
particularisation (see §14.1);

(3) Aristotle’s particularisation does not hold under any interpretation of FOL
that has an infinite domain (an immediate consequence of Corollary 15.11).

We shall further argue that perspectives based on Brouwerian atheism are merely
restricted perspectives within the finitary agnostic perspective; whilst perspectives
based on Hilbertian theism—when shorn of Hilbert’s ε-based formalisation of Aris-
totle’s particularisation—actually complement the agnostic, finitary, perspective.
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We shall conclude that the former yield a strong finitary interpretation B of PA
over the domain N of the natural numbers, which can be viewed as circumscribing
the ambit of finitary mechanistic reasoning about ‘true’ arithmetical propositions;
whilst the latter yield the weak standard interpretation M of PA over N, which can
be viewed as circumscribing the ambit of non-finitary human reasoning about ‘true’
arithmetical propositions.

3.1. Hilbertian Theism: Embracing Aristotle’s particularisation

We note that, in a 1925 address ([Hi25]), Hilbert had shown that the axiomatisation
Lε of classical predicate logic proposed by him as a formal first-order ε-predicate
calculus —in which he used a primitive choice-function symbol, ‘ε’, for defining
the quantifiers ‘∀’ and ‘∃’—would adequately express and yield, under a suitable
interpretation, classical predicate logic if the ε-function was interpreted to yield
Aristotlean particularisation, which we define as (cf. [Hi25], pp.382-383; [Hi27],
pp.465-466):

Definition 3.1. (Aristotle’s particularisation) If the formula [¬(∀x)¬F (x)] of
a formal first order language L is true under an interpretation, then we may always
conclude unrestrictedly that there must be some unspecified object s in the domain
D of the interpretation such that, if the formula [F (x)] interprets as the relation
F ∗(x) in D, then the proposition F ∗(s) is true under the interpretation.

The significance of the qualification ‘unrestrictedly’ is that it does not admit
the—hitherto unsuspected—possibility (see §11.6) that an unspecified
instantiation may sometimes be unspecifiable— in the sense of Definition
4.1 and Theorem 11.10—within the parameters of some formal system
that subsumes FOL.

Classical approaches to mathematics—essentially following Hilbert—can be
labelled ‘theistic’ in that they implicitly assume—without providing adequate objec-
tive (i.e., evidence-based) criteria for interpreting quantification constructively—both
that:

(a) First order logic FOL1 is consistent; and

(b) Aristotle’s particularisation holds unrestrictedly under any interpretation
of FOL.

The significance of the label ‘theistic’2 is that conventional wisdom ‘omni-
sciently’ believes that Aristotle’s particularisation remains valid—sometimes with-
out qualification—even over infinite domains; a belief that is not unequivocally
self-evident, but must be appealed to as an article of unquestioning faith3.

1For the purposes of this investigation we take FOL to be Mendelson’s formal theory K
([Me64], p.56) or its equivalent.

2Although intended to highlight an entirely different distinction, that the choice of the label

‘theistic’ may not be totally inappropriate is suggested by Tarski’s reported point of view to the

effect (Franks: [Fr09], p.3): “. . . that Hilbert’s alleged hope that meta-mathematics would usher
in a ‘feeling of absolute security’ was a ‘kind of theology’ that ‘lay far beyond the reach of any

normal human science’ . . . ”.
3See: Whitehead/Russell: [WR10], p.20; Hilbert: [Hi25], p.382; Hilbert/Ackermann [HA28],

p.48; Skolem: [Sk28], p.515; Gödel: [Go31], p.32; Carnap: [Ca37], p.20; Kleene: [Kl52], p.169;
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3.2. Brouwerian Atheism: Denying the Law of Excluded Middle

In sharp contrast, constructive approaches based on Brouwer’s philosophy of In-
tuitionism can be labelled ‘atheistic’4 because they deny—also without providing
adequate objective (i.e., evidence-based) criteria for interpreting quantification
constructively—both that5:

(a) FOL is consistent (since they deny that the Law of The Excluded Middle
LEM—which is a theorem of FOL—holds under any interpretation of
FOL6); and

(b) Aristotle’s particularisation holds under any interpretation of FOL that
has an infinite domain.

Although Brouwer’s explicitly stated objection appeared to be to the Law of the
Excluded Middle as expressed and interpreted at the time (Brouwer: [Br23], p.335-
336; Kleene: [Kl52], p.47; Hilbert: [Hi27], p.475), some of Kleene’s remarks ([Kl52],
p.49), some of Hilbert’s remarks (e.g., in [Hi27], p.474) and, more particularly,
Kolmogorov’s remarks (in [Ko25], fn. p.419; p.432) suggest that the intent of
Brouwer’s fundamental objection can also be viewed today as being limited only
to the (yet prevailing) belief—as an article of Hilbertian faith—that the validity
of Aristotle’s particularisation can be extended without qualification to infinite
domains.

The significance of the label ‘atheistic’ is that whereas intuitionistic approaches
to mathematics deny the faith-based belief in the unqualified validity of Aristotle’s
particularisation over infinite domains, their denial of the Law of the Excluded
Middle is itself an ‘omniscient’ belief that is also not unequivocally self-evident, and
must be appealed to as an article of unquestioning faith7.

3.3. Finitary Agnosticism

We shall seek to avoid avoid such ‘omniscience’ in this investigation, by adopting
what may be labelled as a finitarily ‘agnostic’ perspective in noting that although,
if Aristotle’s particularisation holds in an interpretation of a FOL then LEM must
also hold in the interpretation, the converse is not true.

The significance of the label ‘agnostic’ is that we shall:

Rosser: [Ro53], p.90; Bernays/Fraenkel: [BF58], p.46; Beth: [Be59], pp.178 & 218; Suppes:
[Su60], p.3; Luschei: [Lus62], p.114; Wang: [Wa63], p.314-315; Quine: [Qu63], pp.12-13;
Kneebone: [Kn63], p.60; Cohen: [Co66], p.4; Mendelson: [Me64], p.52(ii); Novikov: [Nv64],

p.92; Lightstone: [Li64], p.33; Shoenfield: [Sh67], p.13; Davis: [Da82], p.xxv; Rogers: [Rg87],

p.xvii; Epstein/Carnielli: [EC89], p.174; Murthy: [Mu91]; Smullyan: [Sm92], p.18, Ex.3;
Awodey/Reck: [AR02b], p.94, Appendix, Rule 5(i); Boolos/Burgess/Jeffrey: [BBJ03], p.102;

Crossley: [Cr05], p.6.
4As can other ‘constructive’ approaches such as those analysed by Posy in [Pos13] (p.106,

§5.1).
5But see also Maietti: [Mt09] and Maietti/Sambin: [MS05].
6cf. [Kl52], p.513: “The formula ∀x(A(x) ∨ ¬A(x)) is classically provable, and hence under

classical interpretation true. But it is unrealizable. So if realizability is accepted as a necessary
condition for intuitionistic truth, it is untrue intuitionistically, and therefore unprovable not only

in the present intuitionistic formal system, but by any intuitionistic methods whatsoever”.
7Lending justification to Krajewski’s comment in [Kr16]: “Brouwer created mathematical

intuitionism and was a mystic” see §2.1.
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(a) Neither share an ascetic Brouwerian faith which unnecessarily denies
appeal to LEM—and, ipso facto, to the consistency of FOL—since we
shall show that such consistency follows immediately from a finitary proof
of consistency of the first order Peano Arithmetic PA (Theorem 9.10; cf.
[An16], Theorem 6.8, p.41);

(b) Nor share a libertarian Hilbertian faith that admits Aristotle’s particulari-
sation over infinite domains (see Corollary 15.11).

3.4. Two complementary, but seemingly contradictory, perspectives

We shall argue, instead, the thesis that the perceived conflict between classical
and intuitionistic interpretations of quantification is illusory; and that the differing
perspectives merely reflect two complementary facets of an unappreciated ambiguity—
whose roots trace back to antiquity—in the non-finitary postulation of an unspecified
element in classical predicate logic.

This is the postulation that:

• If it is not the case that, for any specified x, F (x) does not hold, then
there exists an unspecified x8, such that F (x) holds;

where ‘holds’ is to be understood in Tarski’s sense ([Ta35]) that:

• ‘Snow is white’ holds as a true assertion if, and only if, it can be determined
on the basis of some agreed -upon9 evidence that snow is white.

We shall show that recognition, and removal, of the ambiguity has significant
consequences for the, not uncommon, perception10 that Gödel’s Incompleteness
Theorems limit the effective assignments of truth values to the formulas of a
mathematical language such as the first-order Peano Arithmetic PA.

Formally, we shall show that both the classical and intuitionistic interpreta-
tions of quantification yield interpretations of the first-order Peano Arithmetic
PA—over the structure N of the natural numbers—that are complementary, not
contradictory.11

8We note that, in the case of a first-order Peano Arithmetic such as PA, for instance, it follows

from Corollary 11.5 that the PA numeral corresponding to such a putative, unspecified, natural
number q may not be explicitly definable, by any PA formula, as a first-order term of PA which
can be individually denoted within a PA formula.

9The significance of viewing mathematical ‘truth’ as an unequivocal, well-defined, convention

is highlighted in the analysis of Tarski’s definitions of the satisfaction and truth of the formulas of

a formal mathematical language under an interpretation in Chapter 6
10Addressed in [An04].
11Of interest is the following perspective ([Wl03], §1.6, p.5), which particularly emphasises

the need for such a unified, constructive, foundation for the mathematical representation of elements

of reality such as those considered in §27.4: “Our investigations lead us to consider the possibilities

for ‘reuniting the antipodes’. The antipodes being classical mathematics (CLASS) and intuitionism
(INT). . . . It therefore seems worthwhile to explore the ‘formal’ common ground of classical and

intuitionistic mathematics. If systematically developed, many intuitionistic results would be seen
to hold classically as well, and thus offer a way to develop a strong constructive theory which

is still consistent with the rest of classical mathematics. Such a constructive theory can form a

conceptual framework for applied mathematics and information technology. These sciences now
use an ad-hoc approach to reality since the classical framework is inadequate. . . . [and can] easily
use the richness of ideas already present in classical mathematics, if classical mathematics were to
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The former yields the weak standard interpretation M of PA over N, which
is well-defined with respect to weak non-finitary assignments of algorithmically
verifiable Tarskian truth values TM to the formulas of PA under M ; and which can
be viewed as circumscribing the ambit of non-finitary human reasoning about ‘true’
arithmetical propositions.

The latter yields a strong finitary interpretation B of PA over N, which is con-
structively well-defined with respect to strong finitary assignments of algorithmically
computable Tarskian truth values TB to the formulas of PA under B ; and which
can be viewed as circumscribing the ambit of finitary mechanistic reasoning about
‘true’ arithmetical propositions, where (see also §21.2):

Definition 3.2. An interpretation I of a formal language L, over a domain D
of a structure S, is constructively well-defined relative to an assignment of truth
values TI to the formulas of L if, and only if, the provable formulas of L interpret
as true over D under I relative to the assignment of truth values TI .

be systematically developed along the common grounds before the unconstructive elements are
brought in.”





CHAPTER 4

Hilbert’s and Brouwer’s interpretations of
quantification

We begin by noting that, in [Hi27], Hilbert defined a formal logic Lε in which he
sought to capture the essence:

— of Aristotle’s unspecified x in Definition 3.1,

— as an unspecified term [εx(F (x))].

Hilbert then defined:

• [(∀x)F (x)↔ F (εx(¬F (x)))]

• [(∃x)F (x)↔ F (εx(F (x)))]

and showed that Aristotle’s logic is a well-defined interpretation of Lε:

— if [εx(F (x))] can be interpreted as some, unspecified, x satisfying F (x).

4.1. Hilbert’s interpretation of quantification

Formally, Hilbert interpreted quantification in terms of his ε-function as follows:

“IV. The logical ε-axiom

13. A(a)→ A(ε(A))

Here ε(A) stands for an object of which the proposition A(a) certainly
holds if it holds of any object at all; let us call ε the logical ε-function.

1. By means of ε, “all” and “there exists” can be defined, namely, as

follows:

(i) (∀a)A(a)↔ A(ε(¬A))

(ii) (∃a)A(a)↔ A(ε(A)) . . .

On the basis of this definition the ε-axiom IV(13) yields the logical

relations that hold for the universal and the existential quantifier, such

as:

(∀a)A(a)→ A(b) . . . (Aristotle’s dictum),
and:

¬((∀a)A(a))→ (∃a)(¬A(a)) . . . (principle of excluded middle).”
. . . Hilbert: [Hi27].

Thus, Hilbert’s interpretation (i) of universal quantification—under any objective
(i.e., evidence-based) method TH of assigning truth values to the sentences of a
formal logic L—is that the sentence (∀x)F (x) can be defined as holding (presumably
under a well-defined interpretation H of L with respect to TH) if, and only if, F (a)
holds whenever ¬F (a) holds for some unspecified a (under H ); which would imply
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that ¬F (a) does not hold for any specified a (since H is well-defined), and so F (a)
holds for any specified a (under H ).

Further, Hilbert’s interpretation (ii) of existential quantification, with respect
to TH , postulates that (∃x)F (x) holds (under H ) if, and only if, F (a) holds for
some unspecified a (under H ).

4.2. Brouwer’s objection

Brouwer’s objection to such an unspecified and ‘postulated’ interpretation of quan-
tification was that, for an interpretation to be considered constructively well-defined
relative to TH when the domain of the quantifiers under an interpretation is infinite,
the decidability of the quantification under the interpretation must be constructively
verifiable in some intuitively, and mathematically acceptable, sense of the term
‘constructive’ ([Br08]).

Two questions arise:

(a) Is Brouwer’s objection relevant today?

(b) If so, can we interpret quantification finitarily?

4.3. Is the PA-formula [(∀x)F (x)] to be interpreted weakly or strongly?

The perspective we choose for addressing these issues is that of the structure N,
defined by:

• {N (the set of natural numbers);

• = (equality);

• S (the successor function);

• + (the addition function);
• ∗ (the product function);

• 0 (the null element)}

which serves for a definition (see §A, Appendix A) of today’s standard interpretation
M of the first-order Peano Arithmetic PA.

However, if we are to avoid intuitionistic objections to the admitting of unspeci-
fied natural numbers in the definition of quantification under M, we are faced with
the ambiguity where if:

— [(∀x)F (x)] and [(∃x)F (x)] denote PA-formulas; and

— The relation F ∗(x) denotes the interpretation in the standard interpretation
M of the PA-formula [F (x)] under an inductive assignment of Tarskian
truth values TM ; where

— The underlying first-order logic FOL of PA favours evidence-based inter-
pretation (as introduced in [An12] and [An16]; see also Chapter 5),

then the question arises (see also Chapter 21):

(a) Is the PA-formula [(∀x)F (x)] to be interpreted weakly as:

• ‘For any n, F ∗(n)’,
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— which holds if, and only if,

— for any specified n in N,

— there is algorithmic evidence that F ∗(n) holds in N,

or:

(b) is the formula [(∀x)F (x)] to be interpreted strongly as:

• ‘For all n, F ∗(n)’,

— which holds if, and only if,

— there is algorithmic evidence that,

— for any specified n in N,

— F ∗(n) holds in N?

where:

Definition 4.1. A natural number n in N is defined as specifiable if, and only
if, it can be explicitly denoted as a PA-numeral by a PA-formula that interprets as
an algorithmically computable constant.

We note that, if we accept the Church-Turing Thesis (see Chapter 12), then
admitting a natural number as unspecified in N (as in Definition 3.1) implies that, by
definition 4.1, it is specifiable in PA and, ipso facto, specified under any well-defined
interpretation of PA.

In other words (compare with the conclusions in §15.2) to §15.7):

Theorem 4.2. The Church-Turing Thesis is stronger than Aristotle’s particu-
larisation. 2

4.4. The standard interpretation M of PA interprets [(∀x)F (x)] weakly

Keeping the above distinction in mind, it would seem that classically, under the
standard interpretation M of PA:

(1a) The formula [(∀x)F (x)] is defined as true in M relative to TM if, and only
if, for any specified natural number n, we may conclude on the basis of
evidence-based reasoning that the proposition F ∗(n) holds in M ;

(1b) The formula [(∃x)F (x)] is an abbreviation of [¬(∀x)¬F (x)], and is defined
as true in M relative to TM if, and only if, it is not the case that, for any
specified natural number n, we may conclude on the basis of evidence-based
reasoning that the proposition ¬F ∗(n) holds in M ;

(1c) The proposition F ∗(n) is postulated as holding in M for some unspecified
natural number n if, and only if, it is not the case that, for any specified
natural number n, we may conclude on the basis of evidence-based reasoning
that the proposition ¬F ∗(n) holds in M.

If we assume that Aristotle’s particularisation holds under the standard interpre-
tation M of PA (as defined in §A, Appendix A), then (1a), (1b) and (1c) together
interpret [(∀x)F (x)] and [(∃x)F (x)] under M weakly as intended by Hilbert’s
ε-function; whence they attract Brouwer’s objection.
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This would, then, answer question §4.2(a).

4.5. A finitary interpretation B of PA which interprets [(∀x)F (x)]
strongly

Now, our thesis is that the implicit target of Brouwer’s objection1 is the unqualified
semantic postulation of Aristotle’s particularisation entailed by §4.4(1c), which
appeals to Platonically non-constructive, rather than intuitively constructive, plau-
sibility.

We note that this conclusion about Brouwer’s essential objection apparently
differs from conventional intuitionistic wisdom (i.e., perspectives based essentially
on Brouwer’s explicitly stated objection to the Law of the Excluded Middle as
expressed in [Br23], p.335-336):

— which would presumably deny appeal to §4.4(1c) in an interpretation of
FOL by denying the FOL theorem [P v ¬P ] (Law of the Excluded Middle);

— even though denying appeal to §4.4(1c) in an interpretation of FOL does not
entail denying the FOL theorem [P v ¬P ] (Law of the Excluded Middle).

We can thus re-phrase question §4.2(b) more specifically:

• Can we define an interpretation of PA over N that does not appeal to (1c)?

We note that we can, indeed, define another—hitherto unsuspected—evidence-
based interpretation B of PA under an inductive assignment of Tarskian truth values
TB over the structure N, where (see Chapter 9):

(2a) The formula [(∀x)F (x)] is defined as true in B relative to TB if, and only
if, we may conclude on the basis of evidence-based reasoning that, for any
specified natural number n, the proposition F ∗(n) holds in B ;

(2b) The formula [(∃x)F (x)] is an abbreviation of [¬(∀x)¬F (x)], and is defined
as true in B relative to TB if, and only if, we may conclude on the basis of
evidence-based reasoning that it is not the case, for any specified natural
number n, that the proposition ¬F ∗(n) holds in B.

We note that B is a strong finitary interpretation of PA since—when interpreted
suitably—all theorems of first-order PA interpret as finitarily true in B relative to
TB (see §9.1, Theorem 9.7).

This answers question §4.2(b).

1And perhaps of parallel objections perceived generically as “Limitations of first-order logic”;
[AR02b], p.78, §2.1.



CHAPTER 5

Evidence-based reasoning

We shall now proceed to justify that the structure N can, indeed, be used to
define both the weak standard interpretation M as outlined in §4.4, and a strong
finitary interpretation B of PA as outlined in §4.5.

We shall show that, from the PA-provability of [¬(∀x)F (x)], we may only
conclude under the finitary interpretation B, on the basis of evidence-based reasoning,
that it is not the case that [F (n)] interprets as always true in N.

We may not conclude further, in the absence of evidence-based reasoning, that
[F (n)] interprets as false in N for some numeral [n].

More precisely, we may not conclude from the PA-provability of [¬(∀x)F (x)],
in the absence of evidence-based reasoning, that the proposition F ∗(n) does not
hold in N for some unspecified natural number n, since we shall show that PA is not
ω-consistent (Corollary 11.6).

We therefore address the question:

Query 5.1. Are both the interpretations M and B of PA over the structure
N well-defined, in the sense that the PA axioms interpret as true, and the rules of
inference preserve truth, relative to each of the assignments of truth values TM and
TB respectively?

5.1. Are both interpretations M and B of PA over N well-defined?

We begin by noting that the two interpretations M and B of PA over the
structure N can be viewed as complementary, since (see [An16], §3, p.37; also
Chapter 6) Tarski’s classic definitions permit an intelligence—whether human or
mechanistic—to admit finitary, evidence-based, inductive definitions of the satisfac-
tion and truth of the atomic formulas of the first-order Peano Arithmetic PA, over
the domain N of the natural numbers, in two, hitherto unsuspected and essentially
different, ways:

(1) in terms of weak algorithmic verifiabilty ; and

(2) in terms of strong algorithmic computability.

Thus the PA formula [(∀x)F (x)], if intended to be read as ‘For any x, F (x)’ (see
§4.3), must be consistently interpreted weakly in terms of algorithmic verifiability,
defined as follows (cf. Definition 21.1):

Definition 5.2. A number-theoretical relation F ∗(x) is algorithmically veri-
fiable if, and only if, for any specified natural number n, there is a deterministic
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algorithm AL(F, n) which can provide evidence for deciding the truth/falsity of each
proposition in the finite sequence {F ∗(1), F ∗(2), . . . , F ∗(n)}.

Whereas if [(∀x)F (x)] is intended to be read as ‘For all x, F (x)’, then it must
be consistently interpreted strongly in terms of algorithmic computability, defined
as follows (cf. Definition 21.2):

Definition 5.3. A number theoretical relation F ∗(x) is algorithmically com-
putable if, and only if, there is a deterministic algorithm ALF that can provide
evidence for deciding the truth/falsity of each proposition in the denumerable
sequence {F ∗(1), F ∗(2), . . .}.

We note that strong algorithmic computability implies the existence of an
algorithm that can finitarily decide the truth/falsity of each proposition in a
constructively well-defined denumerable sequence of propositions, whereas weak
algorithmic verifiability does not imply the existence of an algorithm that can
finitarily decide the truth/falsity of each proposition in a constructively well-defined
denumerable sequence of propositions1.

Comment : We note that since a deterministic algorithm computes a mathe-
matical function which has a unique value for any input in its domain, and
the algorithm is a process that produces this particular value as output, it

can be suitably defined as a ‘realizer ’ in the sense of the Brouwer-Heyting-
Kolmogorov rules (see [Ba16], p.5).

Although in a mathematically more rigorous treatment the two Def-

initions 5.2 and 5.3 may need to be expressed more precisely in terms,
for instance, of ‘verifiable realizability’ and ‘algorithmic realizability’—as

suggested in §13.3.1—instead of ‘algorithmic verifiability’ and ‘algorithmic
computability’, we have preferred the latter terminology as more illuminating
from the perspective of this introductory investigation into the philosophical

and mathematical significance of evidence-based reasoning.

5.2. Algorithmically verifiable but not algorithmically computable

The following argument now confirms that although every algorithmically computable
relation is algorithmically verifiable, the converse is not true:

Theorem 5.4. There are number theoretic functions that are algorithmically
verifiable but not algorithmically computable.

Proof. We note that:

(a) Since any real number R is mathematically definable as the unique limit
of a correspondingly unique Cauchy sequence2:

{Σni=0r(i).2
−i : n = 0, 1, . . . ; r(i) ∈ {0, 1}}

of rational numbers in binary notation:

– Let r(n) denote the nth digit in the decimal expression of the real
number R = Ltn→∞Σni=0r(i).2

−i in binary notation.

1The distinction between the concepts of weak ‘algorithmic verifiability’ and strong ‘algorithmic

computability’ seeks to eliminate an implicit ambiguity in the classical concept of ‘realizability’ in

[Ba16], p.5 (see §21; also [Kl52], p.503).
2As defined in §A.
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– Then, for any specified natural number n, Gödel’s β-function (see
§19.2) defines an algorithm AL(R, n) that can verify the truth/falsity
of each proposition in the finite sequence:

{r(0) = 0, r(1) = 0, . . . , r(n) = 0}.
Hence, for any real number R, the relation r(x) = 0 is algorithmically
verifiable trivially by Definition 5.2.

(b) Since it follows from Alan Turing’s Halting argument ([Tu36], p.132, §8)
that there are algorithmically uncomputable real numbers:

– Let r(n) denote the nth digit in the decimal expression of an algorith-
mically uncomputable real number R in binary notation.

– By (a), the relation r(x) = 0 is algorithmically verifiable trivially.

– However, by definition there is no algorithm ALR that can decide the
truth/falsity of each proposition in the denumerable sequence:

{r(0) = 0, r(1) = 0, . . .}.

Hence, although the relation r(x) = 0 is algorithmically verifiable, it is not
algorithmically computable by Definition 5.3. �

5.3. From a Brouwerian perspective

We note that the distinction between algorithmically verifiable number-theoretic
functions (and the real numbers defined by them) and algorithmically computable
number-theoretic functions (and the real numbers defined by them) is, prima facie,
similar to the one that, according to Mark van Atten, Brouwer sought to make
explicit in his 1907 PhD thesis:

The distinction between a construction proper and a construction project was well
known to Brouwer. It is essential to his notion of denumerably unfinished sets:

[H]ere we call a set denumerably unfinished if it has the following properties: we
can never construct in a well-defined way more than a denumerable subset of it,
but when we have constructed such a subset, we can immediately deduce from it,

following some previously defined mathematical process, new elements which are
counted to the original set. But from a strictly mathematical point of view this

set does not exist as a whole, nor does its power exist; however we can introduce

these words here as an expression for a known intention. [10, p.148; trl. 45, p.82]

But in the quotations from 1947 and 1954 above we do not see Brouwer say, analogously,
that sequences that are not completely defined do from a strictly mathematical point
of view not exist as objects, but that terms for them are introduced as expressions for

a known intention (namely, to begin and continue a construction project of a certain
kind). This explains the fact noted in the latter half of Gielen, De Swart, and Veldman’s

reflection.

Still, the distinction at the basis of De Iongh’s view between construction processes

that are governed by a full definition of the object under construction and those that,

as a matter of principle, cannot be thus governed, is a principled one of mathematical
relevance, and it is important to realise that, if a proposed axiom turns out not to hold

in general, it may still hold for one of these two subclasses.

[. . . ]

[10] L. E. J. Brouwer. Over de grondslagen der wiskunde. PhD thesis, Universiteit van
Amsterdam, 1907.
. . . van Atten: [At18], pp.67-68.
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Of interest here is van Atten’s remark that:

“. . . if a proposed axiom turns out not to hold in general, it may still hold
for one of these two subclasses”.

In the case of the Poincaré-Hilbert debate (see §9.3) on whether the PA Axiom
Schema of Induction can be labelled ‘finitary’ or not, the Axiom Schema not only
turns out to be algorithmically computable as true (i.e., ‘hold in general’ over the
domain N of the natural numbers) under a strong finitary interpretation of PA, but
also to be algorithmically verifiable as true (i.e., ‘hold’ in any finite subset of N)
under the weak standard interpretation of PA!

This suggests that for a proposition of a theory S to be termed as an ‘axiom’
that meets a minimum level of what we would intuitively label as ‘constructive’
in either the proof-theoretic or the model-theoretic logic of S (in the sense of the
definitions of these terms in Appendix A; and of the Definitions 21.5, 21.6 and 21.7),
it should be appropriately true in both senses.



CHAPTER 6

Tarski’s assignment of truth-values under an
interpretation

We show next that the two definitions, Definition 5.2 and Definition 5.3, corre-
spond to two distinctly different, hitherto unsuspected, assignments of satisfaction
and truth to the compound formulas of PA over N—TM and TB—such that:

— The PA axioms are true over N, and

— The PA rules of inference preserve truth over N,

under both the corresponding interpretations M and B.

We essentially follow Mendelson’s ([Me64], pp.51-53) standard exposition of
Tarski’s inductive definitions on the ‘satisfiability’ and ‘truth’ of the formulas of a
formal language under an interpretation1 where:

Definition 6.1. If [A] is an atomic formula [A(x1, x2, . . . , xn)] of a formal
language S, then the denumerable sequence (a1, a2, . . .) in the domain D of an
interpretation IS(D) of S satisfies [A] if, and only if:

(i) [A(x1, x2, . . . , xn)] interprets under IS(D) as a unique relation A∗(x1, x2,
. . . , xn) in D for any witness WD of D;

(ii) there is a Satisfaction Method that provides evidence by which any witness
WD of D can define for any atomic formula [A(x1, x2, . . . , xn)] of S, and any
specified denumerable sequence (b1, b2, . . .) of D, whether the proposition
A∗(b1, b2, . . . , bn) holds or not in D;

(iii) A∗(a1, a2, . . . , an) holds in D for any WD.

Witness: From a constructive perspective, the existence of a ‘witness’ as in

(i) above is implicit in the usual expositions of Tarski’s definitions.

Satisfaction Method: From a constructive perspective, the existence of a

Satisfaction Method as in (ii) above is also implicit in the usual expositions

of Tarski’s definitions.

1Tarski’s inductive definitions: When interpreted constructively, these are essentially evidence-

based truth-assignments to the formulas of a first-order theory S which correspond to the Brouwer-

Heyting-Kolmogorov rules—cited in [Ba16], p.5—for assigning truth-values to the interpreted
propositions of S; where the truth values of ‘satisfaction’, ‘truth’, and ‘falsity’ are assignable

inductively (but, as we shall show for the weak standard interpretation M of PA, not necessarily

finitarily) to the compound formulas of a first-order theory S under an interpretation IS(D) in

terms of only the satisfiability of the atomic formulas of S over D (see [Me64], p.51; [Mu91]).
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A constructive perspective: We highlight the word ‘define’ in (ii) above

to emphasise the constructive perspective underlying this investigation2;

which is that the concepts of ‘satisfaction’ and ‘truth’ under an interpretation
are to be explicitly viewed as evidence-based assignments by a convention

that is witness-independent. A Platonist perspective would substitute ‘decide’
for ‘define’, thus implicitly suggesting that these concepts can ‘exist’, in the
sense of needing to be discovered by some witness-dependent means—eerily

akin to a ‘revelation’—if the domain D is N.

We further define the truth values of ‘satisfaction’, ‘truth’, and ‘falsity’ for the
compound formulas of a first-order theory S under the interpretation IS(D) in terms
of only the satisfiability of the atomic formulas of S over D as follows:

Definition 6.2. A denumerable sequence s of D satisfies [¬A] under IS(D) if,
and only if, s does not satisfy [A];

Definition 6.3. A denumerable sequence s of D satisfies [A→ B] under IS(D)

if, and only if, either it is not the case that s satisfies [A], or s satisfies [B];

Definition 6.4. A denumerable sequence s of D satisfies [(∀xi)A] under IS(D)

if, and only if, specified any denumerable sequence t of D which differs from s in at
most the i’th component, t satisfies [A];

Definition 6.5. A well-formed formula [A] of D is true under IS(D) if, and
only if, specified any denumerable sequence t of D, t satisfies [A];

Definition 6.6. A well-formed formula [A] of D is false under IS(D) if, and
only if, it is not the case that [A] is true under IS(D).

We then have that (cf. [Me64], pp.51-53):

Theorem 6.7. (Satisfaction Theorem) If, for any interpretation IS(D) of a
first-order theory S, there is an evidence-based Satisfaction Method SM for assigning
truth values to the atomic formulas of S, then:

(i) The ∆0 formulas of S are decidable as either true or false (with respect to
SM) over D under IS(D);

(ii) If the ∆n formulas of S are decidable as either true or as false over D
under IS(D), then so are the ∆(n+ 1) formulas of S.

Proof. It follows from the above definitions that:

(a) If, for any specified atomic formula [A(x1, x2, . . . , xn)] of S, it is decid-
able by WD whether or not a sequence (a1, a2, . . . , an) of D satisfies
[A(x1, x2, . . . , xn)] in D under IS(D) then, for any specified compound for-

mula [A1(x1, x2, . . . , xn)] of S containing any one of the logical constants
¬,→,∀, it is decidable by WD whether or not the sequence (a1, a2, . . . , an)
of D satisfies [A1(x1, x2, . . . , xn)] in D under IS(D);

2Compare with Löb’s remarks on ‘Constructive Truth’: “Intuitively we require that for each

event-describing sentence, φoιnι say (i.e. the concrete object denoted by nι exhibits the property
expressed by φoι), there shall be an algorithm (depending on I, i.e. M∗) to decide the truth or
falsity of that sentence.” [Lob59], p.165.
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(b) If, for any specified compound formula [Bn(x1, x2, . . . , xn)] of S containing
n of the logical constants ¬,→,∀, it is decidable by WD whether or not a
sequence (a1, a2, . . . , an) of D satisfies [Bn(x1, x2, . . . , xn)] in D under IS(D)

then, for any specified compound formula [B(n+1)(x1, x2, . . . , xn)] of S con-
taining n+1 of the logical constants ¬,→,∀, it is decidable byWD whether
or not the sequence (a1, a2, . . . , an) of D satisfies [B(n+1)(x1, x2, . . . , xn)]
in D under IS(D).

The theorem follows. �

In other words, if the atomic formulas of of S interpret under IS(D) as decidable
over D with respect to the Satisfaction Method SM, then the propositions of S
(i.e., the Πn and Σn formulas of S in the arithmetical hierarchy) also interpret as
decidable over D with respect to SM.

6.1. Decidability in PA

We note in particular that:

Theorem 6.8. A well-formed formula [F (x)] of PA is decidable as true or false
under Tarski’s truth assignments if, and only if, [F (x)] is algorithmically verifiable.

Proof. The proof follows immediately from Definitions 6.5 and 6.6, since
Tarski’s definitions are inductive, and a well-formed formula [F (x)] of PA is decidable
as true or false under the weak standard interpretation M of PA over N if, and only
if, each instantiation [F (n)] of [F (x)] is decidable in N. �

We cannot, however, assume that the satisfaction and truth of the compound
formulas of PA are always finitarily decidable—in the sense of being algorithmically
computable—under the weak standard interpretation M of PA over N (as defined
in §A, Appendix A), since we cannot prove finitarily from only Tarski’s definitions
and the assignment TM of algorithmically verifiable truth values to the atomic
formulas of PA under M whether, or not, a given quantified PA formula [(∀xi)R] is
algorithmically verifiable as true under M.

We now show how Tarski’s definitions yield two distinctly different, well-defined
and unique, interpretations of the first-order Peano Arithmetic PA over the domain
N of the natural numbers—contrary to perspectives as expressed, for instance, in
[Mur06]:

““The above theorems show that the axiomatic characterization of satis-
faction and truth is non-unique. The reason is that Tarskis conditions put

on satisfaction classes are too weak and do not uniquely determine the
satisfaction and truth. What more, they admit various interpretations, even

mutually inconsistent on sentences! Hence the classical principle of bivalency

is not any longer valued for nonstandard languages. Moreover, one can find
mutually inconsistent satisfaction classes being elementarily equivalent, i.e.,

having the same elementary properties in the language L(PA) with predicate

S.

Let us turn to conclusions. As Gaifman (2004, p. 15) wrote:

Intended interpretations are closely related to realistic concep-

tions of mathematical theories. By subscribing to the standard
model of natural numbers, we are committing ourselves to the
objective truth or falsity of number-theoretic statements, where
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these are usually taken as statements of first-order arithmetic.
The standard model is supposed to provide truth-values for these

statements.

Deductive systems can only yield recursively enumerable sets of theorems

and therefore they can only partially capture truth in the standard model.
Even more, the truth in the standard model is not arithmetically definable.

On the other hand there are nonstandard (hence unintended) models

(not only for Peano arithmetic but even for the theory of the standard model

N0). This shows an essential shortcoming of a formalized approach: the
failure to fully determine the intended model.

An attempt to define arithmetical truth (truth for arithmetic) in a higher
order theory, for example in the second-order arithmetic or its appropriate

fragment where its existence can be proved, does not give a satisfactory
solution. Indeed second-order arithmetic as a deductive system is incomplete

and, additionally, there appears the problem of nonstandard models and

interpretations.

So we are forced to attempt to characterize the concept of truth (for

PA or for other theories) in an axiomatic way. But here again we encounter

the phenomenon of nonstandardness. In fact, considering a nonstandard
10

model 〈M,S〉 for the theory Γ-PA(S) or its fragment we have that M is a

nonstandard model of PA and S is the appropriate satisfaction class overM,
hence the satisfaction class for formulas of the language Form(M) consisting
of all those elements of the universe M (standard and nonstandard numbers)

that (from the point of view ofM) are (i.e., behave like) formulas (identified
here with their Gödel numbers). Among them there are also nonstandard
formulas, i.e., objects that formally behave like formulas but have no proper

metamathematical meaning (they are formulas from the point of view of the
world of M, but not from the point of view of the real metamathematical
world). Of course L(PA) ⊆ Form(M) and

Str = {(dφe, a) : φ standard formula of L(PA) a M-valuation for
φ,M |= φ[a] ⊆ S.

But this “real” satisfaction Str (and consequently also “real” truth)

cannot be arithmetically defined in (“cut” from) the satisfaction class S.
Indeed, the notion of being standard is not arithmetically definable.

Theories of the type Γ-PA(S) have a rich variety of models. But on the
other hand not every model M of PA can be extended to a model 〈M,S〉
of Γ-PA(S)—indeed, the structure M must satisfy appropriate conditions

that can be characterized in the language of consistency of certain systems
of ω-logic or of the transfinite induction. This shows also that the usage of
satisfaction (truth) in proving theorems about natural numbers (i.e., proving

properties of natural numbers in theories of the type PAΓ−PA(S) ) can be in
a certain sense approximated by transfinite induction or by adding certain

consistency statements concerning appropriate systems of ω-logic.

Moreover, even for a fixed modelM of Peano arithmetic for which there

exists a satisfaction class, the concept of satisfaction and truth cannot be
uniquely determined and, even worse, not always can be defined in such a
way that the required (and expected because useful) nice metamathematical

properties would be satisfied. There is no uniqueness and no bivalency (for

nonstandard models). But nonstandard models and nonstandard languages
(generated by such models and by axiomatic approach to the concept of truth)

turn out to be useful and to have an impressive spectrum of applications.
In particular they can be used to establish properties of deductive systems,

provide insight into fragments of Peano arithmetic as well as into (second-

order) expansions of it. They can also serve as a heuristic guide for behavior
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of the infinity (one can code by nonstandard objects appropriate infinite
sets, in particular infinite sets of standard formulas).

Note also that considering satisfaction classes and truth for the language
of Peano arithmetic and attempting to characterize them axiomatically we

use the whole time at the metatheoretical level Tarskis definition with respect
to structures of the type 〈M,S〉 and the latter is understood as being defined
in a non-formalized metasystem.

A general moral of our considerations is that semantics needs infinitistic

means and methods. Hence finitistic tools and means proposed by Hilbert
in his programme are essentially insufficient.
10

[Footnote] It is impossible to exclude nonstandard models and to restrict ourselves

to the standard one only since the latter cannot be characterized arithmetically (in an

axiomatic way).”

. . . Murawski: [Mur06], pp.301-302.

6.2. An ambiguity in the standard interpretation M of PA

We note that, classically, the standard interpretation M of PA (as defined in
§A, Appendix A) is taken to be the one where, in IS(D):

(a) we define S as PA with the standard first-order predicate calculus FOL3

as the underlying logic;

(b) we define D as the set N of natural numbers;

(c) we assume for any atomic formula [A(x1, x2, . . . , xn)] of PA, and any spec-
ified sequence (b∗1, b

∗
2, . . . , b

∗
n) in N, that the proposition A∗(b∗1, b

∗
2, . . . , b

∗
n)

is decidable in N;

(d) we define the witness WN informally as the ‘mathematical intuition’ of a
human intelligence for whom, classically, (c) has been implicitly accepted
as ‘decidable’ in N.

We note, further, that the implicit acceptance in (d) conceals an ambiguity that
needs to be eliminated by making explicit that:

Lemma 6.9. Any atomic formula A∗(x1, x2, . . . , xn) of PA is both algorithmically
verifiable, and algorithmically computable, in N by WN.

Proof. We have that:

(i) It follows from Gödel’s definition of the primitive recursive relation xBy
([Go31], p. 22(45))—where x is the Gödel number of a proof sequence
in PA whose last term is the PA formula with Gödel-number y—that, if
[A(x1, x2, . . . , xn)] is an atomic formula of PA, we can algorithmically verify
which of the instantiations [A(a1, a2, . . . , an)] and [¬A(a1, a2, . . . , xa)] is
necessarily PA-provable and, ipso facto, true under M. Hence A∗(x1, x2,
. . . , xn) is algorithmically verifiable in N by WN.

(ii) If [A(x1, x2, . . . , xn)] is an atomic formula of PA then, for any specified
sequence of numerals [b1, b2, . . . , bn], the PA formula [A(b1, b2, . . . , bn)] is
an atomic formula of the form [c = d], where [c] and [d] are atomic PA

3We note that in FOL the string [(∃ . . .)] is defined as—and is to be treated as an abbreviation
for—the PA string [¬(∀ . . .)¬]. We do not consider the case where the underlying logic is Hilbert’s
formalisation of classical predicate logic in terms of his ε-operator ([Hi27], pp.465-466).
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formulas that denote PA numerals. Since [c] and [d] are recursively defined
formulas in the language of PA, it follows from a standard result4 that
[c = d] is algorithmically computable as either true or false in N since there
is an algorithm that, for any specified sequence of numerals [b1, b2, . . . , bn],
will give evidence whether [A(b1, b2, . . . , bn)] interprets as true or false in
N. Hence A∗(x1, x2, . . . , xn) is algorithmically computable in N by WN.

The lemma follows.5 �

Accordingly, in this investigation we take the usual standard interpretation M
of PA to be the one where the decidability in §6.2(c) is defined weakly by:

Definition 6.10. An atomic formula [A] of PA is satisfiable under the standard
interpretation M of PA if, and only if, [A] is algorithmically verifiable as true under
M.

We then show that there is, additionally, a finitary interpretation B of PA (as
sought by Hilbert in [Hi00]), where the decidability in §6.2(c) is defined strongly
by:

Definition 6.11. An atomic formula [A] of PA is satisfiable under the in-
terpretation B if, and only if, [A] is algorithmically computable as true under
B.

4For any natural numbers m, n, if m 6= n, then PA proves [¬(m = n)] ([Me64], p.110,

Proposition 3.6). The converse is obviously true.
5Comment : We note that, in [An16] (immediately after Lemma 4.1 there which corresponds

to Lemma 6.9 of this investigation)—and also in [An15] (implicitly)—the author mistakenly

postulates:

“. . . without proof, that (i) is consistent with, whilst (ii) is inconsistent with, the assumption
of Aristotle’s particularisation”.

However, the ω-inconsistency of PA implies (Corollary 15.11) that the assumption of Aristotle’s
particularisation does not hold in any model of PA and is, ipso facto, inconsistent with both (i)
and (ii) in the proof of Lemma 6.9.
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PA





CHAPTER 7

The weak standard interpretation M of PA

We begin by noting (cf. [An16], §5, p.38) that, by Definition 6.10:

Theorem 7.1. The atomic formulas of PA are algorithmically verifiable under
the weak standard interpretation M of PA (as defined in §A, Appendix A).

Proof. See Lemma 6.9. �

7.1. The PA axioms are algorithmically verifiable as true under M

The significance of defining satisfaction in terms of algorithmic verifiability
under M is that:

Lemma 7.2. The PA axioms PA1 to PA8 (as detailed in §A, Appendix A) are
algorithmically verifiable as true under the interpretation M.

Proof. Since [x+ y], [x ? y], [x = y], [x′] are defined recursively (cf. [Go31],
p.17), the PA axioms PA1 to PA8 interpret as recursive relations that do not involve
any quantification. It follows straightforwardly from Theorem 7.1 and Tarski’s
definitions that, in each case, we can define a deterministic algorithm that, for any
substitution of numerals for the variables in the axiom, will evidence the substituted
formula as true under M. �

Lemma 7.3. For any specified PA formula [F (x)], the Induction axiom schema
[F (0) → (((∀x)(F (x) → F (x′))) → (∀x)F (x))] interprets as an algorithmically
verifiable true formula under M.

Proof. We have that:

(a) If [F (0)] interprets as an algorithmically verifiable false formula under M
the lemma is proved.

Reason: Since [F (0) → (((∀x)(F (x) → F (x′))) → (∀x)F (x))] interprets as an
algorithmically verifiable true formula under M if, and only if, either [F (0)] inter-

prets as an algorithmically verifiable false formula or [((∀x)(F (x) → F (x′)))→
(∀x)F (x)] interprets as an algorithmically verifiable true formula under M.

(b) If [F (0)] interprets as an algorithmically verifiable true formula, and [(∀x)
(F (x)→ F (x′))] interprets as an algorithmically verifiable false formula,
under M, the lemma is proved.

(c) If [F (0)] and [(∀x)(F (x) → F (x′))] both interpret as algorithmically
verifiable true formulas under M then, for any natural number n, there is
an algorithm which (by Definition 5.2) will evidence that [F (n)→ F (n′)]
is an algorithmically verifiable true formula under M.
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(d) Since [F (0)] interprets as an algorithmically verifiable true formula under
M, it follows for any natural number n that there is an algorithm which
will evidence that each of the formulas in the finite sequence {[F (0), F (1),
. . . , F (n)}] is an algorithmically verifiable true formula under the inter-
pretation.

(e) Hence [(∀x)F (x)] is an algorithmically verifiable true formula under M.

Since the above cases are exhaustive, the lemma follows. �

Comment : We note that if [F (0)] and [(∀x)(F (x) → F (x′))] both interpret as algo-

rithmically verifiable true formulas under M, then we can only conclude that, for any
natural number n, there is an algorithm which will evidence for any m ≤ n that the

formula [F (m)] is true under M.

We cannot conclude that there is an algorithm which, for any natural number n, will
give evidence that the formula [F (n)] is true under M.

Lemma 7.4. Generalisation preserves algorithmically verifiable truth under M.

Proof. The two meta-assertions:

‘[F (x)] interprets as an algorithmically verifiable true formula under M ’;

and

‘[(∀x)F (x)] interprets as an algorithmically verifiable true formula under
M ’

both mean:

[F (x)] is algorithmically verifiable as true under M.

The lemma follows. �

It is also straightforward to see that:

Lemma 7.5. Modus Ponens preserves algorithmically verifiable truth under M.
2

We thus have that:

Theorem 7.6. The axioms of PA are algorithmically verifiable as true under
the interpretation M, and the rules of inference of PA preserve the properties of
algorithmically verifiable satisfaction/truth under M. 2

Since, by Theorem 7.6, the PA-theorems interpret as algorithmically verifiable truths
under the weak standard interpretation M of PA (as defined in §A, Appendix A),
we further conclude by Theorem 7.1 that (see also §15.4 where we conclude that
Hilbert’s ‘informal’ proof of the consistency of arithmetic in the Grundlagen der
Mathematik—as analysed in [SN01] (pp.144-145)—reasons essentially along the
same lines as the preceding, and can be viewed as also establishing the following):

Theorem 7.7. PA is weakly consistent. 2
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We note that, unlike Gentzen’s debatably1 ‘constructive’ consistency proof for
formal number theory, Theorem 7.7 is an unarguably ‘constructive’ proof even
though it does not yield a ‘finitary’ proof of consistency for PA (since—as noted in
§6—we cannot conclude from Theorem 7.1 whether or not a quantified formula of
PA is ‘finitarily’ decidable as true or false under the weak standard interpretation
M ).

7.2. Is the standard interpretation M of PA finitary?

We note, however, that the weak standard interpretation M of PA cannot claim
to be finitary since (see also Corollary 11.8), by Theorem 5.4, we cannot conclude
finitarily from Tarski’s definitions whether or not a quantified PA formula [(∀xi)F ]
is algorithmically verifiable as true under M if [F ] is algorithmically verifiable but
not algorithmically computable under the interpretation.

Although a proof that such a PA formula exists is not obvious, we shall show
(Corollary 11.5) that Gödel’s ‘undecidable’ arithmetical formula [R(x)] is algorith-
mically verifiable, but not algorithmically computable, under the weak standard
interpretation M of PA.

We also note that, under the weak standard interpretation M of PA, the
PA-provability of the formula [¬(∀x)F (x)] entails only the meta-mathematical
assertion:

(i) We cannot mathematically conclude from the axioms and rules of inference
of PA that:

For any given natural number n, there is always some deterministic
algorithm which will compute [F (n)] and provide evidence that the
interpretation F ∗(n) of [F (n)] under M is an algorithmically verifiable
true arithmetical proposition in N.

and—contrary to conventional wisdom which embraces Aristotle’s particularisation
(Definition 3.1)—not the meta-mathematical assertion:

(ii) We can mathematically conclude from the axioms and rules of inference of
PA that:

There is some deterministic algorithm which will compute [¬F (n)]
and provide evidence that the interpretation ¬F ∗(n) of [¬F (n)] under
M is an algorithmically verifiable true arithmetical proposition in N.

1As Schirn and Niebergall remark in [SN01], p.151: “Gentzen argues in favour of the finitist

admissibility of TI[ε0 ] by appeal to its allegedly constructive character. We think that his line of

argument depends crucially on his ‘finitist’ interpretation of universal quantification and that it
lacks persuasive power precisely for this reason”; adding in a footnote that: “Under ‘TI[ε0 ]’ we

understand here the schema of transfinite induction up to ε0 in the language LPA of PA”.





CHAPTER 8

A weak ‘Wittgensteinian’ interpretation Msyn of
PA

Before considering the finitary interpretation B of PA where the decidability
in §6.2(c) is defined strongly by Definition 6.11, we note that there is also a weak
‘Wittgensteinian’ interpretation Msyn of PA where where the decidability in §6.2(c)
is defined by:

Definition 8.1. An atomic formula [A(x)] of PA is satisfiable under the
interpretation Msyn if, and only if, for any substitution of a given PA-numeral [n]
for the variable [x], the formula [A(n)] is provable in PA.

The interpretation Msyn of PA reflects in essence the views Ludwig Wittgenstein
emphasised in his ‘notorious paragraph’ ([Wi78], Appendix III 8; see also §21.3),
where he seems to suggest that the ‘truth’ of a proposition of a mathematical system
must be definable in terms of its ‘provability’ within the system.

8.1. Interpreting Tarski’s Theorem constructively

The significance of the interpretation Msyn is that standard expositions of
Tarski’s Theorem ([Ta35]) appear to implicitly suggest1 that—contrary to Definition
8.1—a verifiable evidence-based truth of the formulas of a first-order Arithmetic
such as PA, under a well-defined interpretation, cannot be defined algorithmically
in the Arithmetic.

Tarski’s Theorem: The set Tr of Gödel numbers of wfs of S which are true in the
standard model is not arithmetical, i.e., there is no wf A(x) of S such that Tr is the

set of numbers k for which A(k) is true in the standard model.
. . . Mendelson: [Me64], p.151, Corollary 3.38.

However, we now show why it follows from Gödel’s reasoning in [Go31] that
such an implicit inference cannot be justified by appeal to Tarski’s Theorem.

8.2. Tarski’s definitions of satisfiability and truth under the weak
standard interpretation M of PA

We note first that Tarski’s definitions are mathematically significant only if, for
any PA-formula [A(x)] and any given n in N, we can effectively determine whether or
not the interpretation A∗(n) of [A(n)] holds under the weak standard interpretation
M of PA.

1We note that both John Lucas ([Lu61]) and Roger Penrose ([Pe90], [Pe94]) accept this
seeming implication unquestioningly, and use it explicitly as an arguable cornerstone of their
respective defence of the former’s Gödelian Thesis (see also Chapter 27).
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Classically, such determination is implicitly assumed to be algorithmically com-
putable by appeal to the Church and Turing Theses. However, in this investigation
we argue that, by the principle of Occam’s Razor:

(i) there is no justification for such a presumption of strong algorithmic
computability when we can define ‘effective computability’ in terms of
weak algorithmic verifiability as in Definition 12.1;

(ii) the requirement of Tarski’s definitions under the weak standard interpre-
tation M of PA (as defined in §A, Appendix A) ought only to be weak
algorithmic verifiability, as detailed in Chapter 7.

Thus, a formula [A(x)] of PA is defined as satisfied under M if, and only if,
for any assignment of a value n that lies within the range of the variable x in the
domain N of M, the interpretation A∗(n) of [A(n)] holds under M (Definition 6.10).

The formula [(∀x)A(x)] of PA is then defined as true underM if, and only if,
[A(x)] is satisfied underM. Other definitions follow as usual (see Chapter 6).

8.3. A Tarskian definition of satisfiability and truth under a weak
‘Wittgensteinian’ interpretation Msyn of PA

We note next that, just as we can interpret PA without relativisation in ZF
(in the sense indicated by Feferman in [Fe92]), we can also interpret PA in PA
where—also under Tarski’s standard definitions—we now define the satisfiability and
truth of the formulas of PA under a weak ‘Wittgensteinian’ interpretation Msyn of
PA over the structure of the PA numerals by appeal to the provability of a formula
in PA.

Thus, a formula [A(x)] of PA is defined as satisfied under Msyn if, and only
if, for any substitution of a given PA-numeral [n] for the variable [x], the formula
[A(n)] is provable in PA (Definition 8.1).

We note that—as in the case of the weak standard interpretation M of PA—the
requirement of Tarski’s definitions under the weak ‘Wittgensteinian’ interpretation
Msyn of PA is also only weak algorithmic verifiability (see Chapter 7).

The formula [(∀x)A(x)] of PA is then defined as true under Msyn if, and only
if, [A(x)] is satisfied under Msyn. Other definitions follow as usual.

8.4. Weak arithmetic truth under M is equivalent to weak arithmetic
truth under Msyn

It follows that:

Theorem 8.2. The interpretations M and Msyn of PA are isomorphic.

Proof. By definition, the domain of the PA numerals under Msyn is isomorphic
to the domain N of the natural numbers under M.

Further, both M and Msyn are interpretations of PA such that:

(i) each predicate letter A
n

j
of PA under Msyn interprets as an n-place relation

under M in N;
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(ii) each function letter f
n

j
of PA under Msyn interprets as an n-place operation

under M in N (i.e., a function from N into N);

(iii) each individual constant a
i

of PA under Msyn interprets as some fixed
element under M in N;

(iv) the provable formulas of PA are locally ‘true’ respectively by definition
under each of the interpretations M and Msyn.

The theorem follows. �

It further follows that:

Corollary 8.3. A formula of PA is true under the weak standard interpretation
M of PA if, and only if, it is true under the weak ‘Wittgensteinian’ interpretation
Msyn of PA. 2

Moreover, it also follows that, by the classical definition of a ‘model’ (see §A):

Corollary 8.4. The weak standard interpretation M, and the weak ‘Wittgen-
steinian’ interpretation Msyn, are both weak models of PA.

Proof. By Theorem 7.6, the axioms of PA interpret as true, and the PA rules
of inference preserve such truth, under M, which thus defines a weak standard
model of PA. By Corollary 8.3, the axioms of PA interpret as true, and the PA rules
of inference preserve such truth, under Msyn, which too is thus a weak model of
PA. �

8.5. PA is not ω-consistent

We note that, in order to avoid intuitionistic objections to his reasoning in
his seminal 1931 paper on formally undecidable arithmetical propositions, Gödel
introduced the syntactic property of ω-consistency as an explicit assumption in his
formal reasoning ([Go31], p.23 and p.28).

ω-consistency: A formal system S is ω-consistent if, and only if, there is
no S-formula [F (x)] for which, first, [¬(∀x)F (x)] is S-provable and, second,
[F (a)] is S-provable for any specified S-term [a].

We shall address the significance of such an assumption of ω-consistency for
constructive mathematics in §15.1. Meanwhile, we note here that it follows from
Corollary 8.4 that (see also Corollary 11.6 for an independent proof of Theorem
8.5):

Theorem 8.5. PA is not ω-consistent.

Proof. Assume PA is ω-consistent.

(i) If [(∀x)A(x)] is a provable formula of PA, then [A(0)], [A(1)], [A(2)], . . . ,
are all PA-provable and so [(∀x)A(x)] is true under Msyn.

(ii) Hence [¬(∀x)A(x)] cannot be PA-provable if PA is ω-consistent.

(iii) By Gödel’s reasoning in [Go31], if PA is ω-consistent, then there is a
PA-formula [R(x)] such that both [(∀x)R(x)] and [¬(∀x)R(x)] are not
provable in PA, even though [(∀x)R(x)] is true under Msyn.
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(iv) Hence [¬(∀x)R(x)] can be added to PA as an axiom without inviting
inconsistency.

(v) However, if [¬(∀x)R(x)] were to be added as a PA axiom, it would follow
that [(∀x)R(x)] is not true under Msyn—a contradiction.

The theorem follows. �



CHAPTER 9

A strong finitary interpretation B of PA

We consider next a strong finitary interpretation B of PA, where the decidability
in §6.2(c) is defined strongly by Definition 6.11, and note that (cf. [An16], §6, p.40):

Theorem 9.1. The atomic formulas of PA are algorithmically computable under
the strong finitary interpretation B.

Proof. See Lemma 6.9. �

We note that the interpretation B is finitary since:

Lemma 9.2. The closed formulas of PA are algorithmically computable finitarily
as true or as false under B.

Proof. The Lemma follows by finite induction from Definition 5.3, Tarski’s
definitions, and Theorem 9.1. �

9.1. The PA axioms are algorithmically computable as true under B

The significance of defining satisfaction in terms of algorithmic computability
under B as above is that:

Lemma 9.3. The PA axioms PA1 to PA8 are algorithmically computable as true
under the interpretation B.

Proof. Since [x+ y], [x ? y], [x = y], [x′] are defined recursively (cf. [Go31],
p.17), the PA axioms PA1 to PA8 interpret as recursive relations that do not involve
any quantification. It follows straightforwardly from Theorem 9.1 and Tarski’s
definitions that, in each case, we can define a deterministic algorithm that, for any
substitution of numerals for the variables in the axiom, will evidence the substituted
formula as true under B. �

Lemma 9.4. For any specified PA formula [F (x)], the Induction axiom schema
[F (0) → (((∀x)(F (x) → F (x′))) → (∀x)F (x))] interprets as an algorithmically
computable true formula under B.

Proof. By Tarski’s definitions:

(a) If [F (0)] interprets as an algorithmically computable false formula under
B the lemma is proved.

Reason: Since [F (0) → (((∀x)(F (x) → F (x′))) → (∀x)F (x))] interprets as an

algorithmically computable true formula if, and only if, either [F (0)] interprets
as an algorithmically computable false formula, or [((∀x)(F (x) → F (x′))) →
(∀x)F (x)] interprets as an algorithmically computable true formula, under B.
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(b) If [F (0)] interprets as an algorithmically computable true formula, and
[(∀x)(F (x) → F (x′))] interprets as an algorithmically computable false
formula, under B, the lemma is proved.

(c) If [F (0)] and [(∀x)(F (x) → F (x′))] both interpret as algorithmically
computable true formulas under B, then by Definition 5.3 there is an
algorithm which, for any natural number n, will evidence that the formula
[F (n)→ F (n′)] is an algorithmically computable true formula under B.

(d) Since [F (0)] interprets as an algorithmically computable true formula under
B, it follows that there is an algorithm which, for any natural number n,
will evidence that [F (n)] is an algorithmically computable true formula
under the interpretation.

(e) Hence [(∀x)F (x)] is an algorithmically computable true formula under B.

Since the above cases are exhaustive, the lemma follows. �

Lemma 9.5. Generalisation preserves algorithmically computable truth under
B.

Proof. The two meta-assertions:

‘[F (x)] interprets as an algorithmically computable true formula under B ’;

and

‘[(∀x)F (x)] interprets as an algorithmically computable true formula under
B ’

both mean:

[F (x)] is algorithmically computable as true under M.

The lemma follows. �

It is also straightforward to see that:

Lemma 9.6. Modus Ponens preserves algorithmically computable truth under
B. 2

We thus have (without appeal, moreover, to Aristotle’s particularisation) that:

Theorem 9.7. The axioms of PA are algorithmically computable as true under
the interpretation B, and the rules of inference of PA preserve the properties of
algorithmically computable satisfaction/truth under B. 2

9.2. A finitary proof of Hilbert’s Second Problem

Since algorithmic computability and PA-provability are both finitary, it follows that:

Corollary 9.8. The assignment TB of algorithmically computable truth values
to the formulas of PA under B is finitarily decidable. 2

Corollary 9.9. The PA-theorems interpret as finitary truths under B. 2

We thus have a finitary proof that (compare with Theorem 7.7):
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Theorem 9.10. PA is strongly consistent. 2

We note—but do not consider further as it is not germane to the intent of this
investigation—that Theorem 9.10 offers a partial resolution to Hilbert’s Second
Problem ([Hi00]), which asks for a finitary proof that the second order Arithmetical
axioms are consistent:

“When we are engaged in investigating the foundations of a science, we
must set up a system of axioms which contains an exact and complete
description of the relations subsisting between the elementary ideas of that

science. . . . But above all I wish to designate the following as the most
important among the numerous questions which can be asked with regard to
the axioms: To prove that they are not contradictory, that is, that a definite

number of logical steps based upon them can never lead to contradictory
results. In geometry, the proof of the compatibility of the axioms can be
effected by constructing a suitable field of numbers, such that analogous

relations between the numbers of this field correspond to the geometrical
axioms. . . . On the other hand a direct method is needed for the proof of
the compatibility of the arithmetical axioms.”

. . . Newson: [Nw02].

Since the subsumed logic of PA is the standard first-order logic FOL, we further
conclude that:

Corollary 9.11. The standard first-order logic FOL is consistent.

9.3. The Poincaré-Hilbert debate

We note that Lemma 9.4 and Corollary 9.11 appear to dissolve the Poincaré-
Hilbert debate ([Hi27], p.472; also [Br13], p.59; [We27], p.482; [Pa71], p.502-503)
since:

(i) the algorithmically verifiable, non-finitary, weak standard interpretation
M of PA validates Poincaré’s argument that the PA Axiom Schema
of Finite Induction could not be justified finitarily (i.e., with respect to
algorithmic computability) under the classical weak standard interpretation
of arithmetic;

whilst:

(ii) the algorithmically computable strong finitary interpretation B of PA
validates Hilbert’s belief that a finitary justification of the Axiom Schema
was possible under some strong finitary interpretation of an arithmetic
such as PA.

It now follows from Corollary 8.4 (also independently of Corollary 15.11) and
Theorem 9.10 that although the weak standard interpretation M of PA is a model
of PA (Theorem 7.6), it is not a finitary model1 in the sense of Definition 21.7 (for
an independent proof see Corollary 11.8):

1We note that finitists of all hues—ranging from Brouwer [Br08], to Wittgenstein [Wi78],

to Alexander Yessenin-Volpin [He04]—have persistently questioned the assumption that the
‘standard’ interpretation M can be treated as a constructively well-defined model of PA (see also
[Brm07], [Pos13]).



60 9. A STRONG FINITARY INTERPRETATION B OF PA

Corollary 9.12. The weak standard interpretation M of PA is not a construc-
tively well-defined model of PA. 2



CHAPTER 10

Bridging Arithmetic Provability and Arithmetic
Computability

“A paradigm shift is necessary in our notion of computational problem
solving, so it can provide a complete model for the services of today’s

computing systems and software agents.”

. . . Peter Wegner and Dina Goldin: [WG03].

We note that Wegner and Goldin’s arguments, in support of their above thesis
in [WG03], seem to reflect an extraordinarily eclectic view of mathematics, com-
bining both an implicit acceptance of, and implicit frustration at, the standard
interpretations and dogmas of classical mathematical theory:

“. . . Turing machines are inappropriate as a universal foundation for com-
putational problem solving, and . . . computer science is a fundamentally
non-mathematical discipline. . . .

(Turing’s) 1936 paper . . . proved that mathematics could not be completely
modeled by computers. . . .

. . . the Church-Turing Thesis . . . equated logic, lambda calculus, Turing
machines, and algorithmic computing as equivalent mechanisms of problem

solving.

Turing implied in his 1936 paper that Turing machines . . . could not provide
a model for all forms of mathematics. . . .

. . . Gödel had shown in 1931 that logic cannot model mathematics . . . and
Turing showed that neither logic nor algorithms can completely model
computing and human thought.”
. . . Wegner and Goldin: [WG03].

These remarks vividly illustrate the dilemma with which not only theoretical
computer sciences, but all applied sciences that depend on mathematics for providing
a verifiable, evidence-based, language to express their observations precisely, are
faced:

Query 10.1. Are formal classical theories essentially unable to adequately
express the extent and range of human cognition, or does the problem lie in the way
formal theories are classically interpreted at the moment?

The former addresses the question of whether there are absolute limits on
our capacity to express human cognition unambiguously; the latter, whether there
are only temporal limits—not necessarily absolute—to the capacity of classical
interpretations to communicate unambiguously that which we intended to capture
within our formal expression.
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Prima facie, applied science continues, perforce, to interpret mathematical
concepts Platonically1, whilst waiting for mathematics to provide suitable, and
hopefully reliable, answers as to how best it may faithfully express its observations
verifiably.

This dilemma is also reflected in Lance Fortnow’s on-line rebuttal of Wegner
and Goldin’s thesis, and of their reasoning.

Thus Fortnow divides his faith between the standard interpretations of classical
mathematics (and, possibly, the standard set-theoretical models of formal systems
such as standard Peano Arithmetic), and the classical computational theory of
Turing machines.

He relies on the former to provide all the proofs that matter:

“Not every mathematical statement has a logical proof, but logic does capture

everything we can prove in mathematics, which is really what matters”;
. . . Fortnow: Computational Complexity, Tuesday, April 08, 2003.

and, on the latter to take care of all essential, non-provable, truth:

“. . . what we can compute is what computer science is all about”.
. . . Fortnow: Computational Complexity, Tuesday, April 08, 2003.

However, as we shall argue in §12.1, Fortnow’s faith in a classical Church-Turing
Thesis that ensures:

“. . . Turing machines capture everything we can compute”,
. . . Fortnow: Computational Complexity, Tuesday, April 08, 2003.

may be as misplaced as his faith in the infallibility of standard interpretations of
classical mathematics.

Reason: There are, prima facie, reasonably strong arguments for a Kuhnian
paradigm shift; not, as Wegner and Goldin believe, in the notion of computational
problem solving, but in the standard interpretations of classical mathematical
concepts.

Wegner and Goldin could, though, be right in arguing that the direction of
such a shift must be towards the incorporation of non-algorithmically computable
effective methods into classical mathematical theory; presuming, from the following
remarks, that this is, indeed, what ‘external interactions’ are assumed to provide
beyond classical Turing-computability:

“. . . that Turing machine models could completely describe all forms of com-
putation . . . contradicted Turing’s assertion that Turing machines could only

formalize algorithmic problem solving . . . and became a dogmatic principle
of the theory of computation. . . .

. . . interaction between the program and the world (environment) that takes

place during the computation plays a key role that cannot be replaced by
any set of inputs determined prior to the computation. . . .

1e.g., Lakoff and Núñez’s debatable (see [Md01]) argument in [LR00] that—even though not

verifiable in the sense of having an evidence-based interpretation—set theory is the appropriate
language for expressing the ‘conceptual metaphors’ by which an individual’s ‘embodied mind brings
mathematics into being’.

http://blog.computationalcomplexity.org/2003/04/computation-beyond-turing-machines.html
http://blog.computationalcomplexity.org/2003/04/computation-beyond-turing-machines.html
http://blog.computationalcomplexity.org/2003/04/computation-beyond-turing-machines.html
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. . . a theory of concurrency and interaction requires a new conceptual frame-
work, not just a refinement of what we find natural for sequential [algorithmic]

computing. . . .

. . . the assumption that all of computation can be algorithmically specified

is still widely accepted.”
. . . Wegner and Goldin: [WG03].

A widespread notion of particular interest, which seems to be recurrently implicit
in Wegner and Goldin’s assertions too, is that mathematics is a dispensable tool of
science, rather than its indispensable mother tongue.

However, the roots of such beliefs may also lie in ambiguities, in the classical
definitions of foundational elements, that allow the introduction of non-constructive—
hence non-verifiable, non-computational, ambiguous, and essentially Platonic—
elements into the standard interpretations of classical mathematics.

For instance, in a 1990 philosophical reflection, Elliott Mendelson’s following
remarks implicitly imply that classical definitions of various foundational elements
can be argued as being either ambiguous, or non-constructive, or both:

“Here is the main conclusion I wish to draw: it is completely unwarranted

to say that CT is unprovable just because it states an equivalence between
a vague, imprecise notion (effectively computable function) and a precise
mathematical notion (partial-recursive function). . . . The concepts and

assumptions that support the notion of partial-recursive function are, in
an essential way, no less vague and imprecise than the notion of effectively
computable function; the former are just more familiar and are part of a

respectable theory with connections to other parts of logic and mathematics.
(The notion of effectively computable function could have been incorporated
into an axiomatic presentation of classical mathematics, but the acceptance
of CT made this unnecessary.) . . . Functions are defined in terms of sets, but

the concept of set is no clearer than that of function and a foundation of
mathematics can be based on a theory using function as primitive notion
instead of set. Tarski’s definition of truth is formulated in set-theoretic

terms, but the notion of set is no clearer than that of truth. The model-
theoretic definition of logical validity is based ultimately on set theory, the
foundations of which are no clearer than our intuitive understanding of

logical validity. . . . The notion of Turing-computable function is no clearer
than, nor more mathematically useful (foundationally speaking) than, the
notion of an effectively computable function.”

. . . Mendelson: [Me90].

Consequently, standard interpretations of classical theory may, inadvertently,
be weakening a desirable perception of mathematics as the lingua franca of scientific
expression by ignoring the possibility that, since mathematics is indisputably ac-
cepted as the language that most effectively expresses and communicates semantic
truth, the chasm between—at the least—semantic arithmetical truth and syntactic
arithmetical provability must, of necessity, be bridgeable explicitly.

Of interest in this context is Martin Davis’ argument that an unprovable truth
may, indeed, be arrived at ‘algorithmically’.

“Is Mathematical Insight Algorithmic?

Roger Penrose replies “no,” and bases much of his case on Gödel’s incom-

pleteness theorem: it is insight that enables to see that the Gödel sentence,
undecidable in a given formal system is actually true; how could this insight
possibly be the result of an algorithm? This seemingly persuasive argument
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is deeply flawed. To see why will require looking at Gödel’s theorem at a
somewhat more microscopic level than Penrose permits himself. . . .

. . . Gödel’s incompleteness theorem (in a strengthened form based on work
of J. B. Rosser as well as the solution of Hilbert’s tenth problem) may be

stated as follows:

There is an algorithm which, given any consistent set of axioms,
will output a polynomial equation P = 0 which in fact has no

integer solutions, but such that this fact can not be deduced from

the given axioms.

Here then is the true but unprovable Gödel sentence on which Penrose relies

and in a simple form at that. Note that the sentence is provided by an
algorithm. If insight is involved, it must be in convincing oneself that the

given axioms are indeed consistent, since otherwise we will have no reason
to believe that that the Gödel sentence is true.”

. . . Davis: [Da95].

Now, what Davis is essentially critiquing here—albeit unknowingly—is Penrose’s
failure to recognise that Gödel’s true but unprovable sentence interprets as a
quantified arithmetical proposition over N whose truth is algorithmically verifiable
weakly (Definition 5.2), but not algorithmically computable strongly (Definition 5.2),
in N.

However, it can be argued ([An07b], [An07c]) that Penrose—as well as other
philosophers and scientists such as, for instance, Lucas ([Lu61]), Wittgenstein
([Wi78]) and [Bu10]—should not be held to serious account for such lapse, since,
as illustrated by Jeff Buechner’s fallacious (in view of Theorem 9.10 and Theorem
27.1) argument, it merely reflects their unquestioning faith in standard expositions
of classical theory which, too, can be critiqued similarly for failing to make this
distinction explicit:

“In 1984, Putnam proposed an ingenious argument, which he claimed avoided
Penrose’s error and which restored the Gödel incompleteness theorems as
limitative results in psychology. That his argument is invalid is argued in

detail in my book Gödel, Putnam and Functionalism [20]. As we shall see
below, even if human beings could prove the consistency of any formal system
strong enough to express the truths of arithmetic, the Gödel ncompleteness

theorems could not be used as limitative results in psychology. The reason

is straightforward, but it has eluded most thinkers who have weighed in on
the role of the Gödel theorems as limitative results in psychology.

What eluded Hilary Putnam, philosophers, mathematicians, cognitive

scientists, and neuroscientists is that the Gödel theorems show that no

one—whether the Gödel theorems apply to them or not—can finitistically
prove the consistency of Peano arithmetic with mathematical certainty. They

do not show that one cannot prove the consistency of Peano Arithmetic

with less than mathematical certainty. The proof relation of a formal system
confers mathematical certainty upon everything that is proved in it. This

importantly qualifies any claim about what can and cannot prove in a formal

system. The only way finitary beings can achieve mathematical certainty
in what they prove is to prove it in a finitary formal system. There are

few results in mathematics that are proved with mathematical certainty
since few mathematicians prove their results in a finitary formal system

(such as first-order logic). No being—not even God—could prove a Gödel

sentence with mathematical certainty in a finitary formal system. The only
way to prove a Gödel sentence with mathematical certainty is to either use
a stronger finitary formal system—in which case there will be a new Gödel
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sentence that cannot be proved in it—or to employ an infinitary system in
which one constructs infinitary proofs. The latter is within the powers of

God, but it is not within the powers of finitary human beings. We cannot
construct infinitary proof trees.

The upshot is that no finitary human being can use the Gödel incom-
pleteness theorems to show there are proof-theoretic powers human cognition
has that no computational device intended to simulate it can capture.”

. . . Buechner: [Bu10], p.12.

We also note that, in a survey of the foundations of mathematics in the 20th

century, V. Wictor Marek and Jan Mycielski emphasise the significance of bridging
the gap between computability and provability:

“Finally let us formulate three open problems in logic and foundations which
seem to us of special importance.

1. To develop an effective automatic method for constructing proofs of

mathematical conjectures, when these conjectures have simple proofs!
Interesting methods of this kind already exist but, thus far, “automated
theorem proving procedures” are not dynamic in the sense that they do

not use large lists of axioms, definitions, theorems and lemmas which
mathematicians could provide to the computer. Also, the existing
methods are not yet powerful enough to construct most proofs regarded

as simple by mathematicians, and conversely, the proofs constructed
by these methods do not appear simple to mathematicians.

2. Are there natural large cardinal existence axioms LC such that ZFC
+ LC implies that all OD sets X of infinite sequences of 0s and 1s
satisfy the axiom of determinacy AD(X)? This question is similar to

the continuum hypothesis in the sense that it is independent of ZFC
plus all large cardinal axioms proposed thus far.

3. Is it true that PTIME 6= NPTIME, or at least, that PTIME 6=
PSPACE? An affirmative answer to the first of these questions would
tell us that the problem of constructing proofs of mathematical con-
jectures in given axiomatic theories (and many other combinatorial

problems) cannot be fully mechanized in a certain sense.”

. . . Marek and Mycielski: [MM01], p.467.

We shall therefore attempt to build such a bridge explicitly, since a significant
consequence of Theorem 9.7 for constructive mathematics is that it justifies the, not
uncommon, belief expressed by by Christian S. Calude, Elena Calude and Solomon
Marcus as follows:

“Classically, there are two equivalent ways to look at the mathematical

notion of proof: logical, as a finite sequence of sentences strictly obeying
some axioms and inference rules, and computational, as a specific type of

computation. Indeed, from a proof given as a sequence of sentences one can
easily construct a Turing machine producing that sequence as the result of

some finite computation and, conversely, given a machine computing a proof

we can just print all sentences produced during the computation and arrange
them into a sequence.”

. . . Calude, Calude and Marcus: [CCS01].

In other words, the authors seem to hold that Turing-computability of a ‘proof’,
in the case of a mathematical proposition, ought to be treated as equivalent to the
provability of its representation in the corresponding formal language.
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We contrast this with the perspective in a recent article by Sieg and Walsh on
the verifiability of formalizations of the Cantor-Bernstein Theorem in ZF—via the
proof assistant AProS which ‘allows the direct construction of formal proofs that
are humanly intelligible’.

The authors briefly reaffirm conventional wisdom by emphasising the need to
distinguish between proof sequences of formal mathematical languages that are
computable as ‘formal derivations in particular calculi’, and their interpretations
which are ‘the informal arguments given in mathematics’; hinting obliquely that
the crucial problem is finding a faithful mathematical representation of the logical
inferences in informal arguments that involve ‘not surprisingly, the introduction and
elimination rules for logical connectives, including quantifiers’:

“The objects of proof theory are proofs, of course. This assertion is however

deeply ambiguous. Are proofs to be viewed as formal derivations in particular

calculi? Or are they to be viewed as the informal arguments given in
mathematics?—The contemporary practice of proof theory suggests the first
perspective, whereas the programmatic ambitions of the subject’s pioneers
suggest the second. We will later mention remarks by Hilbert (in sections 5

and 7) that clearly point in that direction. Now we refer to Gentzen who
inspired modern proof theoretic work; his investigations and insights concern
prima facie only formal proofs. However, the detailed discussion of the proof

of the infinity of primes in his [Gentzen, 1936, pp. 506-511] makes clear that
he is very deeply concerned with formalizing mathematical practice. The
crucial problem is finding the atomic inference steps involved in informal

arguments. The inference steps Gentzen brings to light are, perhaps not
surprisingly, the introduction and elimination rules for logical connectives,
including quantifiers.”

. . . Sieg and Walsh: [SW17].

The authors note further that:

“When extending the effort from logical to mathematical reasoning one is led
to the task of devising additional tools for the natural formalization of proofs.

Such tools should serve to directly reflect standard mathematical practice

and preserve two central aspects of that practice, namely, (1) the axiomatic
and conceptual organization in support of proofs and (2) the inferential

mechanisms for logically structuring them. Thus, the natural formalization

in a deductive framework verifies theorems relative to that very framework,
but it also deepens our understanding and isolates core ideas; the latter lend

themselves often, certainly in our case, to a diagrammatic depiction of a
proof’s conceptual structure. . . . ”

. . . Sieg and Walsh: [SW17].

Without addressing the larger dimensions of the authors’ argument—which
implicitly sanctifies Gentzen’s use of transfinite, set-theoretical, reasoning in formal
proofs and is critically based on the thesis that (see also Chapter 18):

“The language of set theory is, however, the lingua franca of contemporary

mathematics and ZF its foundation.”

. . . Sieg and Walsh: [SW17].

we conclude from the following (Theorem 10.2) that although set theory may
be the appropriate language for the symbolic expression of Lakoff and Núñez’s
‘conceptual metaphors’, by which an individual’s ‘embodied mind brings mathematics
into being’ (see [LR00]), it is the strong finitary interpretation of the first-order
Peano Arithmetic PA (see Theorem 9.7) that makes PA a stronger contender for
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the role of the lingua franca of adequate expression and effective communication
for contemporary mathematics and its foundations, since PA allows us to bridge
arithmetic provability and arithmetic computability in the sense of [CCS01].

10.1. A Provability Theorem for PA

Thus, we note that (cf. [An16], Theorem 7.1, p.41):

Theorem 10.2. (Provability Theorem for PA) A PA formula [F (x)] is PA-
provable if, and only if, [F (x)] is algorithmically computable as true in N under
B.

Proof. We have by definition that [(∀x)F (x)] interprets as true under the
interpretation B if, and only if, [F (x)] is algorithmically computable as true in N.

By Lemma 9.2 the closed formulas of PA are algorithmically computable finitarily
as true or as false under B.

By Theorem 9.7, B defines a finitary model of PA over N such that:

• If [(∀x)F (x)] is PA-provable, then [F (x)] is algorithmically computable as
true under interpretation in N;

• If [¬(∀x)F (x)] is PA-provable, then it is not the case that [F (x)] is algo-
rithmically computable as true under interpretation in N.

Now, we cannot have that both [(∀x)F (x)] and [¬(∀x)F (x)] are PA-unprovable
for some PA formula [F (x)], as this would yield the contradiction:

(i) There is a well-defined model—say B′—of PA+[(∀x)F (x)] over N in which
[F (x)] is algorithmically computable as true under interpretation;

(ii) There is a well-defined model—say B′′—of PA+[¬(∀x)F (x)] over N in
which it is not the case that [F (x)] is algorithmically computable as true
under interpretation.

The theorem follows. �

We note that there is, however—as Gödel has demonstrated in [Go31]—a
PA formula [R(x)] that is algorithmically verifiable as true under the standard
interpretation M of PA in N, but not provable in PA.

It follows that the arithmetical interpretation of the PA formula [(∀x)R(x)] under
M —if denoted by (∀x)R∗(x)—is not a logical consequence of ‘R∗(0), R∗(1), . . . ,
R∗(n), . . .’ under Tarski’s definition of logical consequence2.

This is often a source of confusion in classical logic (see, for instance, [Ed03]),
which does not distinguish between the algorithmically verifiable truth, and the
algorithmically computable truth, of an assertion such as:

(?) ‘Every natural number possesses the property R∗’

when it treats:

‘(∀x)R∗(x) ≡ R∗(0) ∧R∗(1) ∧ . . . ∧R∗(n) ∧ . . .’
as unambiguously symbolising the assertion (?).

2Compare with Hilbert’s ω-rule detailed in §15.2
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10.2. Algorithmic ω-rule: PA is ‘algorithmically’ complete

It now follows from Theorem 10.2 that PA is ‘algorithmically’ complete in the sense
that3:

Corollary 10.3. (Algorithmic ω-Rule) If it is proved that the PA formula
[F (x)] interprets as an arithmetical relation F ∗(x) that is algorithmically computable
as true for any given natural number n, then the PA formula [(∀x)F (x)] can be
admitted as an initial formula (axiom) in PA. 2

3The significance of the Algorithmic ω-Rule is detailed in §15.2



Part 3

Some consequences for
constructive mathematics of the

Provability Theorem for PA





CHAPTER 11

Some evidence-based consequences of the
Provability Theorem

11.1. PA is ω-inconsistent

A significant consequence of Theorem 10.2 is that it establishes—contrary to
conventional wisdom—that PA is not ω-consistent ([An16], Corollary 8.4, p.42; see
also Theorem 8.5 and Corollary 11.6).

Since it follows immediately from Theorem 10.2 that any two models of PA are
isomorphic, we first note (cf. [An16], Corollary 7.2, p.41) that:

Corollary 11.1. The first-order Peano Arithmetic PA is categorical with
respect to algorithmic computability. 2

It follows that, contrary to [Ka91] and [Ka11] (a detailed analysis of why PA
cannot admit non-standard models is given in §20.19):

Corollary 11.2. There are no non-standard numbers in any model of PA. 2

We further note that:

Lemma 11.3. If M is the standard model of PA over N, then there is a PA
formula [F ] which is algorithmically verifiable as true over N under M even though
[F ] is not PA-provable.

Proof. Gödel has shown in [Go31] how to construct an arithmetical formula
with a single variable—say [R(x)]1—such that [R(x)] is not PA-provable2, but [R(n)]
is instantiationally PA-provable for any specified PA numeral [n]3. Hence, for any
specified numeral [n], Gödel’s primitive recursive relation xBd[R(n)]e must hold
for some x (where d[R(n)]e denotes the Gödel-number of the formula [R(n)]). The
lemma follows. �

By the argument in Theorem 10.2 it further follows that:

Corollary 11.4. The formula [¬(∀x)R(x)] in Lemma 11.3 is PA-provable. 2

1Gödel refers to the formula [R(x)] only by its Gödel number r ([Go31], p.25, eqn.12).
Although Gödel’s aim in [Go31] was to show that [(∀x)R(x)] is not P-provable, it follows that

[R(x)] is also, then, not P-provable.
2Which corresponds to Gödel’s proof in [Go31] that (p.26(2)): (n)nBκ(17Gen r) holds.

3Which corresponds to Gödel’s proof in [Go31] that (p.26(2)): (n)Bewκ

[
Sb

(
r

17

Z(n)

)]
holds.
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Corollary 11.5. In any model of PA, Gödel’s arithmetical formula [R(x)]
interprets as an algorithmically verifiable, but not algorithmically computable, arith-
metical function R∗(x) which is always true over N.

Proof. Gödel has shown that [R(x)] interprets as an algorithmically verifi-
able arithmetical function R∗(x) which is always true over N. By Corollary 11.4
[R(x)] is not algorithmically computable as always true in N. Hence R∗(x) is not
algorithmically computable as always true over N. �

We thus have another proof, independent of Theorem 8.5, that:

Corollary 11.6. PA is not ω-consistent.

Proof. Gödel has shown that if PA is consistent, then [R(n)] is PA-provable for
any specified PA numeral [n]. By Corollary 11.4 and the definition of ω-consistency,
if PA is consistent then it is not ω-consistent. �

We note that this conclusion is contrary to accepted dogma, since ω-consistency—
or an equivalent such as Rosser’s Rule C (see §15.6)—is necessary for concluding the
existence of ‘undecidable’ arithmetical propositions. Davis, for instance, remarks
that:

“. . . there is no equivocation. Either an adequate arithmetical logic is ω-

inconsistent (in which case it is possible to prove false statements within it)
or it has an unsolvable decision problem and is subject to the limitations of
Gödel’s incompleteness theorem”.

. . . Davis: ([Da82], p.129(iii)).

11.2. Are there semantically undecidable arithmetical propositions?

We note that Corollary 11.4 immediately implies that4:

Theorem 11.7. There are semantically undecidable propositions of PA under
the weak, classically ‘standard’, interpretation M of PA.

Proof. By Theorem 5.4, we cannot conclude finitarily from Tarski’s definitions
whether or not a quantified PA formula [(∀x)R] is algorithmically verifiable as always
true under M if [R] is algorithmically verifiable but not algorithmically computable
under the interpretation M.

Moreover, from §7.2, Corollary 11.4, and Corollary 11.5, we can only conclude
that, under M, the PA-provability of the formula [¬(∀x)R(x)] entails the meta-
mathematical assertion:

(i) We cannot mathematically conclude from the axioms and rules of inference
of PA that:

For any given natural number n, there is always some deterministic
algorithm which will compute [R(n)] and provide evidence that R∗(n)
is an algorithmically verifiable true arithmetical proposition in N.

However:

4The significance of Theorem 11.7 for the physical sciences is seen in the suggested resolution
that it offers of Schrödinger’s putative ‘cat’ paradox in §29.14.
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(ii) Since Gödel has shown meta-mathematically that the PA-formula [R(n)]
is PA-provable for any given PA-numeral [n], it also follows that:

For any given natural number n, there is always some deterministic
algorithm that will compute [R(n)] and provide evidence that R∗(n)
is an algorithmically verifiable true arithmetical proposition in N.

The theorem follows. �

We note that according to Timm Lampert (see §21.3)—and reflecting the
evidence-based perspective of this investigation—the need to differentiate between:

(a) the ‘truth’ of the formulas of a formal mathematical language L that
follows by mathematical reasoning from the axioms and rules of inference
of L under a well-defined interpretation I; and

(b) the ‘truth’ of the formulas of L that follows by meta-mathematical reasoning
from the axioms and rules of inference of L under I,

is implicitly suggested in Wittgenstein’s ‘notorious’ paragraph in [Wi78]:

“The most crucial aspect of any comparison of two different types of unprov-
ability proofs is the question of what serves as the “criterion of unprovability”
(I, §15). According to Wittgenstein, such a criterion should be a purely

syntactic criteria independent of any meta-mathematical interpretation of
formulas. It is algorithmic proofs relying on nothing but syntactic criteria
that serve as a measure for assessing meta-mathematical interpretations, not

vice-versa.”

. . . Lampert: [Lam17].

11.3. The interpretation M of PA is not constructively well-defined

We immediately conclude from Theorem 11.7, independent of Corollary 9.12, that,
in the sense of Definition 21.7:

Corollary 11.8. The weak standard interpretation M of PA is not a construc-
tively well-defined model of PA. 2

We note that the semantic undecidability of Gödel’s ‘formally ’ undecidable
formula [¬(∀x)R(x)] of PA under the weak, classically ‘standard’, interpretation
M of PA in Theorem 11.7 reflects the fact that Gödel’s PA-formula [(∀x)R(x)]
is algorithmically verifiable meta-mathematically as always true over N, but not
algorithmically verifiable mathematically as always true over N.

11.4. There are no formally undecidable arithmetical propositions

Moreover, it further follows immediately from Theorem 10.2 that:

Corollary 11.9. There are no formally undecidable arithmetical propositions
in PA. 2

In other words, the appropriate inference to be drawn from Gödel’s 1931 paper
([Go31]), then, is no longer that there exist formally undecidable PA formulas5 such

5It would follow that Wittgenstein could justifiably protest, as is implicit in his ‘notorious’
paragraph ([Wi78], Appendix III 8; see also §21.3)—albeit purely on the basis of philosophical
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as [(∀x)R(x)]—since [¬(∀x)R(x)] is PA-provable by Corollary 11.4—but that we can
define PA formulas which, under interpretation, are semantically undecidable in the
sense that they are algorithmically verifiable as true over N, but not algorithmically
computable as true over N.

11.5. The two interpretations M and B of PA are complementary

Another significant consequence of Theorem 10.2 for the conclusions drawn
classically from Gödel’s reasoning in [Go31] is that:

(a) If we assume the satisfaction and truth of the compound formulas of PA are
always non-finitarily decidable under M, then this assignment corresponds
to the classical weak standard interpretation M of PA over the domain N
relative to the truth assignments TM ;

whilst:

(b) The satisfaction and truth of the compound formulas of PA are always
finitarily decidable under the assignment B, which corresponds to the
strong finitary interpretation B of PA over the domain N relative to the
truth assignments TB; from which we may further finitarily conclude on
the basis of evidence-based reasoning that PA is consistent.

11.6. PA can express only algorithmically computable constants

It also follows from Corollary 11.4, Corollary 11.5, and Theorem 10.2 that:

Theorem 11.10. A PA formula can denote only algorithmically computable
constants.

Proof. If we admit Aristotle’s particularisation under the standard interpre-
tation M of PA, then Corollary 11.4 implies that there is an unspecified natural
number q for which the sentence R∗(q) is algorithmically verifiable as false.

However, it follows from Corollary 11.5 that the PA numeral corresponding
to such an unspecified natural number q is not explicitly definable, by any PA
formula, as a first-order term of PA which can be individually denoted within a PA
formula. �

Theorem 11.10 establishes that an implicit definition, such as that of a putative
natural number q, may—like any definition of ‘The current king of France’—be
vacuous since, by Corollary 11.2 there can be no non-standard numbers in any
constructively well-defined model of PA (thus contradicting [Ka91] and [Ka11],
whose reasoning is refuted in §20.19).

In other words, it follows from Gödel’s reasoning that a PA-numeral correspond-
ing to a putative unspecified natural number q is not explicitly definable, by any
PA formula, as a first-order term of PA which can be individually denoted within
a PA formula6, even though, by Gödel’s definition, any putative q satisfying the

considerations unrelated to whether or not Gödel’s formal reasoning was correct—that Gödel
was wrong in concluding that his arithmetical proposition could be formally undecidable but

unequivocally true under interpretation!
6See also [Sl15] for a similar, albeit independent, conclusion, based on considerations that

can be viewed as a philosophical interpretation of Theorem 11.10.
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definition must lie in the domain of the natural numbers that is defined completely
by the semantics of Dedekind’s second order Peano Postulates (see [AR02a]: p.7,
Dedekind’s Theorems 132 and 133, and p.3, Definition 3).

An immediate consequence of this is that Rosser’s extension of Gödel’s argument
([Ro36]) cannot appeal to the eliminable introduction of an unspecified PA-numeral—
as an instantiation of an existential formula—into a PA-proof sequence by implicitly
appealing (see, for instance, [Me64], p.145, Proposition 3.32) to the catalytic
stratagem of Rosser’s Rule C (see Appendix B [§B]; also [Ro53], pp.127-130), for
concluding the existence of an ‘undecidable’ Rosser proposition (which contains an
existentially quantified formula) in an arithmetic such as PA.

11.7. Philosophical implications of the Provability Theorem for PA

Philosophically, Theorem 11.10 would admit the possibility that the behaviour of
algorithmically verifiable, but not algorithmically computable, functions may best
describe the laws governing the quantum behaviour of some physical processes—such
as that of quantum entanglement considered in the EPR argument ([EPR35]; see
also §29.1)—which the authors Albert Einstein, Boris Podolsky and Nathan Rosen
ascribe to the ‘putative’ existence of laws of nature that may not be expressible
in any categorical language (see §29.11)—such as, for instance, PA—and are thus
partially hidden from direct human cognition.

Of related interest—but not immediately obvious—is whether the ‘logic’ of
algorithmically verifiable, but not algorithmically computable, functions mirrors
what S. A. Selesnick, J. P. Rawling, and Gualtiero Piccinini describe in a recent
2017 paper as the possible logic of ‘quantum’ processes that may be partially hidden
from direct human cognition:

“Classical systems, which do not exhibit quantum-like behavior, follow ordi-

nary Boolean logic. The systems we study, which may include neural systems
that exhibit quantum-like behavior, have states that we call “confusable”.
These are states that are similar to one another but are such that their small

differences may affect the system’s behavior in certain ways not necessarily
apparent to external systems. We call systems with confusable states dis-
criminating systems; we call other (classical) systems non-discriminating

systems. Discriminating systems and their quantum-like behavior can be

described using a special non-classical logic.

We shall argue that the logic intrinsic to such systems requires a
small adjustment to, or deformation of, the usual Boolean logic of non-

discriminating systems, where here non-discriminating means “confusable

iff identical.” For such a non-discriminating system, this logic, namely the
collection of all possible propositions concerning the system, is the Boolean

lattice of all subsets of the set of states of the system. This Boolean lattice

of propositions is replaced in the “discriminating” cases of interest here with
a different kind of lattice of subsets. These lattices differ in only one respect

from the Boolean case, namely, they are not distributive: the meet does not

distribute over the join, nor the join over the meet, an equivalent condition
in any lattice. Such lattices are called ortholattices, the involution taking

the place of complementation in the Boolean case being called in this case
the orthocomplement. As we shall argue, this single difference, namely the

non-distribution of meet over join, is sufficient to explain most if not all of the

quantum-like behaviors which seem so anomalous to classical thinkers. Just
as ordinary propositional calculus (PC) is modeled by Boolean lattices, so
there is a logic modeled by ortholattices. It is called orthologic (OL) and was
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first studied by R. Goldblatt . . . This is the logic that emerges as the correct
replacement for PC in the models of interest, and we shall exploit various

forms of its model theory to reveal quantum-like attributes of these systems.
We argue that certain of these models already exhibit, in the total absence
of physical trappings, such standard quantum-like classically anomalous

behaviors as “quantum parallelism” (as in the fable of Schrödingers cat)
“and quantum interference” (á la the double slit experiment), though these
phenomena are not independent, both stemming from the peculiarities

of quantum-like disjunction . . . As examples of such models we posit the
sets of states of drastically simplified versions of a “network” of the kind
mentioned above. Namely, we shall, for the purpose of this paper, except
in the . . . simplest cases of Boolean or classical networks . . . , ignore the

details of the network itself, returning to it in the sequel. We are left with
the state spaces of clusters of nodes, considered as discriminating systems,
whose appropriate logic is OL. We shall find that, in analogy with the case

of aggregates of non-interacting physical quanta, our logical requirements
impose quantum-like behavior on such clusters, though apparently in a
different form from actual quantum mechanics . . .

We emphasize that our considerations here refer to the kinematics of
the possible spaces of states involved: that is to say, the states of affairs
before the systems are “observed” or “measured.” Thus the correspondent
here to the problematic phenomenon known in ordinary quantum theory as

the “collapse of the wave-function” does not arise in this paper. It will be
addressed in the sequel.”
. . . S. A. Selesnick, J. P. Rawling, and Gualtiero Piccinini: ([SRP17]).

It is a possibility that may also have significance for the possible mathematical
representation of physical phenomena involving fundamental dimensionless constants
in terms of functions that are algorithmically verifiable, but not algorithmically
computable7.

For instance, Marian B. Pour-El and Ning Zhong conclude that computable
initial data can give rise to non-computable solutions in quantum theory by consid-
ering:

“. . . the three-dimensional wave equation. It is well-known that the solution
u(x, y, z, t) is uniquely determined by two initial conditions: the values of
u and ∂u/∂t at time t = 0. Our question is, can computable initial data

give rise to non-computable solutions? The answer is “yes,” and two quite
different types of noncomputability can occur. Theorem 1 below gives an
example in which the solution u(x, y, z, t) takes a noncomputable real value
at a computable point in space-time. By contrast, Theorem 2 provides an

example in which the solution maps each computable sequence of points
in space-time into a computable sequence: nevertheless u(x, y, z, t) is not a

computable function. . . .

The results of this paper are related to comments of Kreisel . . . asks
whether existing physical theories—e.g., classical mechanics or quantum
mechanics—can predict theoretically the existence of a physical constant
which is not a recursive real. Previous work of the authors in this area

. . . was concerned with ordinary differential equations: it was proved that
there exists a computable—and hence continuous—function F such that

dy/dx = F (x, y) has no computable solutions in any rectangle however small
within its domain. In the present paper, by passing to partial differential
equations, we obtain similar results with an equation which is more familiar.”
. . . Pour-El & Zhong: ([PZ97]).

7As conjectured in [An13]; see also §29.6
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11.8. Why Hilbert’s ε-calculus is not a conservative extension of of the
first-order predicate calculus

Another significant consequence of Theorem 10.2 is that, since Hilbert’s ε-calculus
admits ε-terms that interpret as unspecified natural numbers, the calculus—contrary
to conventional wisdom (see, for instance, [Sl15])—is not a conservative extension8

of of the first-order predicate calculus.

Corollary 11.11. Hilbert’s ε-calculus is not a conservative extension of the
first-order predicate calculus.

Proof. If Hilbert’s ε-calculus were a conservative extension of the first-order
predicate calculus, then it would be consistent and PA would admit Rosser’s proof
([Ro36]) that the ‘Rosser’ formula—which is expressed in the language of PA and
contains an existential quantifier (see Chapter 16)—is undecidable in the ε-calculus
if we define the existential quantifier as in §4.1IV(13)(1)(ii). However, by Corollary
11.9, there are no undecidable PA formulas. The corollary follows. �

8As defined in Appendix §A.





CHAPTER 12

The Church-Turing Thesis violates evidence-based
reasoning

We consider the significance of the Provability Theorem for PA (Theorem 10.2) for
the Church-Turing Thesis and Turing’s Halting problem.

It is significant that both Gödel (initially) and Alonzo Church (subsequently—
possibly under the influence of Gödel’s disquietitude) enunciated Church’s for-
mulation of ‘effective computability’ as a Thesis because Gödel was instinctively
uncomfortable with accepting it as a definition that minimally captures the essence
of intuitive effective computability (see [Si97]).

Gödel’s reservations seem vindicated if we accept (as argued, for instance, in
[An06]) that a number-theoretic function can be effectively computable instanti-
ationally (in the sense of being algorithmically verifiable), but not by a uniform
method (in the sense of being algorithmically uncomputable).

That arithmetical ‘truth’ too can be effectively decidable instantiationally, but
not by a uniform method, under an appropriate interpretation of PA is speculated
upon by Gödel in his famous 1951 Gibbs lecture, where he remarks1:

“I wish to point out that one may conjecture the truth of a universal
proposition (for example, that I shall be able to verify a certain property for

any integer given to me) and at the same time conjecture that no general

proof for this fact exists. It is easy to imagine situations in which both these
conjectures would be very well founded. For the first half of it, this would,

for example, be the case if the proposition in question were some equation

F (n) = G(n) of two number-theoretical functions which could be verified up
to very great numbers N .”

. . . Gödel: ([Go51]).

Such a possibility is also implicit in Turing’s remarks ([Tu36], §9(II), p.139):

“The computable numbers do not include all (in the ordinary sense) definable

numbers. Let P be a sequence whose n-th figure is 1 or 0 according as n
is or is not satisfactory. It is an immediate consequence of the theorem of
§8 that P is not computable. It is (so far as we know at present) possible
that any assigned number of figures of P can be calculated, but not by a
uniform process. When sufficiently many figures of P have been calculated,

an essentially new method is necessary in order to obtain more figures.”
. . . Turing: ([Tu36], §9(II), p.139).

1Rohit Parikh’s paper [Pa71] on existence and feasibility can also be viewed as an attempt
to investigate the consequences of expressing the essence of Gödel’s remarks formally.
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The need for placing such a distinction2 on a formal basis has also been expressed
explicitly on occasion. Thus, Boolos, Burgess and Jeffrey ([BBJ03], p. 37) define a
diagonal function, d, any value of which can be decided effectively, although there is
no single algorithm that can effectively compute d.

Now, the straightforward way of expressing this phenomenon should be to
say that there are constructively well-defined number-theoretic functions that are
effectively computable instantiationally, but not algorithmically. However, as the
authors quizzically observe, such functions are labeled as uncomputable!

“According to Turing’s Thesis, since d is not Turing-computable, d cannot

be effectively computable. Why not? After all, although no Turing machine

computes the function d, we were able to compute at least its first few values,
For since, as we have noted, f1 = f2 = f3 = the empty function we have

d(1) = d(2) = d(3) = 1. And it may seem that we can actually compute d(n)

for any positive integer n—if we don’t run out of time.”
. . . Boolos/Burgess/Jeffrey: ([BBJ03], p.37).

The reluctance to treat a function such as d(n)—or the function Ω(n) that
computes the nth digit in the decimal expression of a Chaitin constant Ω3—as com-
putable, on the grounds that the ‘time’ needed to compute it increases monotonically
with n, is curious4; the same applies to any total Turing-computable function f(n).

The only difference is that, in the latter case, we know there exists5 a common
‘program’ of constant length that will compute f(n) for any given natural number
n; in the former, we know we may need distinctly different programs for computing
f(n) for different values of n, where the length of the program may, sometime,
reference n.

12.1. Why the classical Church-Turing Thesis does not hold in
constructive mathematics

If we accept that algorithmically verifiable functions may be instantiationally com-
putable but not algorithmically computable then, since algorithmic verifiability is
defined constructively (see Definition 5.2), the Church-Turing Thesis would not hold
if we were to define:

Definition 12.1. An arithmetical function is effectively computable if, and
only if, it is algorithmically verifiable.

That a paradigm shift may be involved in:

(1) accepting Definition 12.1; and

(2) defining algorithmic verifiability (Definition 5.2) and algorithmic com-
putability (Definition 5.3) constructively,

2Parikh’s distinction between ‘decidability’ and ‘feasibility’ in [Pa71] also appears to echo

the need for such a distinction.
3Chaitin’s Halting Probability Ω is given by 0 < Ω =

∑
2−|p| < 1, where the summation is

over all self-delimiting programs p that halt, and |p| is the size in bits of the halting program p;
see [Ct75].

4The incongruity of this is addressed by Parikh in [Pa71].
5The issue here seems to be that, when using language to express the abstract objects of our

individual, and common, mental ‘concept spaces’, we use the word ‘exists’ loosely in three senses,
without making explicit distinctions between them (see [An07c]).
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is suggested by Lázsló Kalmár’s reluctance to treat his—essentially similar—argument
against the plausibility of Church’s Thesis as a proof:

“. . . I shall not disprove Church’s Thesis. Church’s Thesis is not a mathemat-

ical theorem which can be proved or disproved in the exact mathematical
sense, for it states the identity of two notions only one of which is mathe-

matically defined while the other is used by mathematicians without exact
definition. Of course Church’s Thesis can be masked under a definition: we
call an arithmetical function effectively calculable if and only if it is general

recursive, venturing however that once in the future, somebody will define a
function which is on one hand, not effectively calculable in the sense defined
thus, on the other hand, its value obviously can be effectively calculated for

any given arguments.”
. . . Kalmár: [Km59], p.72.

Making the same point somewhat obliquely, the need for introducing a formally
undefined concept of effective computability into the classical Church-Turing thesis
is also questioned from an unusual perspective by Saul A. Kripke, who argues that,
since any mathematical computation can, quite reasonably under an unarguable
‘Hilbert’s thesis’, be corresponded to a deduction in a first-order theory, the Church-
Turing ‘thesis’ ought to be viewed more appropriately as an immediate corollary of
Gödel’s completeness theorem:

“My main point is this: a computation is a special form of mathematical
argument. One is given a set of instructions, and the steps in the computation

are supposed to follow—follow deductively—from the instructions as given.
So a computation is just another mathematical deduction, albeit one of a very
specialized form. In particular, the conclusion of the argument follows from

the instructions as given and perhaps some well-known and not explicitly
stated mathematical premises. I will assume that the computation is a
deductive argument from a finite number of instructions, in analogy to

Turing’s emphasis on our finite capacity. It is in this sense, namely that I
am regarding computation as a special form of deduction, that I am saying
I am advocating a logical orientation to the problem

Now I shall state another thesis, which I shall call “Hilbert’s thesis”,
21

namely, that the steps of any mathematical argument can be given in a

language based on first-order logic (with identity). The present argument
can be regarded as either reducing Church’s thesis to Hilbert’s thesis, or
alternatively as simply pointing out a theorem on all computations whose

steps can be formalized in a first-order language.

Suppose one has any valid argument whose steps can be stated in a first-
order language. It is an immediate consequence of the Gödel completeness
theorem for first-order logic with identity that the premises of the argument
can be formalized in any conventional formal system of first-order logic.

Granted that the proof relation of such a system is recursive (computable),
it immediately follows in the special case where one is computing a function

(say, in the language of arithmetic) that the function must be recursive
(Turing computable).

[. . . ]

So, to restate my central thesis: computation is a special form of

deduction. If we restrict ourselves to algorithms whose instructions and steps

can be stated in a first-order language (first-order algorithms), and these
include all algorithms currently known, the Church-Turing characterization

of the class of computable functions can be represented as a special corollary

of the Gödel completeness theorem.
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21 Martin Davis originated the term “Hilbert’s thesis”; see Barwise (1974, 41).
Davis’s formulation of Hilbert’s thesis, as stated by Barwise, is that “the infor-
mal notion of provable used in mathematics is made precise by the formal notion
provable in first-order logic (Barwise, 41). The version stated here, however, is
weaker. Rather than referring to provability, it is simply that any mathematical
statement can be formulated in a first-order language. Thus it is about statabil-
ity, rather than provability. For the purpose of the present paper, it could be
restricted to steps of a computation.

Very possibly the weaker thesis about statability might have originally been in-
tended. Certainly Hilbert and Ackermann’s famous textbook (Hilbert and Ack-
ermann, 1928) still regards the completeness of conventional predicate logic as
an open problem, unaware of the significance of the work already done in that
direction. Had Gödel not solved the problem in the affirmative a stronger for-
malism would have been necessary, or conceivably no complete system would
have been possible. It is true, however, that Hilbert’s program for interpreting
proofs with ε-symbols presupposed a predicate calculus of the usual form. There
was of course “heuristic” evidence that such a system was adequate, given the
experience of Frege, Whitehead and Russell, and others.

Note also that Hilbert and Ackermann do present the “restricted calculus”, as
they call it, as a fragment of the second-order calculus, and ultimately of the logic
of order ω. However, they seem to identifyeven the second-order calculus with
set theory, and mentionthe paradoxes. Little depends on these exact historical
points.”
. . . Kripke: [Krp13], pp.80-81 & 94.

12.2. Qualifying the equivalence between Church’s and Turing’s Theses

Now we note that classical theory6 holds that:

(a) Every Turing-computable function F is partial recursive7, and, if F is
total8, then F is recursive ([Me64], p.233, Corollary 5.13).

(b) Every partial recursive function is Turing-computable ([Me64], p.237,
Corollary 5.15).

From this, classical theory concludes that the following, essentially unverifiable
(since it treats the notion of ‘effective computability’ as intuitive, and not definable
formally) but refutable, theses (informally referred to as CT) are equivalent ([Me64],
p.237):

Church’s Thesis : A number-theoretic function is effectively computable if,
and only if, it is recursive ([Me64], p.227).

Turing’s Thesis: A number-theoretic function is effectively computable if,
and only if, it is Turing-computable ([BBJ03], p.33).

We note however that, even classically, the above equivalence does not hold
strictly, and needs further qualification. The following argument highlights this,
where F is any number-theoretic function:

(i) Assume Church’s Thesis. Then:

– If F is Turing-computable then, by 12.1(a), it is partial recursive.
If F is total, then it is both recursive ([Me64], p.227) and, by our
assumption, effectively computable.

6We take Elliott Mendelson [Me64], George Boolos et al [BBJ03], and Hartley Rogers
[Rg87], as representative—in the areas that they cover—of standard expositions of classical first
order logic and of effective computability (in particular, of standard Peano Arithmetic and of
classical Turing-computability).

7As defined in §A.
8As defined in §A.
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– If F is effectively computable then, by our assumption, it is recursive.
Hence, by definition, it is partial recursive and, by 12.1(b), Turing-
computable.

(ii) Assume Turing’s Thesis. Then:

– If F is recursive, it is partial recursive and, by 12.1(b), Turing-
computable. Hence, by our assumption, F is effectively computable.

– If F is effectively computable then, by our assumption, it is Turing-
computable. Hence, by 12.1(a), it is partial recursive and, if F is
total, then it is recursive.

The question arises:

Query 12.2. Can we assume that every partial recursive function is effectively
decidable as total or not?

12.3. Turing’s Halting problem

Turing addressed this issue in his seminal paper on computable numbers ([Tu36]),
where he considered the Halting problem, which can be expressed as the query:

Query 12.3. Halting problem for T ([Me64], p.256): Given a Turing machine
T, can one effectively decide, given any instantaneous description alpha, whether or
not there is a computation of T beginning with alpha?

Turing showed that the Halting problem is unsolvable by a Turing machine, in
the sense that:

Lemma 12.4. Whether or not a partial recursive function is total is not always
decidable by a Turing machine. 2

In other words, since a function is Turing-computable if, and only if, it is
partially Markov-computable ([Me64], p.233, Corollary 5.13 & p.237, Corollary
5.15), it is essentially unverifiable algorithmically whether, or not, a Turing machine
that computes a given n-ary number-theoretic function will halt classically on every
n-ary sequence of natural numbers (for which it is defined) as input, and not go
into a non-terminating loop for some natural number input, where:

Definition 12.5. A non-terminating loop is any repetition of the instantaneous
tape description of a Turing machine during a computation.

“An instantaneous tape description describes the condition of the machine
and the tape at a given moment. When read from left to right, the tape

symbols in the description represent the symbols on the tape at the moment.
The internal state qs in the description is the internal state of the machine

at the moment, and the tape symbol occurring immediately to the right

of qs in the tape description represents the symbol being scanned by the
machine at the moment.”
. . . Mendelson: ([Me64], p.230, footnote 1).
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12.4. How every partial recursive function is effectively decidable

However, we now show, as a consequence of the Provability Theorem 10.2, that
every partial recursive function is effectively decidable as total or not by a trio (T1

// T2 // T3) of Turing machines operating in parallel, and conclude that:

(a) The parallel trio (T1 // T2 // T3) of Turing machines is not a Turing
machine;

(b) The classical Church-Turing Thesis is false.

Now, we note that any Turing machine T can be provided with an auxiliary
infinite tape (see [Rg87], p.130) to effectively recognise a non-terminating looping
situation; it simply records every instantaneous tape description at the execu-
tion of each machine instruction on the auxiliary tape, and compares the current
instantaneous tape description with the record.

Moreover, T can be meta-programmed to abort the impending non-terminating
loop if an instantaneous tape description is repeated, and to return a meta-symbol
indicating self-termination.

Comment : It is convenient to visualise the tape of such a Turing machine
as that of a two-dimensional virtual-teleprinter, which maintains a copy of
every instantaneous tape description in a random-access memory during a

computation.

However, it now follows from Theorem 10.2 that:

Theorem 12.6. It is always possible to determine whether a Turing machine
will halt or not when computing any partial recursive function F .

Proof. We assume that the partial recursive function F is obtained from the
recursive function G by means of the unrestricted µ-operator9; in other words, that
(see [Me64], p.214):

F (x1, . . . , xn) = µy(G(x1, . . . , xn, y) = 0).

If [H(x1, . . . , xn, y)] expresses ¬(G(x1, . . . , xn, y) = 0) in PA we have, by defini-
tion, that any interpretation H∗(x1, . . . , xn, y) of [H(x1, . . . , xn, y)] in N is instanti-
ationally equivalent to ¬(G(x1, . . . , xn, y) = 0) (cf. [Me64], p.117).

We now consider the PA-provability and Turing computability of the arithmetical
formula [H(x1, . . . , xn, y)] by a Turing machine T that inputs every sequence of
numerals {[a1], . . . , [an]} of PA simultaneously into the parallel trio (T1 // T2 //
T3) of Turing machines, as below:

(a) Let Q1 be the meta-assertion that the PA-formula [H(a1, . . . , an, y)] is
not algorithmically verifiable as always true under interpretation in N.

It follows that there is some finite k such that H∗(a1, . . . , an, k) does not
hold in N; and so G(a1, . . . , an, k) holds.

Since G(a1, . . . , an, y) is recursive, any Turing machine T1 that computes
G(a1, . . . , an, y) will halt and return the value 0 at y = k.

9Where ‘µy’ interprets as ‘The least y such that . . . ’.



12.4. HOW EVERY PARTIAL RECURSIVE FUNCTION IS EFFECTIVELY DECIDABLE 85

(b) Let Q2 be the meta-assertion that the PA-formula [H(a1, . . . , an, y)] is al-
gorithmically verifiable as always true, but not algorithmically computable
as always true, under interpretation in N.

Hence, for any given [k], the formula [H(a1, . . . , an, k)] interprets as true
in N, but there is no Turing machine that, for any given [k], computes the
formula [H(a1, . . . , an, k)] as ‘true’ under interpretation in N.

Now it follows from Theorem 10.2 that the PA-formula [H(a1, . . . , an, y)]
is a well-defined, hence computable, formula since every instantiation of it
is PA-provable.

However, since [H(a1, . . . , an, y)] is not algorithmically computable as al-
ways true under interpretation in N, any Turing machine T2 that computes
the value of [y] at which [H(a1, . . . , an, y)] is true cannot return the value
‘true’ for all values of [y].

Hence T2 must necessarily initiate a non-terminating loop at some [y = k′]
and halt, since its auxiliary tape will return the symbol for self-termination
at [y = k′].

(c) Finally, let Q3 be the meta-assertion that the PA-formula [H(a1, . . . , an, y)]
is algorithmically computable as always true under interpretation in N.

Hence the Turing machine T2 will return the value ‘true’ on any input for
[y].

Now it follows from Theorem 10.2 that [H(a1, . . . , an, y)] is PA-provable.

Let h be the Gödel-number of [H(a1, . . . , an, y)]. We consider, then, Gödel’s
primitive recursive number-theoretic relation xBy ([Go31], p.22, definition
45), which holds if, and only if, x is the Gödel-number of a proof sequence
in PA for the PA-formula whose Gödel-number is y. It follows that there
is some finite k′′ such that any Turing machine T3, which computes the
characteristic function of xBh, will halt and return the value 0 (‘true’) for
x = k′′.

Since Q1, Q2 and Q3 are mutually exclusive and exhaustive, it follows that,
when run simultaneously over the sequence 1, 2, 3, . . . of values for y, one of the
parallel trio (T1 // T2 // T3) of Turing machines will always halt for some finite
value of y. Moreover:

• If T1 halts, then a Turing machine will halt when computing the partial
recursive function F .

• If either one of T2 or T3 halts, then a Turing machine will not halt when
computing the partial recursive function F .

The theorem follows. �

We conclude by Lemma 12.4 and Theorem 12.6 that:

Corollary 12.7. The parallel trio of Turing machines (T1 // T2 // T3) is not
a Turing machine. 2
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12.5. The classical Church-Turing thesis is false

An immediate consequence of Corollary 12.7 is that:

Corollary 12.8. The classical Church-Turing thesis is false. 2

We note that—excepting that it always calculates the function g(n) (defined
below) constructively, even in the absence of a uniform procedure, within a fixed
postulate system—the reasoning used in Theorem 12.6 is, essentially, the same as
Selmer Bringsjord’s concise expression of Kalmár’s argument ([Km59], p.74) in his
narrational case against Church’s Thesis:

“First, he draws our attention to a function g that isn’t Turing-computable,
given that f is10:

g(x) = µy(f(x, y) = 0) = the least y such that f(x, y) = 0 if y exists;
and 0 if there is no such y

Kalmár proceeds to point out that for any n in N for which a natural
number y with f(n, y) = 0 exists, ‘an obvious method for the calculation of
the least such y ... can be given,’ namely, calculate in succession the values

f(n, 0), f(n, 1), f(n, 2), . . . (which, by hypothesis, is something a computist
or TM can do) until we hit a natural number m such that f(n,m) = 0, and
set y = m.

On the other hand, for any natural number n for which we can prove,
not in the frame of some fixed postulate system but by means of arbitrary—of

course, correct—arguments that no natural number y with f(n, y) = 0 exists,
we have also a method to calculate the value g(n) in a finite number of steps.

Kalmár goes on to argue as follows. The definition of g itself implies
the tertium non datur, and from it and CT we can infer the existence of a
natural number p which is such that

(*) there is no natural number y such that f(p, y) = 0; and

(**) this cannot be proved by any correct means.

Kalmár claims that (*) and (**) are very strange, and that therefore
CT is at the very least implausible.”

. . . Bringsjord: [Bri93].

Kalmár himself argues further to the effect that the proposition stating that, for
this p, there is a natural number y such that f(p, y) = 0, would then be absolutely
undecidable in the sense that:

“. . . the problem if this proposition holds or not, would be unsolvable, not
in Gödel’s sense of a proposition neither provable nor disprovable in the

frame of a fixed postulate system, nor in Church’s sense of a problem with a

parameter for which no general recursive method exists to decide, for any
given value of the parameter in a finite number of steps, which is the correct
answer to the corresponding particular case of the problem, “yes” or “no”.

As a matter of fact, the problem, if the proposition in question holds or
not, does not contain any parameter and, supposing Church’s thesis, the

proposition itself can be neither proved nor disproved, not only in the frame

of a fixed postulate system, but even admitting any correct means. It cannot
be proved for it is false and it cannot be disproved for its negation cannot be
proved. According to my knowledge, this consequence of Church’s thesis, viz.
the existence of a proposition (without a parameter) which is undecidable in
this, really absolute sense, has not been remarked so far.

10Bringsjord notes that the original proof can be found on page 741 of Kleene [Kl36].
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However, this “absolutely undecidable proposition” has a defect of
beauty: we can decide it, for we know, it is false. Hence, Church’s thesis

implies the existence of an absolutely undecidable proposition which can
be decided viz., it is false, or, in another formulation, the existence of an
absolutely unsolvable problem with a known definite solution, a very strange

consequence indeed.”
. . . Kalmár: [Km59], p.75.
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CHAPTER 13

Bauer’s five stages of accepting constructive
mathematics

“What new and relevant ideas does constructive mathematics have to offer, if any?”

. . . Bauer: [Ba16], p.1.

To situate the main conclusions of this investigation within a contemporary per-
spective, we critically review in selected detail Bauer’s attempts (in [Ba16]) to
familiarise mathematicians in general about the—seemingly paradoxical—counter-
intuitive concepts that might inhibit a wider appreciation of the subject.

Bauer’s thesis is that learning constructive mathematics requires one to first
unlearn certain deeply ingrained intuitions and habits acquired during classical
mathematical training. He characterises it as a traumatising event acceptance of
which, from a psychological point of view, involves passing through the five stages
identified by multi-disciplinary psychologist Elisabeth Kübler-Ross—in her book ‘On
Death and Dying ’—as: denial, anger, bargaining, depression and, finally, acceptance.

13.1. Denial

Bauer characterises the first stage as the one where mathematicians1 ‘summarily
dismiss constructive mathematics as nonsense because they misunderstand’ that
although ‘constructive mathematics is mathematics done without the law of excluded
middle’:

“For every proposition P , either P or not P .”
. . . Bauer: [Ba16], p.1.

constructivists do not deny excluded middle but are ambivalent about it.

However, he remarks that constructivists:

— deny that a proposition can be both true and false;

— deny that a proposition can be neither true nor false;

1Although Bauer’s observation may be true of some mathematicians, it is more likely that

most mathematicians simply offer passive ‘inertial’ resistance to the adoption of the constraints

demanded by constructive mathematics; in the sense that—as David Hilbert’s rather more actively
articulated reaction (see §13.2) illustrates—the loss they anticipate in giving up what they have

inherited—in good faith—under classical mathematics appears incommensurate with the gain that
they can envisage by adopting constructive restraints—a phenomena well-known to economists

(see, for instance, [KKT91], p.197) as status quo bias. The thesis of this investigation (see §3) is

that such fear of a loss—of an illusory self-evident nature of ‘endowed truth’—characterises current
perspectives of not only classical mathematics, but also of constructive mathematics (including
Bauer’s in [Ba16]).

91
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— deny proof by contradiction;

— admit negations are provable by reaching a contradiction;

— find certain forms of choice acceptable; and

— admit that with a bit of care some instances of excluded middle and choice
can be removed, or just turn out to be illusions created by insufficient
training in logic.

Bauer notes, for instance, that:

“Confusingly, mathematicians call ‘proof by contradiction’ any argument

which derives a contradiction from a statement believed to be false, but

there are two reasoning principles that have this form. One is indeed proof
by contradiction, and it goes as

Suppose ¬P , . . . (argument reaching contradiction) . . . , therefore
P .

While the other is how a negation ¬P is proved:

Suppose P , . . . (argument reaching contradiction) . . . , therefore
¬P .

Because ¬P abbreviates P ⇒⊥, the rule for proving a negation is an
instance of the rule for proving an implication P ⇒ Q: assume P and derive

Q. Admittedly, the two arguments look and feel similar, but notice that
in one case the conclusion has a negation removed and in the other added.
Unless we already believe in ¬¬P ⇔ P , we cannot get one from the other

by exchanging P and ¬P . These really are different reasoning principles.”
. . . Bauer: [Ba16], p.2.

Bauer emphasises that whereas constructive mathematics admits proof by
negation, it denies proof by contradiction since:

“Proof by contradiction, or reductio ad absurdum in Latin, is the reasoning

principle:

If a proposition P is not false, then it is true.

In symbolic form it states that ¬¬P ⇒ P for all propositions P , and is

equivalent to excluded middle.”
. . . Bauer: [Ba16], p.2.

Bauer further argues that:

“In constructive mathematics we cannot afford the axiom of choice because
it implies excluded middle.”
. . . Bauer: [Ba16], p.3.

Before proceeding to the next stage, Bauer attempts to clear up one last ‘miscon-
ception’ concerning how the existential quantifier is to be interpreted constructively
(however, compare with Definition 3.1 below).

“Suppose that in a mathematical text we have the assumption that there

exists x such that φ(x). We customarily say ‘choose an x satisfying φ(x)’ to
give ourselves an x satisfying φ. This is not an application of the axiom of

choice, but rather an elimination of an existential quantifier. Similarly, if we

know that a set A is inhabited and we say ‘choose x ∈ A’, it is not choice
but existential quantifier elimination again.”
. . . Bauer: [Ba16], p.4.
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13.2. Anger

Bauer exemplifies the second stage by recalling Hilbert’s words:

“Taking the principle of excluded middle from the mathematician would be
the same, say, as proscribing the telescope to the astronomer or to the boxer

the use of his fists. To prohibit existence statements and the principle of
excluded middle is tantamount to relinquishing the science of mathematics
altogether. For compared with the immense expanse of modern mathematics,

what would the wretched remnants mean, the few isolated results, incomplete
and unrelated, that the intuitionists have obtained without the use of logical
ε-axiom?”

. . . Hilbert: [Hi27], p.476.

He counters Hilbert’s tirade (which, we note in §14.1, conflates the principle of
excluded middle with Aristotle’s particularisation, i.e., the use of the logical ε-axiom)
with the argument that:

“It is much less known in the wider mathematical community that things

changed in 1967, a year after Brouwer’s death, when Erret Bishop published
a book on constructive analysis. The importance of the work was best
described by Michael Beeson:

The thrust of Bishop’s work was that both Hilbert and Brouwer
had been wrong about an important point on which they had

agreed. Namely both of them thought that if one took constructive
mathematics seriously, it would be necessary to ‘give up’ the most
important parts of modern mathematics (such as, for example,

measure theory or complex analysis). Bishop showed that this was
simply false, and in addition that it is not necessary to introduce
unusual assumptions that appear contradictory to the uninitiated.
The perceived conflict between power and security was illusory!

One only had to proceed with a certain grace, instead of with
Hilbert’s ‘boxer’s fists’.”
. . . Bauer: [Ba16], p.5.

Comment: An insight to which this investigation—in denying necessity
to both the Hilbertian acceptance of Aristotle’s particularisation and the
Brouwerian denial of the Law of the Excluded Middle—pays homage.

Bauer traces the roots of Hilbertian rejections to the fact that, whereas no sane
mathematician would reject the fact that a subset of a finite sets is finite:

“... constructivists think that a subset of a finite set need not be finite. A

cursory literature search reveals other bizarre statements considered in con-

structive mathematics: ‘R has measure zero’ , ‘there is a bounded increasing
sequence without an accumulation point’, ‘ordinals form a set’, ‘there is an

injection of NN
into N’ , and so on.”

. . . Bauer: [Ba16], p.6.

Comment: Compare with Corollary 19.5 that, from an evidence-based arithmetical per-

spective, ℵ0 ←→ 2ℵ0 .

He defends such constructivist conclusions by arguing that:

“A constructivist might point out that what counts as bizarre is subjective

and remind us that once upon a time the discovery of non-Euclidean ge-
ometries was shelved in fear of rejection, that Weierstraß’s continuous but

nowhere differentiable function was and remains a curiosity, and that the

Banach-Tarski theorem about conjuring two balls from one is even today
called a ‘paradox’.”
. . . Bauer: [Ba16], p.6.
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13.3. Bargaining

Bauer characterises the third stage as the one that requires a classical mathematician
to compromise on the intuitive notion of ‘truth’:

“Classical mathematical training plants excluded middle so deeply into young

students’ minds that most mathematicians cannot even detect its presence
in a proof. In order to gain some sort of understanding of the constructivist

position, we should therefore provide a method for suspending belief in

excluded middle.

If a geometer tried to disbelieve Euclid’s fifth postulate, they would find
helpful a model of non-Euclidean geometry—an artificial world of geometry
whose altered meanings of the words ‘line’ and ‘point’ caused the parallel

postulate to fail.

Our situation is comparable, only more fundamental because we need to
twist the meaning of ‘truth’ itself. We cannot afford a full mathematical
account of constructive worlds, but we still can distill their essence, as long

as we remember that important technicalities have been omitted.”
. . . Bauer: [Ba16], p.6.

He then claims that:

“It is well worth pointing out that constructive mathematics is a general-
ization of classical mathematics, as was emphasized by Fred Richman, for

a proof which avoids excluded middle and choice is still a classical proof.
However, trying to learn constructive thinking in the classical world is like
trying to learn noncommutative algebra by studying abelian groups.”
. . . Bauer: [Ba16], p.6.

Bauer expands on the need of constructive mathematics to ‘twist’ the meaning
of ‘truth’ as necessitated by the differing modes of truth-assignments required by
the gamut of differing constructive worlds which—as Bauer ruefully notes in the
fourth stage (dramatically namely ‘Depression’)—a constructive mathematics that
claims to generalise classical mathematics is compelled to accommodate.

13.3.1. Realizability. He then addresses two such assignments, the first of
which appeals to the computable properties of realisability.

“In our first honestly constructive world only that is true which can be

computed. Let us imagine, as programmers do, that mathematical objects
are represented on a computer as data, and that functions are programs
operating on data. Furthermore, a logical statement is only considered valid

when there is a program witnessing its truth. We call such programs realizers,

and we say that statements are realized by them. The Brouwer-Heyting-
Kolmogorov rules explain when a program realizes a statement:

(1) falsehood ⊥ is not realized by anything;

(2) truth > is realized by a chosen constant, say ?;

(3) P ∨Q is realized by a pair (p, q) such that p is a realizer of P and q of

Q;

(4) P ∧Q is realized either by (0, p), where p realizes P , or by (1, q), where

q realizes Q;

(5) P ⇒ Q is realized by a program which maps realizers of P to realizers
of Q;

(6) ∀x ∈ A.P (x) is realized by a program which maps (a representation

of) any a ∈ A to a realizer of P (a);
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(7) ∃x ∈ A.P (x) is realized by a pair (p, q) such that p represents some
a ∈ A and q realizes P (a);

(8) a = b is realized by a p which represents both a and b.

The rules work for any reasonable notion of ‘program’. Turing machines
would do, but so would quantum computers and programs actually written

by programmers in practice.”

. . . Bauer: [Ba16], pp.6-7.

As examples of the use of realizers, Bauer first offers an example of the compu-
tational interpretation of universal quantification:

“For every natural number there is a prime larger than it.

This is a ‘for all’ statement, so its realizer is a program p which takes as

input a natural number n and outputs a realizer for ‘there is a prime larger
than n’, which is a pair (m, q) where m is again a number and q realizes
‘m is prime and m > n’. If we forget about q, we see that p is essentially a
program that computes arbitrarily large primes. Because such a program

exists, there are arbitrarily large primes in the computable world.”

. . . Bauer: [Ba16], p.7.

He then proffers as a more interesting example:

“(1) ∀x ∈ R.x = 0 ∨ x 6= 0.

If we define real numbers as the Cauchy completion of rational numbers,
then a real number x ∈ R is represented by a program p which takes as input

k ∈ N and outputs a rational number rk such that |x− rk | ≤ 2
−k

. Thus a
realizer for (1) is a program q which accepts a representation p for any x ∈ R
and outputs either (0, s) where s realizes x = 0, or (1, t) where t realizes

x 6= 0. Intuitively speaking, such a q should not exist, for however good
an approximation rk of x the program q calculates, it may never be sure

whether x = 0. To make a water-tight argument, we shall use q to construct

the Halting oracle, which does not exist. (The usual proof of nonexistence of
the Halting oracle is yet another example of a constructive proof of negation.)

Given a Turing machine T and an input n, define the sequence r0 , r1 , r2 , . . .

of rational numbers by

• rk = 2
−j

if T (n) halts at step j and j ≤ k,

• rk = 2
−k

otherwise.

This is a Cauchy sequence because | rk − rm |≤ 2
−min(k,m)

for all k,m ∈ N ,
and it is computable because the value of rk may be calculated by a simulation
of at most k steps of execution of T (n). The limit x = limk rk satisfies

• x = 2
−j

> 0, if T (n) halts at step j,
• x = 0, if T (n) never halts.

The program p which outputs rk on input k represents x because |x− rk | ≤
2
−k

for all k ∈ N . We may now decide whether T (n) halts by running q(p):
if it outputs (0, s), then T (n) does not halt, and if it outputs (1, t), then
T (n) halts.”

. . . Bauer: [Ba16], pp.7-8.

Bauer notes that although the above argument needs:

“the following (valid) instance of excluded middle: for every k ∈ N, either

rk = 2
−k

or rk = 2
−j

for some j < k”
. . . Bauer: [Ba16], p.8.

the statement (1) is an instance of excluded middle which is not realized.
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He concludes with an anti-mechanist thesis that echoes—albeit for debatable
reasons—a concluding thesis of this investigation (Theorem 27.1):

“The strategy to place constructivism inside a box is working! If one takes

the limited view that everything must be computed by machines, then

excluded middle fails because machines cannot compute everything. Our
excluded middle is not affected because we are not machines.”

. . . Bauer: [Ba16], p.8.

Bauer uses the computable world to further explain why the following instance
of ‘subsets of finite sets are finite’ is not realized:

“(2) All countable subsets of 0, 1 are finite.

In computable mathematics a finite set is represented by a finite list of its

elements, and a countable set by a program which enumerates its elements,
possibly with repetitions. The subsets {}, {0}, {1} and {0, 1} are all count-

able and finite, so (2) looks pretty true. Remember though that in the
computable world ‘for all’ means not ‘it holds for every instance’ but rather
‘there is a program computing witnesses from instances’. A realizer for (2) is

a program q which takes as input a program p enumerating the elements of a
subset of {0, 1} and outputs a finite list of all the elements so enumerated.”
. . . Bauer: [Ba16], p.8.

Bauer argues that:

“To see intuitively where the trouble lies, suppose p starts enumerating
zeroes:

0, 0, 0, 0, 0, 0, . . .

The output list should contain 0, but should it contain 1? However long a
prefix of the enumeration we investigate, if it is all zeroes, then we cannot
be sure whether 1 will appear later. For an actual proof we use the same

trick as before: with q in hand we could construct the Halting oracle. Given
any Turing machine T and input n, consider the program p which works as

follows:

• p(k) = 1 if T (n) halts in fewer than k steps,

• p(k) = 0 otherwise.

The subset S ⊆ {0, 1} enumerated by p is constructed so that

• 1 ∈ S if T (n) halts,

• 1 /∈ S if T (n) does not halt.

Now scan the finite list computed by q(p): if it contains 1, then T (n) holds,

otherwise it does not.”

. . . Bauer: [Ba16], p.8.

13.3.2. Sheaves. In Bauer’s second example of a constructive model, the
truth-assignments appeal to the properties of sheaves, where he notes that:

“Truth varies as well, so that a statement may be true on one open set and
false on another. Restrictions and the gluing property of sheaves transfer to

truth:

(1) if a statement is true on an open set U ⊆ X, then it is also true on a

smaller open set V ⊆ U ;

(2) if a statement is true on each member Ui of an open cover, then it is

also true on the union
⋃
i∈I

Ui .
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In the topos the truth values are the open subsets of X. The truth value of a
statement is the largest open set on which it holds, and the logic is dictated

by the topology of X:

• falsehood and truth are ∅ and X, the least and greatest open sets,

respectively;

• conjunction U ∧ V is U ∩ V , the largest open set contained in U and
V ;

• disjunction U ∨ V is U ∪ V , the least open set containing U and V ;

• negation ¬U is the topological exterior ext(U), the largest open set

disjoint from U ;

• implication U ⇒ V is ext(U V ), the largest open set whose intersection
with U is contained in V .

Excluded middle amounts to saying that U ∪ ext(U) = X for all open

U ⊆ X, a condition equivalent to open and closed sets coinciding. Only a

very special kind of space X satisfies this condition, for as soon as it is a
T0 -space (points are uniquely determined by their neighborhoods), it has to
be discrete.”

. . . Bauer: [Ba16], pp.9-10.

13.4. Depression

Bauer characterises the fourth stage as the one where a classical mathematician
might gloomily wonder whether not understanding constructivism is like not having
a sense of humor!

Reason: Bauer wryly concedes that there are:

“ . . . many toposes, each a model of constructive mathematics. They were
invented by the great Alexander Grothendieck for the purposes of studying
algebraic geometry, but have since proved generally useful in mathemat-

ics. The Dubuc topos contains the 17th-century nilpotent infinitesimals,
but without the 17th-century confusion and paradoxes. Joyal’s theory of

combinatorial species is just a topos in disguise, and so are various kinds

of graphs. Simplicial sets, the home of homotopy theorists, form a presheaf
topos. The realizability toposes are computer scientists’ Gardens of Eden

in which everything is computable by design. Even such mundane topics as

the syntax of programming languages get their own toposes.

Does anyone care about all these models of constructive mathematics?
Well, if excluded middle is the only price for achieving rigor in infinitesimal

calculus, our friends physicists just might be willing to pay it. After all

they still use Newton’s infinitesimals, despite our having lectured them
about ε’s and δ’s since the time of Cauchy and Weierstraß. And how often
does a physicist start a calculation by saying ‘suppose not’? The situation

with computer scientists is worse, as some of them actually help spread
constructive mathematics with slogans such as ‘propositions are types’. The

recently discovered homotopy-theoretic interpretation of Martin-Löf type

theory, a most extreme form of constructivism, has made some homotopy
theorists and category theorists into allies of constructive mathematics. They
even profess a new foundation of mathematics in which logic and sets are

just two levels of an infinite hierarchy of homotopy types.”
. . . Bauer: [Ba16], p.11.

He notes, further, that turning to set theorists for advice offers no panacea since:

“The axioms of Zermelo and Fraenkel stand as firm as ever, they assure us,
and are the de facto foundation of today’s mathematics. We are told that
even the builders of toposes and modelers of homotopy types ultimately rely
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on set theory, and we need not renounce excluded middle to compute with
infinitesimals. The relief however does not last long. Set theorists go on to

explain that Grothendieck actually used set theory extended with universes,
each of which is an entire model of classical mathematics. Ever since Cohen’s
work on the independence of Cantor’s hypothesis, set theorists have been

exploring not one, but many worlds of classical mathematics. Would you
like to have infinitesimals, or make all sets of reals measurable, or do you

fancy 2
ℵ0 = ℵ42 A world of classical mathematics is readily built to order

for you.”

. . . Bauer: [Ba16], pp.11-12.

Bauer ruefully confesses that:

“We initially set out to understand the difference between the classical and
the constructive world of mathematics, only to have discovered that there
are not two but many worlds, some of which simply cannot be discounted as

logicians’ contrivances. Excluded middle as the dividing line between the
worlds is immaterial in comparison with having Cantor’s paradise shattered

into an unbearable plurality of mathematical universes.”

. . . Bauer: [Ba16], p.12.

13.5. Acceptance

Nevertheless, Bauer characterises the concluding fifth stage as the one where a
working mathematician eventually discovers that:

“Some aspects of constructive mathematics are just logical hygiene: avoid
indirect proofs in favor of explicit constructions, detect and eliminate needless

uses of the axiom of choice, know the difference between a proof of negation
and a proof by contradiction. Of course, constructivism goes deeper than
that. The stringent working conditions of constructive worlds require an

economy of thought which is disheartening at first but eventually pays off
with vistas of new mathematical landscapes that are proscribed by orthodox
mathematics.”

. . . Bauer: [Ba16], p.12.



CHAPTER 14

The significant feature of Bauer’s perspective

The most significant feature that emerges from Bauer’s perspective of constructive
mathematics (BPCM) is that:

(a) Whereas the goal of classical mathematics—post Peano, Dedekind and
Hilbert—has been to uniquely characterise each informally defined mathe-
matical structure (e.g., the Peano Postulates and its associated classical
predicate logic) by a corresponding formal first-order language and a set of
finitary axioms/axiom schemas and rules of inference (e.g., the first-order
Peano Arithmetic PA and its associated first-order logic FOL) that assign
unique provability values to each well-formed proposition of the language,

(b) The goal of constructive mathematics—post Brouwer and Tarski—has been
to assign unique evidence-based truth values to each well-formed proposition
of the language under a constructively well-defined interpretation (in the
sense of Definitions 21.6, 21.5 and 21.7) over the domain of the structure.

From a functional perspective, (a) can be viewed in engineering terms as
analogous to formalising the specifications of a proposed structure from a prototype.
A more precise definition in terms of ‘explication’ is due to Rudolf Carnap:

“By the procedure of explication we mean the transformation of an inexact,
prescientific concept, the explicandum, into a new exact concept, the expli-
catum. Although the explicandum cannot be given in exact terms, it should

be made as clear as possible by informal explanations and examples. . . . A
concept must fulfill the following requirements in order to be an adequate
explicatum for a given explicandum: (1) similarity to the explicandum, (2)
exactness, (3) fruitfulness, (4) simplicity.”

. . . Carnap: [Ca62a], p.3 & p.5.

Similarly, (b) can be viewed in engineering terms as analogous to confirming
that the formal specifications (explicatum) of a proposed structure do succeed in
uniquely identifying the prototype (explicandum).

In other words—as is implicit in Bishop’s remarks quoted above (in §13.2)—the
goals of the two activities ought to be viewed as necessarily complementing (see also
Appendix 44), rather than being independent of or competing with, each other as
to which is more foundational.

This investigation seeks to justify this view by identifying, and removing, the
root of the misunderstanding that seems to inhibit recognition of the complementary
roles of classical and constructive mathematics; a misunderstanding which, we
argue, reflects unsustainable beliefs whose illusory, ‘self-evidentiary’, appeal could
reasonably be viewed as owing more—perhaps as Bauer insightfully suggests—to
psychological factors than to mathematical ones.

99



100 14. THE SIGNIFICANT FEATURE OF BAUER’S PERSPECTIVE

For instance, we illustrate in §22 the unsettling consequences of such ‘self-
evidentiary’ appeal in our analysis of Goodstein’s curious argumentation; where
we show that, if we treat the subsystem ACA0 of second-order arithmetic as a
conservative extension of PA that is equiconsistent with PA, then we are led to the
bizarre conclusion (Theorem 9.10) that, since PA is consistent:

Goodstein’s sequence Go(mo) over the finite ordinals in ACA0 terminates
with respect to the ordinal inequality ‘>o’ even if Goodstein’s sequence
G(m) over the natural numbers in ACA

0
does not terminate with respect

to the natural number inequality ‘>’ in any putative model of ACA
0
!

14.1. Denial of an unrestricted applicability of the law of excluded
middle is a belief

What is refreshing about Bauer’s perspective of constructive mathematics (BPCM)
is the—albeit tacit—acknowledgment that constructive mathematics holds denial or
acceptance of the law of excluded middle (LEM) as an optional belief that is open
to persuasion:

“Unless we already believe in ¬¬P ⇔ P , we cannot get one from the other

by exchanging P and ¬P .”
. . . Bauer: [Ba16], p.2.

“Classical mathematical training plants excluded middle so deeply into young
students’ minds that most mathematicians cannot even detect its presence
in a proof. In order to gain some sort of understanding of the constructivist
position, we should therefore provide a method for suspending belief in

excluded middle.”

. . . Bauer: [Ba16], p.6.

We argue in this investigation that this is actually a misunderstanding embedded
deeply not in classical mathematical training, but in constructive mathematics such
as BPCM.

As we show, it is constructive mathematics that mistakenly equates denial of
the ε-axioms in Hilbert’s ε-calculus ([Hi27]) with denial of the law of the excluded
middle in constructively well-defined (in the sense of Definitions 21.6, 21.5 and 21.7)
interpretations of formal theories whose logical axioms and rules of inference are
those of the standard first-order logic FOL which—as defined in introductory logical
texts (e.g., [Me64])—forms an essential part of classical mathematical training.

The root of this misunderstanding lies in the fact that Brouwer’s original
objection (in [Br08]) was to the definition of existential quantification in terms
such as those of Hilbert’s ε-operator in the latter’s ε-calculus, in which LEM is a
theorem (see §3.1).

Denying LEM is thus sufficient for Brouwer’s purpose of denying validity to any
interpretation of Hilbert’s definition of existential quantification over any putative
structure in which the calculus is satisfied.

However it is not necessary since, by showing finitarily that the first-order Peano
Arithmetic is consistent (Theorem 9.10)—whence FOL too is finitarily consistent—
we show that the converse does not hold.
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In other words, we show that denying validity to any interpretation of Hilbert’s
definition of existential quantification over a structure in which the calculus FOL is
satisfied does not entail that LEM is not satisfied over the structure.

Moreover, as observed by Gödel in [Go33], such a denial of tertium non datur
compelled Arend Heyting to admit an intuitionistic notion of “absurdity” into his
formalisation of intuitionistic arithmetic, which entailed that “all of the classical
axioms become provable propositions for intuitionism as well”:

“If one lets correspond to the basic notions of Heyting’s propositional cal-
culus the classical notions given by the same symbols and to “absurdity”

(¬), ordinary negation (∼), then the intuitionistic propositional calculus A
appears as a proper subsystem of the usual propositional calculus H. But, us-
ing a different correspondence (translation) of the concepts, the reverse occurs:

the classical propositional calculus is a sub-system of the intuitionistic one..

For, one has: Every formula constructed in terms of conjunction (∧) and
negation (¬) alone which is valid in A is also provable in H. For each such
formula must be of the form: ¬A1 ∧¬A2 ∧ . . .∧¬An , and if it is valid in A,

so must be each individual ¬Ai ; but then by Gilvenko ¬Ai is also provable
in H and hence also the conjunction of the ¬Ai . From this, it follows that:
if one translates the classical notions ∼ p, p→ q, p∨ q, p.q by the following
intuitionistic notions: ¬p, ¬(p∧¬q), ¬(¬p∧¬q), p∧ q then each classically

valid formula is also valid in H.

The aim of the present investigation is to prove that something analogous

holds for all of arithmetic and number theory, as given e.g. by the axioms of

Herbrand. Here also one can give an interpretation of the classical notions in
terms of intuitionistic notions, so that all of the classical axioms become pro-

vable propositions for intuitionism as well.

[. . . ]

Theorem I, whose proof has now been completed, shows that intuitionis-
tic arithmetic and number theory are only apparently narrower than the cl-

assical versions, and in fact contain them (using a somewhat deviant inter-

pretation). The reason for this lies in the fact that the intuitionistic pro-

hibition against negating universal propositions to form purely existential
propositions is made ineffective by permitting the predicate of absurdity to

be applied to universal propositions, which leads formally to exactly the
same propositions as are asserted in classical mathematics. Intuitionism
would seem to result in genuine restrictions only for analysis and set the-

ory, and these restrictions are the result, not of the denial of tertium non
datur, but rather of the prohibition of impredicative concepts. The above

considerations, of course, yield a consistency proof for classical arithmetic

and number theory. However, this proof is certainly not “finitary” in the
sense given by Herbrand, following Hilbert.”

. . . Gödel: [Go33], pp.75 & 80.

Thus, from an evidence-based perspective, on one hand Gödel’s demonstration
of an equivalence between classical arithmetic and Heyting’s Arithmetic emphasises
the thesis of this investigation that denial of LEM (tertium non datur) is unnecessary
for ensuring finitism; especially since such denial apparently denies formal finitary
argumentation to Intuitionism for much of that which it sought to protect.

On the other hand, current expositions of classical mathematics too can be held
culpable insofar that whilst dispensing with Hilbert’s explicit—hence accountable—
formal definition of existential quantification in terms of his ε-operator—and
therefore dispensing with the ε-epsilon calculus itself—it informally introduces
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the Hilbertian ε-operator interpretation of existential quantification as an implicitly
self-evident—hence unaccountable—postulation which, generally introduced insidi-
ously in the earliest pages of any introductory text on classical logic, does indeed
embed itself so deeply—and unobtrusively—‘into young students’ minds that most
mathematicians cannot even detect its presence in a proof’1!

This is the postulation of Aristotle’s particularisation (Definition 3.1), which is
essentially the assertion that the formula [∃x] of a formal theory may be unrestrict-
edly assumed—under any well-defined interpretation of the theory over a putative
structure—as implying some unspecified instantiation of the existentially quantified
predicate in the domain of the structure.

14.2. The significance of Aristotle’s particularisation for constructivity

We recall that Aristotle’s particularisation is the postulation that, from an informal
assertion such as:

‘It is not the case that, for any specified x, P (x) does not hold’,

usually denoted symbolically by ‘¬(∀x)¬P (x)’, we may always validly infer in the
classical logic of predicates (compare with [HA28], pp.58-59) that:

‘There exists an unspecified x such that P (x) holds’,

usually denoted symbolically by ‘(∃x)P (x)’.

We shall show (in §15.1) that Aristotle’s particularisation implies the first-order
logic FOL is ω-consistent; whence we may always interpret the formal expression
‘[(∃x)F (x)]’ of a formal language under an interpretation as:

‘There exists an object s in the domain of the interpretation such
that F ∗(s).

We note that Aristotle’s particularisation is a non-finitary, but fundamental,
tenet of classical logic that—as noted in §14.1—is yet unrestrictedly adopted as
intuitively obvious by standard literature.

We also recall (§4.2) that, as Brouwer had noted in his seminal 1908 paper on the
unreliability of logical principles ([Br08]), the commonly accepted interpretation of
this formula is ambiguous if such interpretation is intended over an infinite domain.

Brouwer essentially argued that:

(i) Even supposing the formula ‘[P (x)]’ of a formal Arithmetical language
interprets as an arithmetical relation denoted by ‘P ∗(x)’; and

(ii) the formula ‘[¬(∀x)¬P (x)]’ interprets as the arithmetical proposition de-
noted by ‘¬(∀x)¬P ∗(x)’;

1See for instance: Hilbert: [Hi25], p.382; Hilbert/Ackermann [HA28], p.48; Skolem: [Sk28],
p.515; Gödel: [Go31], p.32; Carnap: [Ca37], p.20; Kleene: [Kl52], p.169; Rosser: [Ro53], p.90;

Bernays/Fraenkel: [BF58], p.46; Beth: [Be59], pp.178 & 218; Suppes: [Su60], p.3; Luschei:
[Lus62], p.114; Wang: [Wa63], p.314-315; Quine: [Qu63], pp.12-13; Kneebone: [Kn63], p.60;

Cohen: [Co66], p.4; Mendelson: [Me64], p.52(ii); Novikov: [Nv64], p.92; Lightstone: [Li64],

p.33; Shoenfield: [Sh67], p.13; Davis: [Da82], p.xxv; Rogers: [Rg87], p.xvii; Epstein/Carnielli:
[EC89], p.174; Murthy: [Mu91]; Smullyan: [Sm92], p.18, Ex.3; Awodey/Reck: [AR02b], p.94,
Appendix, Rule 5(i); Boolos/Burgess/Jeffrey: [BBJ03], p.102; Crossley: [Cr05], p.6.
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(iii) the formula ‘[(∃x)P (x)]’—which is formally defined as ‘[¬(∀x)¬P ∗(x)]’—
need not interpret as the arithmetical proposition denoted by the usual
abbreviation ‘(∃x)P ∗(x)’; and

(iv) such postulation is invalid as a general logical principle in the absence of a
means for constructing some putative object a for which the proposition
P ∗(a) holds in the domain of the interpretation.

The significance of Brouwer’s objection for formal first-order theories of the
kind that interested Hilbert (i.e., those whose logic was defined by §4.1) is that, in
the event that there is no way of constructing some putative object a for which
the proposition P ∗(a) is claimed to hold in the domain of the interpretation of a
first-order theory S, then the S-term which would putatively correspond to a under
the interpretation may also not be recursively definable from the primitive terms of
the theory—thus contradicting the first-order constraint on S.

Moreover we shall show that such a postulation would imply that S is ω-
consistent (see §15.7) or, equivalently, that Rosser’s Rule C is valid in S (see §15.6);
an implication that not only—as Gödel and Rosser have shown—has far-reaching
consequences for any formal system that admits such postulation but—significantly
and hitherto unsuspectedly—does not hold for the first-order Peano Arithmetic PA
(see Corollary 11.6 and Theorem 11.10).

In this investigation we therefore adopt the convention that the assumption
that ‘(∃x)P ∗(x)’ is the intended interpretation of the formula ‘[(∃x)P (x)]’—which
is essentially the assumption that Aristotle’s particularisation holds over the domain
of the interpretation—must always be explicit.





CHAPTER 15

Hilbert’s Programme

15.1. The significance of Gödel’s ω-consistency for constructive
mathematics

We note that, in order to avoid intuitionistic objections to his reasoning in his
seminal 1931 paper on formally undecidable arithmetical propositions, Gödel did
not assume that the weak standard interpretation M of PA (as defined in §A,
Appendix A, and analysed in Chapter 7) is constructively well-defined (in the sense
of Definitions 21.6, 21.5 and 21.7).

Instead, Gödel introduced the syntactic property of ω-consistency as an explicit
assumption in his formal reasoning ([Go31], p.23 and p.28).

ω-consistency: A formal system S is ω-consistent if, and only if, there is

no S-formula [F (x)] for which, first, [¬(∀x)F (x)] is S-provable and, second,
[F (a)] is S-provable for any specified S-term [a].

Gödel explained that his reasons for introducing ω-consistency as an explicit
assumption in his formal reasoning was to avoid appealing to the semantic concept
of classical arithmetical truth—a concept which we shall show (Corollary 15.11) is
implicitly based on an intuitionistically objectionable logic that assumes Aristotle’s
particularisation holds over N.

“The method of proof which has just been explained can obviously be applied
to every formal system which, first, possesses sufficient means of expression

when interpreted according to its meaning to define the concepts (especially
the concept “provable formula”) occurring in the above argument; and,
secondly, in which every provable formula is true. In the precise execution of
the above proof, which now follows, we shall have the task (among others) of

replacing the second of the assumptions just mentioned by a purely formal
and much weaker assumption.”

. . . Gödel: [Go31], p.9.

We now show (Corollary 15.9) that Gödel’s assumption is ‘weaker’ in the sense that:

• If Tarski’s inductive definitions of the satisfaction and truth of existentially
quantified PA formulas under the standard interpretation M (as defined
in §A, Appendix A) assume1 that Aristotle’s particularisation is valid over
N,

• Then PA is consistent if, and only if, it is ω-consistent.

1Assume in the sense that: “A sequence s satisfies (Exi )A if and only if there is a sequence
s′ which differs from s in at most the ith place such that s′ satisfies A.” . . . Mendelson: [Me64],
p.52, V(ii).
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15.2. The significance of Hilbert’s ω-Rule for constructive mathematics

To place Gödel’s assumption of ω-consistency within the perspective of this investi-
gation, we consider an:

Algorithmic ω-Rule: If it is proved that the PA formula [F (x)] interprets
as an arithmetical relation F ∗(x) that is algorithmically computable as true
for any given natural number n, then the PA formula [(∀x)F (x)] can be
admitted as an initial formula (axiom) in PA.

The significance of the Algorithmic ω-Rule is that, as part of his program for
giving mathematical reasoning a finitary foundation, Hilbert proposed an ω-Rule
([Hi30], pp.485-494) as a means of extending a Peano Arithmetic to a possible
completion (i.e. to logically showing that, given any arithmetical proposition, either
the proposition, or its negation, is formally provable from the axioms and rules of
inference of the extended Arithmetic).

Hilbert’s ω-Rule: If it is proved that the PA formula [F (x)] interprets
as an arithmetical relation F ∗(x) that is algorithmically verifiable as true
for any given natural number n, then the PA formula [(∀x)F (x)] can be
admitted as an initial formula (axiom) in PA.

The question of whether or not Hilbert’s ω-Rule can be considered as finitary is
addressed in detail by Schirn and Niebergall:

“Restricted versions of the ω-rule have been suggested both as a means

of explicating certain forms of finitary arguments or proofs and as a way
of correctly extending a theory already accepted. In this section, we want
to deal with the question as to whether weak versions of the ω-rule can

be regarded as finitary. For if they can, they may prove useful for the
construction of metamathematical theories that clash neither with Hilbert’s
programme nor with Gödel’s Incompleteness Theorems. In pursuing our

aim, we align ourselves with Hilbert’s programme. By contrast, in his 1931
essay Hilbert himself introduces a restricted ω-rule as a means of extending
PA, though he does so in a way which admits different interpretations.

Rule ω* : When it is shown that the formula A(Z) is a correct
numerical formula for each particular numeral Z, then the formula

∀xA(x) can be taken as a premise.

Hilbert qualifies this rule expressly as finitary and goes on to remind us that

∀xA(x) has a much wider scope than A(ñ), where ñ is an arbitrary given
numeral.”
. . . Schirn and Niebergall: [SN01], p.137.

Schirn and Niebergall conclude—echoing the thesis of this investigation—that
Hilbert’s assumption of Aristotle’s particularisation as a valid, and essential, form of
reasoning—as evidenced in his definitions of the universal and existential quantifiers
in terms of his ε-operator (see §4.1)—committed him to an essentially non-finitary
perspective, reflected also in his ω-rule, both of which we show (in §15.7 and §15.5
respectively) are stronger than Gödel’s assumption of ω-consistency in his 1931
paper [Go31] on ‘formally undecidable’ arithmetical propositions:

“We venture to surmise that Hilbert qua metalogician relies on existence
assumptions of precisely this kind without being haunted by any finitist
qualms. And we do think that those assumptions of infinity that are made
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by accepting one application of rule ω* are not more far-reaching than those
made by accepting transfinite induction upto ε0 .

It should be evident that the ω-rule or even one application of it
cannot be accepted from Hilbert’s original finitist point of view. Yet both
modern metalogic and Hilbert’s metamathematics of the 1920s rest on

certain assumptions of infinity that clash anyway with his classical finitism
(cf. Niebergall and Schirn 1998, section 4). Intuitively speaking, one may
tend to believe that the metalogical assumptions of infinity just appealed

to, or Hilbert’s assumption in his work on proof theory in the 1920’s that
there are infinitely many stroke-symbols, are slightly weaker than those that
we make when we apply an ω-rule. However this may be, we do not rule
out that Hilbert wants to commit himself only to the possible existence of

infinitely many stroke-figures or, alternatively, to the existence of infinitely
many possible stroke-figures. Unless a satisfactory theory of the potential
infinite is to hand, it is probably wise to postpone closer scrutiny of the

question whether, from the point of view of strength, applications of a given
ω-rule and the assumptions of infinity, both made by Hilbert in the 1920s
and common in contemporary metalogic, differ essentially from each other.”
. . . Schirn and Niebergall: [SN01], p.141.

Now, Gödel’s 1931 paper can, not unreasonably, be viewed as the outcome of a
presumed attempt to formally validate Hilbert’s ω-rule finitarily, since:

Lemma 15.1. If we meta-assume Hilbert’s ω-rule for PA, then a consistent PA
is ω-consistent.

Proof. If the PA formula [F (x)] interprets as an arithmetical relation F ∗(x)
that is algorithmically verifiable as true for any given natural number n, and the
PA formula [(∀x)F (x)] can be admitted as an initial formula (axiom) in PA, then
[¬(∀x)F (x)] cannot be PA-provable if PA is consistent. The lemma follows. �

We note, however, that we cannot similarly conclude from the the Algorithmic
ω-Rule that a consistent PA is ω-consistent.

Moreover, by Gödel’s Theorem VI in [Go31], it follows from Lemma 15.1 that
one consequence of assuming Hilbert’s ω-Rule is that there must, then, be an
undecidable arithmetical proposition; a further consequence of which would be that
any first-order arithmetic such as PA must be essentially incomplete.

15.3. Is Hilbert’s ω-Rule equivalent to Gentzen’s Infinite Induction?

Schirn and Niebergall also address the question of whether Hilbert’s ω-rule is weaker
than Gentzen’s cut-elimination, and consider the argument that:

“Since we can construe the infinitely many premises of one application and,

hence, of finitely many applications of the ω-rule as ordered with order type

ω, the proof theorist who intends to employ the ω-rule has to presuppose
only (the existence of) ω. By contrast, Gentzen’s consistency proof for

pure number theory in his 1936 article presupposes (the existence of) ε0 .

Moreover, if a proof theorist endorsing the basic tenets of Hilbert’s finitism
were asked how he brings it about to prove infinitely many premises, he

might respond as follows:

To accept one application of rule ω* is not more problematic

than to make the assumption that one can conclude from the
PA-provability of ‘∀x(0 ≤ x)’ to the PA-provability of ‘0 ≤ n’
for every n. Both cases require that modus ponens be applied
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infinitely many times, where the sequence of the prooflines has
order-type ω.”

. . . Schirn and Niebergall: [SN01], p.140.

Schirn and Niebergall stress that, as highlighted in §4.3 of this investigation,
the issue confronting Hilbert then—as also finitists of all hues since—was that of
unambiguously defining a deterministic procedure for interpreting quantification
finitarily both over the numerals, and the numbers that they seek to formally
represent:

“It is important to bear in mind that finitist mathematics may be extended
by adding well-formed formulae or by adjoining further ‘principles’. It is the

first that is at issue in Hilbert’s proposed finitist interpretation of quantified
statements about numerals (Hilbert and Bernays 1934, 32ff.). So, let us

begin by taking a closer look at this.

(1) A general statement about numerals ‘∀ñ Ũ(ñ)’ can be interpreted
finitistically only as a hypothetical statement, i.e. as a statement about

every given numeral. A general statement about numerals expresses a

law that has to be verified for each individual case.
25

(2) An existential statement about numerals ‘∃ñ Ũ(ñ)’ must be construed,
from the finitist point of view, as a ‘partial proposition’, i.e. ‘as an
incomplete communication of a more exactly determinate statement,

which consists either in the direct specification of a numeral with the

property Ũ or in the specification of a procedure for gaining such a

numeral’ (Hilbert and Bernays 1934, 32). The specification of the
procedure requires that for the sequence of acts to be carried out a
determinate limit be presented.

(3) In like manner we have to interpret finistically statements in which a
general statement is combined with an existential statement such as

‘For every numeral r̃ with the property Ũ(̃r) there exists a numeral l̃ for

which B̃(̃r, l̃) holds’, for example. In the spirit of the finitist attitude,

this statement must be regarded as the incomplete communication of
a procedure with the help of which we can find for each given numeral

r̃ with the property Ũ(̃r) a numeral l̃ which stands to r̃ in the relation

B̃(̃r, l̃).

(4) Hilbert points out that negation is unproblematic when applied to

what he calls ‘elementary propositions’, i.e. to statements which can
be decided by direct intuitive observation. In the case of universally
and existentially quantified statements about numerals, however, it
is not immediately clear what ought to be regarded as their negation

in a finitist sense. The assertion that a numeral ñ with the property

Ũ(ñ) does not exist has to be conceived of as the assertion that it

is impossible that a numeral ñ has the property Ũ(ñ). Strengthened
negation of an existential statement, thus constructed, is not (as in
the case of negation of an elementary statement) the contradictory

of ‘∃ñŨ(ñ)’. From the finitist standpoint, we therefore cannot make

use of the alternative according to which there either exists a numeral

ñ to which Ũ(ñ) applies or the application of Ũ(ñ) to a numeral ñ is
excluded.Hilbert admits that, from the finitist perspective, the law of

the excluded middle is invalid in so far as for quantified sentences we

do not succeed in finding a negation of finitist content which satisfies
the law.

Fn. 25 The proposed interpretation of universal quantification is reminiscent of
Gentzen’s and W. W. Tait’s account (See Tait 1981) in that it likewise
embodies a version of the ω-rule which rests on the identification of
numerals with numbers. Tait’s additional idea is that the law in question
is to be construed as something given by a finitist function.”

. . . Schirn and Niebergall: [SN01], p.143.
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Schirn and Niebergall note that, although Hilbert endeavoured to distinguish
between quantified propositions over numerals and quantified propositions over the
numbers that they seek to represent (corresponding to what we have termed as
weak and strong interpretations of quantification in §4.3), he could not express the
distinction formally; possibly because—as illustrated by Definitions 5.2 and 5.2—a
transparent and unambiguous description of the deterministic infinite procedures
needed to evidence the distinction formally, i.e. Hilbert’s ‘reduction procedure’
(quoted in §15.4) became available only after the realisation that Turing’s 1936
paper [Tu36]) admits evidence-based reasoning—in the sense that one can view the
values of a simple functional language as specifying evidence for propositions in a
constructive logic ([Mu91], §1 Introduction):

“Now, when we compare (1)-(4) with Hilbert’s remarks on what can be

formulated finitistically in say, ‘Über das Unendliche’ (1926), we notice two
things. Explication (4) is very much akin to the points made in that paper
about the negation of quantified statements. The matter stands differently
with (1)-(3). On plausible grounds, one should assume that a finitistically

interpreted sentence is capable of being formulated finitistically in the first
place. If that is correct, then (1) to (3) ought to be understood in such a way
that universally quantified sentences, even sentences whose formalizations are

genuine Π
0

2
-sentences (cf. (3)), can be formulated in the language of finitist

mathematics. Plainly, if around 1934 Hilbert really wished to maintain that

quantified sentences of types (1)-(3) have a proper place in the language
of finitist metamathematics, he would have departed significantly from his
conception of metamthematics in the 1920s. It is quite true that both in ‘Über

das Unendliche’ and in Grundlagen der Mathematik (1934) Hilbert spares
himself the trouble of developing the language of finitist metamathematics in

a systematic way. There is one crucial difference, though. In his celebrated

essay, the distinction between real and ideal statements, although chiefly
designed to streamline the formalism, provides at least a clue for assessing

the scope and the limits of the language of finitist mathematics. By contrast,

the reader of Hilbert and Bernays 1934 who is expecting to encounter this
helpful distinction again here will be disappointed. In this book, there is not

even a trace of it framed in familiar terms.

Admittedly, all this does not exclude that an alternative way of con-
struing the phrase ‘finitistically interpretable’ can be contrived. Consider
sentences of type (1). In ‘Über das Endliche’ ‘∀x(x + 1 = 1 + x)’ is not a
sentence of LM , and the same applies to an expression like (*) ‘For every

given ã ‘ã + 1 = 1 + ã’ is true’. By contrast, if a numeral ã is given, the
expression ‘ã + 1 = 1 + ã’ is a sentence of the language of finitist meta-

mathematics. In Grundlagen der Mathematik (1934), the question of which

language (*) may belong to is passed over in silence. We are only told that
a finitist interpretation of (*) requires that it be construed as a hypothetical
judgement about every given numeral (cf. (1)) (we aassume that (*) should

be considered a general statement about numerals). A similar formulation

is employed in ‘Über das Endliche’ (91 [378]), with the minor difference

that here Hilbert talks about interpretation simpliciter.
28

And it is almost

precisely at this point that he introduces his conception of real and ideal

statements, stressing that the latter are, from the finitist point of view,
devoid of meaning. This shows: the fact that in ‘Über das Endliche’ certain

sentences of type (1), like (*), are amenable to (a finitist) interpretation
is compatible with the fact that the language of finitist metamathematics

does not comprise sentences of this type. The finitist interpretation of (*)

proceeds in such a way that for every given numeral ã (*) is replaced with
‘ã + 1 = 1 + ã’, and then each of the sentences ‘ã + 1 = 1 + ã’ is interpreted
finitistically. Seen from this angle, we should not take it for granted that in
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Grundlagen der Mathematik (1934) finitist interpretability implies finitist
formulability. What we do take for granted is that if this implication holds

for sentences of one of these types, then it must also hold for the sentences
of the remaining types.

Fn. 28 It is reasonable to assume that here he likewise has a finitist interpretation in
mind. Notice that non-finitary sentences, i.e. ideal sentences, are not interpreted
at all.”

. . . Schirn and Niebergall: [SN01], p.143.

15.4. Hilbert’s weak proof of consistency for PA

Schirn and Niebergall note further that, in order to argue that every numerical
formula derivable from the axioms of a weakened arithmetic H was ‘true’, Hilbert
and Bernays introduced the concept of ‘verifiabilty’, whose well-definedness, however,
appealed to the existence of appropriate ‘reduction procedures’ in cases where quan-
tification and/or its negation was interpreted over only all ‘numeral’ instantiations
of the formulas of H:

“In order to find out whether in Grundlagen der Mathematik (1934) quanti-
fied sentences of types (1)-(4) are indeed regarded to belong to the well-formed
sentences of the language of finitist metamathematics, it is useful to take

a closer look both at the number-theoretic formalisms presented there and
at the corresponding consistency proofs. In §6 (Hilbert and Bernays 1934,
220ff.), Hilbert carries out a consistency proof for a certain weak arithmetical

axiom system (cf. 1934, 219) which we call H. The ‘proof’ is entirely informal,
and it is not clear whether Hilbert shows metamathematically ‘There is no
proof in H for falsum’ or only for every concretely given proof figure a that a

is no proof for falsum in H. The very beginning of the proof speaks in favour
of the second option, that is, we conjecture that Hilbert conducts what is in
effect an informal version of what in our paper ‘Hilbert’s finitism and the

notion of infinity’ (1998) we call an approximative consistency proof:
29

‘We

now imagine that we are given such a proof figure with the end formula 0 6= 0.
On this (proof figure) two processes can be effected one after another which
we call dissolution of the proof figure in “proof-threads” and elimination of

the free variables’ (Hilbert and Bernays 1934, 220; cf. 298).

Hilbert and Bernays show, in the first place, that every numerical

formula that can be derived from the axioms of H without the use of bound

variables is true.
30

In a second step, they demonstrate that every numerical
formula provable in H is true even if we drop the restriction concerning the

bound variables. They generalize the notion of a true formula in such a
way that all formulae of a given proof figure are taken into account, not

only the numerical ones (cf. Hilbert and Bernays 1934, 232ff.). This is
accomplished by introducing the term ‘verifiable’. Confining themselves
provisionally to formulae without universal quantifiers, Hilbert and Bernays

explain the term as follows: (i) a numerical formula is verifiable, if it is true;

(ii) a formula containing one or more free individual variables, but no other
variables, is verifiable, if it can be shown that it is true for every replacement

of the variables with numerals; and (iii) a formula with bound variables, but
without formula variables and without universal quantifiers is verifiable, if
the application of a certain reduction procedure leads to a verifiable formula

in the sense of (i) or (ii).
31

In a further step, Hilbert and Bernays show
that the end formula of the given proof (in H) is verifiable (cf. Hilbert and

Bernays 1934, 244ff.). H is therefore consistent.

As to (ii), it is plain that verifiability is defined through an unbounded

quantification over numerals, i.e. for all substitution instances. The phrase
‘can be shown’ remains unexplained and is possibly meant to impart a ‘con-
structive’ or finitist air to unbounded universal quantification over numerals.
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These belong, in the terminology of Hilbert (1926), to the class of ideal
statements and are as such unacceptable for the finitist of the 1920s. We

further note that carrying out consistency proofs along the lines of (i)-(iii)
requires that the verifiability predicate can be formulated in the language of
finitist metamathematics. Hence, this language must contain sentences of

type (1).”

Fn. 29 In Niebergall and Schirn 1998, §6 we define this notion as follows (for axiomatiz-
able theories S and T with representation τ): S proves the approximative consis-
tency of T:⇔ ∀n S ` ¬Proofτ (n,⊥). We assume here that the formalized proof
predicate is the standard one. In our opinion, the notion of an approximative
consistency proof captures the core of the conception of finitary metamathemat-
ical consistency proofs which Hilbert developed in his papers on proof theory in
the 1920s.

Fn. 30 Numerical formulae are characterized as quantifier-free sentences; see Hilbert
and Bernays 1934, 228. Hilbert emphasizes that this is only a stricter version of
the assertion that it is impossible to derive 0 6= 0 from the axioms of H without
admitting bound variables (Hilbert and Bernays 1934, 230).”

. . . Schirn and Niebergall: [SN01], pp.144-145.

Now, if we treat Hilbert and Bernays’ intent whilst introducing their concept
of ‘verifiability’ (as detailed above) as corresponding to the concept of ‘algorithmic
verifiability’ introduced in Chapter 5 (Definition 5.2) then—despite Schirn and
Niebergall’s reservations in [SN01]—it can be argued that Hilbert’s reasoning does
yield a weak consistency proof for PA which is essentially that of Theorem 7.7 (in
contrast to the strong finitary proof of consistency for PA in Theorem 9.10).

Moreover, from such a perspective Hilbert and Bernays’ reasoning would at
least be as constructive as Gentzen’s proof ([Me64], p.258) of consistency for a
first-order number theory—such as the formal system S of Peano Arithmetic defined
by Mendelson (in [Me64], pp.102-103)—if we admit Gentzen’s Rule of Infinite
Induction ([Me64], p.259) in a formal system S∞ in which all theorems of S are
provable ([Me64], p.263, Lemma A-3):

Infinite Induction: A(n)∨D for all natural numbers n

((x)A(x))∨D

Further, if we were to interpret Infinite Induction as essentially stating that:

Proposition 15.2. If the S∞-formula [A(n)] interprets as true for any given
natural number n, then we may conclude that [(∀x)A(x)] is provable in S∞ .

then it would follow that:

Thesis 15.3. Hilbert’s ω-Rule is equivalent to Gentzen’s Infinite Induction. 2

15.5. Hilbert’s ω-Rule is stronger than ω-consistency

Now we note that, in his 1931 paper [Go31], Gödel constructed an arithmetical
formula [R(x)] in his formal arithmetic P and showed that, if P is assumed ω-
consistent, then both [(∀x)R(x)] and [¬(∀x)R(x)] are unprovable in P ([Go31],
p.25(1), p.26(2)), even though [R(n)] interprets as true for any given numeral [n].

It immediately follows that:

Lemma 15.4. Hilbert’s ω-Rule is stronger than ω-consistency. 2

Lemma 15.4 justifies why Gödel’s argument in [Go31]—from which he concludes
the existence of an undecidable arithmetical proposition—is based on the weaker
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(i.e., weaker than assuming Hilbert’s ω-rule) premise that a consistent PA can be
ω-consistent.

The question arises whether an even weaker Algorithmic ω-Rule—as defined
above (which, prima facie, does not imply that a consistent PA is necessarily ω-
consistent)—can yield a finitary completion for PA as sought by Hilbert, albeit for
an ω-inconsistent PA.

It is a question that we answer in the affirmative, since we show that PA is not
only ‘algorithmically’ complete in the sense of the Algorithmic ω-Rule (§10.1), but
categorical with respect to algorithmic computability (Corollary 11.1).

15.6. Rosser’s Rule C is equivalent to Gödel’s ω-consistency

Clearly such categoricity conflicts with the conventional wisdom that J. Barkley
Rosser’s proof of undecidability ([Ro36]) successfully avoids the assumption of
ω-consistency.

However, we note that a formal system P is ω-consistent if, and only if:

(i) Either, we cannot have that a P -formula [(∃x)F (x)] is P -provable and
also that [¬F (a)] is P -provable for any given, constructively well-defined,
term [a] of P ;

(ii) Or, from the P -provability of [(∃x)F (x)] we can always conclude the
existence of an unspecified P -term [a] such that [F (a)] is provable, without
establishing that [a] is a constructively well-defined P -term.

We note that by admitting introduction of an unspecified P -term into the formal
reasoning, (ii) implicitly assumes—without proof (see §16.5), and without formally
admitting an axiom of choice into P equivalent to Hilbert’s ε-based choice axiom
(see §4.1)—that such an [a] can, indeed, be recursively constructed—at least in
principle—from the primitive terms of P by the first-order construction of terms
permitted within P from its primitive terms (since a closed PA term can denote
only algorithmically computable constants by Theorem 11.10).

We further note that (i) is Gödel’s definition of ω-consistency, which he explicitly
assumed when deriving his ‘formally undecidable’ arithmetical formula (which
involves a universal quantifier).

We also note that (ii) is Rosser’s Rule C (see §B, Appendix B; also [Me64],
Sec §7, pp.73-75), which he tacitly assumes as a valid deduction rule of FOL when
deriving his ‘formally undecidable’ arithmetical formula (which involves an existential
quantifier) in [Ro36], where he explicitly assumes only that P is simply consistent.

However, Rosser’s belief that simple consistency suffices for establishing his
‘formally undecidable’ arithmetical formula (which involves an existential quantifier)
in P is illusory (see §16) since, if P is simply consistent, the introduction of
an unspecified P -term into the formal reasoning under Rule C entails Aristotle’s
particularisation in any interpretation of P , which in turn entails that P is ω-
consistent (Corollary 15.8).

Although the implicit assumption of ω-consistency—entailed by Rosser’s Rule
C—is not immediately obvious in Rosser’s original proof, it is implicit (see §16.5)
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in steps (i)-(iii) on p.146 of Mendelson’s proof of Proposition 3.32 (Gödel-Rosser
Theorem) in [Me64].

15.7. Aristotle’s particularisation is stronger than ω-consistency

In this investigation we argue that these issues are related, and that placing them
in an appropriate perspective requires any constructive perspective of mathematics
to question not only the persisting belief in classical mathematics that Aristotle’s
particularisation remains valid even when applied over an infinite domain such as
N, but also the basis of Brouwer’s denial of the Law of the Excluded Middle in
constructive mathematics, following his challenge of the belief in [Br08].

For instance, we note that:

Lemma 15.5. If PA is consistent but not ω-consistent, then there is some PA
formula [F (x)] such that, under any interpretation—say IPA(N)—of PA over N:

(i) the PA formula [¬(∀x)F (x)] interprets as an algorithmically verifiable true
arithmetical proposition under IPA(N);

(ii) for any given numeral [n], the PA formula [F (n)] interprets as an algo-
rithmically verifiable true arithmetical proposition under IPA(N).

Proof. The lemma follows from the definition of ω-consistency and from
Tarski’s standard definitions of the satisfaction, and truth, of the formulas of a
formal system such as PA under an interpretation. �

Further:

Lemma 15.6. If PA is consistent and the interpretation IPA(N) admits Aristo-

tle’s particularisation over N2:

(i) and the PA formula [¬(∀x)F (x)] interprets as an algorithmically verifiable
true arithmetical proposition under IPA(N),

(ii) then there is some unspecified natural number m such that the interpreted
arithmetical proposition F ∗(m) is algorithmically verifiable as false in N.

Proof. The lemma follows from the definition of Aristotle’s particularisation
and Tarski’s standard definitions of the satisfaction, and truth, of the formulas of a
formal system such as PA under an interpretation. �

It follows immediately from Lemma 15.6 that:

Corollary 15.7. If PA is consistent and Aristotle’s particularisation holds
over N, there can be no PA formula [F (x)] such that, under any interpretation
IPA(N) of PA over N:

(i) the PA formula [¬(∀x)F (x)] interprets as an algorithmically verifiable true
arithmetical proposition under IPA(N);

(ii) for any given numeral [n], the PA formula [F (n)] interprets as an algo-
rithmically verifiable true arithmetical proposition under IPA(N). 2

2i.e., any interpretation that defines the existential quantifier as in [Me64], pp.51-52 V(ii).
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In other words3:

Corollary 15.8. If PA is consistent and Aristotle’s particularisation holds
over N, then PA is ω-consistent. 2

It follows that:

Corollary 15.9. If Aristotle’s particularisation holds over N, then PA is
consistent if, and only if, it is ω-consistent.

Proof. We note first that, by Corollary 15.8, if PA is consistent and Aristotle’s
particularisation holds over N, then PA is ω-consistent.

We note next that if PA is ω-consistent then, since [n = n] is PA-provable
for any given PA numeral [n], we cannot have that [¬(∀x)(x = x)] is PA-provable.
Since an inconsistent PA proves [¬(∀x)(x = x)], an ω-consistent PA cannot be
inconsistent. �

It also follows that (cf. Corollary 9.12):

Corollary 15.10. If PA is consistent but not ω-consistent, then Aristotle’s
particularisation does not hold in any interpretation of PA over N. 2

It further follows immediately by Theorem 8.5 that:

Corollary 15.11. Aristotle’s particularisation does not hold in any model of
PA. 2

15.8. Markov’s principle does not hold in PA

We note that an immediate consequence of Corollary 15.11 is that Markov’s principle
does not, as has been argued by some advocates of intuitionistic logic, hold in PA:

“Mathematicians of the Russian school accept the following principle: if [n]
is a recursive binary sequence (i.e., for each i, ni = 0 or ni = 1), and if we
know that not for all i does ni = 0, then we may say that there is an i such

that ni = 1. Formally, in terms of a binary number-theoretic function, f:

¬∀x(f(x) = 0)→ ∃n(f(n) = 1).

Advocates of intuitionistic logic often find this unpalatable. Existential

statements should be harder to prove. But in fact this is the principle that
allows one to prove in constructive recursive analysis that every real valued

function is continuous at each point in which it is defined. This was first

proved by Tsĕitin. Markov himself had proved weaker versions, which are

classically but not constructively equivalent.”
. . . Posy: [Pos13], p.112.

Corollary 15.12. Markov’s principle: ¬(∀x)(f(x) = 0) → (∃n)(f(n) = 1)
does not hold in PA.

Proof. For example, we have by Lemma 11.3 that Gödel’s formula [R(n)] is
PA-provable for any given numeral [n], whilst by Corollary 11.4 the PA formula
[¬(∀x)R(x)] is also PA-provable. �

3We note that Corollary 15.8 negates Martin Davis’ speculation in [Da82], p.129, that such a
proof of ω-consistency may be “. . . open to the objection of circularity”.
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15.9. Hilbert’s purported ‘sellout’ of finitism

We digress here slightly to emphasise a philosophical observation of topical signifi-
cance that:

(a) the making of a formal distinction (as in Theorem 7.7) between what may
be considered ‘constructive (weak)’, vis à vis what may be considered
‘finitary (strong)’, reasoning has, unfortunately, seemed of diminishing
concern, and interest, in academia; and that

(b) this can, not unreasonably, be attributed to an unreasonably persisting
influence of Hilbert’s thinking, after 1929, on current perspectives towards
foundational issues.

Our observation is supported, in particular, by what Schirn and Niebergall—in
their analysis of Hilbert’s finitism ([SN01])—term as ‘The sellout of finitism’ by
Hilbert and Bernays, where they note that:

“In §5.2 of Hilbert and Bernays (1939), entitled ‘The formalized metamathe-
matics of the number-theoretic formalism’ (cf. 302ff.), the authors introduce

a notational variant of PA which they call Zµ . Its purported drawback for
metamathematical purposes rests on the fact ‘that in the formalization of
finitist reasoning in the system (Zµ ) the characteristic of the finitist argumen-
tation is, for the most part, lost’ (1939, 361). Nonetheless, Zµ is regarded as

setting a provisional upper limit for a finitistically acceptable metatheory
(Hilbert and Bernays 1939, 353ff., 361ff.).

At the beginning of the section ‘Eliminability of the “tertium non

datur” for the investigation of the consistency of the system (Zµ )’, Hilbert
and Bernays observe that the ‘proof-theoretic methods hitherto applied

(by them) , even though they partially go beyond the domain of recursive

number theory, apparently do not transcend the domain of those concept
formations and modes of inference that can still be presented within the

formalism Zµ ’ (Hilbert and Bernays 1939, 361).
50

On the face of it, this
passage suggests that Hilbert and Bernays are here operating with a twofold

notion of extending proof-theory or metamathematics: the extension involves
both the language of metamathematics and the metamathematical theory
itself. Unfortunately, they do not distinguish clearly between these two

methods of extending metamathematics; their respective remarks give rise
to ambiguity.

Hilbert and Bernays sketch, in the first place, an extension L
+

PRA
of

LPRA which is supposed to contain only ‘finitary’ statements. Taking LPRA

as the starting point, L
+

PRA
is arrived at in two stages: first, symbols for

certain computable number-theoretic functions are adjoined to LPRA (call the

set of formulae thereby defined L
′

PRA
). Second, L

′

PRA
is converted into L

+

PRA

by way of adding to L
′

PRA
only those statements that can be ‘interpreted

in a strict sense’ by a statement of L
′

PRA
(cf. Hilbert and Bernays 1939,

362). Hilbert and Bernays do not explain the phrase ‘interpreted in a strict

sense’, but their ensuing exposition suggests that it is at least formulae of

the type ‘∀x∃y ψ(x, y)’ with quantifier-free formula ψ that aare capable

of being ‘interpreted in a strict sense’ in L
′

PRA
. The interpretation can

be given by choosing for such a ‘∀x∃y ψ(x, y)’ the quantifier-free formula

‘ψ(x, f(x))’ in L
′

PRA
, where f is a function-sign for a recursive function which

has already been introduced in L
′

PRA
. That these two formulae are equivalent

to one another in some sense of ‘equivalent’ is suggested by the phrase ‘strict

interpretation’, but the authors do not argue for this ‘equivalence’.
51
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Fn. 50 The authors also argue that the proof-theoretical methods have been extended
from PRA to PA without infringing the ‘methodic fundamental idea of finitist
proof theory’ (1939, 362).

Fn. 51 Obviously, the conception of the finitistically admissible presented in this exam-
ple is akin to the position Hilbert and Bernays advocate in 1934, but deviates
from Hilbert’s finitism in the 1920s. The truly original, austere notion of a fini-

tary statement embodies less than what can be expressed in L
+

PRA
.”

. . . Schirn and Niebergall: [SN01], p.154.

15.10. Gödel’s Zilsel lecture

What is noteworthy from an evidence-based perspective about the above account is
that the search for finitary means of reasoning in the first volume of Grundlagen der
Mathematik (1934)—which even then conflicted with Hilbert’s enthusiastic espousal
of Cantor’s set theory, thereby leading to what came to be known as ‘Hilbert’s
Program’—was apparently abandoned around the period of the second volume of
Grundlagen der Mathematik (1939); justified in part, perhaps, by developments
following Gödel’s 1931 incompleteness theorems which seemed to suggest—as Gödel
reportedly remarked in his 1938 Zilsel lecture—that “intuitionistic methods went
beyond finitist ones” (as Gödel had analysed formally in [Go33]).

In a detailed account of these developments, and their impact on Hilbert’s
Program, Wilfried Sieg refers to a lecture Gödel delivered in Vienna on 29 January
1938:

“. . . to a seminar organized by Edgar Zilsel. The lecture presents an overview

of possibilities for continuing Hilbert’s program in a revised form. It is an
altogether remarkable document: biographically, it provides, together with
(1933b) and (1941), significant information on the development of Gödel’s

foundational views; substantively, it presents a hierarchy of constructive
theories that are suitable for giving (relative) consistency proofs of parts of
classical mathematics (see §§24 of the present note); and, mathematically, it
analyzes Gentzen’s (1936) proof of the consistency of classical arithmetic in

a most striking way (see §7). A surprising general conclusion from the three
documents just mentioned is that Gödel in those years was intellectually
much closer to the ideas and goals pursued in the Hilbert school than has

been generally assumed (or than can be inferred from his own published
accounts). . . .

The Zilsel lecture gives, as we remarked, an overview of possibilities

for a revised Hilbert program. The central element of that program was to
prove the consistency of formalized mathematical theories by finitist means.

Gödel’s 1931 incompleteness theorems have been taken to imply that for
theories as strong as first-order arithmetic this is impossible, and indeed, so

far as Gödel ventures to interpret Hilbert’s finitism, that is Gödel’s view in

the present text as well as earlier in (1933b) (though not in (1931d)) and later
in (1941), (1958) and (1972). The crucial questions then are what extensions

of finitist methods will yield consistency proofs, and what epistemological

value such proofs will have.

Two developments after (Gödel 1931d) are especially relevant to these

questions. The first was the consistency proof for classical first-order arith-
metic relative to intuitionistic arithmetic obtained by Gödel (1933d). The

proof made clear that intuitionistic methods went beyond finitist ones (cf.
footnote 10 below). Some of the issues involved had been discussed in

Gödel’s lecture (1933b), but also in print, for example in (Bernays 1935b)

and (Gentzen 1936). Most important is Bernays’s emphasis on the “ab-
stract element” in intuitionistic considerations. The second development was
Gentzen’s consistency proof for first-order arithmetic using as the additional
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principle—justified from an intuitionistic standpoint—transfinite induction
up to ε0 . Already in (1933b, p. 31) Gödel had speculated about a revised

version of Hilbert’s program using constructive means that extend the limited
finitist ones without being as wide and problematic as the intuitionistic ones:

“But there remains the hope that in future one may find other and more
satisfactory methods of construction beyond the limits of the system A
[[capturing finitist methods]], which may enable us to found classical arith-
metic and analysis upon them. This question promises to be a fruitful field
for further investigations.”

The Cambridge lecture does not suggest any intermediate methods of con-

struction; by contrast, Gödel presents in the Zilsel lecture two “more satis-

factory methods” that provide bases to which not only classical arithmetic
but also parts of analysis might be reducible: quantifier-free theories for

higher-type functionals and transfinite induction along constructive ordinals.

Before looking at these possibilities, we sketch the pertinent features of the
Cambridge talk, because they give a very clear view not only of the philo-

sophical and mathematical issues Gödel addresses, but also of the continuity

of his development.”
. . . Sieg: [Si12], Chapter II.4, pp.193-195.

The above account raises the following point of interest from the evidence-based
perspective of [An16].

For any integer n ≥ 0, and integers x
i
≥ 0, we denote the ordinal W < ω

ω

by (x
0
, x

1
, x

2
, x

3
, x

4
, . . . , x

n
), where:

W = ω
n

.xn + . . .+ ω
4

.x4 + ω
3

.x3 + ω
2

.x2 + ω.x1 + x0

Define:

S
k

= {(x
0
, x

1
, x

2
, x

3
, x

4
, . . . , x

n
)} 3 (x

0
+x

1
+x

2
+x

3
+x

4
+. . .+x

n
) = k

Then S
k

is a finite set of n-tuples for any k ≥ 0. Hence {S
k
} is denumerable.

Now we note that ω
i ∈ S1 for all n ≥ i ≥ 1, and it is reasonable to

assume that some finite initial segment of any denumerable ordering of the
ordinals below ω

ω

, which does not appeal (non-constructively) to an axiom

of choice, must include an ordinal ω
i

.xj for some xj > 0 corresponding to
each n ≥ i ≥ 1.

Query 15.13. Can the above argument be extended to ordinals below ε0 by defining
higher order ordinals similarly in terms of the ordered n-tuples (W,W1 ,W2 , . . . ,Wn),

where Wi = ω
n

i
.xi,n + . . .+ω

4

i
.xi,4 +ω

3

i
.xi,3 +ω

2

i
.xi,2 +ωi .xi,1 , and so on recursively?

Since transfinite induction can reasonably be considered constructive only if the
induction is definable in terms of an evidence-based procedure over a denumerable
ordering of the ordinals, it is difficult to see in what sense Gentzen’s proof—unlike
the weak proof of consistency in Theorem 7.7—can be considered constructive.

Sieg notes that the issue of constructivity was addressed by Gödel earlier in his
1933 ‘Cambridge’ lecture as follows:

“Understanding by mathematics “the totality of the methods of proof actually
used by mathematicians”, Gödel sees the problem of providing a foundation
for these methods as falling into two distinct parts (p. 1):

At first these methods of proof have to be reduced to a minimum number
of axioms and primitive rules of inference, which have to be stated as
precisely as possible, and then secondly a justification in some sense or
other has to be sought for these axioms, i.e., a theoretical foundation
of the fact that they lead to results agreeing with each other and with
empirical facts.
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The first part of the problem is solved satisfactorily through type
theory and axiomatic set theory, but with respect to the second part Gödel

considers the situation to be extremely unsatisfactory. “Our formalism”,
he contends, “works perfectly well and is perfectly unobjectionable as long
as we consider it as a mere game with symbols, but as soon as we come to

attach a meaning to our symbols serious difficulties arise” (p. 15). Two
aspects of classical mathematical theories (the non-constructive notion of
existence and impredicative definitions) are seen as problematic because of

a necessary Platonist presupposition “which cannot satisfy any critical mind
and which does not even produce the conviction that they are consistent” (p.
19). This analysis conforms with that given in the Hilbert school, for example
in (Hilbert and Bernays 1934), (Bernays 1935b) and (Gentzen 1936). Gödel

expresses the belief, again as the members of the Hilbert school did, that the
inconsistency of the axioms is most unlikely and that it might be possible
“to prove their freedom from contradiction by unobjectionable methods”.”

. . . Sieg: [Si12], Chapter II.4, pp.195-196.

We note that Gödel is implicitly underscoring a thesis of this investigation that:

(α) Whereas the goal of classical mathematics, post Peano, Dedekind and
Hilbert, has been:

– to uniquely characterise each informally defined mathematical struc-
ture (e.g., the Peano Postulates and its associated classical predicate
logic)

– by a corresponding formal first-order language, and a set of finitary
axioms/axiom schemas and rules of inference (e.g., the first-order
Peano Arithmetic PA and its associated first-order logic FOL)

– which assign unique provability values to each well-formed proposition
of the language;

(β) The goal of constructive mathematics, post Brouwer and Tarski, has been:

– to assign unique, evidence-based, truth values to each well-formed
proposition of the language

– under a constructively well-defined interpretation over the domain
of the structure (when viewed as a ‘conceptual metaphor’ in the
terminology of [LR00]).

(γ) The goals of the two activities ought to, thus, be viewed as necessarily
complementing, rather than being independent of or in conflict with, each
other as to which is more ‘foundational’.

Further, the strong (intuitionistically unobjectionable) finitary proof of consis-
tency for PA in Theorem 9.10 justifies the optimism Gödel shared in 1933 with
Hilbert and Bernays over a positive outcome for Hilbert’s Program.

Theorem 9.10, moreover, underscores an implicit thesis of this investigation
that:

The deterministic infinite procedures (corresponding to Hilbert’s ‘reduction
procedure’ quoted in §15.4) needed to formalise the distinction between
‘constructive’ and ‘finitary’ reasoning (as illustrated for quantification in
§4.1; and generally by Definitions 5.2 and 5.3) involve a paradigm shift in
recognising that:
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– Turing’s 1936 paper [Tu36]) admits evidence-based reasoning for
assigning the values of ‘satisfaction’ and ‘truth’ to the formulas of a
first-order language such as PA,

– in the sense that one can view the values of a simple functional
language as specifying evidence for propositions in a constructive
logic ([Mu91], §1 Introduction),

– which yields two constructively well-defined, hitherto unsuspected,
complementary interpretations of PA (as defined in Chapter 7 and
Chapter 9)

– under Tarski’s inductive definitions of the satisfiability and truth of
the PA-formulas under an interpretation.

We note further that, according to Sieg, Gödel’s focus in 1933 was already
on identifying the minimum requirements that any method claiming to prove
consistency of a system must satisfy in order to be considered constructive:

“Clearly, the methods whose justification is being sought cannot be used in

consistency proofs, and one is led to the consideration of parts of mathematics
that are free of such methods. Intuitionistic mathematics is a candidate, but
Gödel emphasizes (p. 22) that

“the domain of this intuitionistic mathematics is by no means so uniquely
determined as it may seem at first sight. For it is certainly true that there
are different notions of constructivity and, accordingly, different layers of
intuitionistic or constructive mathematics. As we ascend in the series of
these layers, we are drawing nearer to ordinary non-constructive mathe-
matics, and at the same time the methods of proof and construction which
we admit are becoming less satisfactory and less convincing.”

The strictest constructivity requirements are expressed by Gödel (pp.
2325) in a system A that is based “exclusively on the method of complete
induction in its definitions as well as in its proofs”. That implies that the

system A satisfies three general characteristics: (A1) Universal quantification
is restricted to “infinite totalities for which we can give a finite procedure for

generating all their elements”; (A2) Existential statements (and negations of
universal ones) are used only as abbreviations, indicating that a particular
(counter-)example has been found without—for brevity’s sake—explicitly

indicating it; (A3) Only decidable notions and calculable functions can be
introduced. As the method of complete induction possesses for Gödel a
particularly high degree of evidence, “it would be the most desirable thing if

the freedom from contradiction of ordinary non-constructive mathematics
could be proved by methods allowable in this system A” (p. 25).”

. . . Sieg: [Si12], Chapter II.4, p.196.

If we apply Gödel’s stipulations (A1), (A2) and (A3) to the weak standard
interpretation of PA defined in Chapter 7), and the strong finitary interpretation of
PA defined in Chapter 9, we note that:

(1) The weak interpretation of universal quantification under the weak standard
interpretation M of PA (see §4.4), as well as the strong interpretation of
universal quantification under the strong finitary interpretation B of PA
(see §4.5), are both defined constructively in terms of finitely determinate
algorithms over the respective domains of quantification;

(2) Existential quantification in each case is used only as an abbreviation for
the negation of universal quantification such that:
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(a) The formula [(∃x)F (x)] is an abbreviation of [¬(∀x)¬F (x)], and is
defined as verifiably true in M relative to its truth assignment TM if,
and only if, it is not the case that, for any specified natural number
n, we may conclude on the basis of evidence-based reasoning that
the proposition ¬F ∗(n) holds in M ; where the proposition F ∗(n) is
postulated as holding in M for some unspecified natural number n if,
and only if, it is not the case that, for any specified natural number
n, we may conclude on the basis of evidence-based reasoning that the
proposition ¬F ∗(n) holds in M ;

(i) However, we note that we cannot (see §6.1) assume that the
satisfaction and truth of quantified formulas of PA are always
finitarily decidable—in the sense of being algorithmically com-
putable—under the weak standard interpretation M of PA over
N (as defined in §A, Appendix A), since we cannot prove fini-
tarily from only Tarski’s definitions and the assignment TM of
algorithmically verifiable truth values to the atomic formulas
of PA under M whether, or not, a given quantified PA formula
[(∀xi)R] is algorithmically verifiable as true under M ;

(ii) Moreover, it is not unreasonable to conclude—in the light of
Gödel’s stipulation (A2) in the previous quote—that the failure
to successfully carry out Hilbert’s Program may be attributed
to an unawareness of the evidence-based distinction between
algorithmically computable truth and algorithmically verifiable
truth (see Chapter 5).

(b) The formula [(∃x)F (x)] is an abbreviation of [¬(∀x)¬F (x)], and is
defined as true in B relative to its truth assignment TB if, and only
if, we may conclude on the basis of evidence-based reasoning that it is
not the case, for any specified natural number n, that the proposition
¬F ∗(n) holds in B.

We note that B is a strong finitary interpretation of PA since—
when interpreted suitably—all theorems of first-order PA interpret as
finitarily true in B relative to TB (see §9.1, Theorem 9.7).

(c) Only decidable notions are used to establish that the PA axiom schema
of induction interprets as verifiably true under the weak standard
interpretation M of PA (Lemma 7.3); and as computably true under
the strong finitary interpretation B of PA (Lemma 9.4).

To an extent, the above explains in hindsight why, according to Sieg, Gödel’s
focus shifted from seeking the consistency sought originally by Hilbert’s Program to
assessing the relative consistency of various systems and proofs:

“Gödel infers that Hilbert’s original program is unattainable from two
claims: first, all attempts for finitist consistency proofs actually undertaken

in the Hilbert school operate within system A; second, all possible finitist
arguments can be carried out in analysis and even classical arithmetic. The

latter claim implies jointly with the second incompleteness theorem that

finitist consistency proofs cannot be given for arithmetic, let alone analysis.
Gödel puts this conclusion here quite strongly: “. . . . unfortunately the hope
of succeeding along these lines [[using only the methods of system A]] has
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vanished entirely in view of some recently discovered facts” (p. 25). But
he points to interesting partial results and states the most far-reaching one,

due to (Herbrand 1931) in a beautiful and informative way (p. 26):

If we take a theory which is constructive in the sense that each existence
assertion made in the axioms is covered by a construction, and if we add
to this theory the non-constructive notion of existence and all the logical
rules concerning it, e.g., the law of excluded middle, we shall never get
into any contradiction.

Gödel conjectures that Herbrand’s method might be generalized to
treat Russell’s “ramified type theory”, i.e., we assume, the theory obtained

from system A by adding ramified type theory instead of classical first-order

logic.
9

There are, however, more extended constructive methods than those
formalized in system A; this follows from the observation that system A is
too weak to prove the consistency of classical arithmetic together with the

fact that the consistency of classical arithmetic can be established relative to

intuitionistic arithmetic.
10

The relative consistency proof is made possible by
the intuitionistic notion of absurdity, for which “exactly the same propositions
hold as do for negation in ordinary mathematics—at least, this is true within

the domain of arithmetic” (p. 29). This foundation for classical arithmetic
is, however, “of doubtful value”: the principles for absurdity and similar
notions (as formulated by Heyting) employ operations over all possible proofs,

and the totality of all intuitionistic proofs cannot be generated by a finite
procedure; thus, these principles violate the constructivity requirement (A1).

Despite his critical attitude towards Hilbert and Brouwer, Godel dis-
misses neither in (1933b) when trying to make sense out of Hilberts program
in a more general setting, namely, as a challenge to find consistency proofs

for systems of “transfinite mathematics” relative to “constructive” theories.
And he expresses his belief that epistemologically significant reductions may
be obtained.

[Fn. 9] In Konzept, p. 0.1, Godel mentions Herbrands results again and also the
conjecture con- cerning ramified type theory. The obstacle for an extension of
Herbrands proof is the principle of induction for transfinite statements, i.e., for-
mulae containing quantifiers. Interestingly, as discovered in (Parsons 1970), and
independently by Mints (1971) and Takeuti (1975, p. 175), the induction axiom
schema for purely existential statements leads to a conservative extension of A,
or rather its arithmetic version, primitive recursive arithmetic. How Herbrands
central considerations can be extended (by techniques developed in the tradition
of Gentzen) to obtain this result is shown in (Sieg 1991).

[Fn. 10] In his introductory note to (1933d), Troelstra (1986, p. 284) mentions
relevant work also of Kolmogorov, Gentzen and Bernays. Indeed, as reported
in (Gentzen 1936, p. 532), Gentzen and Bernays discovered essentially the same
relative consistency proof independently of Godel. According to Bernays (1967, p.
502), the above considerations made the Hilbert school distinguish intuitionistic
from finitist methods. Hilbert and Bernays (1934, p. 43) make the distinction
without referring to the result discussed here.”

. . . Sieg: [Si12], Chapter II.4, pp.196-197.

We also note that—according to Carl J. Posy’s implicitly empathetic account of
Hilbert’s Program—prior to publication of the second volume of the Grundlagen der
Mathematik in 1929, Hilbert was yet ‘confident in our ability to produce provably
adequate formal systems’:

“Hilbert’s Program: Constructivism of the Right

It might seem strange to call Hilbert a constructivist. After all, he himself

introduced non-constructive methods into algebra, he was unfriendly towards
the Kroneckerian restrictions, and—in opposition to Brouwer—he was a

staunch supporter of classical logic. Indeed, Hilbert did not practice or

condone “constructive mathematics” in the sense that I have been using the
term. Nevertheless, he was a constructivist: he saw infinity as a problem for
mathematics (or, more precisely, as the source of mathematics’ problems),
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and as a solution he aimed to found mathematics on a base of intuition, just
as do all the constructivists we have considered.

Hilbert in fact was driven by an opposing pair of pulls, and his program
for the foundation of mathematics was the result of those pulls.

On the one hand, Hilbert held that there is no infinity in physical reality,

and none in mathematical reality either. Only intuitable objects truly exist,
and only an intuitively grounded process (he spoke of “finitary thought”)

can keep us within the realm of the intuitable. This is his constructivism.

Mathematical paradox arises, he said, when we exceed those bounds. And
indeed, he held that infinite mathematical objects do go beyond the bounds

of mathematical intuition. For him finite arithmetic gave the basic objects,

and he held that arithmetic reasoning together was the paradigm of finitary
thought. Together this comprised the “real” part of mathematics. All the

rest—set theory, analysis, and the like—he called the “ideal” part, which

had no independent “real content”.

On the other hand, Hilbert also believed that this ideal mathematics
was sacrosant. No part of it was to be jettisoned or even truncated. This
is why I dub it “constructivism of the right”. “No one will expel us,” he

famously declared, “from the paradise into which Cantor has led us (Hilbert
1926).

Hilbert’s program, which was first announced in 1904 and was further

developed in the 1920s, was designed to reconcile these dual pulls.
35

outline

of the program for a branch of mathematics whose consistency is in question
is generally familiar: axiomatize that branch of mathematics; formalize the

axiomatization in an appropriate formal language; show that the resulting
formal system is adequate to the given branch of mathematics (i.e., sound
and complete); and then prove the formal system to be consistent.

The important assumptions here are that formal systems are finitely

graspable things and that the study of formal systems is a securely fini-
tary study. Thus, he is proposing to use the finitary, trustworthy part of
mathematics to establish the consistency of the ideal part.

Today, of course, we know that the program as thus formulated cannot
succeed. Gödel’s theorems tell us that. But in the late 1920s, Hilbert

still had ample encouraging evidence. Russell and Whitehead’s Principia
Mathematica stood as a monument to formalization. He and his students
successfully had axiomatized and formalized several branches of mathematics.

Moreover, he firmly believed that within each branch of mathematics we can
prove or refute any relevant statement. He believed that is, optimistically,

in the solvability of all mathematical problems. And so he was confident in

our ability to produce provably adequate formal systems. And—assuming
in advance the success of his program—he was comfortable in developing

the abstract, unanchored realms of ideal mathematics.

Fn. 35 It was announced in Hilbert’s lecture “Über die Grundlagen der Logik und der
Arithmetik” (published as Hilbert 1905). He developed the Program more fully in
the 1920s. Hilbert and Bernays’ book Grundlagen der Mathematik (1934) contains
the most mature statement of the program.”

. . . Posy: [Pos13], pp.119-120.

In other words, around 1929 Hilbert’s focus, and that of mainstream classical
meta-mathematics thereafter, apparently shifted from seeking finitary means of
reasoning—in order to justify that a formal system (viewed in the sense of Carnap’s
explicandum as considered in §23.1) does indeed represent that which (corresponding
to Carnap’s explicatum as considered in §23.1) it seeks to express formally—to where
it has resided ever since: determining the relative proof-theoretic strengths of formal
systems, irrespective of whether or not they have any evidence-based interpretation
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that would assure the soundness—and hence the consistency—of the concerned
systems.

Schirn and Niebergall deplore at length this weakening of Hilbert’s finitary
resolve, which they implicitly seem to also ascribe to efforts by Hilbert and Bernays
to contain the perceived negative implications of Gödel’s 1931 paper [Go31] on
finitism, whilst at the same time unquestioningly accepting the validity of Gödel’s
(as we show in §11.4, unjustified) conclusions therein; even though such acceptance
entailed accepting (illusory, as we show in Corollary 11.2) non-standard integers,
such as Cantor’s transfinite ordinals ‘ω’ and ‘ε

0
’ as legitimate objects in ‘constructive’

reasoning.

“We observe that in Hilbert and Bernays 1939 the authors pass easily from

the determination of what is finitistically formulable to a characterization

of what is finitistically provable. We are told that for the formalization of
certain general results of proof theory it is desirable to obtain as mathe-
matical theorems conditionals containing a universally quantified sentence
as antecedent (Hilbert and Bernays 1939, 358, 362). Such sentences are

for example (formalizations of) assertions concerning the unprovability or
verifiability of formulae or the computability of functions. To illustrate the
idea, Hilbert and Bernays sketch a formalization of the informal consistency

proof for H in Grundlagen der Mathematik (1934), to which we have already
referred in §2. The formalization is carried out in PA, and it is shown by
means of a complexity analysis that a fragment of PA, though extending

PRA, would actually suffice for the consistency proof.. Proof-theoretic means
extending PRA, including a form of complete induction which cannot be
formalized by the induction schema of recursive number theory (Hilbert and

Bernays 1939, 358), are said to be useful or desirable for conducting certain
formal consistency proofs.

However this may be, the crucial question for Hilbert and Bernays
is whether the so-called finitary methods may go beyond the scope of the
modes of inference formalizable in Zµ . The question is said to lack a precise

formulation, on the grounds that ‘finitary’ has not been introduced as a
sharply defined termed, but only as a label for a ‘methodic guideline’. It
serves merely to recognize certain forms of concept formation and of inference

definitely as finitary and certain others definitely as non-finitary. It is not
appropriate, though, for drawing an exact dividing line between modes of
inference which meet the requirements of the finitist method and modes of

inference which do not.52

It is in this connection that Hilbert and Bernays mention a typical
borderline-case; it concerns the question whether conditionals with a uni-

versally quantified sentence as antecedent can be formulated finitistically.

They claim to have removed this indeterminacy by distinguishing between
sentences and inference rules (Hilbert and Bernays 1939, 358f., 361). Hilbert

and Bernays admit, though, that in some cases this distinction may strike

us as forced, and all this is said to require that the bounds of the finitist
framework hitherto established be somewhat loosened, that is, that we go

beyond what can be formulated in L
+

PRA
and proved in recursive number

theory.

Two comments on these and similar remarks and ideas in Hilbert and

Bernays (1939) are in order here. First, what the authors may make clear
with them is at best that, compared with Hilbert’s finitism of the 1920s, the

language of finitist metamathematics must be extended; for instance, un-

bounded quantifications should now be finitistically formulable. Yet Hilbert
and Bernays do not even address the issue why in that case all theorems of
PA should be sound from a finitist point of view. Moreover, remarks to the
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extent that it is useful or desirable that the language of metamathematics
has a certain expressive power and that the metamathematical theory itself

includes a certain repertoire of proof-theoretic means convey nothing about
the assumed finitary character of both the metamathematical language and
the metamathematical theory under consideration.

Second, Hilbert’s and Bernay’s remarks presented above suggest that
the old foundational view dominating the pre-Gödelian period of Hilbertian

proof theory has been replaced with a view like this: we are accustomed to
certain informal metamathematical considerations, and experience teaches
us that they can be formalized in PA. Hence, we are entitled to use them in
metamathematical reasoning. Whether Hilbert and Bernays do not care any

longer much about questions of finitist justifiability, or whether they leave
their readers with a principle of the following kind: what is not definitely
infinitistic may be regarded as finitist, remains unclear. Deplorably, this is

not the only place where Hilbert and Bernayshedge instead of putting their
cards on the table. Surely Hilbert, as the founder of the finitist point of view,
should feel called upon to give a clear-cut explication of ‘finitist’ allowing
a fair assessment of his programme. So, it could seem that the appeal to

the alleged indefinability of ‘finitist’ is meant to serve as a safeguard against
possible objections. This may come out a little clearer in Hilbert’s and
Bernays’s treatment of transfinite induction to which we now turn.

Possibly guided by some principle of the kind just mentioned and the
desire to be able to formalize metatheoretical considerations to as high a
degree as possible, Hilbert and Bernays arrive at PA (or Zµ , respectively) as

a provisional boundary within which a finitist metatheory may be developed
(1939, 354, 361). The crucial question for Hilbert and Bernays is now whether
the so-called finitary methods may go beyond the scope of the modes of

inference formalizable in Zµ . (Remember that, owing to the vagueness of the
word ‘finitary’, they do not consider this question to be formulated in precise
terms.) For, as they point out (1939, 353f.), a (formal) metamathematical

consistency proof for PA cannot be carried out in PA itself. Nevertheless,
Hilbert and Bernays do not rest content with the idea that there can be no
finitary proof for PA. Accordingly, they insist that ‘in any case, it is possible

[. . . ] to surpass the modes of inference formalizable in (Zµ) without using
the typically non-finitary inferences. And in this way we succeed in giving
a very simple consistency proof for the system (Z)’ (1939, 362). Hilbert

and Bernays refer in this connection to an arithmetical version of transfinite

induction.
53

The line of thought which leads them eventually to considering

transfinite induction, in particular up to ε0 , as a possibly ‘legitimate’ method
of proof theory deserves close attention.”

[. . . ]

“At the very end of the last chapter of Grundlagen der Mathematik (1939),

Hilbert and Bernays make a concluding (but convoluted) remark on Gentzen’s
(1936) consistency proof, which suggests that it was no longer their serious

concern to argue for the finitist nature of the proof-theoretic means applied
in consistency proofs for mathematical theories they consider important. We
are told that it is a consequence of Gödel’s Theorem that

the more comprehensive the formalism to be considered is, the
higher are the order types, i.e. forms of the generalized induction

principle, that must be used. [. . . ] The methodic requirements for
the contentual proof of that higher induction principle supply the

standard for [determining] which kind of methodic assumptions

must be taken as a basis for the contentual attitude, if the
consistency proof for the formalism in question is to be successful,

(Hilbert and Bernays 1939, 387)

Fn. 52 We think that in Hilbert’s classical papers the expression ‘finitary’ is much less
vague than in Grundlagen der Mathematik (1939). In spite of its vagueness both
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during the pre-Gödelian and post-Gödelian period of Hilbertian proof theory, it
is reasonable to say that it had undergone a thorough shift of meaning by 1939.

Fn. 53 Therefore the remark just quoted seems to suggest that PA+TI[ε0 ] could be

treated as a finitistically admissible theory.”

. . . Schirn and Niebergall: [SN01], pp.154-157.

However, since:

(i) Schirn and Niebergall observe that, regarding the consistency of PA,
‘Hilbert and Bernays do not rest content with the idea that there can be
no finitary proof for PA’; and

(ii) Hilbert’s and Bernays’ ‘informal’ proof of the consistency of arithmetic in
the Grundlagen der Mathematik—as analysed in [SN01] (see §15.4)—can
be viewed as essentially outlining a proof of Theorem 7.7;

a more appropriate perspective may be that Hilbert’s weakened finitism in 1939
reflected, as we noted earlier, the circumstance that the deterministic infinite
procedures (corresponding to Hilbert’s ‘reduction procedure’ quoted in §15.4) needed
to formalise the distinction between ‘constructive’ and ‘finitary’ reasoning (as
illustrated for quantification in §4.1; and generally by Definitions 5.2 and 5.3) have
become available only after the realisation that Turing’s 1936 paper [Tu36]) admits
evidence-based reasoning—in the sense that one can view the values of a simple
functional language as specifying evidence for propositions in a constructive logic
([Mu91], §1 Introduction).





CHAPTER 16

Analysing Gödel’s and Rosser’s proofs of
‘undecidability’

We note that, in his seminal 1931 paper, Gödel constructively defined a Peano
Arithmetic P, and a P-formula [R(x)] (in his argument, Gödel refers to this formula
only by its ‘Gödel’ number ‘r’; [Go31], p.25, Eqn.(12)), such that ([Go31], Theorem
VI, p.24, p.25(1) & p.26(2)):

Lemma 16.1. If P is ω-consistent, then neither [(∀x)R(x)] nor [¬(∀x)R(x)] are
P-provable. 2

Of course, since every ω-consistent system is necessarily simply consistent,
Gödel’s conclusion is significant only if there is an ω-consistent language that seeks
to formally express all our true propositions about the natural numbers.

The issue, of whether there is an ω-consistent system of Arithmetic at all,
appears to have been treated as inconsequential1 following J. Barkley Rosser’s
1936 paper ([Ro36]), in which he claimed that Gödel’s reasoning can be ‘extended’
to arrive at Gödel’s intended result (i.e., construction of a formally undecidable
arithmetical proposition in P) by assuming only that P is simply consistent (i.e.,
without assuming that P is ω-consistent).

However, we now analyse various expositions of Rosser’s argument (vis à vis
Gödel’s reasoning), and show that they either implicitly appeal to Aristotle’s
particularisation, or tacitly to the weaker assumption (see §15.7) that P is ω-
consistent.

16.1. Rosser and formally undecidable arithmetical propositions

Although both Gödel’s proof and Rosser’s argument are complex, and not easy to
unravel, the former has been extensively analysed, and its various steps formally
validated2, in a number of expositions of Gödel’s number-theoretic reasoning (e.g.,
[Me64], p.143; [EC89], p.210-211).

1See, for instance, [Be59], p.595; [Wa63], p.19 (Theorem 3) & p.25; [Me64], p.144; [Sh67],

p.132 (Incompleteness Theorem); [EC89], p.215; [BBJ03], p.224 (Gödel’s first incompleteness
theorem).

2Possibly because Gödel’s remarkably self-contained 1931 paper—it neither contained, nor
needed, any formal citations—remains unsurpassed in mathematical literature for thoroughness,
clarity, transparency and soundness of exposition.
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In sharp contrast, Rosser’s widely cited argument does not appear to have
received the same critical scrutiny, and its number-theoretic expositions generally
remain either implicit or sketchy3.

16.2. Wang’s outline of Rosser’s argument

Wang, for instance, states that ([Wa63], p.337) from the formal provability of:

(i) ¬(x)(B(x, q) ⊃ (Ey)(y ≤ x &B(y, n(q))))

in his formal system of first-order Peano Arithmetic Z, we may infer the formal
provability of4:

(ii) (Ex)(B(x, q) & ¬(Ey)(y ≤ x & B(y, n(q))))

However, the inference (ii) from (i) appears to assume that the following
deduction is valid for some unspecified j:

¬(x)(B(x, q) ⊃ (Ey)(y ≤ x & B(y, n(q))))

• (Ex)¬(B(x, q) ⊃ (Ey)(y ≤ x & B(y, n(q))))

? ¬(B(j, q) ⊃ (Ey)(y ≤ j & B(y, n(q))))

B(j, q) & ¬(Ey)(y ≤ j & B(y, n(q)))

(Ex)(B(x, q) & ¬(Ey)(y ≤ x & B(y, n(q))))

Thus, Wang’s conclusion appears to implicitly assume both Aristotle’s particu-
larisation (•) and Rosser’s Rule C (?); entailing, ipso facto, that Z is ω-consistent
(see §15.6).

16.3. Beth’s outline of Rosser’s argument

Similarly, in his outline of a formalisation of Rosser’s argument, Beth implicitly
concludes ([Be59], p.594 (ij)) that from the formal provability of:

vspace+1ex

(i) ¬(q)[G1(m0, q,m0)→ (s){B(s, q)→ (Et)[t ≤ s& (Er){H(q, r) &B(t, r)}]}]

in his formal system of first-order Peano Arithmetic P, we may infer the formal
provability of5:

3See, for instance, [Be59], pp.593-595 (which focuses on Rosser’s argument, and treats Gödel’s

proof of his Theorem VI ([Go31], p.24) as a, secondary, weaker result); [Wa63], p.337; [Sh67],
p.232 (curiously, this introductory text contains no reference to Gödel or to his 1931 paper!);

[Rg87], p.98; [EC89], p.215 and p.217, Ex.2; [Sm92], p.81; [BBJ03], p.226 (this introductory

text, too, focuses on Rosser’s argument, and treats Gödel’s argument as more of a historical
curiosity!).

4We note that although Wang does not explicitly define the interpretation of the formal
Z-formula ‘(Ex)F (x)’ as ‘There is some x such that F (x)’, this interpretation appears implicit in

his discussion and definition of ‘(Ev)A(v)’ in terms of Hilbert’s ε-function ([Wa63], p.315(2.31);

see also p.10 & pp.443-445) as a property of the underlying logic of Wang’s Peano Arithmetic
Z, and is obvious in the above argument. In other words Wang implicitly implies that the
interpretation of existential quantification cannot be specific to any particular interpretation of a

formal mathematical language, but must necessarily be determined by the predicate calculus that
is to be applied uniformly to all the mathematical languages in question.

5We note that, in this case, Beth explicitly defines the interpretation of the formal P-formula
‘(Ex)’ as ‘There is a value of x such that’ ([Be59], p.178). Thus Beth, too, implies that the
interpretation of existential quantification in formalised axiomatics cannot be specific to any
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(ii) (Eq)[G1(m0, q,m0) & (s){B(s, q) & (t)[t ≤ s→ (r){H(q, r)→ B(t, r)}]}]

However, again, the inference (ii) from (i) appears to assume that the following
deduction is valid for some unspecified j:

¬(q)[G1(m0, q,m0)→ (s){B(s, q)→ (Et)[t ≤ s& (Er){H(q, r) &B(t, r)}]}]
• (Eq)¬[G1(m0, q,m0)→ (s){B(s, q)→ (Et)[t ≤ s& (Er){H(q, r) &B(t, r)}]}]
? ¬[G1(m0, j,m0)→ (s){B(s, j)→ (Et)[t ≤ s & (Er){H(j, r) & B(t, r)}]}]

G1(m0, j,m0) & (s){B(s, j) & (t)[t ≤ s→ (r){H(j, r)→ B(t, r)}]}

(Eq)[G1(m0, q,m0) & (s){B(s, q) & (t)[t ≤ s→ (r){H(q, r)→ B(t, r)}]}]

Thus, Beth’s conclusion, too, appears to implicitly assume both Aristotle’s
particularisation (•) and Rosser’s Rule C (?); entailing, ipso facto, that Z is ω-
consistent (see §15.6).

16.4. Rosser’s original argument implicitly presumes ω-consistency

Now, Rosser’s claim in his ‘extension’ ([Ro36]) of Gödel’s argument ([Go31]) is that,
whereas Gödel’s argument assumes that his Peano Arithmetic, P, is ω-consistent,
Rosser’s assumes only simple consistency.

However, Rosser’s original argument (also a sketch) appears to implicitly presume
that the system of Peano Arithmetic in question is ω-consistent.

For instance, Rosser defines a P-formula R(x, y) and concludes ([Ro36], p.234) that:

(i) If, for any given natural number n, the formula [¬R(n, a)] in Gödel’s Peano
Arithmetic P whose Gödel-number is:

Neg(Sb(r
u

Z(n)
v

Z(a)
))

is Pκ-provable6 under the given premises;

(ii) Then, if P is simply consistent, the P-formula [(∀u)¬R(u, a)] whose Gödel-
number is:

uGen(Neg(Sb(r
v

Z(a)
)))

is Pκ-provable;

(iii) Since:

“. . . the formal analogue of (z)[z = 0 ∨ z = 1 ∨ . . . ∨ z =
x ∨ (Ew)[z = x+ w]] is provable in P and hence in Pκ, and so

Bewκ(uGen(Neg(Sb(r
v

Z(a)
))))”.

particular interpretation of a formal mathematical language, but must necessarily be determined

by the predicate calculus that is to be applied uniformly to all the mathematical languages in
question.

6Notation (due to Gödel): By ‘Pκ-provable’ we mean provable from the axioms of P and an
arbitrary class, κ, of P-formulas—including the case where κ is empty—by the rules of deduction
of P.
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However, we note that Rosser’s argument in (iii) above would need to assume
Rosser’s Rule C (as we highlight in §16.5) in any proof sequence in P that involves
an existentially quantified P-formula such as ‘(Ew)[z = x+ w]’, and which yields
his conclusion (ii).

By §15.6, this would imply, however, that P is ω-consistent.

16.5. Mendelson’s proof highlights where Rosser’s argument presumes
ω-consistency

We analyse next Mendelson’s meticulously detailed expression ([Me64], p.145,
Proposition 3.32) of Rosser’s argument, and highlight where it tacitly presumes that
P is ω-consistent.

Now, Gödel defines a formal Peano Arithmetic P, and a primitive recursive
relation, q(x, y), that holds if, and only if, x is the Gödel-number of a well-formed
P-formula, say [H(w)]—which has a single free variable, [w]—and y is the Gödel-
number of a P-proof of [H(x)].

So, for any natural numbers h, j:

(a) q(h, j) holds if, and only if, j is the Gödel-number of a P-proof of [H(h)].

Rosser’s argument defines an additional primitive recursive relation, s(x, y),
which holds if, and only if, x is the Gödel-number of [H(w)], and y is the Gödel-
number of a P-proof of [¬H(x)].

Hence, for any natural numbers h, j:

(b) s(h, j) holds if, and only if, j is the Gödel-number of a P-proof of [¬H(h)].

Further, it follows from Gödel’s Theorems V ([Go31], p.22) and VII ([Go31],
p.29) that the primitive recursive relations q(x, y) and s(x, y) are instantiationally
equivalent to some arithmetical relations, Q(x, y) and S(x, y), such that, for any
natural numbers h, j:

(c) If q(h, j) holds, then [Q(h, j)] is P-provable;

(d) If ¬q(h, j) holds, then [¬Q(h, j)] is P-provable;

(e) If s(h, j) holds, then [S(h, j)] is P-provable;

(f) If ¬s(h, j) holds, then [¬S(h, j)] is P-provable;

Now, whilst Gödel defines [H(w)] as:

[(∀y)¬Q(w, y)],

Rosser’s argument defines [H(w)] as:

[(∀y)(Q(w, y)→ (∃z)(z ≤ y ∧ S(w, z)))],

Further, whereas Gödel considers the P-provability of the Gödelian proposition,:

[(∀y)¬Q(h, y)],

Rosser’s argument considers the P-provability of the proposition:

[(∀y)(Q(h, y)→ (∃z)(z ≤ y ∧ S(h, z)))].
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We note that, by definition:

(i) q(h, j) holds if, and only if, j is the Gödel-number of a P-proof of:

[(∀y)(Q(h, y)→ (∃z)(z ≤ y ∧ S(h, z)))];

(ii) s(h, j) holds if, and only if, j is the Gödel-number of a P-proof of:

[¬((∀y)(Q(h, y)→ (∃z)(z ≤ y ∧ S(h, z))))].

16.6. Where Mendelson’s proof tacitly assumes ω-consistency

(a) We assume, first, that r is the Gödel-number of some proof sequence in P for
the Rosser proposition [(∀y)(Q(h, y)→ (∃z)(z ≤ y ∧ S(h, z)))].

Hence q(h, r) is true, and [Q(h, r)] is P-provable.

However, we then have that [Q(h, r)→ (∃z)(z ≤ r∧S(h, z))] is P-provable.

Further, by Modus Ponens, we have that [(∃z)(z ≤ r ∧ S(h, z)))] is P-
provable.

Now, if P is simply consistent, then [¬((∀y)(Q(h, y) → (∃z)(z ≤ y ∧
S(h, z))))] is not P-provable.

Hence, s(h, n) does not hold for any natural number n, and so ¬s(h, n)
holds for every natural number n.

It follows that [¬S(h, n)] is P-provable for every P-numeral [n].

Hence, [¬((∃z)(z ≤ r ∧ S(h, z)))] is also P-provable—a contradiction.

Hence, [(∀y)(Q(h, y) → (∃z)(z ≤ y ∧ S(h, z)))] is not P-provable if P is
simply consistent.

(b) We assume next that r is the Gödel-number of some proof-sequence in P for the
proposition [¬((∀y)(Q(h, y)→ (∃z)(z ≤ y ∧ S(h, z))))].

Hence s(h, r) holds, and [S(h, r)] is P-provable.

However, if P is simply consistent, [(∀y)(Q(h, y)→ (∃z)(z ≤ y ∧ S(h, z)))]
is not P-provable.

Hence, ¬q(h, n) holds for every natural number n, and [¬Q(h, n)] is P-
provable for all P-numerals [n].

(i) The foregoing implies [y ≤ r → ¬Q(h, y)] is P-provable, and we
consider the following deduction ([Me64], p.146):

(1) [r ≤ k] . . . Hypothesis
(2) [S(h, r)] . . . By 3(b)
(3) [r ≤ k ∧ S(h, r)] . . . From (1), (2)
(4) [(∃z)(z ≤ k ∧ S(h, z))] . . . From (3)

(ii) From (1)-(4), by the Deduction Theorem, we have that [r ≤ k →
(∃z)(z ≤ k ∧ S(h, z))] is provable in P for any P-numeral [k];

(iii) Now, [k ≤ r ∨ r ≤ k] is P-provable for any P-numeral [k];

(iv) Also, [(k ≤ r → ¬Q(h, k)) ∧ (r ≤ k → (∃z)(z ≤ k ∧ S(h, z)))] is
P-provable for any P-numeral [k].
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(v) Hence [(¬(k ≤ r) ∨ ¬Q(h, k)) ∧ (¬(r ≤ k) ∨ (∃z)(z ≤ k ∧ S(h, z)))] is
P-provable for any P-numeral [k].

(vi) Hence [¬Q(h, k) ∨ (∃z)(z ≤ k ∧ S(h, z))] is P-provable for any P-
numeral [k].

(vii) Hence [(Q(h, k) → (∃z)(z ≤ k ∧ S(h, z))] is P-provable for any P-
numeral [k].

(viii) Now, (vii) contradicts our assumption that [¬((∀y)(Q(h, y)→ (∃z)(z ≤
y ∧ S(h, z))))] is P-provable.

(ix) Hence [¬((∀y)(Q(h, y)→ (∃z)(z ≤ y ∧ S(h, z))))] is not P-provable if
P is simply consistent.

However, the claimed contradiction in (viii) only follows if we assume that P is
ω-consistent, and not if we assume only that P is simply consistent.

In other words, Mendelson’s step (viii) implicitly appeals to Rosser’s Rule C
(see §B, Appendix B), and assumes that the formula [¬(∀y)(Q(h, y)] entails the
formula [¬(Q(h, k)] for some unspecified term [k] of P—which is equivalent to the
assumption that Aristotle’s particularisation holds in any model of P (see §15.6).



CHAPTER 17

Why Gödel’s formula does not assert its own
unprovability

17.1. Wittgenstein’s reservations on the ‘meaning’ of quantified
formulas under Aristotle’s particularisation

We note that the ambiguity in the ‘meaning’ of formal mathematical expressions
containing unrestricted existential (and, implicitly, universal) closure under an
interpretation was emphasised by Ludwig Wittgenstein as follows:

“Do I understand the proposition “There is . . .” when I have no possibility
of finding where it exists? And in so far as what I can do with the proposition

is the criterion of understanding it, thus far it is not clear in advance whether

and to what extent I understand it.”
. . . Wittgenstein: [Wi78].

The significance of Wittgenstein’s remark is seen in Gödel’s proof of Theorem
XI in his seminal 1931 paper ([Go31]), where Gödel defined a formula, say [W ], in
a Peano Arithmetic, P, and assumed that [W ] translates—under an interpretation
of P which admits Aristotle’s particularisation—as an arithmetical proposition, say
W ∗, that is true if, and only if, a specified formula of P is unprovable in P.

Gödel then argued that his formula [W ] is not P-provable if P is ω-consistent,
from which he concluded that the consistency of the Peano Arithmetic P is not
provable within the Arithmetic.

17.2. Gödel’s argument for his Theorem XI

Specifically, Gödel, first, showed how 46 meta-propositions about P can be defined
by means of primitive recursive functions and relations.

These included:

(#23) A primitive recursive relation, Form(x), which is true if, and only if, x is
the Gödel-number of a formula of P;

(#43) A primitive recursive relation, Fl(x, y, z), which is true if, and only if, x is
the Gödel-number of a P-formula that is an immediate consequence in P
of the two P-formulas whose Gödel-numbers are y and z;

(#44) A primitive relation, Bw(x), which is true if, and only if, x is the Gödel-
number of a finite sequence of P-formulas each of which is either an axiom
of P, or an immediate consequence in P of two preceding formulas;

(#45) A primitive recursive relation, xBy, which is true if, and only if, x is
the Gödel-number of a proof sequence of P whose last formula has the
Gödel-number y.

133
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Gödel assured the constructive nature of the first 45 definitions by specifying:

“Everywhere in the following definitions where one of the expressions (x),
(Ex), εx occurs it is followed by a bound for x. This bound serves only to
assure the recursive nature of the defined concept.”

. . . Gödel: [Go31], p.17, footnote 34.

Gödel then defined an unbounded meta-mathematical proposition that is not
primitive recursive:

(#46) The proposition, Bew(x), is true if, and only if, (∃y)yBx is true.

Thus Bew(x) is true if, and only if, x is the Gödel-number of a provable formula of
P.

17.3. The significance of Gödel’s Theorem VII

Now, by Gödel’s Theorem VII, any recursive relation, say Q(x), can be represented
in P by some, corresponding, arithmetical formula, say [R(x)], such that, for any
natural number n:

If Q(n) is true, then [R(n)] is P-provable

If Q(n) is false, then [¬R(n)] is P-provable.

However, Gödel’s reasoning in the first half of his Theorem VI established that
the above representation does not extend to the closure of a recursive relation, in
the sense that we cannot always assume:

If (∀x)Q(x) is true (i.e, Q(n) is true for any given natural number), then
[(∀x)R(x)] is P-provable.

In other words, we cannot assume that, even though the recursive relation Q(x)
is instantiationally equivalent to any well-defined interpretation of the P-formula
[R(x)], the number-theoretic proposition (∀x)Q(x) must, necessarily, be logically
equivalent to the corresponding interpretation of the P-formula [(∀x)R(x)].

Reason: In recursive arithmetic, the expression ‘(∃x)F ∗(x)’ is an abbreviation
for the assertion:

(*) There is some (algorithmically computable) natural number n such that
F ∗(n) holds.

In Peano Arithmetic, however, the formula ‘[(∃x)F (x)]’ is simply an abbreviation
for ‘[¬(∀x)¬F (x)]’, which, under an evidence-based finitary interpretation of PA
(see §9) asserts that:

(**) The relation ¬F ∗(x) is not algorithmically computable as always true in
N.

Moreover, Gödel’s Theorem VI established (see also §11.4) that we cannot
conclude (*) from (**) without risking inconsistency, since ¬F ∗(x) may be algorith-
mically verifiable, but not algorithmically computable, as always true in N.

Consequently, although a primitive recursive relation may be instantiationally
equivalent to a well-defined interpretation of a P-formula, we cannot assume that the
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existential closure of the relation must have the same meaning as the interpretation
of the existential closure of the corresponding P-formula (cf. §21.12).

However this, precisely, is the implicit presumption made by Gödel in the proof
of Theorem XI, from which he concluded that the consistency of P is not P-provable.

17.4. Gödel’s implicit presumption in his Theorem XI

Specifically, Gödel first defined the notion of ‘P is consistent’ classically as follows:

P is consistent if, and only if, Wid(P) is true

where Wid(P) is defined symbolically as:

(∃x)(Form(x) ∧ ¬Bew(x)),

which is merely an abbreviation for:

There is a natural number n which is the Gödel-number of a formula of P,
and this formula is not P-provable.

Thus, Wid(P) is true if, and only if, P is consistent (since an inconsistent P
would prove every P-formula).

However, Gödel, then, presumed that:

(i) If the recursive relation, Q(x, y) ([Go31], p24, eqn.(8.1)), is represented
by the P-formula [R(x, y)], and p is the Gödel-number of the P-formula
[R(x, y)], then the proposition:

“[(∀x)R(x, p)] is true under a well-defined interpretation I of P”

is logically equivalent to (i.e., has the same meaning as)

“(∀x)Q(x, p) is true”;

(ii) The existentially quantified meta-statement Wid(P) can be unambiguously
represented by some formula [W ] of P such that:

“[W ] is true under a well-defined interpretation I of P”,

and

“Wid(P) is true”,

are logically equivalent (i.e., have the same meaning).

Gödel then argued that:

(a) Since the P-formula [(∀x)R(x, p)] is not provable in P, it asserts its own
unprovability ([Go31], p37, footnote 67);

and the latter to conclude that:

(b) Since the P-formula [W ] is not provable in P, the consistency of P is
unprovable in P ([Go31], p.36, Theorem XI).
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17.5. Gödel’s formula does not assert its own unprovability

However, there is an inherent ambiguity in the classical interpretation of quantifica-
tion (see §21), insofar that although 17.4(a), for instance, does follow (by Theorem
10.2) if:

(i) “[(∀x)R(x, p)] is true under an interpretation I of P over N”

translates as (see Definitions 5.2 and 5.3):

(ii) “R∗(x, p) is algorithmically computable as always true in N under I ”,

it does not if (i) translates as:

(iii) “R∗(x, p) is algorithmically verifiable as always true in N, but it is not
algorithmically computable as always true in N, under I ”

where the P-formula [(∀x)R(x, p)] interprets as the arithmetical relation R∗(x, p) in
N under I.

In other words:

Theorem 17.1. The P-formula [(∀x)R(x, p)] does not assert its own unprov-
ability in P.

Proof. We have for Gödel’s primitive recursive relation Q(x, y) that:

(a) Q(x, p) is true if, and only if, the P-formula [R(x, p)] is not provable in P.1

Further, Gödel’s Theorem VI establishes that, if P is consistent, then (see
Definition 5.2):

(b) The arithmetical interpretation R∗(x, p) of the P-formula [R(x, p)] is algo-
rithmically verifiable as always true over the structure N of the natural
numbers.2

Now, in order to conclude that the P-formula [(∀x)R(x, p)] asserts its own
unprovability in P, Gödel’s argument must further imply the stronger meta-statement
(see Definition 5.3):

(c) The arithmetical interpretation R∗(x, p) of the P-formula [R(x, p)] is algo-
rithmically computable as always true over the structure N of the natural
numbers,

from which we may then conclude that:

(d) The primitive recursive relation Q(x, p) is algorithmically computable as
always true if, and only if, the arithmetical interpretation R∗(x, p) of the
P-formula [R(x, p)] is algorithmically computable as always true over the
structure N of the natural numbers.

1Comment : In Gödel’s terminology, ‘Q(x, p) ≡ xBκ [Sb(p
19

Z(p)
)]’ ([Go31], p.24, eqn.(8.1)).

2Comment : An immediate consequence, in Gödel’s terminology, of ‘(n)Bewκ [Sb(r
17

Z(n)
)]’

([Go31], p.26, #2).
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However, this is not possible since (c) and (d) would then yield the contradiction:

(e) By Theorem 10.2, (∀x)Q(x, p) is true (i.e., Q(x, p) is algorithmically com-
putable as always true) if, and only if, the P-formula [(∀x)R(x, p)] is
provable in P;

whereas:

(f) By definition ([Go31], p.24, eqn.8.1), if (∀x)Q(x, p) is true, then the P-
formula whose Gödel-number is p, i.e., the formula [(∀x)R(x, y)], is not
provable in P when the numeral [p] is substituted for the variable [y] (in
other words, the formula [(∀x)R(x, p)] is not provable in P).

The theorem follows. �

17.6. Gödel’s argument does not support his claim in Theorem XI

Assuming that the same objection would apply to 17.4(b) had Gödel defined W
explicitly3—as he had defined R(x, p)—we conclude that, at best, Gödel’s reasoning
can only be taken to establish that the consistency of P is not provable in P by a
P-formula that interprets as an algorithmically computable truth in N.

In other words—contrary to conventional wisdom (e.g., [Vo10]; [EC89], Theo-
rem 5, p.211; [Sm92], p.109; [Da82], p.129; [Sh67], pp.212-213; [Me64], p.148)—
Gödel’s particular argument, based on his definition of Wid(P), does not support
the broader claim of his Theorem XI.

17.7. A curious interpretation of Gödel’s claim

“A simple example would be a proof of 1 = 0 from the axioms of (first-order)
Peano Arithmetic: PA + not-Con(PA) is consistent (assuming PA is), so
it has a model that thinks there’s a proof of 1 = 0 from PA; but viewed
set-theoretically, that model is benighted, the thing it takes for a proof of
1 = 0 has nonstandard length, isn’t really a proof.”
. . . Maddy: [Ma18], p.12.

A curious interpretation of Gödel’s claim is highlighted by Penelope Maddy’s
argument in [Ma18] that, if we assume the P-formula [W ] can, indeed, be interpreted
as ‘Wid(P) is true’ under some well-defined interpretation I of P, then it would
follow from:

(i) the unprovability of the formula [W ] in P, and

(ii) the unprovability of the formula [¬W ] in P (since P is assumed ω-consistent),

that the theory P+ [¬W ] would not only be consistent, but have a well-defined
interpretation of P under which the P-formula [¬W ] would ‘truthfully’ assert that:

‘Wid(P) is false; whence P is inconsistent and 1 = 0’ !

3That this may have been Gödel’s original intent is suggested by his concluding remarks in

[Go31] (p.38):

“We have limited ourselves in this paper essentially to the system P and
have only indicated the applications to other systems. The results will be

expressed and proved in full generality in a sequel to appear shortly. Also in

that paper, the proof of Theorem XI, which has only been sketched here,
will be presented in detail.”





CHAPTER 18

Must BPCM admit non-constructive
set-theoretical structures?

Another significant feature of BPCM is the, tacitly reluctant, admission (in §13.4)
that Cohen’s proof of the independence of the Axiom of Choice compels constructive
mathematics to accommodate (through appropriate interpretation) the gamut of
putative set-theoretical structures—which Hilbert alluded to as Cantor’s ‘paradise’
([Hi27], p.376)—that satisfy the first-order Zermelo-Fraenkel Set Theory ZF.

Axiom of Choice (a standard interpretation): Given any set S of mutually

disjoint non-empty sets, there is a set C containing a single member from
each element of S.

Such a perspective appears to tacitly admit the widely-held belief that all
significant mathematical ‘truths’ — such as, for example, the theorems of a first-
order Peano Arithmetic (PA) — can be suitably interpreted as theorems of a
set-theory such as ZFC (i.e., ZF plus an axiom of choice) without any loss of
generality (see, for example, [Me64], pp.192-193).

For instance, in a 1991 lecture on The Future of Set Theory, Saharon Shelah
presents an overview of classical Set Theory that is based on an implicit thesis that
mathematical truth is intuitive and essentially non-verifiable, and on the explicit
belief that:

“. . . ZFC exhausts our intuition except for things like consistency statements,
so a proof means a proof in ZFC . . . all of us are actually proving theorems

in ZFC.”
. . . Shelah: [She91].

A similar thesis is, curiously, reflected as ‘fact’ in John R. Steel’s Mathematics
Needs New Axioms:

“It is a familiar but remarkable fact that all mathematical languages can

be translated into the language of set theory, and all theorems of ‘ordinary’

mathematics can be proved in ZFC.”
. . . Steel: [FFMS], p.423.

The belief that the set theory ZF is a lingua franca of verifiable mathematics—
despite the essential non-verifiability of the axiom of infinity in any evidence-based
interpretation of the theory1—is reflected in recent arguments by Sieg and Walsh
on the verifiability of formalizations of the Cantor-Bernstein Theorem in ZF, via
the proof assistant AProS which ‘allows the direct construction of formal proofs’—
containing quantifiers—‘that are humanly intelligible’:

1An intriguing, but debatable, unconscionable origin of such belief is tacit in Lakoff and

Núñez’s arguments in [LR00], where they view set theory as the language of the conceptual

metaphors by which, they claim, the embodied brain brings mathematics into being.

139
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“The objects of proof theory are proofs, of course. This assertion is however
deeply ambiguous. Are proofs to be viewed as formal derivations in particular

calculi? Or are they to be viewed as the informal arguments given in
mathematics?—The contemporary practice of proof theory suggests the first
perspective, whereas the programmatic ambitions of the subject’s pioneers

suggest the second. We will later mention remarks by Hilbert (in sections 5
and 7) that clearly point in that direction. Now we refer to Gentzen who
inspired modern proof theoretic work; his investigations and insights concern

prima facie only formal proofs. However, the detailed discussion of the proof
of the infinity of primes in his [Gentzen, 1936, pp. 506-511] makes clear that
he is very deeply concerned with formalizing mathematical practice. The
crucial problem is finding the atomic inference steps involved in informal

arguments. The inference steps Gentzen brings to light are, perhaps not
surprisingly, the introduction and elimination rules for logical connectives,
including quantifiers.

Gentzen specifies in [Gentzen, 1936, p. 513] the concept of a deduction
and adds in parentheses formal image of a proof ; i.e., deductions are viewed
as formal images of mathematical proofs and are obtained by formalizing the
latter. The process of formalization is explained as follows: “The words of

ordinary language are replaced by particular signs, the logical inference steps
[are replaced by] rules that form new formally presented statements from
already proved ones.” Only in this way, he claims, is it possible to obtain a

“rigorous treatment of proofs”. However, and that is strongly emphasized,
“The objects of proof theory shall be the proofs carried out in mathematics
proper.” [Gentzen, 1936, p. 499] For us, the formalization of proofs is the
quasi-empirical starting point for uncovering proof methods in mathematics;
formal rigor is not to be considered a foe of simplicity or understanding.

When extending the effort from logical to mathematical reasoning one
is led to the task of devising additional tools for the natural formalization
of proofs. Such tools should serve to directly reflect standard mathematical

practice and preserve two central aspects of that practice, namely, (1) the
axiomatic and conceptual organization in support of proofs and (2) the
inferential mechanisms for logically structuring them. Thus, the natural

formalization in a deductive framework verifies theorems relative to that very
framework, but it also deepens our understanding and isolates core ideas;
the latter lend themselves often, certainly in our case, to a diagrammatic
depiction of a proof’s conceptual structure. . . .

We chose as the deductive framework Zermelo-Fraenkel set theory
ZF. One can clearly choose different ones, for example, Higher Order Logic,
Martin Löf’s Type Theory or Feferman’s Explicit Mathematics. The language

of set theory is, however, the lingua franca of contemporary mathematics
and ZF its foundation. So it seems both important and expedient to use ZF
for the project of formalizing proofs naturally.”

. . . Sieg and Walsh: [SW17].

The reason such a belief—clearly ambiguous in the absence of explicit, evidence-
based, definitions of weak and strong quantification that must necessarily precede
any formal definition of mathematical truth (see §4.3 and §5.1)—does not seem
unreasonable is that it reflects conventional wisdom which—for over a generation—
has been explicitly echoed in standard texts and literature with increasing certitude:

• “It is not at all obvious at first glance that every mathematical discipline can be reduced
to a formalized theory of the standard type. The crucial point here consists in carrying

out such a reduction for the general theory of sets, since as we know from the work
of Frege and his followers, and in particular from Whitehead and Russell’s Principia
Mathematica, the whole of mathematics can be formalized within set theory.” . . . ”

. . . Tarski: ([Ta39], p.164)
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• “. . . NBG apparently can serve as a foundation for all present-day mathematics (i.e., it
is clear to every mathematician that every mathematical theorem can be translated

and proved within NBG, or within extensions of NBG obtained by adding various extra
axioms such as the Axiom of Choice) . . . ”

. . . Mendelson: ([Me64], p.193)

• “Today set theory plays a role similar to that played by Euclidean geometry for over over
15 centuries (up to the time of the construction of mathematical analysis by Newton

and Leibniz). Namely, it is a universal axiomatic theory for modern mathematics. . . .

We conjecture that set theory will remain the most useful and inspiring universal theory
on which all of mathematics can be based.”

. . . Marek and Mycielski: ([MM01], p.459 & p.467 respectively)

• “Such is the case, for instance, with the formal systems considered in works on set

theory, such as the one known as ZFC, which are adequate for formalizing essentially
all accepted mathematical proofs.”

. . . Boolos, Burgess, and Jeffrey: ([BBJ03], p.225)

• “The system of set theory introduced by Zermelo in [Zermelo, 1908] was intended
to show, ‘how the entire theory created by Cantor and Dedekind can be reduced
to a few definitions and seven principles, or axioms, which appear to be mutually

independent.’ In the last section we described an expanded frame for our formalization
project: a definitional extension of ZF together with a flexible rule-based inferential
mechanism. The latter includes not only I- and E- rules for the logical connectives, but

also for defined notions. This mechanism is absolutely critical, if one wants to reflect
mathematical practice and exploit the conceptual, hierarchical organization of parts of
mathematics that are represented in set theory. . . . We consider the basic frame for our

project we just described as level 0 of the hierarchy. This conservative extension of ZF
can be further expanded to level 1, where relations and functions are introduced as set
theoretic objects. That is in full harmony with Zermelo’s view of set theory as ‘that

branch of mathematics whose task is to investigate mathematically the fundamental
notions ‘number’, ‘order’, and ‘function’, taking them in their pristine, simple form,

and to develop thereby the logical foundations of all of arithmetic and analysis; thus it

constitutes an indispensable component of the science of mathematics.’ [Zermelo, 1908,
p. 261]

A little more than ten years later, Hilbert discussed in 1920 Zermelo’s axiom system
and claims that it is the ‘most comprehensive mathematical system’. He supports that
claim by a penetrating observation:

The theory which results from the development of the consequences of this
axiom system [Zermelo’s] encompasses all mathematical theories (like number
theory, analysis, geometry), in the sense that the relations which obtain

between the objects of these mathematical disciplines are represented in a
perfectly corresponding way by relations which obtain within a subdomain
of Zermelo’s set theory. [Hilbert, 2013, p. 292]”

. . . Sieg and Walsh: [SW17].

It is a belief that, curiously, is tacitly shared by computer scientists, whose
discipline epitomises constructive mathematical practices:

“Mathematics can be axiomatized using for example the Zermelo Frankel
system, which has a finite description.”

. . . Arora and Barak: ([Ar09], pp.2.24(60), Ex.6, Ch.2.)

If one accepts such a belief, then the goal of constructive mathematics vis à vis
ZF should, reasonably, be to assign evidence-based truth values to the constructively
interpretable ZF propositions in some putative set-theoretical structure in Cantor’s
‘paradise’.
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However, as we concluded from Theorem 10.2 in Chapter 10, even if we accept
that a set theory such as ZF may be the appropriate language for the symbolic
expression of Lakoff and Núñez’s ‘conceptual metaphors’, by which an individual’s
‘embodied mind brings mathematics into being’ (see [LR00]), it is the strong
finitary interpretation of the first-order Peano Arithmetic PA (see Theorem 9.7)
that makes PA a lingua franca of adequate expression and effective communication
for contemporary mathematics and its foundations, since it allows us to bridge
arithmetic provability and arithmetic computability constructively in the sense of,
say, [CCS01].

Moreover, the case for perforce induction into the language of constructive
mathematics of a gamut of such—admittedly non-constructive—structures under
any putative interpretation of ZF collapses if we note that Cohen’s proof appeals
explicitly to the intuitionistically objectionable Aristotle’s particularisation.

18.1. Cohen’s proof appeals to Aristotle’s particularisation

The significance of the assumption of Aristotle’s particularisation is highlighted
in a 1927 address in which Hilbert reviewed, as part of his ‘proof theory’, his
axiomatisation Lε of classical predicate logic as a formal first-order ε-predicate
calculus ([Hi27], pp.465-466).

A specific aim of the axiomatisation appears to have been the introduction of a
primitive choice-function symbol, ‘ε’, for formalising the existence of the unspecified
object in Aristotle’s particularisation ([Ca62], p.156):

“. . . ε(A) stands for an object of which the proposition A(a) certainly holds

if it holds of any object at all . . . ”2

. . . Hilbert: ([Hi25], p.382)

Hilbert showed, moreover, how the universal and existential quantifiers—classically
denoted by ‘∀’ and ‘∃’—are formally definable using the choice-function ‘ε’ (see
§4.1)—and noted that:

“. . . The fundamental idea of my proof theory is none other than than to

describe the activity of our understanding, to make a protocol of the rules
according to which our thinking actually proceeds.”

. . . Hilbert: ([Hi27], p.475)

More precisely, he showed that (cf. [Hi25], pp.382-383; [Hi27], p.466(1)):

Lemma 18.1. Lε adequately expresses—and yields, under a suitable interpretation—
classical predicate logic if the ε-function is interpreted so as to yield the unspecified
object in Aristotlean particularisation. 2

What came to be known later as Hilbert’s Program3—which was built upon
Hilbert’s ‘proof theory’—can be viewed as, essentially, the subsequent attempt to
show that the formalisation was also necessary for communicating propositions of

2Comment : We note that Hilbert here postulates without qualification that ε(A) can be
treated as a ‘term’ if Lε is first-order. The need for qualification arises since, by Theorem 11.10,

ε(A) can be considered a term of any first-order Lε if, and only if, A(a) ‘holds’ for some term a of

Lε that is recursively definable in terms of the primitive terms of Lε.
3See, for instance, the Stanford Encyclopedia of Philosophy: Hilbert’s Program.

http://plato.stanford.edu/entries/hilbert-program/
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classical predicate logic effectively and unambiguously under any interpretation of
the formalisation.

This goal is implicit in Hilbert’s remarks:

“Mathematics in a certain sense develops into a tribunal of arbitration, a
supreme court that will decide questions of principle—and on such a concrete

basis that universal agreement must be attainable and all assertions can be

verified.”
. . . Hilbert: ([Hi25], p.384)

“. . . a theory by its very nature is such that we do not need to fall back upon

intuition or meaning in the midst of some argument.”
. . . Hilbert: ([Hi27], p.475)

18.2. Aristotle’s particularisation is ‘stronger’ than the Axiom of
Choice

The difficulty in attaining this goal constructively along the lines desired by Hilbert—
in the sense of the above quotes—becomes evident from Rudolf Carnap’s analysis
in a 1962 paper on the use of Hilbert’s ε-operator in scientific theories ([Ca62],
pp.157-158; see also Wang’s remarks [Wa63], pp.320-321):

“What now is the connection between the ε-operator and the axiom of

choice? Is the acceptance of the former tantamount to that of the latter? In
more formal terms, is the axiom of choice derivable from the other axioms
of set theory if the underlying logic contains the ε-operator with its axioms?

In some sense, this is the case, but the assertion needs some qualifications.
. . . The decisive point for this question of derivability is the specific form
of the axiom schema of subsets (Aussonderungsaxiom). In the customary

language L it may be formulated as follows, where “Su” stands for “u is
set”:

(4) ‘Su ⊃ (∃y) [Sy · (v)(v ∈ y ≡ v ∈ u · φ)]’ where φ is any sentential
formula of language L containing ‘v’ as the only free variable.

If Lε is taken as the axiomatic language, there is the choice of two versions of
the axiom schema, differing in the kinds of formulas admitted as φ. The first
version is the same as (4): only the formulas of Lε without ‘ε’ are admitted;

in other words, formulas of L (as a sub-language of Lε ). The second version,
which we shall call (4ε ), is formed from (4) by replacing ‘L’ with ‘Lε ’. (4ε )
is stronger than (4). But to accept this version seems natural, once the

ε-operator has been accepted as a primitive logical constant.

Consider now the principle of choice:

(5) If x is a set such that:

(a) any element of x is non-empty,

(b) any two distinct elements of x are disjoint,

then there is a set y (called a selection set of x) such that

(c) y ⊂
⋃
x,

(d) for any element z of x, y ∩ z has exactly one element.

It can now be seen easily that, if the axiom schema of subsets is taken in

the stronger form (4ε), then (5) is derivable. The derivation is as follows.
Let x be any set satisfying the conditions (a) and (b) in (5). According to

the axiom of the union set,
⋃
x is a set. Therefore, by (4ε ), there is a set y

containing exactly those elements v of
⋃
x for which

(∃z) [z ∈ x · v = εu (u ∈ z)],
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(This last formula is taken as φ in (4ε ).) Thus y is a subset of
⋃
x containing

just the representative of the elements of x. Hence y satisfies the conditions

(c) and (d) in (5). Thus (5) is derived.”
. . . Carnap: ([Ca62], pp.157-158)

Now, it follows from Carnap’s analysis that, if we define a formal language ZFε
by replacing (see §4.1):

[(∀x)F (x)] with [F (εx(¬F (x)))]

[(∃x)F (x)] with [F (εx(F (x)))]

in the Zermelo-Fraenkel set theory ZF, then:

Lemma 18.2. The Axiom of Choice is true in any putative interpretation of the
Zermelo-Fraenkel set theory ZFε that admits Aristotle’s particularisation. 2

Thus, the postulation of an unspecified object in Aristotlean particularisation is
a stronger postulation than the Axiom of Choice!

18.3. Cohen and The Axiom of Choice

The significance of this is seen in the accepted interpretation of Cohen’s argument
in his 1963-64 papers ([Co63] & [Co64]); the argument is accepted as definitively
establishing that the Axiom of Choice is essentially independent of a set theory such
as ZF.

However Cohen’s argument—in common with the arguments of many important
theorems in standard texts on the foundations of mathematics and logic—appeals to
the unspecified object in Aristotle’s particularisation when interpreting the existential
axioms of ZF (or statements about ZF ordinals).

This is seen in his proof ([Co66], p.19) and application of the—seemingly
paradoxical (see Skolem’s remarks [Sk22], p295; also [Co66], p.19)—Löwenheim-
Skolem Theorem ([Lo15], p.245, Theorem 6; [Sk22], p.293).

(Downwards) Löwenheim-Skolem Theorem: If a first-order propo-

sition is satisfied in any domain at all, then it is already satisfied in a
denumerably infinite domain.

Cohen appeals to this theorem for legitimising putative models of a formal
theory—such as a standard model ‘M’ of ZF ([Co66], p.19 & p.82), and its forced
derivative ‘N’ ([Co66], p.121)—in his argument ([Co66], p.83 & p.112-118).

The significance of Hilbert’s formalisation of Aristotle’s particularisation by
means of the ε-function is now seen in Cohen’s following remarks, where he explicitly
appeals in the above argument to a semantic—rather than formal—definition of the
unspecified object in Aristotle’s particularisation:

“When we try to construct a model for a collection of sentences, each time
we encounter a statement of the form (∃x)B(x) we must invent a symbol x

and adjoin the statement B(x). . . . when faced with (∃x)B(x), we should
choose to have it false, unless we have already invented a symbol x for which

we have strong reason to insist that B(x) be true.”

. . . Cohen: ([Co66], p.112; see also p.4)

Cohen, then, shows that:
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Lemma 18.3. The Axiom of Choice is false in N. 2

18.4. Any interpretation of ZF which appeals to Aristotle’s
particularisation is not constructively well-defined

Since Hilbert’s ε-function formalises precisely Cohen’s concept of ‘x’—more properly,
‘xB ’—as [εxB(x)], it immediately follows that:

Theorem 18.4. Any model of ZF which admits Aristotle’s particularisation
is a model of ZFε if the expression [εxB(x)] is interpreted to yield Cohen’s symbol
‘xB’ whenever [B(εx(B(x)))] interprets as true. 2

Hence Cohen’s argument is also applicable to ZFε. However, since the Axiom of
Choice is true in any interpretation of ZFε which appeals to classical predicate logic,
Cohen’s argument ([Co63] & [Co64]; [Co66])—when applied to ZFε—actually
shows that (see also Corollary 11.11):

Corollary 18.5. ZF has no constructively well-defined model that appeals to
Aristotle’s particularisation. 2

We cannot, therefore, conclude that the Axiom of Choice is essentially inde-
pendent of the axioms of ZF, since none of the putative models ‘forced’ by Cohen
(in his argument for such independence) are constructively well-defined by any
interpretation of ZF.

18.5. Cohen and the Gödelian argument

We note that, at the conclusion of his lectures on ‘Set Theory and the Continuum
Hypothesis’, delivered at Harvard University in the spring term of 1965, Cohen also
remarked:

“We close with the observation that the problem of CH is not one which
can be avoided by not going up in type to sets of real numbers. A similar
undecidable problem can be stated using only the real numbers. Namely,
consider the statement that every real number is constructible by a countable
ordinal. Instead of speaking of countable ordinals we can speak of suitable

subsets of ω. The construction α→ Fα for α ≤ α0, where α0 is countable,
can be completely described if one merely gives all pairs (α, β) such that
Fα ∈ Fβ . This in turn can be coded as a real number if one enumerates
the ordinals. In this way one only speaks about real numbers and yet has

an undecidable statement in ZF. One cannot push this farther and express
any of the set-theoretic questions that we have treated as statements about

integers alone. Indeed one can postulate as a rather vague article of faith
that any statement in arithmetic is decidable in “normal” set theory, i.e.,
by some recognizable axiom of infinity. This is of course the case with the
undecidable statements of Gödel’s theorem which are immediately decidable

in higher systems.”
. . . Cohen: ([Co66], p.151)

Cohen appears to assert here that if ZF is consistent, then we can ‘postulate
as a rather vague article of faith’ that the Continuum Hypothesis is subjectively
true for the integers under some model of ZF, but—along with the Generalised
Continuum Hypothesis—we cannot objectively (i.e., on the basis of evidence-based
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reasoning) assert it to be true for the integers4 since it is not provable in ZF, and
hence not true in all models of ZF.

However, by this argument, Gödel’s undecidable arithmetical propositions, too,
can be similarly postulated to be subjectively true for the integers under the weak
standard interpretation M of PA (as defined in §A, Appendix A), but cannot be
objectively (i.e., on the basis of evidence-based reasoning) asserted to be true for
the integers since the statements are not provable in an ω-consistent PA, and hence
they are not true in all models of an ω-consistent PA!

The latter is, essentially, John Lucas’ well-known Gödelian argument ([Lu61]),
forcefully argued by Roger Penrose in his popular expositions, ‘Shadows of the Mind’
([Pe94]) and ‘The Emperor’s New Mind’ ([Pe90]). As argued in The Reasoner
([An07a]; [An07b]; [An07c]), the thesis is plausible, but the specific argument
unsound. It is based on a misinterpretation—of what Gödel actually proved formally
in his 1931 paper—for which, moreover, neither Lucas nor Penrose ought to be
taken to account ([An07b]; [An07c]). Moreover, the appropriate argument for
Lucas’ Gödelian thesis ought to be the one in §27

The distinction sought to be drawn by Cohen is curious, since we have shown that
his argument—which assumes that constructively well-defined interpretations of ZF
can appeal to Aristotle’s particularisation—actually establishes that constructively
well-defined interpretations of ZF cannot appeal to Aristotle’s particularisation; just
as it follows from Corollary 11.6 that Gödel’s argument—in [Go31], p.24, Theorem
VI—actually establishes that PA is not ω-consistent, whence any constructively
well-defined interpretation of PA, too, cannot appeal to Aristotle’s particularisation.

Loosely speaking, the cause of the undecidability of the Continuum Hypothsis—
and of the Axiom of Choice—in ZF as shown by Cohen, and that of Gödel’s
undecidable proposition in Peano Arithmetic, is common; it is interpretation of the
existential quantifier under an interpretation as Aristotlean particularisation.

In Cohen’s case, such interpretation is made explicitly and unrestrictedly in the
underlying predicate logic ([Co66], p.4) of ZF, and in its interpretation in classical
predicate logic ([Co66] p.112).

In Gödel’s case it is made explicitly—but formally to avoid attracting intu-
itionistic objections—through his specification of what he believed (cf. §15.1) to
be a ‘much weaker assumption’ of ω-consistency for his formal system P of Peano
Arithmetic ([Go31], p.9 & pp.23-24).

4Compare with the evidence-based proof in §19.3 that ℵ0 ←→ 2ℵ0 in constructive mathematics;
also with Hilbert’s remarks on the continuum problem in [Hi25], pp.384-385.



CHAPTER 19

Functions as explications of non-terminating
processes

We shall argue next that (in view of Theorem 19.7), instead of defining real numbers
as the putative limit of putatively definable Cauchy sequences1 that ‘exist’ in
some Platonic sense in the interpretation of an arithmetic, we can alternatively
define—from the perspective of constructive mathematics, and without any loss of
generality—such numbers instead by their evidence-based, algorithmically verifiable,
number-theoretic functions (see §5) that formally express—in the sense of Carnap’s
‘explication’ —the corresponding Cauchy sequences viewed now as non-terminating
processes in the standard interpretation of the arithmetic that may, sometimes, tend
to a discontinuity (see §24.3, Case 2(a) and 2(b)).

“By the procedure of explication we mean the transformation of an inexact,

prescientific concept, the explicandum, into a new exact concept, the expli-

catum. Although the explicandum cannot be given in exact terms, it should
be made as clear as possible by informal explanations and examples. . . . A

concept must fulfill the following requirements in order to be an adequate

explicatum for a given explicandum: (1) similarity to the explicandum, (2)
exactness, (3) fruitfulness, (4) simplicity.”

. . . Carnap: [Ca62a], p.3 & p.5.

19.1. A constructive arithmetical perspective on Cantor’s Continuum
Hypothesis

We first show that the distinction2 between algorithmically verifiable, and
algorithmically computable, number-theoretic functions (see Theorem 5.4) yields an
unusual, constructive, arithmetical perspective of Cantor’s Continuum Hypothesis
(CH).

Cantor’s Continuum Hypothesis: There is no set whose
cardinality is strictly between the cardinality ℵ0 of the integers
and the cardinality 2ℵ0 of the real numbers.

We note that Gödel showed in 1939 ([Go40]) that CH is consistent with the
usual Zermelo-Fraenkel (ZF) axioms for set theory if ZF is consistent. He defined a
putative model of ZF in which both the Axiom of Choice (AC) and CH hold.

1‘putatively definable’ since not all Cauchy sequences are algorithmically computable (Theorem
5.4). The significance of this distinction for the physical sciences is highlighted in §29.6 and §29.7

2The distinction was introduced—and its significance highlighted—in [An16]. Since set-
theoretic functions are defined extensionally, it is not obvious how—or even whether—this distinc-
tion can be reflected within ZF.
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Further, Cohen showed in 1963 ([Co66]) that the negations of AC and CH are
also consistent with ZF; in particular, CH can fail while AC holds in a putative
model of ZF if ZF is consistent.

We now show how—justifying Skolem’s ‘apparent paradox’ observations in
[Sk22] (p.295; see also [Kl52], p.427)) Gödel’s β-function uniquely corresponds
each real number to an algorithmically verifiable arithmetical function.

We conclude that, although the Continuum Hypothesis is independent of the
axioms of ZF if ZF is consistent, the arithmetic interpretation of ℵ0 ←→ 2ℵ0 follows
from the axioms of PA (which is consistent by Theorem 9.10).

19.2. Gödel’s β-function

We note that Gödel’s β-function is defined as ([Me64], p.131):

β(x1, x2, x3) = rm(1 + (x3 + 1) ? x2, x1)

where rm(x1, x2) denotes the remainder obtained on dividing x2 by x1.

We also note that:

Lemma 19.1. For any non-terminating sequence of values f(0), f(1), . . ., we
can construct natural numbers bk, ck such that:

(i) jk = max(k, f(0), f(1), . . . , f(k));

(ii) ck = jk!;

(iii) β(bk, ck, i) = f(i) for 0 ≤ i ≤ k.

Proof. This is a standard result ([Me64], p.131, Proposition 3.22). �

Now we have the standard definition ([Me64], p.118):

Definition 19.2. A number-theoretic function f(x1, . . . , xn) is said to be
representable in the first order Peano Arithmetic PA if, and only if, there is a PA
formula [F (x1, . . . , xn+1)] with the free variables [x1, . . . , xn+1], such that, for any
given natural numbers k1, . . . , kn+1:

(i) if f(k1, . . . , kn) = kn+1 then PA proves: [F (k1, . . . , kn, kn+1)];

(ii) PA proves: [(∃1xn+1)F (k1, . . . , kn, xn+1)].

The function f(x1, . . . , xn) is said to be strongly representable in PA if we
further have that:

(iii) PA proves: [(∃1xn+1)F (x1, . . . , xn, xn+1)]. 2

We also have that:

Lemma 19.3. β(x1, x2, x3) is strongly represented in PA by [Bt(x1, x2, x3, x4)],
which is defined as follows:

[(∃w)(x1 = ((1 + (x3 + 1) ? x2) ? w + x4) ∧ (x4 < 1 + (x3 + 1) ? x2))].

Proof. This is a standard result ([Me64], p.131, proposition 3.21). �
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19.3. Why ℵ0 ←→ 2ℵ0 in constructive mathematics

The following argument now reveals the sense in which we can assert ℵ0 ←→ 2ℵ0 in
constructive mathematics:

Theorem 19.4. The cardinality 2ℵ0 of the real numbers cannot exceed the
cardinality ℵ0 of the integers.

Proof. Let {r(n)} be the denumerable sequence defined by the denumerable
sequence of digits in the decimal expansion

∑∞
n=1 r(n).10−n of a putatively given

real number R in the interval 0 < R ≤ 1.

By lemma 19.1, for any given natural number k, we can define natural numbers
bk, ck such that, for any 1 ≤ n ≤ k:

β(bk, ck, n) = r(n).

By lemma 19.3, β(bk, ck, n) is uniquely represented in the first order Peano
Arithmetic PA by [Bt(bk, ck, n, x)] such that, for any 1 ≤ n ≤ k:

If β(bk, ck, n) = r(n) then PA proves [Bt(bk, ck, n, r(n))].

We now define the arithmetical formula [R(bk, ck, n)] for any 1 ≤ n ≤ k by:

[R(bk, ck, n) = r(n)] if, and only if, PA proves [Bt(bk, ck, n, r(n))].

Hence every putatively given real number R in the interval 0 < R ≤ 1 can be
uniquely corresponded to an algorithmically verifiable arithmetical formula [R(x)]
since:

For any k, the primitive recursivity of β(bk, ck, n) yields an algorithm
AL(β,R,k) that provides evidence for deciding the unique value of each
formula in the finite sequence {[R(1), R(2), . . . , R(k)]} by evidencing the
truth under a constructively well-defined interpretation of PA for:

[R(1) = R(bk, ck, 1)]
[R(bk, ck, 1) = r(1)]

[R(2) = R(bk, ck, 2)]
[R(bk, ck, 2) = r(2)]

. . .

[R(k) = R(bk, ck, k)]
[R(bk, ck, k) = r(k)].

The correspondence is unique because, if R and S are two different putatively
given reals in the interval 0 < R, S ≤ 1, then there is always some m for which:

r(m) 6= s(m).

Hence we can always find corresponding arithmetical functions [R(n)] and [S(n)]
such that:

[R(n) = r(n)] for all 1 ≤ n ≤ m.

[S(n) = s(n)] for all 1 ≤ n ≤ m.

[R(m) 6= S(m)].
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Since PA is first order, the cardinality of the reals cannot, therefore, exceed that
of the integers.

The theorem follows.3 �

Corollary 19.5. ℵ0 ←→ 2ℵ0 2

We conclude further that, since Theorem 9.10 establishes that PA is finitarily
provable as consistent:

Corollary 19.6. CH follows from the axioms of PA. 2

19.4. Cantor’s diagonal argument in constructive mathematics

We note that—as entailed by Cantor’s diagonal argument—there is no algorithmically
computable function F (n) that can be defined to yield all algorithmically computable
real numbers.

We cannot, however, conclude from this that that there are unspecifiable real
numbers, since:

Theorem 19.7. Every real number is specifiable in PA.

Proof. Since every real number is the putative limit of a Cauchy sequence, it
is specifiable in PA because it can be represented by an algorithmically verifiable
arithmetical function which, by Lemma 19.3, is representable in PA. �

We note that the classical conclusion ℵ0 6←→ 2ℵ0 reflects the Platonic assumption
that there are ‘set-theoretically completed’ Cauchy sequences which cannot be
expressed in PA.4

Theorem 19.4 shows that such an assumption is invalid, and that Cauchy
sequences which are defined as algorithmically verifiable, but not algorithmically
computable, correspond to ‘essentially incompletable’ real numbers whose Cauchy
sequences cannot, in a sense, be known ‘completely’ even to Laplace’s ‘intellect’ (see
§29.2).

In other words, the numerical values of algorithmically verifiable, but not
algorithmically computable, sequences must be treated as formally specifiable, first-
order, non-terminating processes which are ‘eternal work-in-progress’ in the sense
of Theorem 19.4 (a perspective suggested by the way dimensionless constants are
viewed in the physical sciences, as highlighted in §29.6 and §29.7).

Thus, from an evidence-based perspective (see Chapter 5), Theorem 19.4 implies
that real numbers do not exist in some Platonic universe of points that constitute a
line, but are mathematically constructed by number-theoretic definitions that are
algorithmically verifiable, but not necessarily algorithmically computable.

3We note—but do not consider further as it is not germane to the intent of this investigation—
that Theorem 19.4 offers an arithmetical resolution of Hilbert’s First Problem ([Hi00]), which

asks whether there is a set whose cardinality is strictly between the cardinality ℵ0 of the integers
and the cardinality 2ℵ0 of the real numbers.

4Such a conclusion can also be viewed as another instance (see, for instance, §22.4) of ignoring
Skolem’s cautionary remarks in [Sk22] about unrestrictedly corresponding putative mathematical
entities across domains of different axiom systems.
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They assume significance (which can, debatably, be termed as ‘existence’) math-
ematically only when such a definition is made explicit formally in an argumentation
(compare with Brouwer’s parallel perspective cited in §5.3).





CHAPTER 20

Why BPCM need not admit non-standard
arithmetical structures

The significance of ω-consistency for constructive mathematics lies in BPCM’s tacit
acceptance that Gödel’s proof of the existence of formally undecidable arithmetical
propositions compels constructive mathematics to accommodate the gamut of
putative non-standard arithmetical structures that are entailed by the assumption
that PA is ω-consistent.

If so, the challenge faced by BPCM with respect to PA ought, then, to be the
assignment of evidence-based truth values to the constructively interpretable PA
propositions in such structures.

However we note that:

• any such assignment cannot yield a non-standard model of PA which
contains numbers other than the natural numbers (Corollary 11.2);

and that:

• PA is ω-inconsistent (Corollary 11.6).

We now show why conventional arguments for perforce admission of a gamut
of such non-standard structures under any interpretations of PA collapse, partially
because assuming ω-consistency implies Aristotle’s particularisation.

20.1. The case against non-standard models of PA

Once we accept as logically sound the set-theoretically based meta-argument (by
which we mean arguments such as in [Ka91], where the meta-theory is taken
to be a set-theory such as ZF or ZFC, and the logical consistency of the meta-
theory is not considered relevant to the argumentation) that a first-order Peano
Arithmetic PA (e.g., the theory S defined in [Me64], pp.102-103) can be forced—
by an ante-computationalist interpretation of the Compactness Theorem—into
admitting non-standard models which contain an ‘infinite’ integer, then the set-
theoretical properties of the algebraic and arithmetical structures of such putative
models should perhaps follow without serious foundational reservation (as argued,
for instance, in [Ka91]; [Bov00]; [BBJ03], ch.25, p.302; [KS06]; [Ka11]).

Compactness Theorem ([BBJ03]. p.147): If every finite subset of a set of sentences
has a model, then the whole set has a model.

Now, we note that even from a post-computationalist, evidence-based, arith-
metical perspective (as introduced in [An12]; see also [An16]) anchored strictly
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within the framework of classical logic1, we can conclude incontrovertibly by the
Compactness Theorem that:

Lemma 20.1. If the collection Th(N) of all true LA-sentences is the LA-theory
of the standard model of Arithmetic ([Ka91], p.10-11), then we may consistently
add to it the following as an additional—not necessarily independent—axiom:

(∃y)(y > x). 2

However, we shall argue that even though (∃y)(y > x) is algorithmically com-
putable (Definition 5.3 above) as always true in the standard model of Arithmetic
considered above—whence all of its instances are in Th(N)—we cannot conclude by
the Compactness Theorem that (as argued, for instance, in [Ka91], p.10-11):

(*) ∪k∈N{Th(N) ∪ {c > n | n < k}}

is consistent and has a model Mc which contains an ‘infinite’ integer.

Reason: We shall argue that the condition ‘k ∈ N’ in (*) above requires, first of
all, that we must be able to extend Th(N) by the addition of a ‘relativised’ axiom
(cf. [Fe92]; [Me64], p.192), such as:

(∃y)((x ∈ N)→ (y > x)).

Only then may we conclude that if a model Mc of:

{Th(N) ∪ (∃y)((x ∈ N)→ (y > x))}

exists, then it must have an ‘infinite’ integer c such that:

Mc |= c > n

for all n ∈ N.

However, we shall then argue that even this would not yield a model for Th(N),
since every model of Th(N) is by definition a model of (the provable formulas of) PA,
and we shall show (Theorem 20.2) that we cannot introduce a ‘completed’ infinity
such as c into either PA or any model of PA!

20.2. A post-computationalist doctrine

More generally, we shall argue that, if our interest is in the arithmetical properties
of models of PA, then we first need to make explicit any appeal to non-constructive
considerations such as Aristotle’s particularisation.

We shall then argue that, even from a classical perspective, there are serious
foundational, post-computationalist, reservations to accepting that a consistent PA
can be forced by the Compactness Theorem into admitting non-standard models
which contain elements other than the natural numbers.

Reason: Any arithmetical application of the Compactness Theorem to PA can
neither ignore currently accepted post-computationalist doctrines of objectivity—
nor contradict the evidence-based assignments of satisfaction and truth to the

1Classical logic: By ‘classical logic’ we mean the standard first-order predicate calculus FOL

where the Law of the Excluded Middle is a theorem, but we do not assume that FOL is ω-consistent;
i.e., we do not assume that Aristotle’s particularisation (Definition 3.1) must hold under any
interpretation of the logic.
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atomic formulas of PA (therefore to the compound formulas under Tarski’s inductive
definitions) in terms of either algorithmical verifiability or algorithmic computability
(Definitions Definition 5.2 and Definition 5.3)—as expressed, for instance, by the
post-computationalist doctrine (cf. [Mu91]) that one can view the values of a
simple functional language as specifying evidence for propositions in a constructive
logic.

The significance of this doctrine is that it helps highlight how the algorithmically
verifiable (Definition 5.2) formulas of PA define the classical non-finitary2 standard
interpretation M of PA over N (as defined in §A, Appendix A), to which standard
arguments for the existence of non-standard models of PA critically appeal.

Accordingly, we shall show that standard arguments (eg., [BBJ03], p.155,
Lemma 13.3, Model existence lemma) which appeal to the ante-computationalist
interpretation of the Compactness Theorem—for forcing non-standard models of
PA which contain an ‘infinite’ integer—cannot admit constructive assignments of
satisfaction and truth (in terms of algorithmical verifiability) to the atomic formulas
of their putative extension of PA3.

We shall conclude that such arguments therefore questionably postulate by
axiomatic fiat that which they seek to ‘prove’ !

20.3. Standard arguments for non-standard models of PA

As examples, we shall consider here the following three standard arguments for the
existence of non-standard models of the first-order Peano Arithmetic PA:

(i) If PA is consistent, then we obtain a non-standard model for PA which
contains an ‘infinite’ integer by applying the Compactness Theorem to
the union of the set of formulas that are satisfied or true in the classical
‘standard’ model of PA (§A, Appendix A) and the countable set of all
PA-formulas of the form [cn = S(cn+1)].

(ii) If PA is consistent, then we obtain a non-standard model for PA which
contains an ‘infinite’ integer by adding a constant c to the language of PA
and applying the Compactness Theorem to the theory P∪{c > n : n =
0, 1, 2, . . .}.

(iii) If PA is consistent, then we obtain a non-standard model for PA which
contains an ‘infinite’ integer by adding the PA formula [¬(∀x)R(x)] as an
axiom to PA, where [(∀x)R(x)] is a Gödelian formula that is unprovable
in PA, even though [R(n)] is provable in PA for any given PA numeral [n]
([Go31], p.25(1)4).

2Comment : ‘Non-finitary’ because even though the Axiom Schema of Finite Induction

interprets as true under the standard interpretation M of PA over N with respect to ‘truth’ as
defined by the algorithmically verifiable formulas of PA (Lemma 7.3), the compound formulas of

PA are not decidable finitarily under the standard interpretation M of PA over N with respect to
algorithmically verifiable ‘satisfaction’ and ‘truth’.

3For instance, the standard set-theoretical assignment-by-postulation (S5) of the satisfaction

properties (S1) to (S8) in [BBJ03], p.153, Lemma 13.1 (Satisfaction properties lemma), appeals
non-constructively to Aristotle’s particularisation.

4In his seminal 1931 paper [Go31], Gödel defines, and refers to, the formula corresponding to
[R(x)] only by its ‘Gödel’ number r (op. cit., p.25, Eqn.(12)), and to the formula corresponding to
[(∀x)R(x)] only by its ‘Gödel’ number 17 Gen r.
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We shall first argue that (i) and (ii)—which appeal to Thoraf Skolem’s ante-
computationalist reasoning (in [Sk34]) for the existence of a non-standard model of
PA—should be treated as foundationally fragile from a finitary, post-computationalist
perspective within classical logic.

We shall then argue that although (iii)—which appeals to Gödel’s (also ante-
computationalist) reasoning (in [Go31]) for the existence of a non-standard model
of PA—does yield a model other than the classical ‘standard’ model of PA, we
cannot conclude by even classical (albeit post-computationalist) reasoning that the
domain is other than the domain N of the natural numbers unless we invalidly (see
Corollary 11.6) assume that a consistent PA is necessarily ω-consistent.

20.4. The significance of Aristotle’s particularisation for the first-order
predicate calculus

We recall that in a formal language the formula ‘[(∃x)P (x)]’ is an abbreviation for
the formula ‘[¬(∀x)¬P (x)]’; and that the commonly accepted interpretation of this
formula tacitly appeals to Aristotlean particularisation.

Further, as Brouwer had noted in his seminal 1908 paper on the unreliability of
logical principles ([Br08]), the commonly accepted interpretation of this formula is
ambiguous if interpretation is intended over an infinite domain.

Brouwer essentially argued that:

— even supposing the formula ‘[P (x)]’ of a formal Arithmetical language
interprets as an arithmetical relation denoted by ‘P ∗(x)’,

— and the formula ‘[¬(∀x)¬P (x)]’ as the arithmetical proposition denoted
by ‘¬(∀x)¬P ∗(x)’,

— the formula ‘[(∃x)P (x)]’ need not interpret as the arithmetical proposition
denoted by the usual abbreviation ‘(∃x)P ∗(x)’;

— and that such postulation is invalid as a general logical principle in the
absence of a means for constructing some putative object a for which the
proposition P ∗(a) holds in the domain of the interpretation.

Hence we shall follow the convention that the assumption that ‘(∃x)P ∗(x)’
is the intended interpretation of the formula ‘[(∃x)P (x)]’—which is essentially
the assumption that Aristotle’s particularisation holds over the domain of the
interpretation—must always be explicit.

20.5. The significance of Aristotle’s particularisation for PA

We also note that, in order to avoid intuitionistic objections to his reasoning,
Gödel introduced the syntactic property of ω-consistency (see §15.1) as an explicit
assumption in his formal reasoning in his seminal 1931 paper on formally undecidable
arithmetical propositions ([Go31], p.23 and p.28).

Gödel explained at some length (in his introduction on p.9 of [Go31]) that
his reasons for introducing ω-consistency explicitly was to avoid appealing to the
semantic concept of classical arithmetical truth in classical predicate logic (which
presumes Aristotle’s particularisation).
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We further note that, if PA is consistent, then PA is ω-consistent if Aristotle’s
particularisation holds under the standard interpretation M of PA (Lemma 15.8).

20.6. The ambiguity in admitting an ‘infinite’ constant

We begin our consideration of standard arguments for the existence of non-standard
models of PA which contain an ‘infinite’ integer by first highlighting and eliminating
an ambiguity in the argument as it is usually found in standard texts (e.g., [HP98],
p.13, §0.29; [Me64], p.112, Ex. 2), such as, for instance, the argument:

“Corollary. There is a non-standard model of P with domain
the natural numbers in which the denotation of every nonlogical
symbol is an arithmetical relation or function.

Proof. As in the proof of the existence of nonstandard models of
arithmetic, add a constant ∞ to the language of arithmetic and
apply the Compactness Theorem to the theory

P∪{∞ 6= n: n = 0, 1, 2, . . .}
to conclude that it has a model (necessarily infinite, since all
models of P are). The denotations of ∞ in any such model
will be a non-standard element, guaranteeing that the model is
non-standard. Then apply the arithmetical Löwenheim-Skolem
theorem to conclude that the model may be taken to have domain
the natural numbers, and the denotations of all nonlogical symbols
arithmetical.”
. . . [BBJ03], p.306, Corollary 25.3.

20.7. We cannot force PA to admit a transfinite ordinal

The ambiguity lies in a possible interpretation of the symbol ∞ as a ‘completed’
infinity (such as Cantor’s first limit ordinal ω) in the context of non-standard models
of PA. To eliminate this possibility we establish trivially that, and briefly examine
why:

Theorem 20.2. No model of PA can admit a transfinite ordinal such as Cantor’s
first limit ordinal ω.

Proof. Let [G(x)] denote the PA-formula:

[x = 0 ∨ ¬(∀y)¬(x = Sy)]

We note that [G(x)] entails under any evidence-based interpretation of PA that:

If x denotes an element in the domain D of a model of PA, then either x
is 0, or there is no algorithm which will evidence that, for any given k in
D, x is not a ‘successor’ of k.

Further, in every model of PA, if G(x) denotes the interpretation of [G(x)]:

(a) G(0) is true;

(b) If G(x) is true, then G(Sx) is true.
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Hence, by Gödel’s completeness theorem5:

(c) PA proves [G(0)];

(d) PA proves [G(x)→ G(Sx)].

Further, by Generalisation6:

(e) PA proves [(∀x)(G(x)→ G(Sx))];

Hence, by Induction7:

(f) [(∀x)G(x)] is provable in PA.

Since [G(x)] is provable in PA, it also entails under the weak standard interpretation
M of PA that:

If x denotes an element in the domain D of a model of PA, then either x
is 0, or it is not the case that, for any given k in D, there is an algorithm
which will evidence that x is not a ‘successor’ of k (i.e., it follows from the
PA axioms that x is either 0 or a ‘successor’ of some k in D).

In other words, except 0, every element in the domain of any model of PA is a
‘successor’. Further, the standard PA axioms ensure that x can only be a ‘successor’
of a unique element in any model of PA.

Since Cantor’s first limit ordinal ω is not the ‘successor’ of any ordinal in the sense
required by the PA axioms, and since there are no infinitely descending sequences
of ordinals (cf. [Me64], p.261) in a model—if any—of a first order set theory such
as ZF, the theorem follows. �

20.8. Why we cannot force PA to admit a transfinite ordinal

Theorem 20.2 reflects the fact that we can define the usual order relation ‘<’ in PA
so that every instance of the PA Axiom Schema of Finite Induction, such as, say:

(i) [F (0)→ ((∀x)(F (x)→ F (Sx))→ (∀x)F (x))]

yields the weaker PA theorem:

(ii) [F (0)→ ((∀x)((∀y)(y < x→ F (y))→ F (x))→ (∀x)F (x))]

Now, if we interpret PA without relativisation in ZF (in the sense indicated by
Feferman [Fe92])— i.e., numerals as finite ordinals, [Sx] as [x ∪ {x}], etc.— then
(ii) always translates in ZF as a theorem:

(iii) [F (0)→ ((∀x)((∀y)(y ∈ x→ F (y))→ F (x))→ (∀x)F (x))]

However, (i) does not always translate similarly as a ZF-theorem, since the
following is not necessarily provable in ZF:

5Gödel’s Completeness Theorem: In any first-order predicate calculus, the theorems are

precisely the logically valid well-formed formulas (i. e. those that are true in every model of the
calculus).

6Generalisation in PA: [(∀x)A] follows from [A].
7Induction Axiom Schema of PA: For any formula [F (x)] of PA:

[F (0)→ ((∀x)(F (x)→ F (Sx))→ (∀x)F (x))]
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(iv) [F (0)→ ((∀x)(F (x)→ F (x ∪ {x}))→ (∀x)F (x))]

Example: Define [F (x)] as ‘[x ∈ ω]’.

We conclude that, whereas the language of ZF admits as a constant the first limit
ordinal ω, which would interpret in any putative model of ZF as the (‘completed’
infinite) set ω of all finite ordinals:

Corollary 20.3. The language of PA admits of no constant that interprets in
any model of PA as the set N of all natural numbers. 2

We note that it is the non-logical Axiom Schema of Finite Induction of PA which
does not allow us to introduce—contrary to what is suggested by standard texts (e.g.,
[HP98], p.13, §0.29; [Ka91], p.11 & p.12, fig.1; [BBJ03]. p.306, Corollary 25.3;
[Me64], p.112, Ex. 2)—an ‘actual’ (or ‘completed’ ) infinity disguised as an arbitrary
constant (usually denoted by c or ∞) into either the language, or a putative model,
of PA8.

20.9. Forcing PA to admit denumerable descending dense sequences

The significance of Theorem 20.2 is seen in the next two arguments ([Ln08], and
[Ka91], pp.10-11, p.74 & p.75, Theorem 6.4), which attempt to implicitly bypass
the Theorem’s constraint by appeal to the Compactness Theorem for forcing a
non-standard model with denumerable descending dense sequences onto PA.

However, we argue in both cases that applying the Compactness Theorem
constructively—even from a classical perspective—does not logically yield a non-
standard model for PA with an ‘infinite’ integer as claimed (and as suggested also
by standard texts in such cases; eg. [BBJ03]. p.306, Corollary 25.3; [Me64], p.112,
Ex. 2).

20.10. An argument for a non-standard model of PA

The first is the argument ([Ln08]) that we can define a non-standard model of PA
with an infinite descending chain of successors, where the only non-successor is the
null element 0:

1. Let <N (the set of natural numbers); = (equality); S (the successor func-
tion); + (the addition function); ∗ (the product function); 0 (the null
element)> be the structure that serves to define a model of PA, say N ;

2. Let T[N ] be the set of PA-formulas that are satisfied or true in N ;

3. The PA-provable formulas form a subset of T[N ];

4. Let Γ be the countable set of all PA-formulas of the form [cn = Scn+1],
where the index n is a natural number;

5. Let T be the union of Γ and T[N ];

6. T[N ] plus any finite set of members of Γ has a model, e.g., N itself, since
N is a model of any finite descending chain of successors;

7. Consequently, by Compactness, T has a model; call it M ;

8A possible reason why the Axiom Schema of Finite Induction does not admit non-finitary
reasoning into either PA, or into any model of PA, is suggested in §20.15
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8. M has an infinite descending sequence with respect to S because it is a
model of Γ;

9. Since PA is a subset of T, M is a non-standard model of PA.

20.11. Why the above argument is logically fragile

However if—as claimed above—N is a model of T[N ] plus any finite set of members
of Γ, and the PA term [cn] is constructively well-defined for any given natural
number n then, necessarily:

(a) All PA-formulas of the form [cn = Scn+1] are PA-provable,

(b) Γ is a proper sub-set of the PA-provable formulas, and

(c) T is identically T[N ].

Reason: The argument cannot be that some PA-formula of the form [cn = Scn+1]
is true in N , but not PA-provable, as this would imply that if PA is consistent then
PA+[¬(cn = Scn+1)] has a model other than N ; in other words, it would presume
that which is sought to be proved, namely that PA has a non-standard model9!

Consequently, the postulated model M of T in (7) above by ‘Compactness’ is
the model N that defines T[N ]. However, N has no infinite descending sequence
with respect to S, even though it is a model of Γ.

Hence the argument does not establish the existence of a non-standard model
of PA with an infinite descending sequence with respect to the successor function S.

20.12. Kaye’s argument for a non-standard model of PA

The second is Richard Kaye’s more formal argument ([Ka91], pp.10-11; attributed
by Kaye as essentially Skolem’s argument in [Sk34]):

“Let Th(N) denote the complete LA-theory of the standard model,
i.e. Th(N) is the collection of all true LA-sentences. For each
n ∈ N we let n be the closed term (. . . (((1+1)+1)+. . .+1)))(n 1s)
of LA; 0 is just the constant symbol 0. We now expand our
language LA by adding to it a new constant symbol c, obtaining
the new language Lc, and consider the following Lc-theory with
axioms

ρ (for each ρ ∈ Th(N))

and

c > n (for each n ∈ N)

This theory is consistent, for each finite fragment of it is contained
in

9To place this distinction in perspective, Adrien-Marie Legendre and Carl Friedrich Gauss

independently conjectured in 1796 that, if π(x) denotes the number of primes less than x, then
π(x) is asymptotically equivalent to x/In(x). Between 1848/1850, Pafnuty Lvovich Chebyshev

confirmed that if π(x)/{x/In(x)} has a limit, then it must be 1. However, the crucial question of

whether π(x)/{x/In(x)} has a limit at all was answered in the affirmative using analytic methods
independently by Jacques Hadamard and Charles Jean de la Vallée Poussin only in 1896, and
using only elementary methods by Atle Selberg and Paul Erdös in 1949.
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Tk = Th(N) ∪ {c > n | n < k}
for some k ∈ N, and clearly the Lc-structure (N, k) with domain
N, 0, 1, +, · and < interpreted naturally, and c interpreted by
the integer k, satisfies Tk. Thus by the compactness theorem
∪k∈NTk is consistent and has a model Mc. The first thing to note
about Mc is that

Mc |= c > n

for all n ∈ N, and hence it contains an ‘infinite’ integer.”

20.13. Why the preceding argument too is logically fragile

We note again that, from an arithmetical perspective, any application of the Com-
pactness Theorem to PA cannot ignore currently accepted post-computationalist
doctrine of objectivity ([Mu91]) that one can view the values of a simple functional
language as specifying evidence for propositions in a constructive logic, and contra-
dict the constructive assignment of satisfaction and truth to the atomic formulas of
PA (therefore to the compound formulas under Tarski’s inductive definitions) in
terms of either algorithmical verifiability or algorithmic computability (Definitions
5.2 and 5.3).

Accordingly, from an arithmetical perspective we can only conclude by the
Compactness Theorem that if Th(N) is the LA-theory of the standard model
(interpretation), then we may consistently add to it the following as an additional—
not necessarily independent—axiom:

(∃y)(y > x).

Moreover, even though (∃y)(y > x) is algorithmically computable as always true
in the standard model—whence all instances of it are also therefore in Th(N)—we
have that:

Lemma 20.4. If Th(N) denotes the complete LA-theory of the standard model M
of PA, and Tk = Th(N) ∪ {c > n | n < k}, we cannot conclude by the Compactness
Theorem that ∪k∈NTk is consistent and has a model Mc which contains an ‘infinite’
integer.

Proof. The condition ‘k ∈ N’ in ∪k∈NTk requires, first of all, that we must be
able to extend Th(N) by the addition of a ‘relativised’ axiom (cf. [Fe92]; [Me64],
p.192) such as:

(∃y)((x ∈ N)→ (y > x))

from which we may conclude the existence of some c, and a model Mc of PA such
that:

Mc |= c > n

for all n ∈ N

However, since every model of Th(N) is by definition a model of (the provable
formulas of) PA and, by Theorem 20.2, we cannot introduce a ‘completed’ infinity
such as c into into either PA or any model of PA, the Compactness Theorem
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cannot yield a model for Th(N) that contains an ‘infinite’ integer without inviting
contradiction. �

We note that the argument in [Ka91], pp.10-11, seeks to violate finitarity by
adding a new constant c to the language LA of PA that is not definable in LA and,
ipso facto, adding an atomic formula [c = x] to PA whose satisfaction under any
interpretation of PA is not algorithmically verifiable!

Since the atomic formulas of PA are algorithmically verifiable under the standard
interpretation M (Theorem 7.1), the above conclusion too postulates that which it
seeks to prove!

Moreover, the postulation would be false if Th(N) were categorical.

Since Th(N) must have a non-standard model if it is not categorical, we consider
next whether we may conclude from Gödel’s incompleteness argument (in [Go31])
that any such model can have an ‘infinite’ integer.

20.14. Gödel’s argument for a non-standard model of PA

We consider the Gödelian formula [(∀x)R(x)] which is unprovable in PA if PA is
consistent, even though the formula [R(n)] is provable in a consistent PA for any
given PA numeral [n].

Now, it follows from Gödel’s reasoning ([Go31], p.25(1) & p.25(2)) that:

Theorem 20.5. If PA is consistent, then we may add the PA formula [¬(∀x)R(x)]
as an axiom to PA without inviting inconsistency. 2

Theorem 20.6. If PA is ω-consistent, then we may add the PA formula
[(∀x)R(x)] as an axiom to PA without inviting inconsistency. 2

It follows from this that:

Corollary 20.7. If PA is ω-consistent, then there are at least two distinctly
different models of PA. 2

If we assume that a consistent PA is necessarily ω-consistent, then it follows
that one of the two putative models postulated by Corollary 20.7 must contain
elements other than the natural numbers.

We conclude that Gödel’s justification for the assumption—that non-standard
models of PA containing elements other than the natural numbers are logically
feasible—lies in his non-constructive, and logically fragile, assumption that a consis-
tent PA is necessarily ω-consistent.

20.15. Why Gödel’s assumption is logically fragile

Now, whereas Gödel’s proof of Corollary 20.7 appeals to the non-constructive
Aristotle’s particularisation, a constructive proof of the Corollary follows trivially
from the evidence-based interpretations of PA considered in §6

We detail there how Tarski’s inductive definitions allow us to provide finitary
satisfaction and truth certificates to all atomic (and ipso facto to all compound)
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formulas of PA over the domain N of the natural numbers in two essentially different
ways:

(1) In terms of algorithmic verifiabilty; and

(2) In terms of algorithmic computability.

Moreover, we show that neither the ‘algorithmically verifiable’ model, nor the
‘algorithmically computable’ model, of PA defined by these finitary satisfaction and
truth assignments to the atomic formulas of PA contains elements other than the
natural numbers.

20.16. Any algorithmically verifiable model of PA is over N

For instance if, in the first case, we assume that the algorithmically verifiable atomic
formulas of PA determine an algorithmically verifiable model of PA over the domain
N of the PA numerals, then such a model would be isomorphic to the standard
model of PA over the domain N of the natural numbers (an immediate consequence
of Theorem 7.6).

However, such a model of PA over N would not be constructively well-defined
(in the sense of Definition 21.7) since, if the formula [(∀x)F (x)] were to interpret
as true in it, then we could only conclude that, for any numeral [n], there is a
deterministic algorithm AL

F,n
which will finitarily certify the formula [F (n)] as true

under an algorithmically verifiable interpretation in N.

We could not conclude that there is a single deterministic algorithm AL
F

which,
for any numeral [n], will finitarily certify the formula [F (n)] as true under the
algorithmically verifiable interpretation in N.

Consequently, even though the PA Axiom Schema of Finite Induction can be
shown to interpret as true under the algorithmically verifiable interpretation of PA
over the domain N of the PA numerals, the interpretation is not a constructively
well-defined model of PA.

We note that if we were to assume that the algorithmically verifiable interpreta-
tion of PA is a constructively well-defined model of PA (in the sense of Definition
21.7), then it would follow that:

• PA is ω-consistent;

• Aristotle’s particularisation holds over N.

20.17. The algorithmically computable model of PA is over N

The second case is where the algorithmically computable atomic formulas of PA
determine an algorithmically computable model of PA over the domain N of the
natural numbers (§9).

The algorithmically computable model of PA is constructively well-defined, since
we can show that, if the formula [(∀x)F (x)] interprets as true under it, then we
may always conclude that there is a single deterministic algorithm AL

F
which, for

any numeral [n], will finitarily certify the formula [F (n)] as true in N under the
algorithmically computable interpretation.

Consequently we can show that all the PA axioms—including the Axiom Schema
of Finite Induction—interpret finitarily as true in N under the algorithmically
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computable interpretation of PA, and the PA Rules of Inference preserve such truth
finitarily (Theorem 9.7).

Thus the algorithmically computable interpretation of PA is a constructively
well-defined model of PA from which we may conclude that:

• PA is consistent (Theorem 9.10).

20.18. Why Gödel’s assumption that PA is ω-consistent cannot be
justified

By the way the above finitary interpretation §20.17 is defined under Tarski’s inductive
definitions (§9), if a PA-formula [F ] interprets as true in the corresponding finitary
model of PA, then there is a single deterministic algorithm AL

F
that provides a

certificate for such truth for [F ] in N; whilst if [F ] interprets as false in the above
finitary model of PA, then there is no single deterministic algorithm that can provide
such a truth certificate for [F ] in N (an immediate consequence of Theorem 9.7).

Now, if there is no single deterministic algorithm that can provide such a truth
certificate for the Gödelian formula [R(x)] in N, then we would have by definition
first that the PA formula [¬(∀x)R(x)] is true in the model, and second by Gödel’s
reasoning that the formula [R(n)] is true in the model for any given numeral [n].
Hence Aristotle’s particularisation would not hold in the model.

However, by definition if PA were ω-consistent then Aristotle’s particularisation
must necessarily hold in every model of PA.

It follows that, in the absence of a cogent argument for the existence of a single
deterministic algorithm AL

R
which could provide such a truth certificate for the

Gödelian formula [R(x)] in N, we cannot justify Gödel’s unqualified assumption
that a consistent PA is necessarily ω-consistent.

20.19. The domain of every constructively well-defined interpretation
of PA is N

We have argued that standard arguments for the existence of non-standard models
of the first-order Peano Arithmetic PA with domains other than the domain N of
the natural numbers should be treated as logically fragile even from within classical
logic.

In particular we have argued that even if Gödel’s argument for the existence
of a non-standard model of PA does yield a model of PA other than the classical
non-finitary ‘standard’ model, we cannot conclude from it that the domain is other
than the domain N of the natural numbers.
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CHAPTER 21

The ambiguity in Brouwer-Heyting-Kolmogorov
realizability

Now, the reason that constructive mathematics such as BPCM are compelled to
admit the gamut of non-constructive set-theoretical, and non-standard arithmetical,
structures lies in the following ambiguity that is implicit in the rules—such as those
of Brouwer-Heyting-Kolmogorov realizability (compare §4.3)—that seek to construc-
tively assign unique truth values to the quantified propositions of a mathematical
language. For instance:

(a) Is ‘∀x ∈ A.P (x) is realized’ to be interpreted constructively as:

• ‘For any a, P (a)’ is realised if, and only if,

∗ for any specified a in A,

∗ there is a program p
a

that

∗ maps (a representation of) a ∈ A to a realizer of P (a)?

Comment : In which case ∃x ∈ A.P (x)] is realized if, and only if, there is a pair
(p, q) such that p represents some a ∈ A and q realizes P (a).

or:

(b) Is ‘∀x ∈ A.P (x) is realized’ to be interpreted finitarily as:

• ‘For all a, P (a)’ is realized if, and only if,

∗ there is a program p that ,

∗ for any specified a in A,

∗ maps (a representation of) a ∈ A to a realizer of P (a)?

Comment : In which case ∃x ∈ A.P (x)] is realized if, and only if, there is no pair
(p, q) such that p represents some a ∈ A and q realizes ¬P (a).

The significance of this distinction is that if ∀x ∈ A.P (x) is intended to be read
as ‘For any a, P (a)’, then it must be consistently interpreted in the language of
realizability as (cf. Definition 5.2):

Definition 21.1. Verifiable realizability1:

A number-theoretical relation P (x) is verifiably realized if, and only if, for any
specified natural number n, there is a realizer pn which can provide evidence for decid-
ing the truth/falsity of each proposition in the finite sequence {P (1), P (2), . . . , P (n)}.
2

1We note that ‘verifiable realizability’ corresponds to the more intuitive language of ‘algorithmic
verifiability’—see Definition 5.2—preferred in this investigation.
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Whereas if ∀x ∈ A.P (x) is intended to be read as ‘For all x, P (x)’, then it must
be consistently interpreted in the language of realizability as (cf. Definition 5.3):

Definition 21.2. Computable realizability2:

A number theoretical relation P (x) is computably realized if, and only if, there
is a realizer p that can provide evidence for deciding the truth/falsity of each
proposition in the denumerable sequence {P (1), P (2), . . .}. 2

We note that:

• Computable realizability implies the existence of a single deterministic
algorithm that can finitarily decide the truth/falsity of each proposition
in a constructively well-defined denumerable sequence of propositions;
whereas

• Verifiable realizability does not imply the existence of a single deterministic
algorithm that can finitarily decide the truth/falsity of each proposition in
a constructively well-defined denumerable sequence of propositions.

Moreover, it follows from argumentation similar to that for Theorem 5.4 that
although every computably realizable relation is verifiably realizable, the converse
is not true.

21.1. Brouwerian interpretations of ∧,∨,→,∃,∀

The significance of the above distinction for constructive mathematics is seen in
the following, presumably standard, intuitionistic interpretations of ∧,∨,→,∃,∀, as
detailed by Bishop in [Bi18]:

“Each formula of Σ represents a constructively meaningful assertion, in that

it denotes a constructively meaningful assertion for given values of the free

variables, if we interpret ∧,∨,→, ∃,∀ in the constructive (Brouwerian) sense.
Here is a brief summary of Brouwer’s interpretations. (The interpretations

hold for all fixed values of the free variables.)

(a) A ∧B asserts A and also asserts B.

(b) A ∨B either asserts A or asserts B, and we have a finite method for

deciding which of the two it does assert.

(c) A → B asserts that if A is true, then so is B. (To prove A → B we

must give some method that converts each proof of A into a proof of

B.)

(d) ∀xA(x) asserts that A(f) holds for each (constructively) defined func-
tional f of the same type as the variable x, where A(f) is obtained

from A(x) by substituting f for all free occurrences of x.

(e) ∃xA(x) asserts that we know an algorithm for constructing a functional

f for which A(f) holds.”

. . . Bishop: [Bi18], pp.6-7.

We note that although Bishop asserts the above interpretations as constructive,
they are ambiguous as to the intended meaning of the words ‘all’ and ‘each’, since
the interpretations do not distinguish between:

2We note that ‘computable realizability’ corresponds to the more intuitive language of
‘algorithmic computability’—see Definition 5.3—preferred in this investigation.
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(i) whether there is an algorithm which, for ‘all’ permissible values of the free
variables, evidences that the formula Σ denotes a constructively meaningful
assertion; or

(ii) whether, for ‘any/each’ given permissible values of the free variables, there
is an algorithm which evidences that the formula Σ denotes a constructively
meaningful assertion.

Accordingly, they cannot accommodate an interpretation of Gödel’s first-order
arithmetical formula [R(x)] (see §11.4), which:

(1) is such that the PA-formula [R(n)] is PA-provable for any substitution of
the numeral [n] for the variable [x] in the PA-formula [R(x)], even though
the formula [(∀x)R(x)] is not PA-provable;

(2) interprets as an arithmetical relation, say R
∗
(x), such that, for any given

natural number n, there is always some algorithm that will evidence the
proposition R

∗
(n) as true, but there is no algorithm that, for any given

natural number n, will evidence R
∗
(n) as a true arithmetical proposition

(see Corollary 11.5).

Curiously, although (1) is essentially the first half of Gödel’s ‘undecidability’
argument in [Go31]3, the significance of interpretation (2) apparently escaped
Gödel’s attention; even though what we have termed as an ambiguity—reflecting a
failure to constructively define, and distinguish between, the concepts ‘for each/any’
and ‘for all’—in the intuitionistic interpretation of quantification can, reasonably,
be seen as something that Gödel too viewed with disquietude as a ‘vagueness’ in
Heyting’s formalisation of intuitionistic logic—a vagueness which he, however, seemed
to view as an unsurmountable barrier4 towards the furnishing of a constructive
intuitionistic proof of consistency for classical arithmetic:

“Gödel’s 1933 lecture is concerned with the question of a constructive
consistency proof for classical arithmetic. In considering what should count as
constructive mathematics, Gödel there argues against accepting impredicative

definitions, and insists on inductive definitions. Gödel discusses the prospects
for a consistency proof for classical arithmetic using intuitionistic logic,
then best known from Heyting’s formalisation ‘Die formalen Regeln der
intuitionistischen Logik’ (Heyting, 19301,b,c), as well as Heyting’s Königsberg
lecture of 1931, ‘Die intuitionistiche Grundlegung der Mathematik’, published

as Heyting 1931.

[. . . ]

The principles in Heyting’s formalisation that have Gödel’s special
interest are those for ‘absurdity’, that is, intuitionistic negation. But Gödel

goes on to argue that this notion is not constructive in his sense, and hence
of no use for a constructive consistency proof of classical arithmetic. The

problem he sees is that their intuitionistic explanation involve a reference to

the totality of all constructive proofs. The example he gives is

p ⊃ ¬¬p

which, he says, means ‘If p has been proved, then the assumption ¬p leads to

a contradiction. Gödel says that these axioms are not about constructions on

3p.25: “1. 17 Gen r is not κ-provable”.
4Surmountable though, once the source of the ambiguity is identified and removed, as we

show in Theorem 9.11.
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a substrate of numbers but rather on a substrate of proofs, and therefore the
example may be explicated as ‘Given any proof for a proposition p, you can

construct a reductio ad absurdum for the proposition ¬p’. He the comments
that

Heyting’s axioms concerning absurdity and similar notions [. . . ]
violate the principle, which I stated before, that the word ‘any’
can be applied only to those totalities for which we have a finite

procedure for generating all their elements [. . . ] The totality of
all possible proofs certainly does not possess this character, and
nevertheless the word ‘any’ is applied to this totality in Heyting’s
axioms [. . . ] Totalities whose elements cannot be generated by a

well-defined procedure are in some sense vague and indefinite as
to their borders. And this objection applies particularly to the
totality of intuitionistic proofs because of the vagueness of the

notion of constructivity. Therefore this foundation of classical
arithmetic by means of the notion of absurdity is of doubtful
value. (Gödel, 1933b, p.53)

A draft of this passage in Gödel’s archive does not quite end with rejection

of Heyting’s logic. Instead, it reflects:

Therefore you may be doubtful [sic] as to the correctness of the

notion of absurdity and as to the value of a proof for freedom

from contradiction by means of this notion. But nevertheless it
may be granted that this foundation is at least more satisfactory

than the ordinary platonistic interpretation [. . . ]

Either way, the doubt about, or objection to, the notion of absurdity imme-
diately generalises to implication as such.

It is remarkable, given the construction of Gödel’s talk, in which the
discussion of the intuitionistic logical connectives is preceded by an argument
against the use of impredicative definitions for foundational purposes, that

the objection Gödel puts forward is not that Heyting’s principles for absurdity
are impredicative, but that they are vague. Impredicativity of course entails
constructive undefinability and in that sense vagueness, and it is possible

that Gödel had seen the problem of impredicativity but thought that, in
the context of a consistency proof that is looked for because of its epistemic
interest, vagueness is the more important thing to note, even if impredicativity

is the cause of it.”
. . . van Atten: [At17], pp.6-7.

21.2. Defining constructive mathematics and its goal

We consider some philosophical consequences—for constructive mathematics—of
removing the above ambiguity in the rules for Brouwer-Heyting-Kolmogorov realiz-
ability, which now allows us to formally distinguish between a first-order language
(see Appendix A) and:

- a first-order theory that seeks—on the basis of evidence-based reasoning—
to assign the values ‘provable/unprovable’ to the well-formed formulas of
the language under a proof-theoretic logic;

- a first-order theory that seeks—on the basis of evidence-based reasoning—
to assign the values ‘true/false’ to the well-formed formulas of the language
under a model-theoretic logic.

where:
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Definition 21.3. The proof-theoretic logic of a first-order theory S is a set of
rules consisting of:

- a selected set of well-formed formulas of S labelled as ‘axioms/axiom
schemas’ that are assigned the value ‘provable’; and

- a finitary set of rules of inference in S;

that assign evidence-based values of ‘provable’ or ‘unprovable’ to the well-formed
formulas of S by means of the axioms and rules of inference of S.

Definition 21.4. The model-theoretic logic of a first-order theory S with a proof-
theoretic logic is a set of rules that assign evidence-based truth values of ‘satisfaction’,
‘truth’, and ‘falsity’ to the well-formed formulas of S under an interpretation I such
that the axioms of S interpret as ‘true’ under I, and the rules of inference of S
preserve such ‘truth’ under I.

and, somewhat more generally:

Definition 21.5. A finite set λ of rules is a constructively well-defined logic of
a formal mathematical language L if, and only if, λ assigns unique, evidence-based,
truth-values:

(a) Of provability/unprovability to the formulas of L; and

(b) Of truth/falsity to the sentences of the Theory T (U) which is defined
semantically by the λ-interpretation of L over a given structure U that
may, or may not, be constructively well-defined; such that

(c) The provable formulas interpret as true in T (U). 2

We contrast Definition 21.5 with the epistemically grounded perspective of conven-
tional wisdom (such as, for instance, [Mur06]) when it fails to distinguish between

the multi-dimensional nature of the logic of a formal mathematical language (as
defined above), and the one-dimensional nature of the veridicality of its assertions

(articulated either informally as in, for example, [LR00]5, or implicitly as, for

instance, in [Shr13]):

“Logic, the investigation suggests, is grounded in the formal aspect of

reality, and the outline proposes an account of this aspect, the way it both
constrains and enables logic (gives rise to logical truths and consequences),
logic’s role in our overall system of knowledge, the relation between logic

and mathematics, the normativity of logic, the characteristic traits of logic,
and error and revision in logic.

. . .
It is an interesting fact that, with a small number of exceptions, a systematic

philosophical foundation for logic, a foundation for logic rather than for
mathematics or language, has rarely been attempted (fn1: One recent
exception is Maddy [2007, Part III], which differs from the present attempt

in being thoroughly naturalistic. Another psychologically oriented attempt

is Hanna [2006]. Due to limitations of space and in accordance with my
constructive goal, I will limit comparisons and polemics to a minimum).

. . .
By a philosophical foundation for logic I mean in this paper a substantive
philosophical theory that critically examines and explains the basic features

5A more appropriate title for which, from such a perspective, would be Where the Veridicality
of Mathematical Propositions Comes From.
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of logic, the tasks logic performs in our theoretical and practical life, the
veridicality of logic - including the source of the truth and falsehood of both

logical and meta-logical claims, . . . the grounds on which logical theories
should be accepted (rejected, or revised), the ways logical theories are
constrained and enabled by the mind and the world, the relations between

logic and related theories (e.g., mathematics), the source of the normativity
of logic, and so on. The list is in principle open-ended since new interests
and concerns may be raised by different persons and communities at present

and in the future. In addition, the investigation itself is likely to raise
new questions (whether logic is similar to other disciplines in requiring a
grounding in reality, what the distinctive characteristics of logical operators
are, etc.).

. . .

The motivation for engaging in a foundational project of this kind is both

general and particular, both intellectual and practical, both theoretical and
applicational. Partly, the project is motivated by an interest in providing
a foundation for knowledge in general - i.e., a foundation both for human
knowledge as a whole and for each branch of knowledge individually (logic

being one such branch). Partly, the motivation is specific to logic, and is
due to logic’s unique features: its extreme “basicness”, generality, modal
force, normativity, ability to prevent an especially destructive type of
error (logical contradiction, inconsistency), ability to expand all types of

knowledge (through logical inference), etc. In both cases the interest is
both intellectual and practical. Finally, our interest is both theoretical
and applicational: we are interested in a systematic theoretical account

of the nature, credentials, and scope of logical reasoning, as well as in its
applications to specific fields and areas.
. . .

If the bulk of our criticisms is correct, the traditional foundationalist
strategy for constructing a foundation for logic (and for our system of

knowledge in general) should be rejected. It is true that for a long time
the foundationalist strategy has been our only foundational strategy, and
as a result many of its features have become entangled in our conception

of a foundation, but this entanglement can and ought to be unraveled.
. . . My goal is an epistemic strategy that is both free of the unnecessary
encumbrances of the foundationalist strategy and strongly committed to

the grounding project. Following Shapiro [1991], I will call such a strategy
a foundation without foundationalism.”

. . . Sher: [Shr13], pp.145-146, 151.

Definition 21.6. Constructive mathematics is the study of formal mathematical
languages that have a constructively well-defined logic. 2

For a formal mathematical language L to, then, precisely express and objectively
(i.e., on the basis of evidence-based reasoning) communicate effectively characteristics
of some structure U that may, or may not, be constructively well-defined, it must
be able to categorically represent some Theory T (U) whose characteristic is that:

Definition 21.7. The Theory T (U) defined semantically by the λ-interpretation
of a formal mathematical language L over the structure U is a constructively well-
defined model of L if, and only if, λ is a constructively well-defined Logic of L.
2

The significance of Definitions 21.3 to 21.6 is illustrated by the following account
by Carl J. Posy of the purported ways in which:
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“. . . adopting intuitionistic logic limits the ways in which a constructivist can
carry out a mathematical proof. A standard example is the classical proof

that there are irrational r and s such that rs is a rational number: either√
2
√

2
is rational or it is irrational. If it is rational, then take r = s =

√
2. If it

is irrational, then take r =
√

2
√

2
and s =

√
2. In this case rs = (

√
2
√

2
)
√

2
=

(
√

2)
2

= 2. The constructivist cannot make that initial assumption that
√

2
√

2
is either rational or irrational.”

. . . Posy: [Pos13], p.109.

Though—as the author notes—this theorem is in fact constructively recoverable,
the question—left unaddressed here by both classical and constructive theories—is
not whether a particular formula is rational or irrational, but whether the logic that
assigns truth assignments to the formulas of the concerned language is sufficiently
well-defined so as to evidence the decidability of whether a formula is either rational
or irrational.

21.3. Wittgenstein’s ‘notorious’ paragraph about the Gödel Theorem

We note that such an evidence-based perspective reflects in essence the views Ludwig
Wittgenstein emphasised in his ‘notorious paragraph’6, where he writes that:

“I imagine someone asking my advice; he says: “I have constructed a
proposition (I will use ‘P ’ to designate it) in Russell’s symbolism, and by
means of certain definitions and transformations it can be so interpreted

that it says: ‘P is not provable in Russell’s system.’ Must I not say that this
proposition on the one hand is true, and on the other hand is unprovable?
For suppose it were false; then it is true that it is provable. And that surely

cannot be! And if it is proved, then it is proved that it is not provable. Thus
it can only be true, but unprovable.”

Just as we ask, “Provable’ in what system?,” so we must also ask, “True’
in what system?” “True in Russell’s system” means, as was said, proved in

Russell’s system, and “false in Russell’s system” means the opposite has
been proved in Russell’s system.—Now what does your “suppose it is false”

mean? In the Russell sense it means, “suppose the opposite is proved in

Russell’s system”; if that is your assumption you will now presumably give
up the interpretation that it is unprovable. And by “this interpretation” I

understand the translation into this English sentence.—If you assume that

the proposition is provable in Russell’s system, that means it is true in the
Russell sense, and the interpretation “P is not provable” again has to be

given up. If you assume that the proposition is true in the Russell sense,

the same thing follows. Further: if the proposition is supposed to be false
in some other than the Russell sense, then it does not contradict this for

it to be proved in Russell’s system. (What is called “losing” in chess may
constitute winning in another game.)”
. . . Wittgenstein: [Wi78], Appendix III 8.

In their paper “A note on Wittgenstein’s ‘notorious paragraph’ about the
Gödel Theorem”, Juliet Floyd and Hilary Putnam draw attention to Wittgenstein’s
remarks, and argue that this paragraph contains a “philosophical claim of great
interest” which (cf. §17.5):

6In footnote 9 of [FP00], Floyd and Putnam note that: “The ‘notorious’ paragraph RFM I

Appendix III 8 was penned on 23 September 1937, when Wittgenstein was in Norway (see the
Wittgenstein papers, CD Rom, Oxford University Press and the University of Bergen, 1998, Item
118 (Band XIV), pp. 106ff)”.
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“. . . is simply this: if one assumes (and, a fortiori if one actually
finds out) that ¬P is provable in Russell’s system one should
. . . give up the “translation” of P by the English sentence “P is
not provable”.
. . . Floyd and Putnam: [FP00].

Now, although Wittgenstein’s reservations on Gödel’s interpretation of his
own formal reasoning are, indeed, of historical importance, the uneasiness that
academicians and philosophers such as Floyd and Putnam—and, more recently,
Timm Lampert in [Lam17]—have continued to sense, express, and debate, over
standard (text-book) interpretations of Gödel’s formal reasoning—even eighty five
years after the publication of the latter’s seminal 1931 paper ([Go31]) on formally
undecidable arithmetical propositions—is of much greater significance, and relevance,
to us today.

“Contrary to Wittgenstein’s early critics, Shanker [1988], Floyd & Put-

nam[2000] and Floyd [2001] argue that Wittgenstein does not question
Gödel’s undecidability proof itself. Instead, they say, Wittgenstein’s remarks
are concerned with the semantic and philosophical consequences of Gödel’s

proof; those remarks represent, according to Floyd and Putnam, a “remark-
able insight” regarding Gödel’s proof. I share the view that Wittgenstein
believed that it is not the task of philosophy to question mathematical

proofs. However, I argue that from Wittgenstein’s perspective, Gödel’s
proof is not a mathematical proof. Instead, it is a proof that relies on
“prose” in the sense of meta-mathematical interpretations, and thus, it is a

valid object of philosophical critique.Thus, I deny that Wittgenstein views
Gödel’s undecidability proof as being just as conclusive as mathematical
impossibility proofs. Wittgenstein’s simplied, rather general way of referring

to an ordinary language interpretation of G without specifying exactly where
questionable meta-mathematical interpretations are relevant to Gödel’s proof
might have led to the judgment that Wittgenstein’s critique is not relevant
to Gödel’s proof.

Contrary to Floyd and Putnam, Rodych [1999] and Steiner [2001]
assume that Wittgenstein argues against Gödel’s undecidability proof. Ac-

cording to their interpretation, Wittgenstein’s objection against Gödel’s
proof is that from proving G or ¬G, it does not follow that PM is inconsis-
tent or ω-inconsistent. Instead, one could abandon the meta-mathematical

interpretation of G. However, according to both authors, this critique is

inadequate because Gödel’s proof does not rely on a meta-mathematical
interpretation of G. By specifying where Wittgenstein’s critique is mistaken,

they wish to decouple Wittgenstein’s philosophical insights from his mis-
taken analysis of Gödel’s mathematical proof. I agree with Rodrych and

Steiner that Wittgenstein’s critique does not offer a sufficient analysis of the

specific manner in which a meta-mathematical interpretation is involved in
Gödel’s reasoning. However, in contrast to these authors, I will explain why

both Gödel’s semantic proof and his so-called syntactic proof do rely on a

meta-mathematical interpretation.

Priest [2004], Berto [2009a] and Berto [2009b] view Wittgenstein as a

pioneer of paraconsistent logic. They are especially interested in Wittgen-
stein’s analysis of Gödel’s proof as a proof by contradiction. Like Rodych

and Steiner, they maintain that Wittgenstein’s remarks are not, in fact,
pertinent to Gödel’s undecidability proof because Wittgenstein refers not to

a syntactic contradiction within PM but rather to a contradiction between

the provability of G and its meta-mathematical interpretation. However,
according to them, Wittgenstein’s critique is not mistaken. Rather, it is
concerned with the interpretation and consequences of Gödel’s undecidability
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proof. Presuming Wittgenstein’s rejection of any distinction between (i)
metalanguage and object language and (ii) provability and truth, they show

that engaging with Gödel’s proof depends on philosophical presumptions.
I do not question this. However, I will argue that Wittgenstein’s critiqued
can be interpreted in a way that is indeed relevant to Gödel’s undecidability

proof.

The intention of this paper is not to enter into an exegetical debate

on whether Wittgenstein understands Gödel’s proof and whether he indeed
objects to it. For the sake of argument, I assume that to be given. Fur-
thermore, similarly to, e.g., Rodych and Steiner, I take “Wittgenstein’s
objection” to Gödel’s proof to be as follows: “Instead of inferring the in-

correctness or (ω-)inconsistency of PM (or PA) from a proof of G (or ¬G),
one might just as validly abandon the meta-mathematical interpretation
of G. Therefore, Gödel’s proof is not compelling because it rests on a

doubtful meta-mathematical interpretation.” I recognize that this is highly
controversial, to say the least. However, the literature seems to agree that
such an objection, be it Wittgenstein’s or not, has no relation to Gödel’s
undecidability proof and thus is not reasonable. The intention of this paper

is to show that this is not true. This objection can, indeed, be related to
Gödel’s method of defining provability within the language of PM, and it
questions this essential element of Gödel’s meta-mathematical proof method
by measuring its reliability on the basis of an algorithmic conception of

proof.”

. . . Lampert: [Lam17].

We shall argue further that Wittgenstein’s reservations in [Wi78], as also the
uneasiness expressed by, amongst others, Floyd and Putnam in [FP00] and Lampert
in [Lam17], can—and arguably must, as we advocate in this investigation—be
seen as indicating specific points of ambiguity that need to be addressed on both
technical and philosophical grounds, rather than be dismissed on mere technicalities,
since both Wittgenstein and Gödel can be held guilty of conflating ‘ω-consistency’
with ‘correctness’.

That the onus of guilt must fall heavier on Gödel follows not only from his
misleading assertion that the semantic concept of ‘truth’ can be replaced by the
‘purely formal and much weaker assumption’ of ω-consistency:

“The method of proof which has just been explained can obviously be applied
to every formal system which, first, possesses sufficient means of expression

when interpreted according to its meaning to define the concepts (especially
the concept “provable formula”) occurring in the above argument; and,
secondly, in which every provable formula is true. In the precise execution of

the above proof, which now follows, we shall have the task (among others) of

replacing the second of the assumptions just mentioned by a purely formal
and much weaker assumption.”

. . . Gödel: [Go31], p.9.

but also from his implicit—and equally misleading—footnote 48a on page 28 of
[Go31], which suggests that assuming any formal system of arithmetic—such as, for
instance, the first-order Peano Arithmetic PA—to be ω-consistent is intuitionistically
unobjectionable, and may be treated as a matter of fact :

“In the proof of Theorem VI no properties of the system P were used other
than the following:
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1. The class of axioms and the rules of inference (i.e. the relation “im-
mediate consequence”) are recursively definable (when the primitive symbols

are replaced in some manner by natural numbers).

2. Every recursive relation is definable within the system P (in the

sense of Theorem V).

Hence, in every formal system which satisfies assumptions 1, 2 and
is ω-consistent, there exist undecidable propositions of the form (x)F (x),

where F is a recursively defined property of natural numbers, and likewise in

every extension of such a system by a recursively definable ω-consistent class
of axioms. To the systems which satisfy assumptions 1, 2 belong, as one can

easily confirm, the Zermelo-Fraenkel and the v. Neumann axiom systems

for set theory, and, in addition, the axiom system for number theory which
consists of Peano’s axioms, recursive definitions (according to schema (2))

and the logical rules. Assumption 1 is fulfilled in general by every system

whose rules of inference are the usual ones and whose axioms (as in F ) result
from substitution in finitely many schemata.48a

[Footnote 48a] The true reason for the incompleteness which attaches
to all formal systems of mathematics lies, as will be shown in Part II of

this paper, in the fact that the formation of higher and higher types can be
continued into the transfinite.”

. . . Gödel: [Go31], p.28.

That both of Gödel’s assertions are misleading follows since PA is both strongly
consistent by Theorem 9.10 in §9.2—hence ‘correct’—and ω-inconsistent by Corollary
11.6 in §11.4 and, independently, by Theorem 8.5 in §8.5.

We note, moreover, that the latter proof appears to reflect Lampert’s interpre-
tation of Wittgenstein’s argument in [Wi78]:

“In I, §17, Wittgenstein suggests to look at proofs of unprovability “in order
to see what has been proved”. To this end, he distinguishes two types of

proofs of unprovability. He mentions the first type only briefly: “Perhaps it
has here been proved that such-and-such forms of proof do not lead to P .”
(P is Wittgenstein’s abbreviation for Gödel’s formula G). In this section, I

argue that Wittgenstein refers in this quote to an algorithmic proof proving
that G is not provable within PM. Such a proof of unprovability would,
to Wittgenstein, be a compelling reason to give up search for a proof of

G within PM. Wittgenstein challenges Gödel’s proof because it is not an

unprovability proof of this type. This is also why Wittgenstein does not
consider algorithmic proofs of unprovability in greater detail in his discussion

of Gödel’s proof. Such proofs represent the background against which he
contrasts Gödel’s proof to a type of proof that is beyond question.

Unfortunately, Wittgenstein does not follow his own suggestion to more
carefully evaluate unprovability proofs with respect to Gödel’s proof. Instead,

he distinguishes different types of proofs of unprovability in his own words

and in a rather general way; cf. I, §8-19. His critique focuses on a proof
of unprovability that relies on the representation of provability within the

language of the axiom system in question. Thus, following his initial acknowl-

edgement of algorithmic unprovability proofs in I, §17, Wittgenstein repeats,
at rather great length, his critique of a meta-mathematical unprovability

proof. It is this type of unprovability proof that he judges unable to provide
a compelling reason to give up the search for a proof of G. The most cru-

cial aspect of any comparison of two different types of unprovability proofs

is the question of what serves as the “criterion of unprovability” (I, §15).
According to Wittgenstein, such a criterion should be a purely syntactic
criteria independent of any meta-mathematical interpretation of formulas. It
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is algorithmic proofs relying on nothing but syntactic criteria that serve as a
measure for assessing meta-mathematical interpretations, not vice-versa.

[. . . ]

Gödel’s proof is not an algorithmic unprovability proof. Instead, Gödel’s
proof is based on the representation of provability within the language

of PM. Based on this assumption, Gödel concludes that PM would be
inconsistent (or ω-inconsistent) if G (or ¬G) were provable. Thus, given

PM’s (ω)-consistency, G is undecidable. This reasoning is based on the

purely hypothetical assumption of the provability of G; it does not consider
any specific proof strategies for proving formulas of a certain form within

PM.

Given an algorithmic unprovability proof for G, the meta-mathematical

statement that G is provable would be reduced to absurdity. This would
be a compelling reason to abandon any search for a proof. Such a proof

by contradiction would contain a “physical element” (I, §14) because a

meta-mathematical statement concerning the provability of G is reduced
to absurdity on the basis of an algorithmic, and thus purely mathematical,
proof. Wittgenstein does not reject such a proof by contradiction in §14.”

. . . Lampert: [Lam17].

We note further that, according to Lampert, Wittgenstein’s remarks in [Wi78]
can be interpreted as claiming that any ‘intended interpretation’ of quantification
in ‘an instance of a formula or of its abbreviation, such as G or ¬∃yB(y, dGe)’ in
Gödel’s reasoning would introduce an element of ‘prose’ which—in the context of
the evidence-based perspective of this investigation—may reasonably be taken to be
an assumption such as that of Aristotle’s particularisation (Definition 3.1 in §3.1;
see also §14.2), which is stronger than both Gödel’s ω-consistency (see §15.7) and
Rosser’s Rule C (see §15.6):

“The proofs by contradiction of the type to which Wittgenstein objects
are proofs that involve interpretation of logical formulas: the inconsistency

concerns the relation between the provability of a formula (proven or merely
assumed) and its interpretation. Here, “interpretation” is not to be under-
stood in terms of purely formal semantics underlying proofs of correctness

or completeness. Formal semantics assign extensions to formal expressions
without considering specific instances of formal expressions that are meant
to refer to extensions. Instead, in proofs of contradiction Wittgenstein is

concerned with an “interpretation of a formula” refers to an instance of
a formula or of its abbreviation, such as G or ¬∃yB(y, dGe), stated as a
sentence in ordinary language or a standardized fragment of an ordinary

language. Interpretations of this kind are so-called “intended interpretations”
or “standard interpretations”, which are intended to identify extensions

such as truth values, truth functions, sets or numbers by means of ordinary

expressions. As soon as interpretations of this kind become involved, one
departs from the realm of mathematical calculus and “prose” comes into

play, in Wittgenstein’s view. Therefore, Wittgenstein’s “non-revisionist”

attitude does not apply to proofs by contradiction that rest on intended
interpretations. A rigorous mathematical proof should not be affected by the

problem that some intended interpretation may not refer to that to which it

is intended to refer, which is a genuinely philosophical problem.”
. . . Lampert: [Lam17].

21.4. What is mathematics?

Without attempting to address the issue in its broader dimensions, we take Wittgen-
stein’s remarks in [Wi78] as implicitly suggesting that:
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(i) Mathematics is to be considered as a set of precise, symbolic, languages.

(ii) Any language of such a set, say the first order Peano Arithmetic PA (or
Russell and Whitehead’s PM in Principia Mathematica, or the Set Theory
ZF), is intended to express—in a finite, unambiguous, and communicable
manner—relations between elements that are external to the language PA
(or to PM, or to ZF).

(iii) Moreover, each such language is two-valued if we assume that a specific rela-
tion either holds or does not hold externally under any valid interpretation
of the language.

(iv) Further:

– A selected, finite, number of primitive formal assertions about a finite
set of selected primitive relations of, say, a language L are defined as
axiomatically L-provable;

– All assertions about relations that can be effectively defined in terms of
the primitive relations are termed as L-provable if, and only if, there is
a finite sequence of assertions of L, each of which is either a primitive
assertion or which can effectively be determined in a finite number of
steps as an immediate consequence of any two assertions preceding it
in the sequence by a finite set of finitary rules of consequence.

We note that the semiotics of the evidence-based perspective of §21.2 to §21.4
(see also §23) is reflected in Brian Rotman’s broader analysis:

“Insofar, the, as the subject matter of mathematics is the whole numbers,

we can say that its objects—the things which it countenances as existing and
which it is said to be ‘about’—are unactualized possibles, the potential sign
production of a counting subject who operates in the presence of a notational
system of signifiers. Such a thesis, though, is by no means restricted to

the integers. Once it is accepted that the integers can be characterized
in this way, essentially the same sort of analysis is available for numbers
in general. The real numbers, for example, exist and are created as signs

in the presence of the familiar extension of Hindu numerals—the infinite
decimals—which act as their signifiers. Of course, there are complications
involved in the idea of signifiers being infinitely long, but from a semiotic

point of view the problem they present is no different from that presented by

arbitrarily long finite signifiers. And moreover, what is true of numbers is in
fact true of the entire totality of mathematical objects: they are all signs—

thought/scribbles—which arise as the potential activity of a mathematical
subject.

Thus mathematics, characterized here as a discourse whose assertions
are predictions about the future activities of its participants, is ‘about’—

insofar as this locution makes sense—itself. The entire discourse refers to,

is ‘true’ about, nothing other than its own signs. And since mathematics
is entirely a human artefact, the truths it establishes—if such is what they

are—are attributes of the mathematical subject: the tripartite agency of

Agent/Mathematician/Person who reads and writes mathematical signs and
suffers its persuasions.

But in the end, ‘truth’ seems to be no more than the unhelpful relic

of the platonist obsession with a changeless eternal heaven. The question

of whether a mathematical assertion, a prediction, can be said to be ‘true’
(or accurate or correct) collapses into a problem about the tense of the
verb. A prediction—about some determinate world for which true and
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false make sense—might in the future be seen to be true, but only after
what it foretold has come to pass; for only then, and not before, can what

was pre-dicted be dicted. Short of fulfillment, as is the condition of all
but trivial mathematical cases, predictions can only be believed to be true.
Mathematicians believe because they are persuaded to believe; so that what

is salient about mathematical assertions is not their supposed truth about
some world that precedes them, but the inconceivability of persuasively
creating a world in which they are denied. Thus, instead of a picture of logic

as a form of truth-preserving inference, a semiotics of mathematics would see
it as an inconceivability-preserving mode of persuasion—with no mention of
“truth’ anywhere.”

. . . Rotman: [Rot88], pp.33-34.

21.5. An interpretation must be effectively decidable

We take Rotman’s semiotic perspective as echoing the essence of Wittgenstein’s
remarks, if we view the latter as indicating that an effective interpretation IL(D) of
a language L into the domain D of another language L′ with a well-defined logic is
essentially the specification of an effective method by which any assertion of L is
translated unambiguously into a unique assertion in L′.

Clearly, if an assertion is provable in L, then it should be effectively decidable as
true under any interpretation of L in the domain D of L′—since a finite deduction
sequence of L would, prima facie, translate as a finite logical consequence in D
under the interpretation.

21.6. Is the converse necessarily true?

The question arises:

Query 21.8. If an assertion of L is decidable as true/false under an interpre-
tation IL(D) in the domain D of L′, then does such decidability also ensure an
effective method of deciding its corresponding provability/unprovability in L?

Obviously, such a question can only be addressed unambiguously if there is an
effective method for determining whether an assertion of L is decidable as true/false
in D under the interpretation IL(D). If there is no such effective method, then we
are faced with the following thesis that is implicit in, and central to, Wittgenstein’s
‘notorious’ remark:

Thesis 21.9. If there is no effective method for the unambiguous decidability
of the assertions of a mathematical language L under any interpretation IL(D) of L
in the domain D of a language L′, then L can only be considered a mathematical
language of subjective expression, but not a mathematical language of effective, and
unambiguous, communication under interpretation in L′.

What this means is that, in the absence of an effective method of decidability
of the truth/falsity of the formulas of a mathematical language such as PA in the
domain N of the natural numbers under the standard interpretation M of PA, it is
meaningless to ask whether, in general, a specific assertion of PA is decidable as
true or not in N under the interpretation M (the question of whether the assertion
is decidable in PA as provable or not is, then, an issue of secondary consequence).
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21.7. Tarskian truth under the standard interpretation

The philosophical dimensions of this thesis emerge if we consider the standard
interpretation M of PA over the structure of the natural numbers where (cf.
[Me64]):

(a) The set of non-negative integers is the domain N;

(b) The integer 0 is the interpretation of the symbol ‘0’ of PA;

(c) The successor operation (addition of 1) is the interpretation of the ‘′’
function (i.e. of f1

1 in [Me64]);

(d) Ordinary addition and multiplication are the interpretations of ‘+’ and ‘?’;

(e) The interpretation of the predicate letter ‘=’ is the equality relation.

Now, post-Gödel, classical theory seems to hold that:

(f) M is a well-defined interpretation of PA in N;

(g) PA formulas are decidable under M in N by Tarski’s definitions of satisfi-
ability and truth (cf. [Me64], p49-53);

(h) However, the truth and satisfiability of a PA formula under M is not
always effectively verifiable in N7.

However, the question, implicit in Wittgenstein’s argument regarding the possi-
bility of a semantic ambiguity in Gödel’s reasoning, then arises:

Query 21.10. How can we assert that a PA formula (whether PA-provable
or not) is true under the standard interpretation M of PA, so long as such truth
remains effectively unverifiable under M ?

Since the issue is not resolved unambiguously by Gödel in his 1931 paper (nor,
prima facie, by subsequent standard interpretations of his formal reasoning and
conclusions), Wittgenstein’s remark can be taken to argue that, although we may
validly draw various conclusions from Gödel’s formal reasoning and conclusions, the
Platonic existence of a true or false assertion under the standard interpretation M
of PA cannot be amongst them.

21.8. Is PA categorical?

A related philosophical issue is, then, the question:

Is PA categorical?

In other words, since PA is intended as a finitary (first-order) formalisation of
the arithmetic of the natural numbers as expressed by the categorical second-order
formulation of the Peano-Dedekind axioms8, is such formalisation unique?

7Expressed formally by Tarski’s 1936 Theorem (cf. [Me64], Corollary 3.38, p151):

“The set Tr of Gödel-numbers of wfs of PA which are true in the standard model is not arithmetical,
i.e. there is no wf A(x) of PA such that Tr is the set of numbers k for which A(x) is true in the

standard model.”
8We note that Dedekind proved that these axioms are categorical, in the sense that any two

putative models of the axioms would be isomorphic.
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The standard response to this question seems to lie at the heart of Wittgenstein’s
reservations, and to be the cause of the uneasiness felt by subsequent philosophers
who question the standard interpretations of classical mathematical theory.

Now, this investigation is based on the premise that a negative answer—which
would imply that intuitively self-evident PA axioms cannot be taken as a faithful
first-order formalisation of our intuitive arithmetic of the natural numbers—is a
philosophically unappealing and implicitly self-limiting admission.

An affirmative answer, on the other hand, whilst validating PA as a finitary
formalisation of the second-order Dedekind-Peano axioms, would further imply that,
since an assertion would then be effectively decidable in PA if, and only if, it were
effectively decidable under an interpretation in N (cf. Theorem 10.2), there must
be some effective method of defining Tarskian satisfiability and truth under an
interpretation in N.

21.9. Defining effective satisfiability and truth

Although Wittgenstein does not appear to have attempted such a definition—possibly
as it may have seemed to involve technicalities beyond the scope of his reflections—
we note in [An16] that such an effective method is, indeed, made available to us by,
curiously, a constructive, weak, ‘Wittgensteinian’ interpretation of Gödel’s reasoning
and conclusions (as detailed in Chapter 8); an interpretation that is, ironically, more
in sympathy with Wittgenstein’s constructive approach than Gödel’s Platonic one.

21.10. Undecidability in PA

Now, a thesis—in this investigation—of a constructive interpretation of Gödel’s
reasoning and conclusions is that (see Definitions 5.2 and 5.2 in §5.1), under any
constructively well-defined interpretation of PA, we may not interpret the meta-
assertion:

PA proves: [(∀x)F (x)]

as the non-verifiable, Tarskian meta-assertion:

F (x) is satisfied by any natural number x in N .

We must interpret it, instead, as either one of the evidence-based meta-assertions:

(i) For any given natural n of N , there is an algorithm that will evidence
F (n) as satisfied in N ;

(ii) There is an algorithm that, given any natural number n of N , will evidence
F (n) as satisfied in N .

It follows that in the second case (ii)—a possibility hitherto unsuspected by conven-
tional wisdom—both the meta-assertions:

PA does not prove [(∀x)F (x)]

and:

PA proves [¬(∀x)F (x)]
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interpret under any constructively well-defined interpretation of PA as the meta-
assertion:

There is no algorithm that, given any natural number n of N , will evidence
F (x) as satisfied in N .

Consequently, an evidence-based interpretation of Gödel’s reasoning and conclu-
sions implies that there can be no undecidable propositions in PA; in other words,
that PA is syntactically complete (in the sense of §10.2)!

21.11. How definitive is the usual interpretation of Gödel’s reasoning?

However we are then faced with the question:

Query 21.11. Since the usual textbook interpretations of Gödel’s reasoning
and conclusions assert that PA is syntactically incomplete, how definitive are such
interpretations?

Now, in Theorem VI of his seminal 1931 paper [Go31], Gödel defines a formal
system P of arithmetic, and a P-proposition, say [(∀x)R(x)], such that:

(i) [(∀x)R(x)] is not P-provable;

(ii) [(R(n)] is P-provable for any given numeral [n].

Gödel then explicitly remarks (as implicitly self-evident) that any system of
arithmetic such as P is ω-consistent, and concludes that P is essentially incomplete
since:

(iii) [¬(∀x)R(x)] is not P-provable if P is ω-consistent.

We note that Wittgenstein’s remarks indicate that, prima facie, there appear
no intuitively significant philosophical grounds for treating the ω-consistency of P
as self-evident.

Justifying Wittgenstein’s reservations, we note that not only was Gödel’s intu-
ition misleading, but it is the ω-inconsistency of PA that—by Gödel’s own formal
reasoning (see Theorem 8.5; also Corollary 11.6)—is natural, and intuitively unob-
jectionable, under a constructively well-defined interpretation of the concept of ‘PA
proves: [(∀x)F (x)]’ as described earlier.

Under such interpretation, an ω-inconsistent PA does not imply that PA, or
any of its interpretations, are either inconsistent or unnaturally consistent; it simply
implies that there are (algorithmically verifiable but not algorithmically computable)
arithmetical relations that cannot be verified uniformly by a common algorithm
over the domain of their interpretation.

Thus, it may have been the absence of an adequately technical counter-argument
that has left Wittgenstein’s viewpoint—and that of others such as Lucas ([Lu61])
and Penrose ([Pe90] and [Pe94]), who have shared his reservations on intuitively
sound philosophical grounds—vulnerable to the arguments advanced by the usual
textbook interpretations of Gödel’s reasoning and conclusion; these implicitly imply—
on the basis of purely technical, but misleading, considerations that follow from the
invalidly assumed ω-consistency of PA—that any interpretation of Gödel’s reasoning
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and conclusion are essentially counter-intuitive philosophical concepts which must
be accepted as extending our intuition.

21.12. When does a formal assertion ‘mean’ what it represents?

Another important philosophical issue—which is implicit in the key thesis of Floyd
and Putnam’s paper [FP00]—is reflected in Wittgenstein’s remark:

“If you assume that the proposition is provable in Russell’s system, that
means it is true in the Russell sense, and the interpretation ‘P is not provable’

... has to be given up.”

. . . Wittgenstein: [Wi78], Appendix III 8.

We may state this issue explicitly as:

Query 21.12. When does a formal assertion ‘mean’ what it represents?

Now if, as argued earlier, we accept that PA formalises our intuitive arithmetic
of the natural numbers, and that there is a constructively well-defined interpretation
of PA, it follows that every well-formed formula of PA interprets as a well-defined
arithmetical expression in N, and every well-defined arithmetical expression in N
can be represented as a PA-formula.

The question then arises:

Query 21.13. When is an arbitrary number-theoretic function or relation
representable in PA?

21.13. Formal expressibility and representability

Now, the classical PA-expressibility and representability of number-theoretic func-
tions and relations is addressed by the following three definitions (cf. [Me64],
p117-118):

(a) A number-theoretic relation R(x1, . . . , xn) is said to be expressible in PA
if, and only if, there is a well-formed formula [A(x1, . . . , xn)] of PA with n
free variables such that, for any natural numbers k1, . . . , kn:

(i) if R(k1, . . . , kn) is true, then PA proves: [A(k1, . . . , kn)];

(ii) if R(k1, . . . , kn) is false, then PA proves: [¬A(k1, . . . , kn)].

(b) A number-theoretic function f(x1, . . . , xn) is said to be representable in
PA if, and only if, there is a well-formed formula [A(x1, . . . , xn, y)] of PA,
with the free variables [x1, . . . , xn, y], such that, for any natural numbers
k1, . . . , kn, l:

(i) if f(k1, . . . , kn) = l, then PA proves: [A(k1, . . . , kn, l)],

(ii) PA proves: [(∃!y)A(k1, . . . , kn, y)]9.

(c) A number-theoretic function f(x1, . . . , xn) is said to be strongly repre-
sentable in PA if, and only if, there is a well-formed formula [A(x1, . . . , xn, y)]
of PA, with the free variables [x1, . . . , xn, y], such that, for any natural
numbers k1, . . . , kn, l:

9Definition([Me64], p.79): [(∃!x)A(x)] ≡ [(∃x)A(x) ∧ (∀x)(∀y)(A(x) ∧A(y)) ⊃ x = y]
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(i) if f(k1, . . . , kn) = l, then PA proves: [A(k1, . . . , kn, l)],

(ii) PA proves: [(∃!y)A(x1, . . . , xn, y)],

21.14. When may we assert that A∗(x1, . . . , xn) ‘means’ R(x1, . . . , xn)?

We can, thus, re-phrase our query 21.12 as:

Query 21.14. If a number-theoretic relation R(x1, . . . , xn) is expressible by a
PA-formula [A(x1, . . . , xn)], when may we assert that the standard interpretation,
A∗(x1, . . . , xn) of [A(x1, . . . , xn)] ‘means’ R(x1, . . . , xn)?

Now we note that, if R(x1, . . . , xn) is arithmetical, then the standard interpre-
tation of one of its PA-representation [A(x1, . . . , xn)] is necessarily R(x1, . . . , xn).

Hence every arithmetical relation R(x1, . . . , xn) is the standard interpretation
of some PA-formula that expresses R(x1, . . . , xn) in PA, and we can adapt this to
give a formal definition of the term ‘means’:

Definition 21.15. If a number-theoretic relation R(x1, . . . , xn) is expressible
by a PA-formula [A(x1, . . . , xn)], then we say that the standard interpretation
A∗(x1, . . . , xn) of [A(x1, . . . , xn)] means R(x1, . . . , xn) if, and only if, R(x1, . . . , xn)
is the standard interpretation of some PA-formula that expresses R(x1, . . . , xn) in
PA.

The query 21.12 can now be expressed precisely as:

Query 21.16. When is a number-theoretic relation the standard interpretation
of some PA-formula that expresses it in PA?

Now, by definition, the number-theoretic relation R(x1, . . . , xn), and the arith-
metic relation A∗(x1, . . . , xn), can be effectively shown as equivalent for any given
set of natural number values for the free variables contained in them.

However, for R(x1, . . . , xn) to mean A∗(x1, . . . , xn), we must have, in addition,
that R(x1, . . . , xn) can be effectively transformed into an arithmetical expression,
so that it can be the standard interpretation of some PA-formula that expresses it
in PA.

21.15. PA has a constructively well-defined logic

The significance of Wittgenstein’s notorious paragraph (§21.3) is thus that, if
interpreted appropriately, it establishes that Wittgenstein’s philosophical perspective
on ‘logic’ and ‘truth’ does, indeed, allow us to:

• Define a finitary, computably realizable, interpretation B of PA over the
structure N of the natural numbers (§9);

• Equate the provable formulas of the first order Peano Arithmetic PA with
the PA formulas that are ‘true’ under B (Theorem 10.2);

from which we can conclude that:

Theorem 21.17. PA has a constructively well-defined logic.



21.17. DO THE AXIOMS CIRCUMSCRIBE THE ONTOLOGY OF AN INTERPRETATION?185

Proof. By Theorem 10.2 the set of axioms and rules of inference of PA+FOL
constructively assign unique truth-values:

(a) Of provability/unprovability to the formulas of PA; and

(b) Of computably realizable truth/falsity to the sentences of Dedekind’s Peano
Arithmetic which is defined semantically by the computably realizable
interpretation B of PA over the structure N of the natural numbers.

The theorem follows. �

21.16. What is an axiom

From the perspective of §21.2, it would thus follow that the axioms and rules of
inference of a language:

• are not intended to correlate the ‘provable’ propositions of a language
with the (platonically?) ‘true’ propositions under a constructively well-
defined interpretation of the language (though that might be an incidental
consequence),

• but are essential logical rules of the language that are intended to con-
structively assign ‘truth’ values to the propositions of the language under
the interpretation,

• with the sole intention of enabling unambiguous and effective communica-
tion about various characteristics of the structure—which may, or may not,
be constructively well-defined—over which the interpretation is defined.

21.17. Do the axioms circumscribe the ontology of an interpretation?

If so, it would further follow that the ontology of any interpretation of a language is
circumscribed not by the ‘logic’ of the language—which is intended solely to assign
unique ‘truth’ values to the declarative sentences of the language—but by the rules
that determine the ‘terms’ that can be admitted into the language without inviting
contradiction in the broader sense of how, or even whether, the brain—viewed as
the language defining and logic processing part of any intelligence—can address
contradictions (see §23.11).

We contrast the above perspective with a more classical perspective such as
that, for instance, of Weyl which, from an early-intuitionistic point of view, posits
axioms as ‘implicit definitions’ (as does Solomon Feferman later in [Fe99]; see also
[Fe97], p.2):

“You all know that Descartes’ introduction of coordinates seems to reduce
geometry to arithmetic (understood in the widest sense, i.e., as a theory of the
real numbers). Given Pieri’s formulation of geometry, which remains entirely

within the geometric realm, we can perform the reduction to arithmetic by
means of the following three propositions (in which, as before, I limit myself

to plane geometry):

1. A pair of real numbers (x, y) is called a point.

2. If (x1 , y1 ), (x2 , y2 ), (x3 , y3 ) are three points, then they satisfy relation E

if and only if

(x2 − x1 )
2

+ (y2 − y1 )
2

= (x3 − x1 )
2

+ (y3 − y1 )
2
.
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3. We count as geometric point-relations only those numerical relations
between the coordinates of the points that are invariant under translation

and orthogonal transformation.

Would it be right to treat these propositions as definitions of “point,” “ge-

ometry,” and the fundamental relation E? Surely they are definitions only
in a severely extended sense. We earlier altered the significant content
(Vorstel-lungsinhalt) of such expressions as “three points lie on a straight

line”—but only in a way that preserved the scope of these concepts. We
have now replaced the original concepts with others that, at first glance, are
entirely different.

Nonetheless, if a proposition of Euclidean geometry is true when taken in its

proper sense, it will remain true when we take its constituent expressions in
the new arithmetical sense. This situation has a kind of complement in our

ability to express the same significant content in various languages in entirely

different ways. Here, however, the same verbal expression receives thoroughly
different contents because we assign a new meaning to each concept. The

procedure applied here might best be described as follows. There are two
systems of objects. Certain relations ε1 , ε

′
1
, . . . obtain between objects of

the first system while relations ε2 , ε
′
2
, . . . obtain between those of the second.

If there is a one-to-one correlation between the objects and relations of the
one system and the objects and relations of the other such that correlated

relations always hold between correlated objects—if the systems are, in
this sense, completely isomorphic with one another—then there is also a
one-to-one correlation between the true propositions of the two systems and

we could, without falling into any errors, identify the two systems with one
another. The discovery of such an isomorphism is obviously important and
has benefits quite analogous to those mathematics derives from abstract

group theory: unication, great economy of thought, but also an expansion
of the methods available to researchers. Thanks to Descartes’ discovery, I
can not only use numerical analysis to prove geometric theorems; I can use

geometric intuition to discover truths about numbers. It is in the spirit of
this identification of isomorphic systems (an identification justified from the
mathematical point of view) that we treat the axioms of, say, geometry not

as fundamental statements about spatial relations obtaining in the actual
space surrounding us, but merely as implicit definitions of certain relations

devoid in themselves of any intuitive content. These axioms, construed as

implicit definitions, certainly do not make those concepts entirely definite.
But that does not matter because, even in geometry, we only care about

the properties asserted in the axioms. The significant content of Euclidean
geometry, what we call space and spatial relations, is not exhausted by that
geometry’s assertions. This strikes me as a situation of philosophical interest.

The method of implicit definition—a method that does not clarify concepts

on the basis of other concepts whose sense is taken to be understood, but only
offers a system of propositions or axioms in which the concepts occur—this
method has been employed frequently in mathematics. It has the advantage

of highlighting, at the very start, the most important properties of the

concepts to be defined, properties that might be only remote consequences
of a proper definition. However, an implicit definition through axioms is

always provisional in that you can rely on it only if the axioms are consistent,
i.e., only if you can identify a system of explicitly defined concepts that
satisfies the axioms. A good example of what we are discussing is Lebesgue’s

treatment of the concept of the integral in Ch. VII of his “Leçons sur

l’intégration” (Paris 1904). There he distinguishes between explicit and
implicit definitions drawing a contrast between the “constructive” and the

“descriptive.””
. . . Weyl: [We10], pp.5-6.



CHAPTER 22

The curious consequence of Goodstein’s
argumentation in ACA

0

To illustrate Wittgenstein’s point (§21.3 to 21.16), we consider a curious consequence—
of a failure to constructively assign unique ‘truth’ values to the axioms of a formal
language under an interpretation—in the following analysis of Goodstein’s argumen-
tation in support of the ‘Theorem’ that bears his name.

Goodstein’s Theorem: Every Goodstein sequence defined over the
natural numbers terminates in 0.

22.1. The gist of Goodstein’s argument

We note that, for any natural number m, R. L. Goodstein ([Gd44]) constructs a
natural number sequence of terms with two arguments:

S(m) ≡ {s1(m, 2), s2(m, 3), . . . , si(m, i+ 1), . . .}

by an unusual, but valid, algorithm (§22.8).

Viewed from a pedantic perspective, Goodstein then considers the corresponding
sequence of finite ordinals1:

T (m
o
) ≡ {t

1
(m

o
, 2

o
), t

2
(m

o
, 3

o
), . . . , t

i
(m

o
, (i+ 1)

o
), . . .}

and constructs a corresponding sequence of transfinite ordinals:

U(mo) ≡ {u1(mo , ω), u2(mo , ω), . . . , ui(mo , ω), . . .}

where U(m
o
) is obtained from T (m

o
) by replacing, for each i ≥ 1, the ordinal

number (i+ 1)
o

in the term t
i
(m

o
, (i+ 1)

o
) of T (m

o
) with Cantor’s first transfinite

ordinal ω.

He then shows that the ordinal inequality u
i
(m

o
, ω) >

o
u
i+1

(m
o
, ω) holds for all

i ≥ 1, and so the sequence U(m
o
) of ordinals is bounded above by some transfinite

ordinal.

Since we cannot have an infinitely descending sequence of ordinals, he concludes
that U(m

o
), and ipso facto T (m

o
) and S(m), must necessarily terminate finitely2;

thus yielding Goodstein’s Theorem that s
i
(m, i+ 1) = 0 for some i in the sequence

S(m).

1Where a second-order, set-theoretically-defined, ordinal number no is constructed by a
Comprehension Axiom—such as that of the subsystem ACA0 (see §22.3)—from the first-order,

arithmetically-defined natural number n.
2Terminate finitely: By Goodstein’s algorithm, after a 0 all subsequent members of the

sequence necessarily remain 0, and the sequence is said in such a case to terminate finitely at its

first 0 value.
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22.2. The anomaly in Goodstein’s argument

Consider, however, the corresponding natural number sequence of functions:

F (m) ≡ {f
1
(m,x), f

2
(m,x), . . . , f

i
(m,x, . . .}

obtained by replacing, for each i ≥ 1, the natural number i+1 in the term si(m, i+1)
of S(m) with the variable x.

It is tedious, but straightforward (see §22.7), to show that the algebraic inequality
fi(m,x) > fi+1(m,x) holds for all i ≥ 1.

However, in this case we can conclude from the algebraic inequality that S(m)
must necessarily terminate finitely (i.e. s

i
(m, i+ 1) = 0 for some i) if, and only if,

S(m) is bounded above by some finite natural number.

We now see that Goodstein’s transfinite reasoning only establishes that the
ordinal sequence T (m

o
) corresponding to the natural number sequence S(m) is

bounded above by some transfinite ordinal number.

Whilst this may be both necessary and sufficient to conclude that the second
order Comprehension Axioms entail that the second-order, set-theoretically-defined,
ordinal sequence T (m

o
) must terminate finitely, it is not sufficient—as Skolem has

observed (see §22.4)—to conclude that the first order axioms of PA must also entail
that the natural number sequence S(m) terminates finitely.

In other words constructive mathematics, which cannot admit transfinite ele-
ments (see §20.7), must admit the possibility that S(m) may not terminate finitely!

It follows that if we treat the subsystem ACA
0

of second-order arithmetic (as
defined in, say, [Fe97], pp.12-13) as a conservative extension3 of PA (cf. [Fe97], p.18)
that is equiconsistent with PA, then we are led to the anomalous conclusion—since
PA is consistent by Theorem 9.10—that:

Goodstein’s sequence Go(mo) over the finite ordinals in ACA
0

terminates
with respect to the ordinal inequality ‘>o’ even if Goodstein’s sequence
G(m) over the natural numbers in ACA0 does not terminate with respect
to the natural number inequality ‘>’ in any putative model of ACA0

(Theorem 22.3).

22.3. The subsystem ACA0

We note that ACA0 is defined as the extension of PA with the PA variables, say
[m], [n], . . ., ranging now over the ACA0 numerals; with additional set variables
[X], [Y ], [Z], . . .] ranging over ACA

0
sets; and with an additional arithmetical Com-

prehension Axiom schema where, if [ϕ(n)] is a formula with a free numeral variable
[n]—and possibly other free variables such as, say, [m] and [X], but not the set
variable [Z]—the Comprehension Axiom for [ϕ] is the formula that defines sets in
ACA0 by:

[(∀m)(∀X)(∃Z)(∀n)(n ∈ Z ↔ ϕ(n))]

3Conservative extension: A theory T2 is a (proof theoretic) conservative extension of a theory
T1 if the language of T2 extends the language of T2 ; that is, every theorem of T1 is a theorem of

T2 , and any theorem of T2 in the language of T1 is already a theorem of T1 .
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If [ϕ(n)] is a unary formula, the ACA
0

comprehension axiom for [ϕ] thus makes
it possible to form the set:

[Z = {n|ϕ(n)}]

of numerals satisfying [ϕ(n)] in any putative model of ACA
0
.

Taking [ϕ(n)] as [n = n] would thus admit a constant [Z] as a term in ACA0

that would interpret in any putative model of ACA
0

as the set N of all natural
numbers.

We view the curious conclusion of Goodstein’s argumentation as reflecting the
circumstance that the ‘truth’ of the Comprehension Axioms of ACA

0
under an

interpretation is not constructively well-definable, since they contain an existen-
tial quantifier that is intended to admit Aristotle’s particularisation under any
interpretation.

We conclude that:

Theorem 22.1. The subsystem ACA0 of second-order arithmetic is not a
conservative extension of PA.

Proof. By Theorem 9.10 PA is consistent and has a model. If ACA0 is a
conservative extension of PA, then it too is consistent4 and has a model which
admits Aristotle’s particularisation, and which is also a model of PA. However, by
Corollary 15.10, Aristotle’s particularisation cannot hold in any model of PA. The
theorem follows. �

We note that Theorem 22.1 contradicts conventional wisdom:

(a) “In other words, ACA0 is a conservative extension of first order arithmetic. This
may also be expressed by saying that Z1 , or equivalently PA, is the first order part of
ACA0 .”

. . . Simpson: [Sim06], §I.3, REMARK I.3.3, p.8.

(b) “As a logical footnote to that, the system ACA0 , which I described here, is a conserva-
tive extension of Peano Arithmetic, even though it employs second order concepts.”
. . . Feferman: [Fe97], p.18.

22.4. Goodstein’s Theorem defies belief: justifiably!

We also note that, even prima facie, the set-theoretical argument for Goodstein’s
Theorem meets William Gasarch’s criteria ([Ga10]) of an argument that defies
belief.

In this case, though, the disbelief is justified since, as we have outlined in §22.2,
Goodstein’s argument can be carried out completely over the structure N of the
natural numbers without appealing to any properties of transfinite ordinal sequences.

However we cannot conclude from the arithmetical argument that every Good-
stein sequence over the natural numbers (defined formally in §22.8) must terminate
finitely.

We shall now argue that Goodstein’s argument is a curious case of proving
a Theorem involving the set-theoretical membership-based relation ‘>o’ over the

4“If T ′ is a conservative extension of T , then T ′ is consistent iff T is consistent.” . . . Shoenfield:
[Sh67], p.42.
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structure of the ordinals below εo and—ignoring Thoraf Skolem’s cautionary remarks
about unrestrictedly corresponding putative mathematical entities across domains
of different axiom systems ([Sk22])—invalidly postulating that a corresponding
theorem involving the natural number inequality relation ‘>’ must therefore hold
over the structure of the natural numbers.

We note that, in a 1922 address delivered in Helsinki before the Fifth Congress
of Scandinavian Mathematicians, Skolem improved upon both the argument and
statement of Löwenheim’s 1915 theorem ([Lo15], p.235, Theorem 2)—subsequently
labelled as the (downwards) Löwenheim-Skolem Theorem ([Sk22], p.293).

(Downwards) Löwenheim-Skolem Theorem ([Lo15], p.245, Theo-
rem 6; [Sk22], p.293): If a first-order proposition is satisfied in any domain
at all, then it is already satisfied in a denumerably infinite domain.

Skolem then drew attention to a:

Skolem’s (apparent) paradox: “. . . peculiar and apparently
paradoxical state of affairs. By virtue of the axioms we can prove
the existence of higher cardinalities, of higher number classes,
and so forth. How can it be, then, that the entire domain B can
already be enumerated by means of the finite positive integers?
The explanation is not difficult to find. In the axiomatization,
“set” does not mean an arbitrarily defined collection; the sets
are nothing but objects that are connected with one another
through certain relations expressed by the axioms. Hence there
is no contradiction at all if a set M of the domain B is non-
denumerable in the sense of the axiomatization; for this means
merely that within B there occurs no one-to-one mapping Φ of M
onto Zo (Zermelo’s number sequence). Nevertheless there exists
the possibility of numbering all objects in B, and therefore also
the elements of M , by means of the positive integers; of course
such an enumeration too is a collection of certain pairs, but this
collection is not a “set” (that is, it does not occur in the domain
B).”
. . . Skolem: [Sk22], p.295.

22.5. Goodstein’s argument over the natural numbers

Now, we note that, for any natural number m, R. L. Goodstein ([Gd44]) uses the
properties of the hereditary representation of m to construct a sequence G(m) ≡
{g1(m), g2(m), . . .} of natural numbers by an unusual, but valid, algorithm (§22.8).

Hereditary representation: The representation of a number as a sum of
powers of a base b, followed by expression of each of the exponents as a sum
of powers of b, etc., until the process stops. For example, we may express
the hereditary representations of 266 in base 2 and base 3 as follows:

266[2] ≡ 28[2] + 23[2] + 2 ≡ 22(22
0
+20)

+ 2220+220

+ 220

266[3] ≡ 2.34[3] + 2.33[3] + 32[3] + 1 ≡ 2.3(330+30) + 2.3330

+ 32.30

+ 30
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For the moment we shall ignore the peculiar manner of constructing the individ-
ual members of the Goodstein sequence, since these are not germane to understanding
the essence of Goodstein’s argument. We need simply accept for now that G(m)
is well-defined over the structure N of the natural numbers, and has the following
properties:

(i) For any given natural number k > 0 we can construct a hereditary
representation—denoted5 by gk(m)[k+1]—of gk(m) in the base [k + 1];

Example: The hereditary representations of the first two terms g1(266) = 266 and
g2(266) = (381 + 83) of G(266) are6:

g1(266)[2] ≡ 222+1
+ 22+1 + 2

g2(266)[3] ≡ 333+1
+ 33+1 + 2

(ii) We can also define a Goodstein Functional Sequence:

G(m)[x] ≡ {gk(m)[(k+1) ↪→ x] : k > 0} over N
by replacing the base [k + 1] in gk(m)[k+1] with the variable x for each

k > 07.

Example: The first two terms of G(266)[x] are thus:

g1(266)[2 ↪→ x] ≡ xx
x+1

+ xx+1 + x

g2(266)[3 ↪→ x] ≡ xx
x+1

+ xx+1 + 2

(iii) We can show that some member of Goodstein’s sequence G(m) evaluates
to 0 if, and only if, there is some natural number z such that for any given
natural number k > 0:

– If gk(m)[(k+1) ↪→ z] > 0 in G(m)[z],

– Then gk(m)[(k+1) ↪→ z] > gk+1(m)[(k+2) ↪→ z].

The proof of (iii)—which depends, of course, on the peculiar nature of Good-
stein’s algorithm—is straightforward and detailed in §22.7 The main point to note
is that the proof appeals only to the arithmetical properties of the natural numbers.

The question arises:

Query 22.2. Are we free to postulate the existence of such a natural number z,
and conclude that some member of G(m) must evaluate to 0 in N?

Though it appears absurd, the following theorem shows that this is precisely
the freedom to which the ordinal-based argument for Goodstein’s Theorem (Section
22.12) lays claim (albeit implicitly)!

Theorem 22.3. Goodstein’s sequence Go(mo)
8 over the finite ordinals in any

putative model M of ACA
0

terminates with respect to the ordinal inequality ‘>o’

5From a pedantic perspective the denotation should, of course, be: (gk(m))[k+1].
6Notation: For ease of expression, we shall henceforth express ‘a0’ as ‘1’, and ‘ab

0
’ as ‘a’

unless indicated to the contrary.
7Notation: We prefer the notation ↪→ to that of the usual ‘base bumping’ function (cf.

[Cai07]) as it makes the argument in §37 more transparent.
8Notation: For convenience of expression, we shall henceforth denote by mo the ordinal

(set) in M corresponding to the natural number m in M; by ‘+o’ and ‘>o’ the function/relation
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even if Goodstein’s sequence G(m) over the natural numbers does not terminate with
respect to the natural number inequality ‘>’ in M.

Proof. Assume that Goodstein’s sequence G(m) ≡ {gk(m)[(k+1) : k > 0} of
natural numbers does not terminate with respect to the natural number inequality
‘>’ in any putative model M of ACA

0
.

Let nmax be the largest term amongst the first n terms of G(m). It is tedious
but straightforward to show that, by our assumption, nmax is a monotonically
increasing sequence. Hence there is no natural number z such that:

gk(m)[(k+1) ↪→ z] > gk+1(m)[(k+2) ↪→ z] for all k > 0.

Consider next Goodstein’s ordinal number sequence Go(mo) ≡ {gk(mo) : k > 0}
over the finite ordinals.

Goodstein shows that, in the arithmetic of transfinite ordinals, the axiomatically
postulated transfinite ordinal ω is such that:

gk(mo)[(k+1) ↪→ ω] >o gk+1(mo)[(k+2) ↪→ ω] for all k > 0.

Since there are no infinite descending sequences of ordinals with respect to
the ordinal inequality ‘>o’, Goodstein’s ordinal number sequence Go(mo) must
terminate finitely with respect to the ordinal inequality ‘>o’ in any putative model
M of ACA

0
. �

Moreover, since the finite ordinals can be meta-mathematically put into a 1-1
correspondence with the natural numbers, it follows that:

Corollary 22.4. The relationship of terminating finitely with respect to the
ordinal inequality ‘>o’ over an infinite set Z0 of ordinals containing a transfinite
ordinal cannot be corresponded to the relationship of terminating finitely with respect
to the natural number inequality ‘>’ over the set of natural numbers in any putative
model M of ACA

0
. 2

We now analyse the argument of Goodstein’s Theorem in greater detail.

22.6. The argument of Goodstein’s Theorem

The argument of Goodstein’s Theorem (cf. [Cai07]) is that:

(i) The natural number considerations involved in the construction of Good-
stein’s sequence can all be formalised over the finite ordinals (sets) in any
putative model M of ACA

0
;

(ii) The comprehension axiom of ACA
0

does allow us to postulate the existence
of an ordinal—Cantor’s first limit ordinal ω—such that:

(a) if {gk(mo)}—say Go(mo)—is the sequence of finite ordinals in M that
corresponds to Goodstein’s natural number sequence G(m) in M,

(b) and {gk(x)[(ko+o1o) ↪→ x] : k > 0}—say Go(mo)[x]—the corresponding
Goodstein Functional Sequence over M,

letters relating to ordinals in M that correspond to the function/relation letters ‘+’ and ‘>’ that
correspond to the natural numbers in M, etc.
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(c) then for any given natural number k > 0:

If gk(mo)[(ko+o1o) ↪→ ω] >o 0o in Go(mo)[ω],

then gk(mo)[(ko+o1o) ↪→ ω] >o gk+1(mo)[(ko+o2o) ↪→ ω];

(iii) The sequence {g1(mo)[2o ↪→ ω], g2(mo)[3o ↪→ ω], . . .} of ordinals cannot de-
scend infinitely in M;

(iv) Hence Go(mo) terminates finitely in M.

If ACA
0

is consistent, then such a M must ‘exist’ and the above argument
is valid in M. However, Goodstein’s Theorem is the conclusion that Goodstein’s
sequence must therefore terminate finitely in N!

Prima facie such a conclusion from the ordinal-based reasoning challenges belief
insofar as we shall show that—at heart—the argument essentially appears to be that,
since Goodstein’s natural number sequence G(m) obviously ‘terminates finitely’9 if,
and only if, it is bounded above in N with respect to the arithmetical relation ‘>’,
we may conclude the existence of such a bound since Goodstein’s ordinal sequence
Go(mo):

(a) is bounded above by ω in M;

(b) ‘terminates finitely’ with respect to the ordinal relation ‘>o’;

(c) can be put in a 1-1 correspondence with G(m);

and since the natural numbers can be put into a 1-1 correspondence with the finite
ordinals!

We now show why such disbelief is justified since—as we detail in §20.7 to
20.8—the above invalidly10 presumes that the structure N of the natural numbers is
isomorphic to the sub-structure of the finite ordinals in the structure of the ordinals
below ε0, and so the property of ‘terminating finitely’ in any putative model of
ACA

0
must interpret as the property of ‘terminatingly finitely’ in any model of PA.

22.7. The ordinal-based ‘proof’ of Goodstein’s Theorem

For any given natural number m we can express G(m) so that each term is expressed
in it’s hereditary representation:

G(m) ≡
{
g1(m)[2], g2(m)[3], g3(m)[4], . . .

}
(22.1)

where the first term g1(m)[2] denotes the unique hereditary representation of the
natural number m in the natural number base [2]:

e.g., g1(9)[2] ≡ 1.2(1.21.20+1.20) + 0.2(1.21.20+0.20) + 0.21.20

+ 1.20

and if n > 1 then g(n)(m)[n+1] is defined recursively from g(n−1)(m)[n] as below.

9Comment : Although we do not address the question here, it can be shown without appealing

to any transfinite considerations that G(m) cannot oscillate for any natural number m.
10But not unusually! See, for instance, [MM01], p.454, where the authors remark that: “We

denote the least infinite ordinal by ω or N , so ω = N = {0, 1, 2, . . .}.”.
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22.8. The recursive definition of Goodstein’s Sequence

For n > 1 let the (n − 1)th term g(n−1)(m) of the Goodstein sequence G(m) be
expressed syntactically by its hereditary representation as:

g(n−1)(m)[n] ≡
l∑
i=0

ai.n
i[n](22.2)

where:

(a) 0 ≤ ai < n over 0 ≤ i ≤ l;
(b) al 6= 0;

(c) for each 0 ≤ i ≤ l the exponent i too is expressed syntactically by its
hereditary representation i[n] in the base [n]; as also are all of its exponents
and, in turn, all of their exponents, etc.

We then define the nth term of G(m) as:

gn(m) =

l∑
i=0

(ai.(n+ 1)i[n ↪→ (n+1)])− 1(22.3)

22.9. The hereditary representation of gn(m)

Now we note that:

(a) if a0 6= 0 then the hereditary representation of gn(m) is:

gn(m)[n+1] ≡
l∑
i=1

(ai.(n+ 1)i[n ↪→ (n+1)]) + (a0 − 1)(22.4)

(b) whilst if ai = 0 for all 0 ≤ i < k, then the hereditary representation of
gn(m) is:

gn(m)[n+1] ≡
l∑

i=k+1

(ai.(n+ 1)i[n ↪→ (n+1)]) + ck[n+1](22.5)

where:

ck = ak.(n+ 1)k[n ↪→ (n+1)] − 1

= (ak − 1).(n+ 1)k[n ↪→ (n+1)] +
{

(n+ 1)k[n ↪→ (n+1)] − 1
}

= (ak − 1).(n+ 1)k[n ↪→ (n+1)] + n
{

(n+ 1)k[n ↪→ (n+1)]−1 + (n+ 1)k[n ↪→ (n+1)]−2 . . .+ 1
}

and so its hereditary representation in the base (n+ 1) is given by:

ck[n+1] ≡ (ak − 1).(n+ 1)k1[n+1] + n
{

(n+ 1)k2[n+1] + (n+ 1)k3[n+1] . . .+ 1
}

where k1[n+1] ≡ k[n ↪→ (n+1)] and k1 > k2 > k3 > . . . ≥ 1.
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22.10. Goodstein’s argument in arithmetic

For n > 1 we consider the difference:

d(n−1) =
{
g(n−1)(m)[n] − gn(m)[n+1]

}
Now:

(a) if a0 6= 0 we have:

d(n−1) =

l∑
i=0

(ai.n
i[n])−

l∑
i=1

(ai.(n+ 1)i[n ↪→ (n+1)])− (a0 − 1)(22.6)

(b) whilst if ai = 0 for all 0 ≤ i < k we have:

d(n−1) =

l∑
i=k

(ai.n
i[n])−

l∑
i=(k+1)

(ai.(n+ 1)i[n ↪→ (n+1)])−

(ak − 1).(n+ 1)k1[n+1] −
n
{

(n+ 1)k2[n+1] + (n+ 1)k3[n+1] . . .+ 1
}

(22.7)

Further:

(c) if in equation 22.6 we replace the base [n] by the variable [z] in each term
of:

l∑
i=0

ai.n
i[n](22.8)

and, similarly, the base [n+ 1] also by the variable [z] in each term of:

l∑
i=k+1

(ai.(n+ 1)i[n ↪→ (n+1)]) + (a0 − 1)(22.9)

then we have:

d′(n−1) =

l∑
i=0

(ai.z
i[n ↪→ z])−

l∑
i=1

(ai.z
i[n ↪→ z])− (a0 − 1)

= 1(22.10)

since (i[n ↪→ (n+1)])[(n+1) ↪→ z] ≡ i[n ↪→ z];

(d) whilst if in equation 22.7 we replace the bases similarly, then we have:

d′(n−1) =

l∑
i=k

(ai.z
i[n ↪→ z])−

l∑
i=(k+1)

(ai.z
i[n ↪→ z])−

(ak − 1).zk1[(n+1) ↪→ z] − n
{
zk2[(n+1) ↪→ z] + zk3[(n+1) ↪→ z] . . .+ 1

}
= ak.z

k[n ↪→ z] − (ak − 1).zk1[(n+1) ↪→ z])− n(zk2[(n+1) ↪→ z] + zk3[(n+1) ↪→ z] . . .+ 1)

= zk1[(n+1) ↪→ z] − n(zk2[(n+1) ↪→ z] + zk3[(n+1) ↪→ z] . . .+ 1)(22.11)

where k1[(n+1) ↪→ z] ≡ k[n ↪→ z], and k1[(n+1) ↪→ z] > k2[(n+1) ↪→ z] > k3[(n+1) ↪→ z] >
. . . ≥ 1.
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We consider now the sequence:

G(m)[z] ≡ (g1(m)[2 ↪→ z], g2(m)[3 ↪→ z], g3(m)[4 ↪→ z], . . .)

obtained from Goodstein’s sequence by replacing the base [n + 1] in each of the
terms gn(m)[n+1] by the base [z] for all n ≥ 1.

Clearly if z > n for all non-zero terms of the Goodstein sequence, then d′(n−1) > 0

in each of the cases—equation 22.10 and equation 22.11—since we have in equation
22.11:

d′(n−1) ≥ (zk − (z − 1)(z(k−1) + z(k−2) + z(k−3) + . . .+ 1)) = 1

The sequence G(m)[z] is then a descending sequence of natural numbers, and
must terminate finitely in N, if z > n.

Since gn(m)[(n+1) ↪→ z] ≥ gn(m)[n+1] if z > n, Goodstein’s sequence G(m) too
must terminate finitely in N if z > n.

Obviously, since we can always find a z > n for all non-zero terms of the
Goodstein sequence if it terminates finitely in N, the condition that we can always
find some z > n for all non-zero terms of any Goodstein sequence is equivalent to
the assumption that any Goodstein sequence terminates finitely in N.

22.11. Goodstein’s argument in set theory

Now the set-theoretical form of the argument due to Goodstein is essentially that:

(a) if we take the value of x in the Goodstein Functional Sequence Go(mo)[x]

over the finite ordinals to be the first limit ordinal ω,

(b) and consider the—necessarily decreasing in this case—ordinal sequence
(corresponding to the conditionally decreasing natural number sequence
G(m)[z]):

Go(mo)[ω] ≡ {g1(mo)[2o ↪→ ω], g2(mo)[3o ↪→ ω], g3(mo)[4o ↪→ ω], . . .}

(c) then—since, by the axioms of set theory, there are no infinitely descending
ordinal sequences—the sequence Go(mo)[ω] must terminate finitely in some
putative model of ACA

0
;

(d) hence—since the ordinal numbers are well-ordered, and contain a subset of
ω that can be put in a 1-1 correspondence with the set of natural numbers—
we need not bother to establish a proof that some natural number z > n,
too, always exists for all non-zero terms of any Goodstein sequence over
the natural numbers in the model;

(e) and, since G(m) and Go(mo)[ω] can always be put in a 1-1 correspon-
dence meta-mathematically—where any ordinal term to of Go(mo)[ω] cor-
responds to the natural number term t of G(m)—we may conclude meta-
mathematically that every Goodstein sequence over the natural numbers
must also terminate finitely over the structure N of the natural numbers.

However we note that if there is no natural number z such that z > n for all
non-zero terms of some Goodstein sequence, then:
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(i) For any given n, we can find a z such that the the first n terms of the
sequence G(m)[z] are a descending sequence of natural numbers in N;

(ii) The sequence Go(mo)[ω] is a finite descending sequence of ordinal numbers
in M.

The ordinal-based proof of Goodstein’s Theorem is thus the postulation that
since G(m)[z] and Go(mo)[ω] can always be put in a 1-1 correspondence (as in (e)),
the above is a contradiction from which we may conclude that there is always some
natural number z such that z > n for all non-zero terms of the Goodstein sequence
G(m)!

Such a conclusion, however, ignores the cautionary remarks (§22.4) by Thoraf
Skolem about unrestrictedly corresponding meta-mathematically putative mathe-
matical entities across domains of different axiom systems.

22.12. Why Goodstein’s Theorem may be vacuously true

Formally, Goodstein’s ordinal-based argument is that since there are no infinitely
descending sequences of ordinals, the sequence of ordinal numbers:

Go(mo)[ω] ≡ {g1(mo)[2o ↪→ ω], g2(mo)[3o ↪→ ω], g3(mo)[4o ↪→ ω], . . .}
can be shown to terminate finitely for any given finite ordinal mo in any putative
model M of ACA

0
.

Hence the following proposition—where gy(X) denotes the yth term of the
Goodstein ordinal sequence Go(X)—would hold in every putative model of ACA

0
:

(∀X)((X ∈ ω)→ (∃y)((y ∈ N) ∧ gy(X) = 0o))

Goodstein’s Theorem over the natural numbers is then the conclusion that:

(∃y)(gy(m)) = 0

holds for any given natural number m in the standard interpretation of the first
order Peano Arithmetic PA.

However this argument would be vacuously true if ACA
0

does not have a
constructively well-defined interpretation.

Moreover, it admits the possibility that Goodstein’s natural number function
G(m) is algorithmically verifiable, but not algorithmically computable.





Part 6

Some inter-disciplinary
philosophical issues





CHAPTER 23

Natural science-philosophy-mathematics

Before considering the suggested applicability of the mathematical consequences of
evidence-based reasoning to the Physical Sciences and Quantum Mechanics (Chapters
27 to 29), Computational Complexity (Chapters 30.1 to 32), and the Theory of
Numbers (Chapters 33 to 42), we briefly address some philosophical issues raised
by Feferman ([Fe99], [FFMS]) and Wittgenstein ([Wi78]) concerning the role
axioms play in formal mathematics, the perspective from within which we view
‘mathematics’, and the significance to be given to such a view.

For instance, let us, for the moment, make an arbitrary distinction between
(compare [Ma08]; see also [Fe99]):

• The natural scientist’s hat , whose wearer’s responsibility is recording—
as precisely and as objectively as possible—our sensory observations (corre-
sponding to computer scientist David Gamez’s ‘Measurement’ in [Gam18],
Fig.5.2, p.79) and their associated perceptions of a ‘common’ external
world (corresponding to Gamez’s ‘C-report’ in [Gam18], Fig.5.2, p.79;
and to what some cognitive scientists, such as Lakoff and Núñez in [LR00],
term as ‘conceptual metaphors’);

• The philosopher’s hat , whose wearer’s responsibility is abstracting a
coherent—albeit informal and not necessarily objective—holistic perspec-
tive of the external world from our sensory observations and their associated
perceptions (corresponding to Carnap’s explicandum in [Ca62a]; and to
Gamez’s ‘C-theory’ in [Gam18], F, p.79); and

• The mathematician’s hat , whose wearer’s responsibility is providing
the tools for adequately expressing such recordings and abstractions in
a symbolic language of unambiguous communication (corresponding to
Carnap’s explicatum in [Ca62a]; and to Gamez’s ‘P-description’ and
‘C-description’ in [Gam18], Fig.5.2, p.79).

Comment : I intend the word ‘symbol’ in this context to mean something used for or

regarded as representing something else. Thus a symbol can be a word, phrase, image,
emblem, token, sign, signal (visual, aural, tactile, electrical, electromagnetic, etc.), or
the like having a complex of associated meanings and perceived as having inherent value

separable from that which is symbolized, as being part of that which is symbolized,

and as performing its normal function of standing for or representing that which is
symbolized: usually conceived as deriving its meaning chiefly from the structure in

which it appears.

This distinction can also be viewed as corresponding to Rotman’s semiotic
description of the essence of mathematical activity, where:

201
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• The wearer of the Natural Scientist’s hat acts as an Agent who observes and
records without interpretation the signifiers that correspond to conceptual
metaphors of natural or experiential phenomena;

• The wearer of the Mathematician’s hat acts as the Subject who provides the
symbols and rules of an, ideally categorical, language for manipulating such
symbolisms in terms of declarative propositions that can be unambiguously
interpreted as corresponding to putative relationships between that which
is sought to be signified by the Agents signifiers; and

• The wearer of the Philosopher’s hat acts as the Person who provides the
truth assignations (i.e., the logic in the sense of §21.2) to the propositions
of the language that allow building of a persuasive narrative that faithfully
corresponds to a description of the Agents activities.

“Let me summarize the tripartite structure of the technology of mathematical per-

suasion sketched here. There are three semiotic figures. The Agent, an automaton
with no capacity to imagine, who performs imaginary acts on ideal marks, on
signifiers; the Subject who manipulates not signifiers but signs interpreted in terms

of the Agent’s activities; the Person who uses metasigns to observe and interpret
the Subject’s on-going engagement with signs. In terms of these agencies any
piece of mathematical reasoning is organized into three simultaneous narratives.

In the metaCode the underlying story organizing the proof-steps is related by the
Person (the dream is told); in the Code the formal deductive correctness of these
steps is worked through by the Subject (the dream is dreamed); and in what we
might call the subCode the mathematical operations witnessing these steps are

executed (the dream is enacted) by the Agent.

It is possible, as I’ve shown elsewhere,[11] to use this tripartite scheme to give a

unified critique of the three standard accounts—Hilbert’s formalism, Brouwer’s
intuitionistic constructivism, Fregean Platonism—of mathematics. Briefly, the
move one makes is to consider the triad of signifier, signified, Subject and show

how each of the standard accounts systematically occludes one of the three el-
ements. Thus, intuitionism, relying on a idealized mentalism, denies any but

an epiphenomenal role to signifiers in the construction of mathematical objects;

formalism, fixated on external marks, has no truck with meanings or signifieds of
any kind; Platonism (the current orthodoxy), dedicated to discovering eternal,

transhistorical truths, repudiates outright any conception of the (in fact, any

humanly occupiable) Subject position in mathematics. Plainly, the valorization
of a proper, formally sanctioned Code over an improper and merely supplemental

metaCode deeply misperceives how mathematics traffics with signs. A mispercep-

tion intrinsic to and formative of Platonism, since in order to deny the presence
of persuasion within mathematical reasoning it has to understand the language of
mathematics as a transparent, inert medium which manages (somehow) to express

adequations between human description and heavenly truth. On the contrary,
only by understanding language as constitutive of that which it “describes”—only

through such a post-realist reversal of mathematical “things” and signs in which,
for example, numbers are as much the result of numeral systems as numerals are

the names of numbers which antedate them—can one make sense of an historically
produced apparatus of persuasion and an historically conditioned account of
the—human—engenderment of the numbers. But this is in the future: the history

of the Subject, Agent, Person no less than the history of mathematics as a sign

practice of which these semiotic agencies would be a part has yet to be written.”
. . . Rotman: [Rot99]
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23.1. The function of mathematics is to eliminate ambiguity

From such an evidence-based perspective, eliminating ambiguity in critical cases—
such as communication between mechanical artefacts, or a putative communication
between terrestrial and/or extra-terrestrial intelligences—would seems to be the
very raison d’être of mathematical activity (but see also §14).

Such activity could, reasonably, be viewed:

(1) First, as the construction of richer and richer mathematical languages1 that
can symbolically express those of our informally expressed—i.e., in lan-
guage of common discourse—abstract concepts (corresponding to Carnap’s
explicandum in §14) which can be subjectively addressed unambiguously;

(a) By ‘subjectively address unambiguously’ we intend in this context
that there is essentially a subjective acceptance of identity by us
between an abstract concept in our mind (defined by Lakoff and
Núñez as ‘conceptual metaphor’ in [LR00], p.52) that we intended to
express symbolically in a language, and the abstract concept created
in our mind each time we subsequently attempt to understand the
import of the symbolic expression (a process which can be viewed in
engineering terms as analogous to formalising the specifications, i.e.,
Carnap’s explicatum3, of a proposed structure from a prototype).

and:

(2) Thereafter, the study of the ability of the mathematical languages4 to
precisely express and objectively communicate the formal expression (cor-
responding to Carnap’s explicatum in §14) of such informally expressed
concepts effectively.

(a) By ‘objectively communicate effectively’ we intend in this context
that there is essentially:

(i) first, an objective (i.e., on the basis of evidence-based reasoning)
acceptance of identity by another mind between the abstract
concept created in the other mind when first attempting to
understand the import of what we have expressed symbolically
in a language, and the abstract concept created in the other

1Languages such as, for instance, the first-order Set Theory ZF, which can be well-defined

formally but which have no constructively well-defined model that would admit evidence-based

assignments of ‘truth’ values to set-theoretical propositions by a mechanical intelligence.
2Which, prima facie, may be taken to correspond to computer scientist David Gamez’s

definition in [Gam18] (Definition D5, p.54) of a CC set: A correlate of conscious state is a
minimal set of one or more spatiotemporal structures in the physical world. This set is present

when the conscious state is present and absent when the conscious state is absent. This will be

referred to as a CC set.
3Which, prima facie, may be taken to correspond to Gamez’s definition in [Gam18] (Definition

D10 and Fig.52, p.79) of a c-theory : A c-theory is a compact expression of the relationship between
consciousness and the physical world. A c-theory can generate a c-description from a p-description,

and generate a p-description from a c-description.
4Languages such as, for instance, the first order Peano Arithmetic PA, which can not only

be well-defined formally but which have a finitary model (Corollary 9.8 and Corollary 9.9) that

admits evidence-based assignments of ‘truth’ values to arithmetical propositions by a mechanical
intelligence.
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mind each time it subsequently attempts to understand the
import of the symbolic expression (a process which can also be
viewed in engineering terms as analogous to confirming that the
formal specifications, i.e., Carnap’s explicatum, of a proposed
structure do succeed in uniquely identifying the prototype, i.e.,
Carnap’s explicandum5); and

(ii) second, an objective acceptance of functional identity between
abstract concepts that can be ‘objectively communicated effec-
tively’ based on the evidence provided by a commonly accepted
doctrine such as, for instance, the view that a simple functional
language can be used for specifying evidence for propositions
in a constructive logic ([Mu91]).

23.2. The truth values of information

Now, one could reasonably argue that, both qualitatively and quantitatively, any
piece of information (i.e., the perceived content of a well-defined declarative sentence)
that we treat as a ‘fact’6 is necessarily associated with a suitably-defined truth
assignation that must fall into one or more of the following three categories:

(i) information that we believe to be ‘true’ in an absolute, Platonic, sense, and
have in common with others holding similar beliefs as absolute, Platonic,
‘truths’;

(ii) information that we hold to be ‘true’—short of Platonic belief —since it
can be treated as self-evident, and have in common with others who also
hold it as similarly self-evident ;

(iii) information that we agree to define as ‘true’ on the basis of a convention,
and have in common with others who accept the same convention for
assigning truth values to such assertions.

Clearly the three categories of information have associated truth assignations
with increasing degrees of objective accountability (i.e., accountability based on
evidence-based reasoning) which must, in turn, influence the psyche of whoever is
exposed to a particular category at a particular moment of time.

In mathematics, for instance, Platonists who hold axioms as truths in some
‘absolute’ Platonic sense—such as Gödel ([Go51]) and Saharon Shelah ([She91])—
might be categorised as accepting all three of (i), (ii) and (iii) as definitive; those who
hold axioms as reasonable hypotheses—such as Hilbert ([Hi27])7—as holding only
(ii) and (iii) as definitive; and those who hold axioms as evidence-based propositions—
such as Brouwer ([Br13])—as accepting only (iii) as definitive.

5Which, prima facie, may be taken to correspond to Gamez’s definition in [Gam18] (Definition
D1, p.26) of a state of consciousness: Consciousness is another name for bubbles of experience.

A state of a consciousness is a state of a bubble of experience. Consciousness includes all of the
properties that were removed from the physical world as scientists developed our modern invisible
explanations.

6For the purposes of this investigation, we ignore the nuances involved in such a concept as

detailed, for instance, in [SP10].
7And Huzurbazar as cited in §C.2
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23.3. The value of contradiction

In the first case (i), it is obvious that contradictions between two intelligences,
that arise solely on the basis of conflicting beliefs—baptised in current lexicon
as ‘alternative facts’—cannot yield any productive insight on the nature of the
contradiction.

Although not obvious, it is the second case (ii)—of contradictions between
two intelligences that arise on the basis of conflicting ‘reasonability’—which yields
the most productive insight on the nature of contradiction; since it compels us to
address the element of a possibly implicit subjectivity underlying the contradiction
that motivates us to seek (iii).

The third case (iii) is thus the holy grail of communication—one that admits
unambiguous and effective communication without contradiction.

The question arises:

Query 23.1. Is there a universal language that admits unambiguous and
effective communication without contradiction?

It may be pertinent to note here that some limitations on the efficacy of such
a foundationalist perspective—in this case of ‘information’ and ‘communication’—
which may need to be kept in mind when addressing Query 23.1, are highlighted by
Gila Sher:

“It is inherent in the foundationalist method, many of its adherents would say, that the

foundation of the basic units is different in kind from that of the other units. The former
utilizes no knowledge-based resources, and in this sense it is free-standing - a foundation
“for free”, so to speak. Three contenders for a free-standing foundation of logic are: (a)

pure intuition, (b) common-sense obviousness, and (c) conventionality. All, however, are
highly problematic. From the familiar problems concerning Platonism to the fallibility
of “obviousness” and the possibility of introducing error through conventions, it is

highly questionable whether these contenders are viable.”
. . . Sher: [Shr13], p.151.

23.4. Is there a universal language that admits unambiguous and
effective communication?

Now, the issue of whether, or not, there is a universal logic capable of admitting
effective, and unambiguous, communication is intimately linked with the question
of whether Aristotle’s logic of predicates can be validly applied to infinite domains.
This issue lies at the heart of the ‘constructivity’ debate that seeks to distinguish
the computer sciences from other mathematical disciplines.

In this investigation we briefly speculate on how the issue might be addressed,
for instance, from the perspective of seekers of extra-terrestrial intelligence who may,
conceivably, be faced with a situation where a lay person—whose financial support
is sought for SETI—may reasonably require a reassuring response to the question:

Query 23.2. Is there a rational danger to humankind in actively seeking an
extra-terrestrial intelligence?

The broader significance of this question was addressed in an informal article
written in September 2006 by scientist David Brin, who feared that ‘SETI has taken
a worrisome turn into dangerous territory’, and noted that:
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“. . . In The Third Chimpanzee, Jared Diamond offers an essay on the risks
of attempting to contact ETIs, based on the history of what happened on

Earth whenever more advanced civilizations encountered less advanced ones
. . . or indeed, when the same thing happens during contact between species
that evolved in differing ecosystems. The results are often not good: in

inter-human relations slavery, colonialism, etc. Among contacting species:
extinction.”

. . . Brin: http://lifeboat.com/ex/shouting.at.the.cosmos

We shall restrict ourselves to briefly considering only one aspect of this complex
issue:

Query 23.3. Is fear of actively seeking an ETI merely paranoia, or does it have
a rational component?

23.5. Can contacting an extra-terrestrial intelligence be perilous?

Shorn of paranoiac overtones, this fear can be expressed as the query:

Query 23.4. Can we responsibly seek communication with an extra-terrestrial
intelligence actively (as in the 1974 Aricebo message) or is there a logically sound
possibility that we may be initiating a process which could imperil humankind at a
future date?

To place the issue in a debatable perspective, we need to make some reasonable
assumptions. For instance, we may reasonably assume that:

Premise 23.5. Any communication with an extra-terrestrial intelligence will
involve periods of upto thousands of years between the sending of a message and
receipt of a response.

Premise 23.6. We can only communicate with an essentially different form of
extra-terrestrial intelligence in a platform-independent language of a mechanistically
reasoning artificial intelligence.

Premise 23.7. Nature is not malicious and so, for an ETI to be malevolent
towards us, they must perceive us as an essentially different form of intelligence
that threatens their survival merely on the basis of our communications.

23.6. Recursive Arithmetic: The language of algorithms

Moreover, prima facie, it might seem reasonable to assume that:

Premise 23.8. The language of algorithmically computable functions and
relations is platform-independent.

This is the algorithm-based machine-language defined by Gödel’s recursive
arithmetic ([Go31]), by Church’s lambda calculus ([Ch36]), by Turing’s computing
machines ([Tu36]), and by Markov’s theory of algorithms ([Mar54]).

As Mandelbrot has shown ([Mn77]), the language appears sufficiently rich to
model a number of complex natural phenomena observed by us ([Bar88], [BPS88],
[PR86]), which earlier appeared intractable.

http://jareddiamond.org/Jared_Diamond/The_Third_Chimpanzee.html
http://lifeboat.com/ex/shouting.at.the.cosmos
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To simplify the issue within reason, we may thus assume that:

Premise 23.9. All natural phenomena which are observable by human intelli-
gence, and which can be modelled by deterministic algorithms, are interpretable
isomorphically by an extra-terrestrial intelligence.

However, it is also reasonable to assume that:

Premise 23.10. There are innumerable, distinctly different, observable natural
phenomena.

In other words, the language of deterministic algorithms must admit—and
require—denumerable primitive symbols for expressing natural phenomena.

Now, an extra-terrestrial intelligence which observes natural phenomena under
an interpretation that—although structurally isomorphic to ours—uses different
means of observation, may not be able to recognise any of our symbolisms effectively.
Hence:

Premise 23.11. A language of deterministic algorithms with a denumerable
alphabet does not admit effective communication with an ETI.

23.7. PA—A universal language of arithmetic

Now, in his remarkable 1931 paper, Gödel showed that ([Go31], p.29, Theorem
VII8):

Lemma 23.12. Every deterministic algorithm can be formally expressed by some
formula of a first-order Peano Arithmetic, PA.

PA is thus a good candidate for a language of unambiguous and effective
communication without contradiction because it has a finite alphabet with finitary
rules for:

(i) the formation of well-formed formulas;

(ii) deciding whether a given formula is a well-formed formula;

(iii) deciding whether a given formula is an axiom;

(iv) deciding whether a finite sequence of formulas is a valid deduction/proof
sequence;

(v) deciding whether a formula is a consequence of the axioms (a theorem).

23.8. How we currently interpret PA

Currently our classically accepted ‘standard’ interpretation of PA is the one—over
the structure N of the natural numbers—where the logical constants have their
‘usual’ interpretations in classical predicate logic, and:

(a) the set of non-negative integers is the domain;

(b) the integer 0 is the interpretation of the symbol [0];

8“Every recursive relation is arithmetical”.
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(c) the successor operation (addition of 1) is the interpretation of the [S]
function;

(d) ordinary addition and multiplication are the interpretations of [+] and [*];

(e) the interpretation of the predicate letter [=] is the identity relation;

(f) the propositions of PA are interpreted as true or false by Tarski’s inductive
definitions of the ‘satisfaction’ and ‘truth’ of the formulas of a formal
language under an interpretation.

23.9. Can PA admit contradiction?

Now, the case against accepting PA as a language of unambiguous and effective
communication without contradiction appeals to Gödel’s 1931 argument (in [Go31])
from which he concluded that:

• There is an ‘undecidable’ proposition in Peano Arithmetic;

• Two interpretations of which can, in principle, logically yield conflicting
conclusions.

Since our current understanding of classical logic admits Gödel’s conclusions,
it can be argued that we must also then admit that there can be no language of
unambiguous and effective communication without contradiction.

Moreover, it would then be unreasonable to seek further the source of contradic-
tions that reflect conflicting interpretations; and, reasonably, one ought instead to
pursue methods that would allow practical accommodation, rather than theoretical
resolution, of such contradictions.

23.10. Does PA lend itself to essentially different interpretations?

So, the question is:

Query 23.13. Does PA really lend itself to essentially different—or even any—
finitary interpretations?

This question of whether there is a PA formula which can interpret as false under
a non-standard interpretation of PA, but true under its standard interpretation M
(as defined in §A, Appendix A), is—almost universally—believed to have been settled
in the affirmative by Gödel in his seminal 1931 paper on formally ‘undecidable’
arithmetical propositions.

However, we show in §20 that—and why—this belief is misleading, and that we
need to read the fine print of Gödels argument carefully to see why this belief is
founded on an untenable assumption, whose roots lie in the unjustified extrapolation
of Aristotle’s particularisation to infinite domains.

Moreover, as we show in §11.4, Corollary 11.1, any two mechanical intelligences
will interpret the satisfaction, and truth, of the formulas of PA under a constructively
well-defined interpretation of PA in precisely the same way without contradiction.

23.11. How does the human brain address contradictions?

We further note that whilst human intelligence (and, presumably, other organic
intelligences) can accommodate algorithmically computable truths which do not



23.11. HOW DOES THE HUMAN BRAIN ADDRESS CONTRADICTIONS? 209

admit contradiction, it can also accommodate algorithmically verifiable, but not
algorithmically computable, truths that admit contradictory statements without
inviting inconsistency until it can be factually determined (by events that lie outside
the database of the reasoning at any moment9) which of the two statements is to be
treated as consistent with, and added to, the existing set of algorithmically verifiable
truths, and which is not.

Reason: It follows from Theorem 5.4 that we cannot conclude finitarily from
Tarski’s definitions (Definitions 6.1 to 6.6 in §6) whether or not a quantified PA
formula [(∀xi)R] is algorithmically verifiable as true under the classical ‘standard’
interpretation M of the first-order Peano Arithmetic PA if [R] is algorithmically
verifiable but not algorithmically computable under interpretation.

The significance of this is reflected in the case of quantum phenomena whose
values can be consistently viewed as representable mathematically only by functions
that are algorithmically verifiable, but not algorithmically computable.

For instance (see §29.14), concerning Erwin Schrödinger’s famous poser in [Sc35]
regarding the state of a putative cat in a closed system containing a potentially
lethal radio-active element, the two contradictory statements: ‘The cat is alive’
and ‘The cat is dead’, are both consistent with any first-order formulation of the
laws of quantum mechanics that admits a representation of the state of the cat
at any moment before the system it seeks to represent is opened to examination.
Thereafter, only one of the two statements can be assigned the truth value ‘true’.

More than anything, this illustrates that all genuine contradictions—i.e., those
which do not reflect contradictions in existing truth assignations—imply only a lack
of sufficient knowledge (as argued by Einstein, Podolsky and Rosen in [EPR35])
within a system for assigning a truth assignment consistently.

The question to be addressed therefore may be whether a brain (human or
mechanical) does by design, and if so how and to what extent, naturally seek to test
any new ‘truth’ assignment to an emerging belief (or observation) for consistency
with its existing set of ‘truth’ assignments; and how any such activity is (or can be)
weakened or strengthened by time and circumstance.

In other words, the challenge for the physical sciences may be to recognise—and
accept from an algorithmically verifiable perspective—that, in some ‘emergent’
sense, “at each level of complexity entirely new properties appear”, as articulated
by physicist Philip W. Anderson:

The reductionist hypothesis may still be a topic for controversy among
philosophers, but among the great majority of active scientists I think it is
accepted without question. The workings of our minds and bodies, and of all

the animate and inanimate matter of which we have any detailed knowledge,
are assumed to be controlled by the same set of fundamental laws, which

except under certain extreme conditions we feel we know pretty well.

It seems inevitable to go on uncritically to what appears at first sight to

be an obvious corollary of reductionism: that if everything obeys the same

fundamental laws, then the only scientists who are studying anything really
fundamental are those who are working on those laws. In practice, that

amounts to some astrophysicists, some elementary particle physicists, some

9Such as, for example, under the weak classical ‘standard’ interpretation of the first-order
Peano Arithmetic PA defined in Chapter Chapter 7.
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logicians and other mathematicians, and few others. This point of view,
which it [is] the main purpose of this article to oppose, is expressed in a

rather well-known passage by Weisskopf (1):

‘Looking at the development of science in the Twentieth Cen-

tury one can distinguish two trends, which I will call “intensive”
and “extensive” research, lacking a better terminology. In short:
intensive research goes for the fundamental laws, extensive re-

search goes for the explanation of phenomena in terms of known
fundamental laws. As always, distinctions of this kind are not un-
ambiguous, but they are clear in most cases. Solid state physics,
plasma physics, and perhaps biology are extensive. High energy

physics and a good part of nuclear physics are intensive. There
is always much less intensive research going on than extensive.
Once new fundamental laws are discovered, a large and ever

increasing activity begins in order to apply the discoveries to
hitherto unexplained phenomena. Thus, there are two dimensions
to basic research. The frontier of science extends all along the a
long line from the newest and most modern intensive research,

over the extensive research recently spawned by by the intensive
research of yesterday, to the broad and well developed web of
extensive research activities based on intensive research of past
decades.’

The effectiveness of this message may be indicated by the fact that I heard
it quoted recently by a leader in the field of materials science, who urged the

participants at a meeting dedicated to “fundamental problems in condensed
physics” to accept that there were few or no such problems and that nothing
was left but extensive science, which he seemed to equate with engineering.

The main fallacy in this kind of thinking is that the reductionist hypothesis
does not by any means imply a “constructivist” one: The ability to reduce

everything to simple fundamental laws does not imply the ability to start from
those laws and reconstruct the universe. In fact, the more the elementary
particle physicists tell us about the nature of the fundamental laws, the less

relevance they seem to have to the very real problems of the rest of science,
much less to those of society.

The constructionist hypothesis breaks down when confronted with the twin
difficulties of scale and complexity. The behaviour of large and complex

aggregates of elementary particles, it turns out, is not to be understood
in terms of a simple extrapolation of the properties of a few particles.
Instead, at each level of complexity entirely new properties appear, and the

understanding of the new behaviours requires research which I think is as
fundamental in its nature as any other. . . . ”

. . . Anderson: [And72].

23.12. The bias problem in science

Confronting such a challenge meaningfully, according to theoretical physicist
Sabine Hossenfelder, requires first recognising the existence of, and then addressing
and redressing, the problem of ingrained biases in scientific discourse:

“Probably the most prevalent brain bug in science is confirmation bias. If you
search the literature for support for your argument, there it is. If you look

for a mistake because your result didn’t match your expectations, there it is.
If you avoid the person asking nagging questions, there it is. Confirmation

bias is also the reason we almost end up preaching to the choir when we

lay out the benefits of basic research. You knew that without discovering
fundamentally new laws of nature, innovation would eventually run dry,
didn’t you?
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[. . . ]

There’s also the false consensus effect: we tend to overestimate how
many other people agree with us and how much they do so. And one of
the most problematic distortions in science is that we consider a fact to be

more likely the more often we have heard of it; this is called attentional
bias or the mere exposure effect. We pay more attention to information
especially when it is repeated by others in our community. This communal

reinforcement can turn scientific communities into echo chambers in which
researchers repeat their arguments back to each other over and over again,
constantly reassuring themselves they are doing the right thing.

Then there is the mother of biases, the blind spot—the insistence

that we certainly are not biased. It’s the reason my colleagues only laugh
when I tell them biases are a problem, and why they dismiss my “social

arguments,” believing they are not relevant to scientific discourse. But the

existence of these biases has been confirmed in countless studies. And there
is no indication whatsoever that intelligence protects against them; research

studies have found no links between cognitive ability and thinking biases.17

Of course, it’s not only theoretical physicists who have cognitive biases.

You can see these problems in all areas of science. We’re not able to abandon
research directions that turn out to be fruitless; we’re bad at integrating new

information; we don’t criticize our colleagues’ ideas because we are afraid

of becoming “socially undesirable.” We disregard ideas that are out of the
mainstream because these come from people “not like us.” We play along in

a system that infringes on our intellectual independence because everybody

doe it. And we insist that our behavior is good scientific conduct, based
purely on unbiased judgement, because we cannot possibly be influenced by

social and psychological effects, no matter how well established.

We’ve always had cognitive and social biases, of course. They are the
reason scientists today use institutionalized methods to enhance objectivity,
including peer review, measures for statistical significance, and guidelines for

good scientific conduct. And science has progressed just fine, so why should
we start paying attention now? (By the way, that’s called the status quo
bias.)

Larger groups are less effective at sharing relevant information. More-
over, the more specialized a group is, the more likely its members are to hear

only what supports their point of view. This is why understanding knowl-
edge transfer in scientific networks is so much more important today than it
was a century ago, or even two decades ago. And objective argumentation
becomes more relevant the more we rely on logical reasoning detached from
experimental guidance.”

. . . Sabine Hossenfelder: [Hos18a], pp.230-232.

As our analysis of the dogmas that, from the evidence-based perspective of this
investigation, we have labelled as Hilbert’s theism and Brouwer’s atheism in Chapter
3 illustrates, such biases can, sometimes, act as invisible barriers to the broadening
of a perspective as may be needed to accommodate embarrassing data or seemingly
incontrovertible arguments.

For instance, the roots of all the ambiguities sought to be addressed in this
investigation can be seen to lie in the unquestioned, and untenable (Corollary 15.11)
assumption that Aristotle’s particularisation is valid over infinite domains.

Aristotle’s particularisation is defined (Definition 3.1) as the postulation that,
in any formal language L which subsumes the first-order logic FOL, the L-formula
‘[¬(∀x)¬F (x)]—also denoted by [(∃x)F (x)]—is provable in L’ can unrestrictedly be
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interpreted as the assertion ‘There exists an unspecified object a such that F ′(a) is
true under any well-defined interpretation I of L’, where F ′(x) is the interpretation
of [F (x)] under I.

Following Hilbert’s formalisation of it in terms of his ε-operator in [Hi25], the
assumption—as noted in §3.1 (footnote #3)—has been subsequently sanctified by
prevailing wisdom in published literature and textbooks at such an early stage of
any classical mathematical curriculum, and planted as a bias so deeply into students’
minds, that thereafter most cannot even detect its presence—let alone need for its
justification—in a proof sequence!

Similarly Brouwer’s rejection of the Law of the Excluded Middle LEM—and
ipso facto of the first order logic FOL, of which it is a theorem—as non-constructive,
in the mistaken belief that LEM entails Aristotle’s particularisation, resulted in
as enduring—and as untenable—a bias that has constrained the development of a
more encompassing, evidence-based, development of finitary mathematics.

It would not be unreasonable to conclude that such sub-conscious assumptions,
especially where provably invalid (see, for instance, Corollary 15.11, and Corollary
9.11), has continued for over ninety years to unconsciously dictate, mislead, and so
limit the perspective of not only active, but also emerging, scientists of any ilk who
have depended upon classical mathematics for providing a language of adequate
representation and effective communication for their abstract concepts.



CHAPTER 24

The paradoxes

We briefly consider, from an evidence-based perspective, the significance for the
physical sciences of the semantic and logical paradoxes1 which involve—either
implicitly or explicitly—quantification over an infinitude.

Where such quantification is not, or cannot be, explicitly defined in formal logical
terms—e.g., the classical expression of the Liar paradox as ‘This sentence is a lie’2—
the paradoxes per se cannot be considered as posing serious linguistic or philosophical
concerns from an evidence-based perspective of constructive mathematics.

The practical significance of the semantic and logical paradoxes is, of course,
that they illustrate the absurd extent to which languages of common discourse
need to tolerate ambiguity; both for ease of expression and for practical—even if
not theoretically unambiguous and effective—communication in non-critical cases
amongst intelligences capable of a lingua franca.

Such absurdity is highlighted by the universal appreciation of Charles Dickens’
Mr. Bumble’s retort that ‘The law is an ass’; a quote oft used to refer to the
absurdities which sometimes surface3 in cases when judicial pronouncements attempt
to resolve an ambiguity by subjective fiat that appeals to the powers—and duties—
bestowed upon the judicial authority for the practical resolution of precisely such
an ambiguity, even when the ambiguity may be theoretically irresolvable!

In a thought-provoking Opinion piece, ‘Desperately Seeking Mathematical
Truth’, in the August 2008 Notices of the American Mathematical Society, Melvyn
B. Nathanson seeks to highlight the significance for the mathematical sciences when
similar authority is vested by society—albeit tacitly—upon academic ‘bosses’ (a
reference, presumably, to the collective of reputed—and respected—experts in any
field of human endeavour):

‘ ... many great and important theorems don’t actually have proofs. They
have sketches of proofs, outlines of arguments, hints and intuitions that were
obvious to the author (at least, at the time of writing) and that, hopefully,

are understood and believed by some part of the mathematical community.

But the community itself is tiny. In most fields of mathematics there are
few experts. Indeed, there are very few active research mathematicians in

the world, and many important problems, so the ratio of the number of

mathematicians to the number of problems is small. In every field, there are

1Although commonly referred to as the paradoxes of ‘self-reference’, not all of them involve
self-reference (e.g., the paradox constructed by Stephen Yablo [Ya93]).

2Or Lundgren’s ‘information liar paradox’: “This is not semantic information”, in [Lun17],

§3, p.5.
3See www.shazbot.com/lawass/.
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“bosses” who proclaim the correctness or incorrectness of a new result, and
its importance or unimportance.

Sometimes they disagree, like gang leaders fighting over turf. In any case,
there is a web of semi-proved theorems throughout mathematics. Our

knowledge of the truth of a theorem depends on the correctness of its proof
and on the correctness of all of the theorems used in its proof. It is a shaky
foundation.’

. . . Nathanson: [Na08].

Nathanson’s comments are intriguing, because addressing such ambiguity in
critical cases—such as communication between mechanical artefacts, or a putative
communication between terrestrial and extra-terrestrial intelligences—is the very
raison d’être of mathematical activity!

Of course, it would be a matter of serious concern if the word ‘This’ in the
English language sentence, ‘This sentence is a lie’, could be validly viewed as
implicitly implying that:

(i) there is a constructive infinite enumeration of English language sentences;

(ii) to each of which a truth-value can be constructively assigned by the rules
of a two-valued logic; and,

(iii) in which ‘This’ refers uniquely to a particular sentence in the enumeration.

In 1931, Kurt Gödel used the above perspective in his seminal paper on ‘unde-
cidable’ arithmetical propositions:

(a) to show how the infinitude of formulas, in a formally defined Peano
Arithmetic P ([Go31], pp.9-13), could be constructively enumerated and
referenced uniquely by natural numbers ([Go31], p.13-14);

(b) to show how P-provability values could be constructively assigned to
P-formulas by the rules of a two-valued logic ([Go31], p.13); and,

(c) to construct a P-formula which interprets as an arithmetical proposition
that could, debatably (see §17.5), be viewed—under the standard inter-
pretation of the Peano Arithmetic P—as expressing the sentence, ‘This
P-sentence is P-unprovable’ ([Go31], p.37, footnote 67), without inviting
a ‘Liar’ type of contradiction.

We note that where the quantification can be made explicit—e.g., Russells para-
dox or Yablos paradox—the significance of the question whether such quantication
is constructive or not is immediately obvious.

Russell’s paradox: Define the set S by {All x : x ∈ S iff x /∈ x}; then
S ∈ S iff S /∈ S.

Yablo’s paradox: Defining the sentence Si for all i ≥ 0 as ‘For all j > i,
Sj is not true’ seems to lead to a contradiction ([Ya93]).

For instance, in Russell’s case it could be cogently argued from an evidence-based
perspective that the contradiction itself establishes that S cannot be constructively
defined over the range of the quantifier.

In Yablo’s case it could, as cogently, be argued that truth values cannot be
constructively assigned to any sentence covered by the quantification since, in order
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to decide whether or not Si can be assigned the value ‘true’ for any given i ≥ 0, we
first need to decide whether or not Si+1 has already been assigned the value ‘true’ !

There are two issues involved here—not necessarily independent—highlighted
by Timothy Gowers as follows:

“If you ask a philosopher what the main problems are in the philosophy of
mathematics, then the following two are likely to come up: what is the status

of mathematical truth, and what is the nature of mathematical objects?

That is, what gives mathematical statements their aura of infallibility, and
what on earth are these statements about?”

. . . Gowers: [Gow02].

The first issue is whether the currently accepted interpretations of formal
quantification—essentially as defined by David Hilbert ([Hi27]; see also §4.1) in his
formalisation of Aristotle’s logic of predicates in terms of his ε-function—can be
treated as constructive over an infinite domain.

24.1. Is quantification currently interpreted constructively?

L. E. J. Brouwer ([Br08]) emphatically—and justifiably so far as number theory
was concerned (see §4.2)—objected to such subjectivity, and asserted that Hilbert’s
interpretations of formal quantification were non-constructive.

Although Hilbert’s formalisation of the quantifiers (an integral part of his
formalisation of Aristotle’s logic of predicates) appeared adequate, Brouwer rejected
Hilbert’s interpretations of them on the grounds that the interpretations were
open to ambiguity, and could not, therefore, be accepted as admitting effective
communication.

However, Brouwer’s rejection of the Law of the Excluded Middle as a resolution
of the objection was seen—also justifiably (see §14.1)—as unconvincingly rejecting a
comfortable interpretation that—despite its Platonic overtones—appeared intuitively
plausible to the larger body of academics that was increasingly attracted to, and
influenced by, the remarkably expressive powers provided by Cantor-inspired set
theories such as ZF.

Since Brouwer’s seminal work preceded that of Alan Turing, it was unable to
offer his critics an alternative—and intuitively convincing—constructive definition of
quantification based on the view—gaining currency today—that a simple functional
language can be used for specifying evidence for propositions in a constructive logic
([Mu91]).

Moreover, since Brouwer’s objections did not gain much currency amongst
mainstream logicians, they were unable to influence Turing who, it is our contention,
could easily have provided the necessary constructive interpretations (introduced in
[An12]) sought by Hilbert for number theory, had Turing not been influenced by
Gödel’s powerful presentation—and Gödel’s persuasive Platonic, albeit (contrary
to accepted dogma) logically rooted4, interpretation of his own formal reasoning in
[Go31].

4Comment : Although meriting a more complete discussion than is appropriate to the intent
of this paper, it is worth noting that the rooting of Gödel’s Platonism can be cogently argued
as lying—contrary to generally held opinions—purely in a logical, rather than philosophical,

presumption: more specifically in Gödel’s belief that Peano Arithmetic is ω-consistent ([Go31],
p.28). The belief seems unwittingly shared universally even by those who (cf. [Pas95], [Fe02])
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Thus, in his 1939 paper ([Tu39]) on ordinal-based logics, Turing applied his
computational method—which he had developed in his 1936 paper ([Tu36])—in
seeking partial completeness in interpretations of Cantor’s ordinal arithmetic (as
defined in a set theory such as ZF)—rather than in seeking a categorical interpreta-
tion of PA. Turing perhaps viewed his 1936 paper as complementing and extending
Gödel’s and Cantor’s reasoning.

For instance, Turing remarked that:

“The well-known theorem of Gödel shows that every system of logic is in a

certain sense incomplete, but at the same time it indicates means whereby
from a system L of logic a more complete system L′ may be obtained. By

repeating the process we get a sequence of L,L1 = L′, L2 = L′1, . . . each

more complete than the preceding. . . .

Proceeding in this way we can associate a system of logic with any construc-
tive ordinal. It may be asked whether a sequence of logics of this kind is
complete in the sense that to any problem A there corresponds an ordinal α

such that A is solvable by means of the logic Lα. I propose to investigate this
question in a more general case, and to give some other examples of ways in

which systems of logic may be associated with constructive ordinals”.

. . . Turing: [Tu39], pp.155-156.

Perhaps Turing did not see any reason to question either the validity of Gödel’s
belief that systems of Arithmetic such as PA are ω-consistent (as hinted at in
[Go31], p.28), or Gödel’s interpretation of his argument in [Go31] as having
meta-mathematically proven that systems of Arithmetic such as PA are essentially
incomplete!

It is our contention that Turing thus overlooked the fact that his 1936 paper
([Tu36]) actually conflicts with Gödel’s and Cantor’s interpretations of their own,
formal, reasoning by admitting an objective definition of satisfaction that yields a
sound, finitary, interpretation B of PA (see §9).

Specifically, whereas Gödel’s and Cantor’s reasoning implicitly presumes that
satisfaction under the standard interpretation M of PA can only be defined non-
constructively in terms of subjectively verifiable truth (reflecting the view that
Tarski’s Theorem—see [Me64], p.151—establishes the formal undefinability of
arithmetical truth in arithmetic), it can be cogently argued that satisfaction under
both M and B is definable constructively in terms of objectively verifiable Turing-
computability (see §5.1).

As a result, conventional wisdom continues to essentially follow Hilbert’s
Platonically-influenced (hence, subjective) definitions and interpretations of the
quantifiers (based on accepting Aristotle’s particularisation as valid) when defining
them under the standard interpretation M of PA.

Now, the latter definitions and interpretations (e.g., [Me64], pp.49-53) are, in
turn, founded upon Tarski’s analysis of the inductive definability of the truth of
compound expressions of a symbolic language under an interpretation in terms of
the satisfaction of the atomic expressions of the language under the interpretation
([Ta35]).

accept Gödel’s formal arguments in [Go31] but claim to reject Gödel’s ‘Platonic’ interpretations
of them.
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Tarski defines there the formal sentence P as True if and only if p—where p
is the proposition expressed by P . In other words, the sentence ‘Snow is white’ is
True if, and only if, it is subjectively true in all cases; and it is subjectively true in a
particular case if, and only if, it expresses the subjectively verifiable fact that snow is
white in that particular case. Thus, for Tarski the commonality of the satisfaction of
the atomic formulas of a language under an interpretation is axiomatic (cf. [Me64],
p.51(i)).

In this investigation we have highlighted the limitations of such subjectivity
(in Chapters 5 and 6) and, in the case of the ‘standard’ interpretation M of the
Peano Arithmetic PA, shown how to avoid violation of such constraints (in Chapter
7) by requiring that the axioms of PA, and its rules of inference, be interpretable as
algorithmically (and, ipso facto, objectively) verifiable propositions.

24.2. When is the concept of a completed infinity consistent?

The second issue is when, and whether, the concept of a completed infinity is
consistent with the interpretation of a formal language.

Clearly, the consistency of the concept would follow immediately in any con-
structively well-defined interpretation of the axioms (and rules of inference) of a set
theory such as the Zermelo-Fraenkel ([BF58]) first-order theory ZF (whether such
an interpretation exists at all is, of course, another question).

In view of the perceived power of ZFC as an unsurpassed language of rich and
adequate expression of mathematically expressible abstract concepts precisely (see
Thesis 44.1), it is not surprising that many of the semantic and logical paradoxes
depend on the implicit assumption that the domain over which the paradox quantifies
can always be treated as a well-defined mathematical object that can be formalised
in ZFC, even if this domain is not explicitly defined set-theoretically.

This assumption is rooted in the questionable5 belief that ZF can express all
mathematical ‘truths’ (see, for instance, [Ma18] and [Ma18a]).

From this it is but a short step to non-constructive perspectives—such as Gödel’s
Platonic interpretation of his own formal reasoning in his 1931 paper ([Go31])—
which argue (see §20.1) that PA must have non-standard models.

However, it is our contention that both of the above foundational issues need
to be reviewed carefully, and that we need to recognize explicitly the limitations
on the ability of highly expressive mathematical languages such as ZF to commu-
nicate effectively; and the limitations on the ability of effectively communicating
mathematical languages such as PA to adequately express abstract concepts—such
as those involving Cantor’s first limit ordinal ω (see §20.7).

Prima facie, the semantic and logical paradoxes—as also the seeming paradoxes
associated with ‘fractal’ constructions such as the Cantor ternary set, and the
constructions described below—seem to arise out of a blurring of this distinction,
and an attempt to ask of a language more than it is designed to deliver.

5‘Questionable’ since, in Chapter 22, we show how—in the case of Goodstein’s Theorem—such
a belief leads to a curious conclusion (Theorem 22.3).
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24.3. Asking more of a language than it is designed to deliver

For instance, consider the claim (e.g., [Bar88], p.37, Theorem 1) that fractal
‘constructions’—such as the Cantor ternary set, which is defined classically as a
‘putative’ set-theoretical limit ([Ru53], p34; [Bar88], pp.44-45) of an iterative
process in the ‘putative’ completion of a metric space—yield valid mathematical
objects (sets) in the ‘limit’ (presumably in some Platonic mathematical model).

Now, the Cantor Set T∞ is defined as the putative ‘fractal’ limit of the set of
points obtained by taking the closed interval T0 = [0, 1]):

• removing the open middle third to yield the set T
1

= {[0, 1
3 ] ∪ [ 2

3 , 1]},
• then removing the middle third of each of the remaining closed intervals

to yield the set T
2

= [0, 1
9 ] ∪ [ 2

9 ,
1
3 ] ∪ [ 2

3 ,
7
9 ] ∪ [ 8

9 , 1],

• and so on ad infinitum.

To see why such a limit needs to be treated as ‘putative’ from an evidence-based
perspective (compare with Lakoff and Núñez’s analysis of a similar ‘length paradox’
in [LR00], p.325-333), consider the equilateral triangle BAC of height h and side s
in Fig.1 (below):

• Divide the base BC in half and construct two isosceles triangles of height
h.d and base s/2 on BC, where 1 ≥ d > 0.

• Iterate the construction on each constructed triangle ad infinitum.

• Thus, the height of each of the 2n triangles on the base BC at the n’th
construction is h.dn, and the base of each triangle s/2n.

• Hence, the total area of all these triangles subtended by the base BC is
s.h.dn/2.

• Now, if d = 1, the total area of all the constructed triangles after each
iteration remains constant at s.h/2, although the total length of all the
sides opposing the base BC increases monotonically.

• However, if 1 > d > 0, it would appear that, geometrically, the base BC of
the original equilateral triangle will always be the ‘limiting’ configuration
of the sides opposing the base BC.
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This is indeed so if 0 < d < 1/2 (Fig.1), since the total length of all the sides
opposing the base BC at the n’th iteration—say ln—yields a Cauchy sequence
whose limiting value is, indeed, the length s of the base BC.
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Fig.2: ln = 2s if d = 1/2

However, if d = 1/2 (Fig.2), the total length of all the sides opposing their
base on BC is always 2s; which, by definition, also yields a Cauchy sequence whose
limiting value is 2!
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Fig.3: ln →∞ if 1 > d > 1/2

Finally, if 1 > d > 1/2 (Fig. 3), the total length of all the sides opposing their
base on BC is a monotonically increasing value.

Consider now:

24.4. Interpretation as a virus cluster

Case 1: Let the area BAC denote the population size of a virus cluster, where
each virus cell has a ‘virulence’ measure h/s.

Let each triangle at the n’th iteration denote a virus cluster—with a virulence
factor h.dn/(s/2n)—that reacts to the next generation anti-virus by splitting into
two smaller clusters with inherited virulence h.dn+1/(s/2n+1).

We then have that:
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(a) If d < 1/2, the effects of the virus can—in a sense—be contained and
eventually ‘eliminated’, since both the total population of the virus, and
its virulence in each cluster, decrease monotonically;

(b) If d = 1/2, the effects of the virus can be ‘contained’, but never ‘eliminated’
since, even though the total population of the virus decreases monotonically,
its virulence in each cluster remains constant, albeit at a containable level,
until the virus suffers a sudden, dinosaur-type, extinction at the ‘limiting’
point as n→∞;

(c) However, if d > 1/2, the effects of the virus can neither be ‘contained’ nor
‘eliminated’ since, even though the total population of the virus decreases
monotonically, its virulence in each cluster resists containment by increasing
monotonically until, again, the virus suffers a sudden, dinosaur-type,
extinction at the ‘limiting’ point as n→∞.

24.5. Interpretation as an elastic string

Case 2: Let the base BC denote an elastic string, stretched iteratively into the
above configurations.

We then have that:

(a) If d < 1/2, the elastic will, in principle, eventually return to its original
state;

(b) If d > 1/2, then the elastic must break at some point, in a phase change
that is apparently normal, and invites no untoward curiosity, since it forms
part of our everyday experience;

(c) However, what if d = 1/2?

24.6. Phase change: Zeno’s argument in 2-dimensions

We then arrive at a two-dimensional version of Zeno’s arguments ([Rus37], pp.347-
353); one way of resolving which is by admitting the possibility that such an elastic
‘length’ undergoes a ‘steam-to-water-like’ phase change in the ‘limit’ that need not
correspond (see §19.4) to the putative limit of its associated Cauchy sequence6!

We note that Theorem 19.4 shows that Cauchy sequences which are defined
as algorithmically verifiable, but not algorithmically computable, can correspond
to ‘essentially incompletable’ real numbers whose Cauchy sequences cannot, in a
sense, be known ‘completely’ even to Laplace’s ‘intellect’ (such as, for instance, the
fundamental dimensionless constants considered in §29.6).

The above example now show further that—and why—the numerical values of
some algorithmically computable Cauchy sequences may also need to be treated as
formally specifiable, first-order, non-terminating processes:

• which are ‘eternal work-in-progress’ in the sense of Theorem 19.4, and

• which cannot be uniquely identified by a putative ‘Cauchy limit’ without
limiting the ability of such sequences to model phase-changing physical
phenomena faithfully.

6We note that, by definition, the sequence {a0 , a1 , a2 , . . .} where a0 = 1 and ai = 3 for all

i ≥ 1, is a Cauchy sequence whose mathematical limit is 3.
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In view of Theorem 19.7, the gedanken in §24.4 and §24.5 highlight the disqui-
eting issue sought to be raised, for instance, by Krajewski in [Kr16]7 (see §2.2),
Lakoff and Núñez in [LR00] (p.325-333), and Simpson in [Sim88], which can be
expressed as:

Query 24.1. Since the raison d’être of a mathematical language is—or ide-
ally should be—to express our abstractions of natural phenomena precisely, and
communicate them unequivocally, in what sense can we sensibly admit an interpre-
tation of a mathematical language that constrains all the above cases by ‘limiting’
configurations in a putative, set-theoretical, ‘completion’ of Euclidean Space?

7“Examples of possible theological influences upon the development of mathematics are

indicated. The best known connection can be found in the realm of infinite sets treated by us

as known or graspable, which constitutes a divine-like approach. Also the move to treat infinite
processes as if they were one finished object that can be identified with its limits is routine in
mathematicians, but refers to seemingly super-human power.” . . . [Kr16].





Part 7

The significance of evidence-based
reasoning for some grey areas in

the foundations of Cosmology





CHAPTER 25

The mythical completability of metric spaces

“Our thoughts live in natural and artificial languages the way fish swim in

natural and artificial bodies of water.

One of the lessons most strikingly impressed on me by my first year physics

course and the mass of collateral reading I did at the time was to guard
against the errors that arise from “projecting the properties and structures of
any language or symbol system on the external world”. This was mentioned
especially often in discussions of quantum mechanics—it was a common

observation that our difficulties grasping wave-particle duality might be due
to our prior conditioning to see the world through the lenses of our subject-
predicate languages and logics. Soon after, I learned about the Sapir-Whorf

hypothesis, and today I lump all these cautionary tales under the heading of
GRAM (“Grammar Recycled As Metaphysics”).”
. . . Awbrey: [Aw18].

From the evidence-based perspective of Chapter 24, we can now hypothesise:

Thesis 25.1. There are no infinite processes, i.e., nothing corresponding to
infinite sequences, in natural phenomena.

Thesis 25.2. If:

(a) a physical process is representable by a Cauchy sequence as in the above
cases in §24.4 and in §24.5; and

(b) we accept that there can be no infinite processes, i.e., nothing corresponding
to infinite sequences, in natural phenomena;

then:

(c) in the absence of an extraneous, evidence-based, proof of ‘closure’ which de-
termines the behaviour of the physical process in the limit as corresponding
to a ‘Cauchy’ limit;

(d) the physical process must tend to a discontinuity (singularity) which has
not been reflected in the Cauchy sequence that seeks to describe the
behaviour of the physical process.

The significance of such insistence on evidence-based reasoning for the physical
sciences is that we may then be prohibited from claiming legitimacy for a mathe-
matical theory which seeks to represent a physical process based on the assumption
that the limiting behaviour of every physical process which can be described by a
Cauchy sequence in the theory must correspond to—and so be constrained by—the
behaviour of the Cauchy limit of the corresponding sequence.

225
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For instance the existence of Hawking radiation in cosmology is posited on
the assumption that ‘the consistent extension of this local thermal bath has a finite
temperature at infinity ’:

“Hawking radiation is required by the Unruh effect and the equivalence

principle applied to black hole horizons. Close to the event horizon of a black
hole, a local observer must accelerate to keep from falling in. An accelerating

obsrver sees a thermal bath of particles that pop out of the local acceleration

horizon, turn around, and free-fall back in. The condition of local thermal
equilibrium implies that the consistent extension of of this local thermal

bath has a finite temperature at infinity, which imples that some of these

particles emitted by the horizon are not reabsorbed and become outgoing
Hawking radiation.”

. . . https://en.wikipedia.org/wiki/Hawking radiation. (Accessed 04/06/2018, 08:00 IST.)

As we have demonstrated in Fig. 2 (§24.3) and §24.5, Case 2(c), the consistent
extension of the state of a stretched elastic string—as defined in Fig. 2—does not
have a limiting mathematical value at infinity which can be taken to correspond to
its putatively limiting physical state.

The gedanken in §25.1 further illustrates that a mathematical singularity need
not constrain a physical theory from positing a well-definable value for a limiting
state of a physical process, contrary to what conventional wisdom accepts in the
limiting cases of Einstein’s equations for General Relativity:

“The Big Bang is probably the most famous feature of standard cosmology.
But it is also an undesirable one. That’s because the classical model of the

universe, described by Einstein’s equations, breaks down in the conditions
of the Big Bang, which include an infinite density and temperature, or what
physicists call a singularity.”

. . . Padmanabhan: [Pd17].

Moreover, we shall argue that introduction of a, normally weak, anti-gravitational
field whose strength can, however, accept quantum states that cause a universe to
explode and implode in a predictable way at their corresponding ‘mathematical’
singularities, yields a mathematical model of a universe:

• That recycles endlessly from Big Bang to Ultimate Implosion;

• Which is time-reversal invariant; and

• In which the existence of ‘dark energy’ is intuitively unobjectionable.

Whether or not such features can be made to apply to the physical universe we
inhabit is a separate issue (see [An18]) that lies beyond the focus of the evidence-
based perspective of this investigation.

However, it is worthwhile noting some of the barriers that mathematical ‘singu-
larities’ are perceived as imposing upon our ability to faithfully comprehend, and
mathematically represent, the laws of nature.

For instance, as queried by Thanu Padmanabhan in [Pd17a]:

“But what if there was no singularity? Since the 1960s, physicists have

been working on describing the universe without a Big Bang by attempting

to unify gravitational theory and quantum theory into something called
quantum gravity. Physicists John Wheeler and Bryce deWitt were the first
to apply these ideas to a hypothetical pre-geometric phase of the universe,

https://en.wikipedia.org/wiki/Hawking_radiation
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in which notions of space and time have not yet-emerged from some as-yet
unknown structure. This heralded the study of quantum cosmology, in which

physicists attempted to describe the dynamics of simple toy models of the
universe in quantum language. Needless to say, several different, but related,
ideas for the description of the pre-geometric phase mushroomed over the

decades. The unifying theme of these models is that the classical universe
arises, without any singularity, through a transition from a pre-geometric
phase to one in which spacetime is described by Einstein’s equations. The

main difficulty in constructing such a description is that we do not have
a complete theory of quantum gravity, which would allow us to model the
pre-geometric phase in detail.”

. . . Padmanabhan: [Pd17].

The issue is highlighted further by Padmanabhan in [Pd17a]:

“I will now raise a question which, at the outset, may sound somewhat
strange. Why does the universe expand and, thereby, give us an arrow of
time? To appreciate the significance of this question, recall that Eq. (9)

is invariant under time reversal t → −t. (After all, Einstein’s equations
themselves are time reversal invariant.) To match the observations, we have
to choose a solution with ȧ > 0 at some fiducial time t = tfid > 0 (say,

at the current epoch), thereby breaking the time-reversal invariance of the
system. This, by itself, is not an issue for a laboratory system. We know
that a particular solution to the dynamical equations describing the system

need not respect all the symmetries of the equations. But, for the universe,
this is indeed an issue.

To see why, let us first discuss the case of (ρ+ 3p) > 0 for all t. The
choice ȧ > 0, at any instant of time, implies that we are postulating that the
universe is expanding at that instant. Then Eq. (9) tells us that the universe

will expand at all times in the past and will have a singularity (a = 0) at
some finite time in the past (which we can take to be t = 0 without loss of
generality). The structure of Eq. (9) prevents us from specifying the initial
conditions at t = 0. So, if you insist on specifying the initial conditions and

integrating the equations forward in time, you are forced to take ȧ > 0 at
some time t = ε > 0, thereby breaking the time reversal symmetry. The
universe expands at present ‘because’ we chose it to expand at some instant

in the past. This expansion, in turn, gives us an arrow of time [where] either
t or a can be used as a time coordinate. But why do we have to choose the
solution with ȧ > 0 at some instant? This is the essence of the so called

expansion problem [6]. An alternative way of posing the same question is

the following: How come a cosmological arrow of time emerges from the
equations of motion which are time-reversal invariant?

In a laboratory, we can usually take another copy of the system we

are studying and explore it with a time-reversal choice of initial conditions,

because the time can be specified by degrees of freedom external to the
system. We cannot do it for the universe because we do not have extra

copies of it handy and—equally importantly—there is nothing external to it

to specify the time. So the problem, as described, is specific to cosmology.

So far we assumed that (ρ+ 3p) > 0, thereby leading to a singularity.

Since meaningful theories must be nonsingular, we certainly expect a future
theory of gravity—possibly a model for quantum gravity—to eliminate the

singularity [effectively leading to (ρ + 3p) < 0. Can such a theory solve
the problem of the arrow of time? This seems unlikely. To see this, let us

ask what kind of dynamics we would expect in such a ‘final’ theory. The

classical dynamics will certainly get modified at the Planck epoch, to govern
the evolution of an (effective) expansion factor. The solutions could, for
example, have a contracting phase (followed by a bounce) or could start from
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a Planck-size universe at t = −∞, just to give two nn-singular possibilities.
While we do not know these equations or their solutions, we can be confident

that they will still be time-reversal invariant because quantum theory, as we
know it, is time-reversal invariant.

So except through a choice for initial conditions (now possibly at
t = −∞), we still cannot explain how the cosmological arrow of time
emerges. Since quantum gravity is unlikely to produce an arrow of time, it

is a worthwhile pursuit to try and understand this problem in the (semi)
classical context.”

. . . Padmanabhan: [Pd17a].

However, the arguments in §24.4 and §24.5 suggest that:

Thesis 25.3. The perceived barriers that inhibit mathematical modelling of a
cyclic universe, which admits broken symmetries, dark energy, and an ever-expanding
multiverse, in a mathematical language seeking unambiguous communication are
illusory; they arise out of an attempt to ask of the language selected for such
representation more than the language is designed to deliver.

25.1. Interpretation as the confinement state of the total energy in a
universe that recycles

“Both general relativity and Newtonian gravity appear to predict that nega-
tive mass would produce a repulsive gravitational field.”

. . . Anti-gravity: https://en.wikipedia.org/wiki/Anti-gravity; accessed 08/06/2018, 10:13:00.

To illustrate why an evidence-based perspective towards interpreting the propositions
of a mathematical model realistically would view such barriers as illusory, we consider
the following gedanken.

Case 3: We can also treat Fig.2 in §24.3 as a mathematical representation of the
‘confinement parameter’ that determines the state of the total energy s, in a finite
universe U , which is subject to two constantly unequal and opposing, assumed
additive, forces due to:

• A strong confinement field G (induced by matter), whose state is deter-
mined by a single discrete dimensionless constant, defined as an Einsteinian
confinement, or gravitational strength, ‘gravitational constant’ (gsp), which
is always 1

2 ; and

• A weak anti-confinement field R (induced by anti-matter), whose state is
determined by discrete dimensionless values, defined as the Einsteinian anti-
confinement, or repulsive gravitational strength, ‘cosmological constants’
(asp), where:

– asp = 1 > gsp when U is in an exploding state at event e0 ;

– asp = 1
3 + 2

3 (1− 1
n+1 ) > gsp when U is in an imploding state at event

en for n ≥ 1;

– asp = 1
3 < gsp when U is in a steady state:

∗ during which events, denoted by e′
n
, e′′
n
, . . .,

∗ occur between events en and en+1 ;

∗ where e′
n
< e

m
is an abbreviation for ‘event e′

n
occurs causally

before event e
m

’.

https://en.wikipedia.org/wiki/Anti-gravity
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and where the following are assumed to hold:

(a) Classical laws of nature determine the nature and behaviour of all those
properties of the physical world that are both determinate and predictable,
and are therefore mathematically describable at any event e(n) by algo-
rithmically computable functions from a given initial state at event e(0)
(Thesis 29.2);

(b) Neo-classical (quantum) laws of nature determine the nature and behaviour
of those properties of the physical world that are determinate but not
predictable, and are therefore mathematically describable at any event e(n)
only by functions that are algorithmically verifiable but not algorithmically
computable from any given initial state at event e(0) (Thesis 29.3);

(c) There can be no infinite processes, i.e., nothing corresponding to infinite
sequences, in natural phenomena;

(d) All laws of nature are subject to evidence-based accountability as follows
(Thesis 25.1):

– If a physical process is representable by a Cauchy sequence (as in the
above cases in §24.4 and §24.5);

– then, in the absence of an extraneous, evidence-based, proof of ‘closure’
which determines the behaviour of the physical process in the limit
as corresponding to a ‘Cauchy’ limit;

– the physical process must be taken to tend to a discontinuity (sin-
gularity) which has not been reflected in the Cauchy sequence that
seeks to describe the behaviour of the physical process.

A: We then define:

(i) The total, say s, units of energy of the universe U is:

– in an exploding state at event e
0
;

– in a steady state between events en and en+1 for n ≥ 1;

– in an imploding state at events e
n

for n ≥ 1.

(ii) The state of the anti-confinement field in U at an event is defined with
reference to Fig.2 as follows:

– Initially at the Big Bang event e0 , where the energy s is in an unstable
exploding state, the anti-confinement field strength:

∗ is determined by the ratio asp = s
s = 1 > gsp of the absolute

value of the total energy s of the universe, and the absolute
value of a confinement parameter represented by the length BC
where, for convenience, we define the length BC as s;

∗ which also corresponds to the limiting case of the confinement
parameter as n→∞ in Fig.2.

– Between events e
n

and e
n+1

for n > 0, where the energy s is in a
steady state, the anti-confinement field strength:

∗ is determined by the ratio asp = s
ln

= 1
3 < gsp,
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∗ where the confinement parameter l
n

= 3s is represented by
the cumulative perimeter lengths of all the triangles on their
common base BC in Fig.2.

– At event e
n

for n ≥ 1, where the energy s is in an unstable imploding
state, the anti-confinement field strength:

∗ is determined by asp = s
ln

+ 2
3 (1− 1

n+1 ) > gsp > 1
3 ;

∗ where 2
3 (1− 1

n+1 ) > 1
3 is defined as the implosion constant at

event e
n
.

B: We further define:

(iii) At event e
0

the universe U explodes and expands ‘instantaneously’—in a
water-to-steam like phase change—to a steady state termed as event e′

0

where:

– The strength of the confinement field, gsp = 1
2 ,

is now greater than:

– The strength of the anti-confinement field, asp = s
3s = 1

3 .

(iv) At any event e′
0

the total energy s of the universe U—which we assume
can neither be created nor destroyed—is subjected to a confinement field
due to gravitational effects that gradually concentrates:

– some energy to form isolated matter;

– some isolated matter to form stars;

– some stars to form supernovas;

– some supernovas to form ‘black holes’;

– some ‘black hole’ to form the first ‘critical black hole’:

∗ which we define as event e′′
0

where e′′
0
≥ e0 ;

∗ during which matter is gradually drawn into the ‘black hole’,

∗ until, at event e
1
, a ‘critical’ proportion of the total energy s of

the parent universe corresponding to the state BAC has been
drawn into the ‘critical black hole’:

· which proportion, without loss of generality, we may take
as 1

2 in this example;

· where we treat event e
1

as a singularity corresponding to
the mid-point of BC;

· such that this energy ( s2 ) has now been ‘confined’ into an

imploding state with asp = 1
3 + 2

3 (1− 1
2 ) = 2

3 > gsp;

- and is extinguished in an ‘instantaneous’ implosion,
defined as the event e

1
≥ e′′

0
,

- which forms an electromagnetically disconnected,
independent, universe;
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- which, without loss of generality, we treat as the
splitting of the energy s of the parent universe U into
two disconnected, isomorphic but not identical, twin
sub-universes corresponding to the states BAC

1,1
and

BAC
1,2

in Fig.2,

- that are situated in common, universal, confinement
and anti-confinement fields G and R;

- and which, without loss of generality, we assume
obey identical laws of nature;

- where the total energy s is now divided equally
between the twin states BAC

1,1
and BAC

1,2
;

- where, without loss of generality, we may assume that
the distribution of particles and their anti-particles
between the twin states BAC1,2 and BAC1,1 is not
necessarily symmetrical.

(v) Whence it follows that:

– The total of any Hawking—or other, similarly putative1—energy
radiated back into the ‘observable’ universe U corresponding to the
state BAC during the period, defined as event e′′

0
, between the creation

of the ‘critical black hole’ and its eventual extinction at event e
1

(corresponding to the mid-point of BC):

∗ is not s/2 (as conventional wisdom would expect in such a
model);

∗ but, if at all, only a tiny fraction of the total energy—which is
now s/2—of each sub-universe;

∗ although each sub-universe:

· unaware of its isomorphic sibling,

· and under the illusion that it is still the entire parent
universe,

· with merely ‘black hole’ concentrates of energy within it,

· which it believes will gradually extinguish once all the
energy has seeped back into its domain as a result of a
putative Hawking, or similar, radiation,

· continues to lay claim to the energy of its extinguished
sibling as ‘dark energy’,

· by an ‘unknowably’ misapplied appeal to the law of preser-
vation of the total energy s of the original universe corre-
sponding to the state BAC;

1‘Putative’ since the existence of such energy may be only on the basis of the debatable—see

§24.6 and §25—mathematical assumption that the limit of the mathematical representations of
a sequence of physical phenomena must necessarily correspond to the putative behaviour of the
physical phenomena in the putative limiting state.
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– Although the universe U is time-reversal invariant, each of the twin
(isomorphic but not identical) sub-universes corresponding to the
states BAC1,1 and BAC1,2 need not be time-reversal invariant, since
the ratio of particles to their anti-particles in each of the twin sub-
universes may no longer be symmetrical;

– Each sub-universe in turn forms the next ‘critical black hole’ singu-
larity;

∗ that implodes similarly at—assumed without loss of generality
as a common—event e2 ,

∗ into two, isomorphic but electro-magnetically disconnected, twin
sub-universes with equal, but asymmetrical, division of energy;

– The universe at event e
2

is a ‘multiverse’ of mutually disconnected 22

sub-universes corresponding to the states {BAC
2,1
, BAC

2,2
, BAC

2,3
, BAC

2,4
};

∗ and so on ad infinitum.

C: In other words, the nth implosion at event en , for n > 1, is when the universe
U is confined into the imploding state with a monotonically increased imploding
anti-confinement strength asp = 1

3 + 2
3 (1− 1

n+1 ) > 1
3 ; and its energy divides further—

corresponding to each of the 2n triangles BACn,i on the base BC, where 1 ≤ i ≤ 2n,
dividing further into two similar sub-triangles—where:

(vi) The total energy corresponding to each of the 2n triangles after the event
en is s/2n−1 for n > 0;

(vii) The strength of the anti-confinement field within each sub-universe remains
constant at asp = 1/3 between events e

n
and e

n+1
, which is below the

minimum imploding asp = 2
3 of event e

1
.

D: We thus have a mathematical model of an exploding and then imploding universe:

(viii) That can be viewed as recycling endlessly in either direction of time;

(ix) Whose state—exploding, steady, or imploding—at any event e is deter-
mined by the strength of an anti-confinement field that—in the direction
of time chosen in this example—regularly impels U to split itself into a
monotonically increasing number of isomorphic, but electromagnetically
disconnected, sub-universes, all situated in a common confinement/anti-
confinement field:

– where the laws of nature remain unchanged;

– where, for n > 0, the total energy within each sub-universe at event
en has decreased monotonically to s/2n−1 due to persisting imploding
effects of assumed gravitational/anti-gravitational forces;

– that will further split each sub-universe into two at event en+1 as
illustrated in Fig.2 if the strength of the anti-confinement field is in
the state 1 > asp > 1

3 ;

(x) Where the energy within each sub-universe during the steady state between
events en and en+1 appears as ‘dark’ to its siblings:
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– since it is disconnected from, and disappears forever beyond, their
event-horizon at an implosion;

– and because each sub-universe, unaware of its siblings, assumes that—
since energy can neither be created nor destroyed—the total energy s
of the universe must remain constant within their illusory ‘universe’,
either as visible or as ‘dark’ energy;

– where the distribution of matter outside the critical black hole within
each sub-universe may be perceived at any instant by an observer
within the sub-universe as accelerating away from the observer in an
apparently expanding ‘universe’ whose boundary is quantified by an
ever-increasing value which also tends to a discontinuity as n→∞,
corresponding to the virulence of the virus cluster considered in §24.4,
Case 1(c), Fig.3;

– where any two, isomorphic but electro-magnetically disconnected,
twin sub-universes have equal, but asymmetrical, division of energy;

(xi) Where each sub-universe during the steady state between events en and
e
n+1

is expanding at an accelerating rate since the ‘cosmological constant’

asp = 1
3 > 0;

(xii) The energy within each sub-universe at the limiting Zeno-type phase-
change point— describable mathematically as ‘n→∞’—implodes finally
to a ‘dark point’ in BC;

(xiii) Where the energy within the universe as a whole experiences a steam-to-
water phase-changing collapse into the original Big Bang configuration
represented by an exploding anti-gravitational state asp = 1 denoted by
BC;

– thus triggering the next cycle of its rebirth (in the chosen time direction
of this example);

25.2. Conclusion

In this investigation we have argued for the plausibility of the thesis (Thesis 25.2)
that if:

(a) a physical process is representable by a Cauchy sequence; and

(b) we accept that there can be no infinite processes, i.e., nothing corresponding
to infinite sequences, in natural phenomena;

then:

(c) in the absence of an extraneous, evidence-based, proof of ‘closure’ which de-
termines the behaviour of the physical process in the limit as corresponding
to a ‘Cauchy’ limit;

(d) the physical process must tend to a discontinuity (singularity) which has
not been reflected in the Cauchy sequence that seeks to describe the
behaviour of the physical process.
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We have highlighted the practical significance of our thesis for the physical
sciences by defining an, in principle verifiable, mathematical model in Fig.2 that can
be interpreted as describing the putative behaviour under a well-defined iteration of:

(i) a virus cluster; and

(ii) an elastic string.

where the physical process in each case can be ‘seen’ to tend to an ‘ultimate’
discontinuity (singularity) which has not been reflected in the Cauchy sequence that
seeks to describe the behaviour of the process.

We have then highlighted the theoretical significance of our thesis for a realistic
philosophy of science by showing that Fig.2 can also be interpreted as representing
the, essentially unverifiable, state of the total energy of:

(iii) a finite Universe U :

– that recycles endlessly from Big Bang to Ultimate Implosion; and

– in which the existence of ‘dark energy’ is mathematically and intu-
itionistically unobjectionable.

Moreover, the only assumptions we have made are that U obeys Einstein’s
equations and classical quantum theory, and that:

Thesis 25.4. The anti-matter in U produces a repulsive, anti-gravitational,
field:

• that is consistent with both general relativity and Newtonian gravity;

• whose state at any instant is either exploding, steady, or imploding;

• whose ‘energy anti-confinement’ strength at any instant is determined
by an anti-gravitational dimensionless ‘cosmological constant’ asp that
can assume any of three values asp = 1 (exploding at the instant of the
Big Bang), asp = 1

3 (steady between an explosion and an implosion) or

asp = 1
3 + 2

3 (1 − 1
n+1 ) (imploding at the instant of the extinguishing of

the nth ‘critical black hole’ for all n ≥ 1);

• which constantly opposes the ‘energy confinement’ strength of the Newto-
nian gravitational field whose state is determined at any instant by only
one dimensionless gravitational constant2 gsp = 1

2 .

Since it is conventional wisdom (see [BCST], [Vi11], [Chr97], [NG91]) that
the existence of anti-matter which could produce a repulsive, anti-gravitational,
field is admitted by both general relativty and Newtonian gravity, we conclude
from Theses 25.2 and 25.4 that the commonly perceived barriers to modelling the
behaviour of such a universe U unambiguously in a mathematical language may
be illusory, and reflect merely an attempt to ask of the language selected for such
representation more than it is designed to deliver unequivocally.

2Which could be viewed as corresponding to the gravitational constant, denoted by G, common
to both Newton’s law of universal gravitation and Einstein’s general theory of relativity; whose

value in Planck units is defined as 1, and whose measured value is expressed in the International

System of Units as approximately 6.674 x 10
−11

N.kg
−2
.m

2
.
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More specifically, from the perspective of the evidence-based reasoning introduced
in [An16], it can reasonably be argued that the commonly perceived barriers to
modelling the behaviour of such a universe U realistically in a mathematical language
may reflect the fact that:

• since the real numbers are defined by conventional wisdom in set-theoretical
terms as the postulated limits of Cauchy sequences in a second-order
dichotomous3 arithmetic such as ACA

0
,

• the prevailing language of choice for representing physical phenomena and
their associated abstractions (conceptual metaphors) mathematically is
generally some language of Set Theory,

• which admits axioms—such as an axiom of infinity—whose veridicality
cannot be evidence-based (in the sense of Chapter 5) under a well-defined
interpretation,

• and in which the dichotomy highlighted in ACA0 could admit a contradic-
tion under any well-defined interpretation of the theory.

25.3. Further directions suggested by this investigation

We note that Fig.2 in §24.3 is not a unique model for the ‘confinement’ properties
of the universe U . For instance, we could have started essentially similar iterations
with a square ABCD of side s.

Moreover, it is not necessary that each ’black hole’ create isomorphic sub-
universes; an assumption intended only to illustrate that an event such as an
Ultimate Implosion is well-definable mathematically.

However, since the Ultimate Implosion is defined as corresponding to a mathe-
matical limit as n → ∞, and we postulate that there are no infinite processes in
physical phenomena, it follows that the law determining such an Ultimate Implosion
(as also the point of implosion of a ‘black hole’) may be of an essentially ‘unknowable’
quantum nature; in which case we cannot even assume in principle that a universe
such as U can be shown to actually exist on the basis of evidence-based reasoning,
nor whether or not it would recycle identically each time (in either direction).

It may thus be worth considering further, by the principle of Occam’s razor,
whether the above simple mathematical model of the properties of a universe U—
which, defined as obeying Einstein’s equations and quantum theory, seems to fit
our known experimental observations—can be taken to suggest that, as implicitly
argued by physicist Sabine Hossenfelder, we may have reached the foundations of
physics beyond which the laws of nature are essentially ‘unknowable’:

“So you want to know what holds the world together, how the universe was

made, and what rules our existence goes by? The closest you will get to an
answer is following the trail of facts down into the basement of science. Folow

it until facts get sparse and your onward journey is blocked by theoreticians
arguing whose theory is prettier. That’s when you know you’ve reached the

foundations.

The foundations of physics are those ingredients of our theories that
cannot, for all we presently know, be derived from anything simpler. At this

3Since we show how—in the case of Goodstein’s Theorem—such a belief leads to a dichotomous

conclusion in Theorem 22.3.
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bottommost level we presently have space, time, and twenty-five particles,
together with the equations that encode their behaviour. . . .

In the foundations of physics we deal only with particles that cannot
be further decomposed; we call them “elementary particles.” For all we

presently know, they have no substructure. But the elementary particles
can combine to make up atoms, molecules, proteins—and thereby create
the enormous variety of structures we see around us. It’s these twenty-five

particles that you, I, and everything else in the universe are made of.

But the particles themselves aren’t all that interesting. What is inter-
esting are the relations between them, the principles that determine their

interaction, the structure of the laws that gave birth to the universe and

enabled our existence. In our game, it’s the rules we care about, not the
pieces. And the most important lesson we have learned is that nature plays

by the rules of mathematics.”

. . . Hossenfelder: [Hos18], p.6.

From the broader, multi-disciplinary, evidence-based perspective of this inves-
tigation, we view Hossenfelder as essentially arguing in [Hos18] that committing
intellectual and physical resources to seeking experimental verification for the puta-
tive existence of physical objects, or of a ‘Theory’, should:

• only follow if such putative objects, or the putative elements of the ‘Theory’,
can be theoretically defined—even if only in principle—in a categorical
mathematical language, such as the first-order Peano Arithmetic, which
(see [An16]) has a finitary evidence-based interpretation, and admits un-
ambiguous communication between any two intelligences—whether human
or mechanistic;

• and not merely on the basis that they can be conceptualised metaphorically
and represented in a set-theoretical language such as ZF which, even
though first-order, has no evidence-based interpretation that would admit
unambiguous communication.
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Is the validity of mathematics under siege?

The importance for mathematicians of an insistence on evidence-based reasoning
highlighted by the gedanken considered in §24.4, §24.5 and §25.1 is reflected in
Simpson’s impassioned plea, in [Sim88], for justifying the increasing abstractness
of mathematical reasoning—and avoiding the consequent dangers of a gradual
diminishing of its utility to societal imperatives—by showing how, and insisting
that, such reasoning refers to reality:

“As to the usefulness of mathematics, opinion is divided. Some see math-
ematics as both a supreme achievement of human reason and, via science

and industry, the benefactor of all mankind. (This is my own view.) Others
believe that mathematics causes only alienation and war. Still others see
mathematics as a useless but harmless pastime. The utility of mathematics

can be argued only as part of a broad defense of reason, science, technology
and Western civilization.

What chiefly concerns us here is not utility but scientific truth. Of
course the two issues are related. Pragmatists might argue that mathematics
is useful and therefore valid. But such an inference can cover only applied

mathematics and is anyhow a non sequitur. It makes much more sense to
argue that mathematics is true and therefore useful. In the last analysis, the
only way to demonstrate that mathematics is valid is to show that it refers
to reality.

And make no mistake about it—the validity of mathematics is under
siege. In a widely cited article [28], Wigner declares that there is no rational

explanation for the usefulness of mathematics in the physical sciences. He
goes on to assert that all but the most elementary parts of mathematics
are nothing but a miraculous formal game. Kline, in his influential book

Mathematics: The Loss of Certainty [17], deploys a wide assortment of

mathematical arguments and historical references to show that “there is no
truth in mathematics.” Klines book was published by the Oxford University

Press and reviewed favorably in the New York Times. (For a much more
insightful review, see Corcoran [4].) Neither Wigner nor Kline is viewed as

an enemy of mathematics. But with friends like these, who needs enemies?

Arguments like those of Kline and Wigner turn up with alarming frequency
in coffee-room discussions and in the popular press. Russell’s famous char-

acterization of mathematics, as “the science in which we never know what

we are talking about, nor whether what we say is true,” is gleefully cited by
every wisecracking sophist.

In the face of the attack on mathematics, what defense is offered by
the existing schools of the philosophy of mathematics? Consider first the

logicists. They say that mathematics is logic, logic consists of analytic truths,
and analytic truths are those which are independent of subject matter. In

short, mathematics is a science with no subject matter. What about the

formalists? According to them, mathematics is a process of manipulating
symbols which need not symbolize anything. Then there are the intuitionists,
who say that mathematics consists of mental constructions which have no

237
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necessary relation to external reality, if indeed there is any such thing as
external reality. Finally we come to the Platonists. They are better than

the others because at least they allow mathematics to have some subject
matter. But the subject matter which they postulate is a separate universe
of objects and structures which bear no necessary relation to the real world

of entities and processes. (They use the term “real world” referring not to
the real real world but to their ideal universe of mathematical objects. The
real real world is absent from their theory.) I submit that none of these

schools is in a position to defend mathematics against the Russells and the
Klines.

The four schools discussed in the previous paragraph are not very far

apart. Each of them is based on some variant of Kantianism. Frequently
they merge and blend. Most mathematicians and mathematical logicians
lean toward an uneasy mixture of formalism and Platonism. Uneasiness

flows from the implicit realization that neither formalism nor Platonism
nor the mixture supports a comprehensive view of mathematics and its
applications. There is urgent need for a philosophy of mathematics which
would supply what Wigner lacks, viz. a rational explanation of the usefulness

of mathematics in the physical sciences. Some form of finitistic reductionism
may be relevant here.

I have argued elsewhere that the attack on mathematics is part of a

general assault against reason. But this is not the burden of my remarks
today. What is clear is that mathematicians and philosophers of mathematics
ought to get on with the task of defending their discipline.”

. . . Simpson: [Sim88], §6.1, p.12-15.

26.1. Why Trust a Theory?

The topical relevance of Simpson’s plea—as also of the importance of insistence
on evidence-based reasoning for philosophers of science too—was evidenced at a
workshop in December 2015, convened by the Munich Centre for Mathematical
Philosophy and the Arnold Sommerfeld Center for Theoretical Physics at the Ludwig
Maximilians-Universtät, München, to address the issue:

Why Trust a Theory? Reconsidering Scientific Methodology in Light
of Modern Physics

“Fundamental physics today faces increasing difficulties to find conclusive

empirical confirmation of its theories. Some empirically unconfirmed or
inconclusively confirmed theories in the field have nevertheless attained a
high degree of trust among their exponents and are de facto treated as well

established theories. This situation raises a number of questions that are of
substantial importance for the future development of fundamental physics.
Can a high degree of trust in an empirically unconfirmed or inconclusively
confirmed theory be scientifically justified? Does the extent to which empiri-
cally unconfirmed theories are trusted today constitute a substantial change

of the character of scientific reasoning? Might some important theories of

contemporary fundamental physics be empirically untestable in principle?”
. . . http://www.whytrustatheory2015.philosophie.uni-muenchen.de/index.html.

26.2. A Fight for the Soul of Science

Reflecting the seriousness—and intensity—with which the issue was addressed by
participants, senior science writer Natalie Wolchover reported on the workshop—in
her blogpost [Wol15]—as A Fight for the Soul of Science, where scientists and
philosophers debated to what extent they could responsibly trust string theory, the
‘multiverse’, and other ideas of modern physics that are potentially untestable:
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“Physicists typically think they “need philosophers and historians of science
like birds need ornithologists,” the Nobel laureate David Gross told a roomful

of philosophers, historians and physicists last week in Munich, Germany,
paraphrasing Richard Feynman.

But desperate times call for desperate measures.

Fundamental physics faces a problem, Gross explained—one dire enough to
call for outsiders’ perspectives. “I’m not sure that we don’t need each other

at this point in time,” he said.

It was the opening session of a three-day workshop, held in a Romanesque-

style lecture hall at Ludwig Maximilian University (LMU Munich) one year

after George Ellis and Joe Silk, two white-haired physicists now sitting in
the front row, called for such a conference in an incendiary opinion piece in

Nature. One hundred attendees had descended on a land with a celebrated
tradition in both physics and the philosophy of science to wage what Ellis

and Silk declared a “battle for the heart and soul of physics.”

The crisis, as Ellis and Silk tell it, is the wildly speculative nature of
modern physics theories, which they say reflects a dangerous departure

from the scientific method. Many of todays theorists—chief among them
the proponents of string theory and the multiverse hypothesis—appear
convinced of their ideas on the grounds that they are beautiful or logically

compelling, despite the impossibility of testing them. Ellis and Silk accused
these theorists of “moving the goalposts” of science and blurring the line
between physics and pseudoscience. “The imprimatur of science should be
awarded only to a theory that is testable,” Ellis and Silk wrote, thereby

disqualifying most of the leading theories of the past 40 years. “Only then
can we defend science from attack.”

They were reacting, in part, to the controversial ideas of Richard Dawid,
an Austrian philosopher whose 2013 book String Theory and the Scientific
Method identified three kinds of “non-empirical” evidence that Dawid says can

build trust in scientific theories absent empirical data. Dawid, a researcher
at LMU Munich, answered Ellis and Silk’s battle cry and assembled far-flung
scholars anchoring all sides of the argument for the high-profile event last

week.”
. . . Wolchover: [Wol15].

The challenge faced by the scientists and philosophers, Wolchover reported, was
that:

“As we approach the practical limits of our ability to probe nature’s under-

lying principles, the minds of theorists have wandered far beyond the tiniest
observable distances and highest possible energies. Strong clues indicate that

the truly fundamental constituents of the universe lie at a distance scale 10
million billion times smaller than the resolving power of the LHC. This is
the domain of nature that string theory, a candidate “theory of everything,”

attempts to describe. But it’s a domain that no one has the faintest idea
how to access.

The problem also hampers physicists’ quest to understand the universe on
a cosmic scale: No telescope will ever manage to peer past our universe’s

cosmic horizon and glimpse the other universes posited by the multiverse

hypothesis. Yet modern theories of cosmology lead logically to the possibility
that our universe is just one of many.

Whether the fault lies with theorists for getting carried away, or with nature,

for burying its best secrets, the conclusion is the same: Theory has detached

itself from experiment. The objects of theoretical speculation are now too
far away, too small, too energetic or too far in the past to reach or rule
out with our earthly instruments. So, what is to be done? As Ellis and
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Silk wrote, “Physicists, philosophers and other scientists should hammer out
a new narrative for the scientific method that can deal with the scope of

modern physics.”

“The issue in confronting the next step,” said Gross, “is not one of ideology

but strategy: What is the most useful way of doing science?”

Over three mild winter days, scholars grappled with the meaning of theory,
confirmation and truth; how science works; and whether, in this day and

age, philosophy should guide research in physics or the other way around.

[. . . ]

The German physicist Sabine Hossenfelder, in her talk, argued that progress
in fundamental physics very often comes from abandoning cherished preju-

dices (such as, perhaps, the assumption that the forces of nature must be
unified). Echoing this point, Rovelli said “Dawid’s idea of non-empirical

confirmation [forms] an obstacle to this possibility of progress, because it

bases our credence on our own previous credences.” It “takes away one of the
tools—maybe the soul itself—of scientific thinking,” he continued, “which is
‘do not trust your own thinking.’””

. . . Wolchover: [Wol15].

A dilemma for the philosophers, Wolchover notes, was that the lessons of history
argue against conflating non-empirical argument with testable theory in the physical
sciences1:

“One concern with including non-empirical arguments in Bayesian confirma-
tion theory, Dawid acknowledged in his talk, is “that it opens the floodgates

to abandoning all scientific principles.” One can come up with all kinds of
non-empirical virtues when arguing in favor of a pet idea. “Clearly the risk
is there, and clearly one has to be careful about this kind of reasoning,”

Dawid said. “But acknowledging that non-empirical confirmation is part of
science, and has been part of science for quite some time, provides a better
basis for having that discussion than pretending that it wasn’t there, and

only implicitly using it, and then saying I haven’t done it. Once it’s out in
the open, one can discuss the pros and cons of those arguments within a
specific context.”

The trash heap of history is littered with beautiful theories. The Danish

historian of cosmology Helge Kragh, who detailed a number of these failures
in his 2011 book, Higher Speculations, spoke in Munich about the 19th-
century vortex theory of atoms. This “Victorian theory of everything,”

developed by the Scots Peter Tait and Lord Kelvin, postulated that atoms
are microscopic vortexes in the ether, the fluid medium that was believed

at the time to fill space. Hydrogen, oxygen and all other atoms were, deep
down, just different types of vortical knots. At first, the theory “seemed to
be highly promising,” Kragh said. “People were fascinated by the richness
of the mathematics, which could keep mathematicians busy for centuries, as

was said at the time.” Alas, atoms are not vortexes, the ether does not exist,
and theoretical beauty is not always truth.

Except sometimes it is. Rationalism guided Einstein toward his theory of

relativity, which he believed in wholeheartedly on rational grounds before it
was ever tested. “I hold it true that pure thought can grasp reality, as the
ancients dreamed,” Einstein said in 1933, years after his theory had been

confirmed by observations of starlight bending around the sun.

1Which resonate with the consequences sought to be highlighted in this investigation—for
the mathematical sciences—of conflating algorithmically verifiable reasoning with algorithmically
computable reasonng.
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The question for the philosophers is: Without experiments, is there any way
to distinguish between the non-empirical virtues of vortex theory and those

of Einstein’s theory? Can we ever really trust a theory on non-empirical
grounds?

. . . Wolchover: [Wol15].

Wolchover remarks that—despite serious dissent—a degree of consensus did
take shape over the course of ‘these pressing yet timeless discussions’:

“As for what was accomplished, one important outcome, according to Ellis,

was an acknowledgment by participating string theorists that the theory
is not “confirmed” in the sense of being verified. “David Gross made his

position clear: Dawid’s criteria are good for justifying working on the theory,

not for saying the theory is validated in a non-empirical way,” Ellis wrote in
an email. “That seems to me a good position—and explicitly stating that is

progress.”

In considering how theorists should proceed, many attendees expressed the

view that work on string theory and other as-yet-untestable ideas should
continue. “Keep speculating,” Achinstein wrote in an email after the work-
shop, but “give your motivation for speculating, give your explanations, but

admit that they are only possible explanations.”

“Maybe someday things will change,” Achinstein added, “and the speculations
will become testable; and maybe not, maybe never.” We may never know for
sure the way the universe works at all distances and all times, “but perhaps

you can narrow the live possibilities to just a few,” he said. “I think that
would be some progress.”
. . . Wolchover: [Wol15].

26.3. The Downside of Group-Think

However, some of the more disquieting aspects of seeking such consensus are
reflected in the perspective of one of the dissenters at the workshop, physicist Sabine
Hossenfelder who, in an impassioned recent blogpost [Hos18], seeks to identify
‘group-think’ as responsible to a significant extent for the increasing disassociation
between the abstractness of some currently mainstream ‘unifying’ theories of physical
phenomena, and the sensory observations in which they claim to be rooted:

“Science isn’t immune to group-think. On the contrary: Scientific communi-

ties are ideal breeding ground for social reinforcement.

Research is currently organized in a way that amplifies, rather than allevi-
ates, peer pressure: Measuring scientific success by the number of citations
encourages scientists to work on what their colleagues approve of. Since

the same colleagues are the ones who judge what is and isn’t sound science,
there is safety in numbers. And everyone who does not play along risks

losing funding.

As a result, scientific communities have become echo-chambers of likeminded

people who, maybe not deliberately but effectively, punish dissidents. And
scientists don’t feel responsible for the evils of the system. Why would they?

They just do what everyone else is also doing.

[. . . ]

It happens here in the foundations of physics too.

In my community, it has become common to justify the publication of new
theories by claiming the theories are falsifiable. But falsifiability is a weak
criterion for a scientific hypothesis. It’s necessary, but certainly not sufficient,
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for many hypotheses are falsifiable yet almost certainly wrong. Example: It
will rain peas tomorrow. Totally falsifiable. Also totally nonsense.

Of course this isn’t news. Philosophers have gone on about this for at least
half a century. So why do physicists do it? Because it’s easy and because all

their colleagues do it. And since they all do it, theories produced by such
methods will usually get published, which officially marks them as “good
science”.

In the foundations of physics, the appeal to falsifiability isn’t the only flawed

method that everyone uses because everyone else does.There are also those
theories which are plainly unfalsifiable. And another example are arguments

from beauty.

In hindsight it seems perplexing, to say the least, but physicists published

ten-thousands of papers with predictions for new particles at the Large
Hadron Collider because they believed that the underlying theory must be

natural. None of those particles were found.

Similar arguments underlie the belief that the fundamental forces should be
unified because that’s prettier (no evidence for unification has been found)

or that we should be able to measure particles that make up dark matter
(we didn’t). Maybe most tellingly, physicists in these community refuse to
consider the possibility that their opinions are affected by the opinions of

their peers.

One way to address the current crises in scientific communities is to impose
tighter controls on scientific standards. That’s what is happening in psy-

chology right now, and I hope it’ll also happen in the foundations of physics
soon. But this is curing the symptoms, not the disease. The disease is a
lacking awareness for how we are affected by the opinions of those around

us.

The problem will reappear until everyone understands the circumstances

that benefit group-think and learns to recognize the warning signs: People
excusing what they do with saying everyone else does it too. People refusing
to take responsibility for what they think are “evils of the system.” People

unwilling to even consider that they are influenced by the opinions of others.
We have all the warning signs in science—had them for decades.

Accusing scientists of group-think is standard practice of science deniers.
The tragedy is, there’s truth in what they say. And it’s no secret: The

problem is easy to see for everyone who has the guts to look. Sweeping the
problem under the rug will only further erode trust in science.”
. . . Hossenfelder: [Hos18].

That Hossenfelder makes a significant point is undeniable. Whether or not
group-think is to be held mainly responsible—for the persisting acceptance of
untestable beliefs as reliable science for an understanding of the laws of nature that
we believe underlie our observations of physical phenomena—is debatable.

From the evidence-based perspective of this investigation, we tend to view the
increasing disassociation between the abstractness of some currently mainstream
‘untestable’ theories of physical phenomena, and the sensory observations in which
they claim to be rooted, as reflecting more the argument that:

Thesis 26.1. It is the mathematicians who are ultimately responsible (in the
sense of Chapter 23) for ensuring that the veridicality of the axiomatic propositions of
the language in which such abstractions (which we view as the conceptual metaphors
defined by Lakoff and Núñez in [LR00]) are adequately expressed and effectively
communicated is evidence-based.
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However, since theories that are ‘empirically untestable in principle’ are not
only (compare §23.2):

Beliefs that we hold to be ‘true’ in an absolute, Platonic, sense, and have in
common with others holding similar beliefs as absolute, Platonic, ‘truths’

but, by implicit definition, beliefs that cannot yield any productive insight on the
nature of the information sought to be expressed and conveyed by the underlying
theories, Hossenfelder’s criticism—even if viewed as mis-directed—would appear to
be as justified as her disquietitude at:

“. . . the belief that the fundamental forces should be unified
because that’s prettier (no evidence for unification has been
found) or that we should be able to measure particles that make
up dark matter (we didn’t).”

Moreover, from the evidence-based perspective of this investigation, Hossen-
felder’s argument—that we need to be aware of, and compensate for, the downside of
‘group-think’ when it discourages search for alternative explanations of challenging
phenomena that may require us to step outside the comfort zone of our credences—is
supported by the argument:

(i) in §25.1 that positing the existence of putative ‘dark matter’ particles is
not mathematically necessary;

(ii) in §25.1 that positing the existence of putative ‘multiverses’ in which the
laws of nature are substantially different is not mathematically necessary;

(iii) in §28(b) that positing putative non-locality in the EPR argument by
appeal to Bell’s Theorem appears necessary only because of the tacit—
and unsustainable—belief of conventional wisdom2 that the mathematical
representations of all natural phenomena must obey a ‘unified’ logic.

A more insightful interpretation of the EPR thesis follows once we recog-
nise that any mathematical language which can adequately express and
effectively communicate the laws of nature may be consistent under two,
essentially different but complementary and not contradictory, logics for
assigning truth values to the propositions of the language.

It would further follow, then, that:

(a) whereas the mathematical representations of all natural phenomena
which is both determinate and predictable must necessarily be defined
in terms of classical, algorithmically computable, functions;

(b) the mathematical representations of quantum phenomena may be in
terms of functions that are algorithmically verifiable, but not algo-
rithmically computable—in which case such phenomena would be
determinate but not predictable (and their mathematical representa-
tions need not be subject to Bell’s Theorem).

2‘Group-think’ in Hossenfelder’s lexicon! Eerily reminiscent of the pre-Einstein belief in an
all-pervasive Newtonian ‘aether’ populating an absolute frame of reference.
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26.4. Why mathematics may be viewed as merely an amusing game

“Finitistic reasoning is unique because of its clear real-world meaning and
its indispensability for all scientific thought. Non-finistic reasoning can

be accused of referring not to anything in reality but only to arbitrary

mental constructions. Hence non-finistic mathematics can be accused of
being not science but merely a mental game played for the amusement of

mathematicians.”

. . . Simpson: [Sim88], §6.4, p.15.

The question arises:

Query 26.2. In what sense—if at all—can mathematicians be held responsible
(in the sense of Chapter 23) for ensuring that the veridicality of the axiomatic
propositions of the language—in which natural scientists and philosophers seek
to adequately express and effectively communicate their sensory perceptions and
associated abstractions—is evidence-based?

There are two issues involved here:

(1) Is it possible to develop an evidence-based language of adequate expres-
sion for the sensory perceptions of the physical sciences; and of effective
communication for their associated philosophical abstractions?

(2) Do mathematicians believe that their primary responsibility is to develop
such a language?

The first issue resolves straightforwardly in an affirmative if we accept both:

(a) Thesis 44.1 that the first-order Set Theory ZFC is sufficient for a human
intelligence to express the conceptual metaphors that correspond to both:

- the sensory perceptions observed and recorded by the physical sciences;

- and the associated abstractions in which philosophers form consis-
tent narratives of a commonly perceived external world that—when
expressed in a symbolic language, and viewed as semiotic strings—
can themselves be treated as giving rise to further, albeit artificially
‘created’, sensory perceptions;

and

(b) Thesis 27.5 that the first-order Peano Arithmetic PA is categorical, and
is thus both necessary and sufficient for a mechanical intelligence3 (ergo,
also for a human intelligence) to effectively communicate those conceptual
metaphors of the physical and philosophical sciences that are evidence-
based.

The second issue, too, would resolve straightforwardly in the affirmative if
mathematicians could be seen as recognising, and embracing, the significance of (a).

However, it would not be unreasonable to hold that—influenced in no small
measure by G. H. Hardy’s impassioned defence, in A Mathematician’s Apology
[Ha40], of the practice of mathematics purely for its intrinsic aesthetics—an enviable

3The wider significance of relying on a mechanical intelligence as the standard is seen in §23.5
and Query 23.3, where we consider the question of whether a fear of actively seeking an ETI is
merely paranoia, or whether it has a rational component.
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illusion of a mathematician in an ivory tower, occupied in intellectually absorbing—
even if not amusing—scribbles that need not have any relevance to the world outside,
has gradually become the preferred narrative—attractive even to mathematicians.

That such narrative is not without basis follows since, from the evidence-based
perspective of this investigation, it appears that, currently, the majority when
wearing a mathematician’s hat (see Chapter 23) follow, but do not seek evidence-
based reasoning for, Hilbert’s non-finitary reasoning and:

(i) explicitly accept (Aristotle’s particularisation) that the formula [(∃x)F (x)]
of a formal mathematical language L can be interpreted Platonically over
an infinite domain D as the proposition ‘There is some element a of D
such that F ∗(a)’, where the proposition F ∗(a) is the interpretation of the
L-formula [F (a)] in D, and where there need not—even in principle—be
any evidence for the existence of such an element a in the domain D;

(ii) implicitly accept (a); but

(iii) conclude from Gödel’s reasoning in [Go31] that there are undecidable
formulas in PA—a false conclusion (see Corollary 11.9) that does not admit
(b);

whilst the rest, despite following Brouwer’s more constructive reasoning, also do not
seek to apply evidence-based reasoning strictly when:

(iv) denying (Aristotle’s particularisation) that the formula [(∃x)F (x)] of a
formal mathematical language L can be interpreted unrestrictedly over an
infinite domain D as the proposition ‘There is some element a of D such
that F ∗(a)’;

(v) implicitly rejecting (a) by holding that there can be no intuitively un-
objectionable interpretation of ZFC, thereby denying that ZFC can be
interpreted in terms of Lakoff and Núñez’s conceptual metaphors; and

(vi) believing that Aristotle’s particularisation entails both the law of the
excluded middle, and therefore the standard first-order logic FOL (in
which this law is a theorem), have no finitary interpretation—a false belief
(see Corollary 9.11) which does not admit (b).

Moreover:

- not only classical conventional wisdom based on Hilbert’s approach to,
and development of, proof theory (see, for instance, [RS17]; also [Mycl]),

- but even strictly constructive perspectives (as articulated, for instance, in
[Ba05] or [Shr13]);

fail to distinguish between the multi-dimensional nature of the logic of a formal
mathematical language (Definition 21.5), and the one-dimensional nature of the
veridicality of its assertions, since both fail to adequately distinguish that:

(α) Whereas the goal of classical mathematics, post Peano, Dedekind and
Hilbert, has been:
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– to uniquely characterise each informally defined mathematical struc-
ture (e.g., the Peano Postulates and its associated classical predicate
logic)

– by a corresponding formal first-order language, and a set of finitary
axioms/axiom schemas and rules of inference (e.g., the first-order
Peano Arithmetic PA and its associated first-order logic FOL)

– which assign unique provability values to each well-formed proposition
of the language;

(β) The goal of constructive mathematics, post Brouwer and Tarski, has been:

– to assign unique, evidence-based, truth values to each well-formed
proposition of the language

– under a constructively well-defined interpretation over the domain
of the structure (when viewed as a ‘conceptual metaphor’ in the
terminology of [LR00]).

The goals of the two activities ought to, thus, be viewed as necessarily com-
plementing each other, rather than being treated as independent of, or in conflict
with, each other as to which is more ‘foundational’—as is, for instance, misleadingly
argued4 on the one hand in the following remarks of constructivist Errett Bishop
and, on the other by classicist Penelope Maddy in [Ma18] and [Ma18a]:

“The use of a formal mathematical system as a programming language
presupposes that the system has a constructive interpretation. Since most
formal systems have a classical, or nonconstructive, basis (in particular, they

contain the law of the excluded middle), they cannot be used as programming
languages.

The role of formalisation in constructive mathematics is completely distinct

from its role in classical mathematics. Unwilling—indeed unable, because of

his education—to let mathematics generate its own meaning, the classical
mathematician looks to formalism, with its emphasis on consistency (either

relative, empirical, or absolute), rather than meaning, for philosophical

relief. For the constructivist, formalism is not a philosophical out; rather
it has a deeper significance, peculiar to the constructivist point of view.

Informal constructive mathematics is concerned with the communication

of algorithms, with enough precision to be intelligible to the mathematical
community at large. Formal constructive mathematics is concerned with

the communication of algorithms with enough precision to be intelligible to
machines.”
. . . Bishop: [Bi18], pp.1-2.

One could reasonably argue, further, that it is this internal focus on debating
as to which mathematical language is more ‘foundational’ that has obscured both
their internal contradictions (see, for instance, §22.2 and Theorem 22.3), and a more
responsible, external, appreciation of the very raison d’être of any mathematical
language which, as highlighted in Chapter 23 (and by the issues raised in §25 relating
to the three gedanken considered in §24.3), is to eliminate ambiguity in the precise
expression and unambiguous communication of:

4Mistakenly in Bishop’s case, since (a) Theorem 10.2 shows that the first-order Peano
Arithmetic PA can be used as a programming language; and (b) Bishop erroneously (see Corollary

9.11) treats the law of the excluded middle—ergo the classical first-order logic FOL in which this
law is a theorem—as ‘nonconstructive’.
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- first, a natural scientist’s recording of our sensory perceptions and their
associated perceptions of a ‘common’ external world; and

- second, a philosopher’s abstractions of a coherent, holistic, perspective
of the ‘common’ external world from our sensory perceptions and their
associated perceptions.





Part 8

The significance of evidence-based
reasoning for some grey areas in
the foundations of the Physical

Sciences





CHAPTER 27

The argument for Lucas’ Gödelian Argument

Although the philosophical ramifications of John Lucas’ original Gödelian
argument against a reductionist account of the mind ([Lu61] deserve consideration
that lie beyond the immediate implications of that paper, we draw attention to his
informal defence of his Gödelian Thesis, where he concludes with the remarks:

“Thus, though the Gödelian formula is not a very interesting formula to
enunciate, the Gödelian argument argues strongly for creativity, first in
ruling out any reductionist account of the mind that would show us to be,

au fond, necessarily unoriginal automata, and secondly by proving that the
conceptual space exists in which it intelligible to speak of someone’s being
creative, without having to hold that he must be either acting at random or

else in accordance with an antecedently specifiable rule”.
. . . Lucas: [Luxx].

We shall only seek here the significance of evidence-based reasoning for Lu-
cas’ Gödelian Thesis (as also for philosophy and the physical sciences), which is
illuminated by viewing the—seemingly conflicting—classical and intuitionistic inter-
pretations of quantification as yielding two, essentially different, interpretations of
the first-order Peano Arithmetic PA (over the structure N of the natural numbers)
that are complementary, and not contradictory ([An15]).

We note that the former yields the standard interpretation M of PA over N,
which is defined relative to the assignment TM of algorithmically verifiable Tarskian
truth values to the compound formulas of PA under M (Theorem 7.7 in §7.1),
and which circumscribes the ambit of non-finitary human reasoning about ‘true’
arithmetical propositions.

The latter yields a finitary interpretation B of PA over N, which is constructively
well-defined relative to the assignment TB of algorithmically computable Tarskian
truth values to the compound formulas of PA under B (Theorem 9.7 in §9.1 The well-
definedness follows from the finitary proof of consistency for PA detailed therein),
and which circumscribes the ambit of finitary mechanistic reasoning about ‘true’
arithmetical propositions.

The complementarity can also be viewed as validating Lucas’ Gödelian argument,
if we treat it as the claim that:

Theorem 27.1. There can be no mechanist model of human reasoning if the
standard interpretation M of PA can be treated as circumscribing the ambit of human
reasoning about ‘true’ arithmetical propositions, and the finitary interpretation B of
PA can be treated as circumscribing the ambit of mechanistic reasoning about ‘true’
arithmetical propositions.

251
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Proof. Gödel has shown how to construct an arithmetical formula with a
single variable—say [R(x)] (Gödel refers to this formula only by its Gödel number r
in [Go31], p.25(12))—such that:

• [R(x)] is not PA-provable; but

• [R(n)] is instantiationally PA-provable for any specified P numeral [n].

Hence, for any specified numeral [n], Gödel’s primitive recursive relation
xBd[R(n)]e must hold for some natural number m:

• where xBy denotes Gödel’s primitive recursive relation ([Go31], p. 22(45)):

‘x is the Gödel-number of a proof sequence in PA whose last term is the
PA formula with Gödel-number y’;

• and d[R(n)]e denotes the Gödel-number of the PA formula [R(n)];

If we assume that any mechanical witness can only reason finitarily then
although, for any specified numeral [n], a mechanical witness can give evidence
under the finitary interpretation B that the PA formula [R(n)] holds in N, no
mechanical witness can conclude finitarily under the finitary interpretation B of
PA that, for any specified numeral [n], the PA formula [R(n)] holds in N.

However, if we assume that a human witness can also reason non-finitarily, then
a human witness can conclude under the non-finitary standard interpretation M of
PA that, for any specified numeral [n], the PA formula [R(n)] holds in N. �

27.1. A definitive Turing-test

“Let us fix our attention on one particular digital computer C. Is it true that

by modifying this computer to have an adequate storage, suitably increasing
its speed of action, and providing it with an appropriate programme, C can
be made to play satisfactorily the part of A in the imitation game, the part of

B being taken by a man? . . . In short, then, there might be men cleverer than
any given machine, but then again there might be other machines cleverer
again, and so on.”

. . . A. M. Turing (1950), [Tu50], §5 and Objection (3).

Theorem 27.1 can also be viewed as a definitive Turing-test between a logician and
any Turing machine TM.

In other words, we can demonstrate that the algorithmically computable archi-
tecture of any conceivable Universal Turing machine has inherent limitations which
constrain it from answering Query 27.2 affirmatively; whereas the human brain is
not constrained similarly.

Of course, such a demonstration can be considered a ‘Turing-test’ with respect
only to presumption of an implicit quantitive element in Turing’s intent in the
above quote; where he ostensibly seems to query only qualitatively whether the
mathematical reasoning ability of the brain of a human being, considered as a species
(and not that of any individual human in particular), is demonstrably superior,
or cleverer, than the mathematical reasoning ability of any conceivable Universal
Turing machine (and not that of only some individually architectured machine).

Query 27.2. Can you prove that, for any given numeral [n], Gödels arithmetic
formula [R(n)] is a theorem in the Peano Arithmetic PA, where [R(x)] is defined by
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its Gödel number r in eqn.12 on p.25 of [Go31]; and [(∀x)R(x)] is defined by its
Gödel number 17Gen r? Answer only either ‘Yes’ or ‘No’.

Logician: Yes.

(By Gödels reasoning on p.26(2) of [Go31], for any given numeral [n] the
formula [R(n)] is entailed by the axioms of PA; even though the formula
[(∀x)R(x)] is not a theorem in PA.)

TM : No.

(By Corollary 8.2 in [An16], the formula [¬(∀x)R(x)] is provable in PA
and so, by Theorem 7.1 in [An16], no Turing machine can prove that the
formula with Gödel number 17Gen r is a theorem in PA and, ipso facto,
conclude that, for any given numeral [n], Gödels arithmetic formula [R(n)]
is a theorem in PA.)

A prescient appreciation of Theorem 27.1 can be read into Tarski’s ‘humorous
interpretation’ of Gödel’s argument in [Go31] that there are arithmetical proposi-
tions which are ‘true’ under the weak, verifiable, standard interpretation of PA, but
formally unprovable in PA:

“So it turned out that the solution of the decision problem in its most general
form is negative. I have no doubt that many mathematicians experienced a
profound feeling of relief when they heard of this result. Perhaps sometimes

in their sleepless nights they thought with horror of the moment when some
wicked metamathematician would find a positive solution of the problem, and
design a machine which would enable us to solve any mathematical problem

in a purely mechanical way, so that any further creative mathematical
thought would become a worthless hobby. The danger is now over, that
such a robot will ever be created; mathematicians have regained their raison

dêtre and can sleep quietly.”

. . . Tarski: [Ta39], p.166.

27.2. Evidence-based reasoning and the physical sciences

We note that, beyond its explicitly stated mathematical implications, Theorem 27.1
justifies the argument in [An13] and [An15a] (see also Chapter 29), that resolving
seemingly paradoxical arguments such as ‘EPR’ or ‘Schrödinger’s cat’ may require
two, essentially different, Logics (in the sense of [An15a], Definition 1) since:

(i) the weak, verifiable, standard interpretation IPA(N,SV ) of PA can be viewed
as corresponding to the way human intelligence conceptualises, symbolically
represents, and logically reasons about, those sensory perceptions that are
triggered by physical processes which can be treated as representable—
not necessarily finitarily—by algorithmically verifiable formulas, where a
physical process is posited, or implicitly presumed, under a weak Church-
Turing thesis as effectively computable if, and only if, it’s mathematical
representation is algorithmically verifiable; whilst:

(ii) the strong, finitary, interpretation IPA(N,SC) of PA can be viewed as cor-
responding to the way human intelligence conceptualises, symbolically
represents, and logically reasons about, only those sensory perceptions that
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are triggered by physical processes which can be treated as representable—
finitarily—by algorithmically computable formulas, where a physical pro-
cess is posited, or implicitly presumed, under a strong Church-Turing thesis
as effectively computable if, and only if, it’s mathematical representation
is algorithmically computable.

An insightful and penetrating perspective on the possible—and sometimes
surprising—dynamics of the interactions between human and mechanical intelligences
is offered by physicist Sabine Hossenfelder in her extensively researched, and thought-
provoking, book intended for a multi-disciplinary audience, Lost in Math [Hos18a]:

“Adam works on microbiological growth experiments. Adam formulates

hypotheses and devises research strategies. Adam sits in the lab and handles

incubators and centrifuges. But Adam isn’t a “he.” Adam is an “it.” It’s a
robot designed by Ross King’s team at Aberystwyth University in Wales.

Adam has successfully identified yeast genes responsible for coding certain

enzymes.1

In physics too the machines are marching in. Researchers at the Creative
Machines Lab at Cornell University in Ithaca, New York, have coded software
that, fed with raw data, extracts the equations governing the motion of

systems such as the chaotic double pendulum. It took the computer thirty
hours to re-derive laws of nature that humans struggled for centuries to

find.2

In a recent work on quantum mechanics, Anton Zeilinger’s group used

software—dubbed “Melvin”—to devise experiments that the humans then

performed.3 Mario Krenn, the doctoral student who had the idea of au-

tomating the experimental design, is pleased with the results but says he
still finds it “quite difficult to understand intuitively what exactly is going
on.”

And this is only the beginning. Finding patterns and organizing in-
formation are tasks that are central to science, and those are the exact

tasks that artificial neural networks are built to excel at. Such computers,
designed to mimic the function of natural brains, now analyze data sets that
no human can comprehend and search for correlations using deep-learning

algorithms. There is no doubt that technological progress is changing what
we mean by “doing science.”

I try to imagine the day when we’ll just feed all cosmological data into
an artificial intelligence (AI). We now wonder what dark matter and dark

energy are, but this question might not even make sense to the AI. It will

just make predictions. We will test them. And if the AI is consistently
right, then we’ll know it’s succeeded at finding and extrapolating the right
patterns. That thing, then, will be our new concordance model. We put in
a question, out comes an answer—and that’s it.

If you’re not a physicist, that might not be so different from reading
about predictions made by a community of physicists using incomprehensible

math and cryptic terminology. It’s just another black box. You might even
trust the AI more than us.

But making predictions and using them to develop applications has
always been only one side of science. The other side is understanding. We

don’t just want answers, we want explanations for the answers. Eventually

we’ll reach the limits of our mental capacity, and after that the best we can

1[[Sp10]].
2[[SL09]].
3[[KMFLZ].]
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do is hand over questions to more sophisticated thinking apparatuses. But I
believe it’s too early to give up understanding our theories.

“When young people join my group,” Anton Zeilinger says, “you can
see them tapping around in the dark and not finding their way intuitively.

But then after some time, two or three months, they get in step and they get
this intuitive understanding of quantum mechanics, and it’s actually quite
interesting to observe. It’s like learning to ride a bike.”

And intuition comes with exposure. You can get exposure to quantum

mechanics—entirely without equations—in the video game Quantum Moves.
In this game, designed by physicists at Aarhus University in Denmark,

players earn points when they find efficient solutions for quantum problems,

such as moving atoms from one potential to another. The simulated atoms
obey the laws of quantum mechanics. They appear not like little balls

but like a weird fluid that is subject to the uncertainty principle and can

tunnel from one place to another. It takes some getting used to. But to
the researcher’s astonishment, the best solution they crowd-sourced from

the players’ strategies was more efficient than that found by a computer
algorithm. When it comes to quantum intuition, it seems, humans beat AI.

At least for now.”

. . . Hossenfelder: [Hos18a], pp.132-134.

27.3. Emergence in a Mechanical Intelligence

The question arises:

Query 27.3. To what extent can a mechanical intelligence synthesise logic?

An interesting answer emerges if we accept that a logic of a language can be precisely
defined (Definition 21.5) as a finite set of rules which constructively assign unique
truth values:

(a) Of provability/unprovability to the formulas of the language; and

(b) Of truth/falsity to the sentences of any theory of the language that is
defined semantically by an interpretation of the language over a structure.

It would then follow that, if we are given a first-order language and a structure,
and we take synthesising a logic of the structure to mean identifying both some
finite set of rules as above and an interpretation under which (a) and (b) hold, then
such synthesis should, in principle, be within the ambit of the reasoning ability of a
Turing machine based mechanical intelligence.

In particular, it would then follow from Theorem 10.2 that any such mechanical
intelligence can prove the PA formula:

[(∀x)¬(∀y)(x > y)],

which a human-like intelligence would interpret as the algorithmically computable
true assertion that there is no largest computable natural number.

Now, if we take this assertion as corresponding to cognition of a concept of
infinity, and if we consider such cognition as a sign (if not a definition) of emergence
in an intelligence, the above perspective suggests that:

Thesis 27.4. The concept of infinity is an emergent feature of any Turing
machine based mechanical intelligence founded on the first-order Peano Arithmetic.
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Moreover, since all observations of physical phenomena—whether classical or
quantum—depend upon mechanical artefacts whose logic is limited by Theorem
10.2 to that of a Turing machine, this suggests that:

Thesis 27.5. Since the reasoning underlying the formulations, and interpreta-
tions, of the verifiable laws of both classical and quantum physics based upon the
observations of mechanical artefacts is in terms of functions and (Boolean) relations
that are algorithmically computable as true or false, discovery and formulation of
the laws of both classical and quantum physics lies within the algorithmically com-
putable logic and reasoning of a mechanical intelligence whose logic is circumscribed
by the first-order Peano Arithmetic.

The thesis is also suggested by developments in various areas where, quantita-
tively, the algorithmically computable reasoning ability of a mechanical intelligence
appears to compare with, complement, and even arguably improve upon, the algo-
rithmically computable reasoning ability of a human intelligence:

“We have demonstrated the discovery of physical laws, from scratch, directly
from experimentally captured data with the use of a computational search.
We used the presented approach to detect nonlinear energy conservation laws,

Newtonian force laws, geometric invariants, and system manifolds in various
synthetic and physically implemented systems without prior knowledge about
physics, kinematics, or geometry. The concise analytical expressions that

we found are amenable to human interpretation and help to reveal the
physics underlying the observed phenomenon. Many applications exist for
this approach, in fields ranging from systems biology to cosmology, where

theoretical gaps exist despite abundance in data.

Might this process diminish the role of future scientists? Quite the

contrary: Scientists may use processes such as this to help focus on interesting
phenomena more rapidly and to interpret their meaning.”

. . . Schmidt and Lipson: [SL09], p.85.

“We review the main components of autonomous scientific discovery, and how
they lead to the concept of a Robot Scientist. This is a system which uses

techniques from artificial intelligence to automate all aspects of the scientific
discovery process: it generates hypotheses from a computer model of the
domain, designs experiments to test these hypotheses, runs the physical

experiments using robotic systems, analyses and interprets the resulting

data, and repeats the cycle. We describe our two prototype Robot Scientists:
Adam and Eve. Adam has recently proven the potential of such systems by

identifying twelve genes responsible for catalysing specific reactions in the
metabolic pathways of the yeast Saccharomyces cerevisiae. This work has
been formally recorded in great detail using logic. We argue that the reporting

of science needs to become fully formalised and that Robot Scientists can
help achieve this. This will make scientific information more reproducible and

reusable, and promote the integration of computers in scientific reasoning.

We believe the greater automation of both the physical and intellectual
aspects of scientific investigations to be essential to the future of science.

Greater automation improves the accuracy and reliability of experiments,

increases the pace of discovery and, in common with conventional laboratory
automation, removes tedious and repetitive tasks from the human scientist.”

. . . Sparkes et al: [Sp10], Abstract.

“Quantum mechanics predicts a number of, at first sight, counterintuitive
phenomena. It therefore remains a question whether our intuition is the
best way to find new experiments. Here, we report the development of the
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computer algorithm Melvin which is able to find new experimental imple-
mentations for the creation and manipulation of complex quantum states.

Indeed, the discovered experiments extensively use unfamiliar and asymmet-
ric techniques which are challenging to understand intuitively. The results
range from the first implementation of a high-dimensional Greenberger-

Horne-Zeilinger state, to a vast variety of experiments for asymmetrically
entangled quantum states—a feature that can only exist when both the
number of involved parties and dimensions is larger than 2. Additionally,

new types of high-dimensional transformations are found that perform cyclic
operations.Melvin autonomously learns from solutions for simpler systems,
which significantly speeds up the discovery rate of more complex experiments.
The ability to automate the design of a quantum experiment can be applied

to many quantum systems and allows the physical realization of quantum
states previously thought of only on paper.”
. . . Krenn, Malik, Fickler, Lapkiewicz and Zeilinger: [KMFLZ], Abstract.

27.4. Constraints on the cognition of a mechanical intelligence

However, we shall now argue that, whereas a human-like intelligence could conceive
of algorithmically verifiable, but not algorithmically computable, functions and
relations that would admit the EPR phenomena—as considered in Chapter §29—
without violating the relativistic constraints noted therein, such conception is not
possible by the logical constraints of a Turing machine based mechanical intelligence
whose logic is circumscribed by the Provability Theorem 10.2 of the first-order Peano
Arithmetic.

Any such a mechanical intelligence would, perforce, have to accept the existence
of the non-locality that lies at the heart of the putative EPR paradox (§29.1) as
indicating the existence of a physical phenomena that is not subject to relativistic
constraints.

That human ‘intuition’ may—as remarked by Hossenfelder in [Hos18] (pp.132-
134)—lie demonstrably beyond the algorithmically computable reasoning ability of
a mechanical intelligence is also suggested by the following observations of a team
of researchers at the Department of Physics and Astronomy, Aarhus University,
Denmark:

“Humans routinely solve problems of immense computational complexity
by intuitively forming simple, low-dimensional heuristic strategies [1, 2,
3]. Citizen science exploits this intuition by presenting scientific research

problems to non-experts. Gamification is an effective tool for attracting
citizen scientists and allowing them to provide novel solutions to the research

problems. Citizen science games have been used successfully in Foldit [4],

EteRNA [5] and EyeWire [6] to study protein and RNA folding and neuron
mapping. However, gamification has never been applied in quantum physics.

Everyday experiences of non-experts are based on classical physics and it is

a priori not clear that they should have an intuition for quantum dynamics.
Does this premise hinder the use of citizen scientists in the realm of quan-

tum mechanics? Here we report on Quantum Moves, an online platform

gamifying optimization problems in quantum physics. Quantum Moves aims
to use human players to find solutions to a class of problems associated

with quantum computing. Players discover novel solution strategies which
numerical optimizations fail to find. Guided by player strategies, a new

low-dimensional heuristic optimization method is formed, efficiently outper-

forming the most prominent established methods. We have developed a
low-dimensional rendering of the optimization landscape showing a growing
complexity when the player solutions get fast. These fast results offer new
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insight into the nature of the so-called Quantum Speed Limit. We believe
that an increased focus on heuristics and landscape topology will be pivotal

for general quantum optimization problems beyond the type presented here.”
. . . Sørensen et al: [Srn16], Abstract.



CHAPTER 28

Can a deterministic universe be unpredictable?

We have argued (in Chapter 23) that the raison d’être of mathematical activity is the
elimination of ambiguity in critical cases, such as the unambiguous representation
and unequivocal communication of our observations of physical phenomena.

We shall further speculate:

(a) First (in §28.1), how constructive mathematics could model a deterministic
universe that is irreducibly probabilistic, since our above investigation
of the limitations of standard interpretations of classical mathematical
logic suggests that, prima facie, the same foundational issues—logical and
mathematical—may be reflected, albeit obliquely, in the dialogue between
Albert Einstein and the adherents of the Copenhagen Interpretation of
quantum mechanics spear-headed by Neils Bohr.

(b) Second (in §29.14), that the paradoxical element which surfaced as a
result of the EPR argument (due to the perceived conflict implied by Bell’s
inequality between the, seemingly essential, non-locality required by current
interpretations of Quantum Mechanics, and the essential locality required
by current interpretations of Classical Mechanics) may reflect merely lack of
recognition that any mathematical language which can adequately express
and effectively communicate the laws of nature may be consistent under
two, essentially different but complementary and not contradictory, logics
for assigning truth values to the propositions of the language, such that
the latter are capable of representing—as deterministic—the unpredictable
characteristics of quantum behaviour.

28.1. The Bohr-Einstein debate

We speculate first on whether constructive mathematics could, in principle, model a
deterministic universe that is irreducibly probabilistic; and suggest a possible resolu-
tion of the Einstein-Bohr debate on the essential nature—and on our mathematical
representation—of the underlying laws of nature that seem to be reflected in our
observations of physical phenomena.

We note that Bohr’s perspective echoes, in a sense, that of Gödel ([Go51])—and
of set-theorists such as Shelah ([She91])—who hold Platonically that the truth
of the formal propositions, or even axioms, of a mathematical language, under a
given interpretation, need not be evidence-based—and may even be unverifiable
effectively.

28.2. Bohr excludes detailed analysis of atomic phenomena

Thus, Bohr remarks that:

259
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“I advocated a point of view, conveniently termed ‘complementarity’, suited
to embrace the characteristic features of individuality of quantum phenomena,

and at the same time to clarify the peculiar aspects of the observational
problem in this field of experience. For this purpose, it is decisive to recognise
that, however far the phenomena transcend the scope of classical physical

explanation, the account of all evidence must be expressed in classical terms.
The argument is simply that by the word ‘experiment’ we refer to a situation
where we can tell others what we have done and what we have learned and

that, therefore, the account of the experimental arrangement and of the
results of the observations must be expressed in unambiguous language with
suitable application of the terminology of classical physics.

. . . in quantum mechanics, we are not dealing with an arbitrary renunciation
of a more detailed analysis of atomic phenomena, but with a recognition
that such an analysis is in principle excluded. The peculiar individuality

of the quantum effects presents us, as regards the comprehension of well-
defined evidence, with a novel situation unforeseen in classical physics
and irreconcilable with conventional ideas suited for our orientation and
adjustment to ordinary experience. It is in this respect that quantum theory

has called for a renewed revision of the foundation for the unambiguous use
of elementary concepts, as a further step in the development which, since the
advent of relativity theory, has been so characteristic of modern science.”

. . . Bohr: [Boh49].

Although Bohr appears to express the need for, and appreciation of, intuitively
unobjectionable foundations for quantum mechanics, his concerns seem, however, to
address only one half of human intellectual endeavour.

• This half would (in the sense of §23.1 (1)):

— first, be the attempt to individually express, within a symbolic lan-
guage:

- an instantaneous state (say, for instance, a hypothetical brain
scan corresponding to the instantaneous tape description of a
Turing machine as detailed in §12.3),

- of the synaptic elements, of the dynamically evolving, neuronic,
activity,

- that can be taken to faithfully represent the physical state of
an individual brain at any instant of time; and

— second, be the subsequent attempt, to individually interpret, and
relate, such symbols of a language to:

- the instantaneous state (hypothetical scan) of the synaptic
elements, of the dynamically evolving, neuronic, activity of the
individual’s brain that can be taken to correspond to a ‘reading’
of the symbols; and

- the cognition of a faithful correspondence with the memory
(hypothetical scan) of a past experience in an individual’s brain.

We may, reasonably, conjecture that what exercised Einstein was:

• The other half of human intellectual activity, which would be that of
determining which, of the concepts that are represented by such expressions,
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can be communicated uniformly in an unambiguous, and effective, manner
that is independent of individual interpretations (in the sense of §23.1 (2)).

As Bohr notes further, Einstein argues that:

“. . . the quantum-mechanical description is to be considered merely as a

means of accounting for the average behaviour of a large number of atomic
systems and his attitude to the belief that it should offer an exhaustive

description of the individual phenomena is expressed in the following words:

‘To believe this is logically possible without contradiction; but it is so very
contrary to my scientific instinct that I cannot forego the search for a more

complete conception’.”

. . . Bohr: [Boh49].

28.3. Einstein admits complete description

In response, Einstein held that:

“I am, in fact, firmly convinced that the essentially statistical character of
contemporary quantum theory is solely to be ascribed to the fact that this

[theory] operates with an incomplete description of physical systems. . . .

What does not satisfy me in that theory, from the standpoint of principle, is
its attitude towards that which appears to me to be the programmatic aim
of all physics: the complete description of any (individual) real situation (as

it supposedly exists irrespective of any act of observation or substantiation).
. . .

Now we raise the question: Can this theoretical description be taken as
the complete description of the disintegration of a single individual atom?
The immediately plausible answer is: No. For one is, first of all, inclined to

assume that the individual atom decays at a definite time; however, such a
definite time-value is not implied in the description by the Ψ-function. If,
therefore, the individual atom has a definite disintegration time, then as
regards the individual atom its description by means of the Ψ-function must

be interpreted as an incomplete description. In this case the Ψ-function
is to be taken as the description, not of a singular system, but of an ideal
ensemble of systems. In this case one is driven to the conviction that a

complete description of a single system should, after all, be possible, but
for such complete description there is no room in the conceptual world of
statistical quantum theory. . . .

One may not merely ask: ‘Does a definite time instant for the transformation
of a single atom exist?’ but rather: ‘Is it, within the framework of our

theoretical total construction, reasonable to posit the existence of a definite
point of time for the transformation of a single atom?’ One may not even

ask what this assertion means. One can only ask whether such a proposition,

within the framework of the chosen conceptual system—with a view to its
ability to grasp theoretically what is empirically given—is reasonable or not.

. . .

Roughly stated the conclusion is this: Within the framework of statistical

quantum theory there is no such thing as a complete description of the

individual system. More cautiously it might be put as follows: The attempt
to conceive the quantum-theoretical description as the complete description

of the individual system leads to unnatural theoretical interpretations, which
become immediately unnecessary if one accepts the interpretation that the

description refers to ensembles of systems and not to individual systems. In

that case the whole ‘egg-walking’ performed in order to avoid the ‘physically
real’ becomes superfluous. There exists, however, a simple psychological
reason for the fact that this most nearly obvious interpretation is being
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shunned. For if the statistical quantum theory does not pretend to describe
the individual system (and its development in time) completely, it appears

unavoidable to look elsewhere for a complete description of the individual
system; in doing so it would be clear from the very beginning that the
elements of such a description are not contained within the conceptual

scheme of the statistical quantum theory. With this one would admit that,
in principle, this scheme could not serve as the basis of theoretical physics.
Assuming the success of efforts to accomplish a complete physical description,

the statistical quantum theory would, within the framework of future physics,
take an approximately analogous position to the statistical mechanics within
the framework of classical mechanics. I am rather firmly convinced that the
development of theoretical physics will be of this type; but the path will be

lengthy and difficult.”

. . . Einstein: [Ei49].

28.4. Do Ψ-functions represent hidden, non-algorithmic, functions?

So, a reasonable view would be that Einstein’s objections were not so much against
a probabilistic interpretation of quantum mechanics—since it is unarguably effective
as a scientific theory—but:

• First, against the absence of suitably intuitive interpretations of such
probabilities; and

• Second, against the denial of a need for intuitively unobjectionable ax-
iomatic foundations for the theory since, without these, its formal assertions
cannot be treated as being capable of unambiguous, and effective, commu-
nication under interpretation by an intelligence—organic or mechanical.

Now, a thesis of this investigation is that the acceptance of non-standard inter-
pretations of Peano Arithmetic and, implicitly, of counter-intuitive interpretations
of quantum mechanics, are both aesthetically unappealing consequences of a failure
to define evidence-based mathematical satisfaction and truth; this would, reasonably,
prevent the postulation of unique values for the outcome of gedanken experiments
that are based on standard interpretations of classical mathematics.

In this investigation we have shown that if we eliminate this lacuna, and
define evidence-based mathematical satisfaction and truth we can, indeed, arrive at
constructive interpretations of Peano Arithmetic which are intuitive, isomorphic,
and verifiably complete.

Hence, it is not unreasonable to conjecture that intuitive, isomorphic, interpre-
tations of quantum mechanical concepts may also follow, in which the functions
(which would include relations treated as Boolean functions) that are represented
by the Ψ-function are algorithmically verifiable, but not algorithmically computable.

A feature of such functions would be that, first, they cannot be introduced
explicitly as primitive symbols into any recursively definable axiomatic theory
without inviting inconsistency; and, second, that although they are algorithmically
uncomputable, there is always some effective method for determining their value
for any given set of values of their free variables—which would correspond to a
measurement, or collapse of the Ψ-function, for that particular set of values.

A consequence of the first is that such, algorithmically uncomputable but
algorithmically verifiable, functions can only be represented in a recursively definable
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axiomatic theory through their values, and that, given any finite set of such values,
based on a sequence of measurements, there are denumerable arithmetic functions
that could generate the measured set in the theory.

The question, thus, as to which particular non-algorithmic function gave rise to a
particular set of values, and so prediction of the value at a subsequent measurement,
cannot, therefore, be determined uniquely within the theory, although algorithmically
computable probabilities associated with a particular determination may be possible,
in the interpretation, if such probabilities refer to events that are predestined, but
the measurement of whose outcomes depend on algorithmically verifiable, but not
algorithmically computable, inter-actions that are yet to unfold, and which involve
the entire universe of particles—a not unreasonable assumption if we posit a Big
Bang where the universe emerges from a single point of discontinuity (such as, for
instance, in the the gedanken considered in §25.1) beyond which nothing can be
‘known’, and must, therefore, always remain inter-connected everywhere in some—
essentially ‘unknowable’—sense as conjectured in this June 22, 2017, Nautilus article
‘What Is Space’ by Jorge Cham and Daniel Whiteson.

Such functions could, thus, effectively be treated as the ‘hidden functions’ of
quantum mechanics. In other words, Ψ-functions, like the Gödel β-functions that
can represent a recursive function within a Peano Arithmetic (cf. [Me64], p131,
Propositions 3.21-3.23), may simply, then, be formal manifestations of such ‘hidden
functions’; speculated upon, for instance, by physicist Diederik Aerts in [Ae98] as
‘hidden measurements’ (see also [AABG]):

“In the hidden measurement formalism that we develop in Brussels we
explain the quantum structure as due to the presence of two effects, (a)
a real change of state of the system under influence of the measurement
and, (b) a lack of knowledge about a deeper deterministic reality of the
measurement process. We show that the presence of these two effects leads
to the major part of the quantum mechanical structure of a theory describing
a physical system where the measurements to test the properties of this
physical system contain the two mentioned effects. We present a quantum
machine, where we can illustrate in a simple way how the quantum structure
arises as a consequence of the two effects. We introduce a parameter ε that
measures the amount of the lack of knowledge on the measurement process,
and by varying this parameter, we describe a continuous evolution from
a quantum structure (maximal lack of knowledge) to a classical structure
(zero lack of knowledge). We show that for intermediate values of ε we find
a new type of structure that is neither quantum nor classical. We analyze
the quantum paradoxes in the light of these findings and show that they
can be divided into two groups: (1) The group (measurement problem and
Schrödinger’s cat paradox) where the paradoxical aspects arise mainly from
the application of standard quantum theory as a general theory (e.g. also
describing the measurement apparatus). This type of paradox disappears
in the hidden measurement formalism. (2) A second group collecting the
paradoxes connected to the effect of non-locality (the Einstein-Podolsky-
Rosen paradox and the violation of Bell inequalities). We show that these
paradoxes are internally resolved because the effect of non-locality turns out
to be a fundamental property of the hidden measurement formalism itself.”
. . . Aerts: [Ae98], Abstract.

28.5. Is a deterministic but not predictable universe consistent?

The question arises: Are our current theories of physics consistent with the concept
of a universe that is completely deterministic, yet not predictable?

http://nautil.us/issue/49/the-absurd/what-is-space?utm_source=Nautilus&utm_campaign=4067a0c131-EMAIL_CAMPAIGN_2017_06_21&utm_medium=email&utm_term=0_dc96ec7a9d-4067a0c131-60720785
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In other words, can the initial conditions and all physical laws at any instant,
say, for instance, at the time of a projected Big Bang, be knowable completely in a
manner that is consistent with our current theories of physics?

28.6. Is our universe deterministic?

As mathematician Ian Stewart observes ([St97], p329), the post-quantum belief
that our universe may be deterministic in a yet unknown, but fundamental, way
(which may not necessarily be predestined) is reflected in Einstein’s remarks, in the
following excerpts from letters to Max Born:

“Quantum mechanics is certainly imposing. But an inner voice tells me that

it is not yet the real thing. The theory says a lot, but does not really bring
us any closer to the secret of the ‘old one’. I, at any rate, am convinced that
He is not playing at dice.”

. . . Einstein: [Bor71], Letter #50 (4th December 1926), p.90.

“You believe in the God who plays dice, and I in complete law and order in a

world which objectively exists, and which I, in a wildly speculative way, am
trying to capture. I firmly believe, but I hope that someone will discover a
more realistic way, or rather a more tangible basis than it has been my lot

to do. Even the great initial success of the quantum theory does not make
me believe in the fundamental dice game ... .”

. . . Einstein: [Bor71], Letter #71 (7th September 1944), p.149.

28.7. Is quantum mechanics ‘irreducibly probabilistic’?

Whilst noting the prevalent view that, despite Einstein’s predilections, the universe,
or at least our present quantum mechanical description of it, is of an “irreducibly
probabilistic character”, Stewart suggests we may need to seriously consider the:

“. . . possibility of changing the theoretical framework of physics altogether, replacing
quantum uncertainty by deterministic chaos, as Einstein would have liked”.

“Chaos was unknown in Einstein’s days, but it was the kind of concept he was
seeking. Ironically, the very image of chance as a rolling cube is deterministic

and classical, not quantum. And chaos is primarily a concept of classical
mechanics. How does the discovery of chaos affect quantum mechanics,
and what support—or otherwise—does it offer for Einstein’s philosophy?

Answers to these questions are, for the moment at least, highly speculative.

There is some interest among physicists in what they call ‘quantum chaos’,
but quantum chaos is about the relations between non-chaotic quantum

systems and chaotic classical approximations—not chaos as a mechanism for
quantum indeterminacy. Quantum chaos . . . is the possibility of changing the

theoretical framework of quantum mechanics altogether, replacing quantum

uncertainty by deterministic chaos, as Einstein would have liked.

It must be admitted at the outset that the vast majority of physicists see no

reason to make changes to the current framework of quantum mechanics, in
which quantum events have an irreducibly probabilistic character. Their view

is: ‘If it ain’t broke, don’t fix it.’ However hardly any philosophers of science

are at ease with the conventional interpretation of quantum mechanics, on
the grounds that that it is philosophically incoherent, especially regarding

the key concept of an observation. Moreover, some of the world’s foremost
physicists agree with the philosophers. They think that something is broke,

and therefore needs fixing. It may not be necessary to tinker with quantum

mechanics itself: it may be that all we need is a deeper kind of background
mathematics that explains why the probabilistic point of view works, much
as Einstein’s concept of curved space explained Newtonian gravitation.”



28.7. IS QUANTUM MECHANICS ‘IRREDUCIBLY PROBABILISTIC’? 265

. . . Stewart: [St97], p.330.

We shall now argue that such a ‘deeper kind of background mathematics’
could lie in recognising that the mathematical expression of classical and quantum
mechanics may need two complementary Logics.





CHAPTER 29

Could resolving EPR need two complementary
Logics?

We presume some familiarity with the EPR paradox and other perceived contradic-
tions between classical and quantum mechanical descriptions of physical phenomena,
and show how these might dissolve if a physicist could cogently argue that:

(i) All properties of physical reality are deterministic, but not necessarily
mathematically predetermined—in the sense that any physical property
could have one, and only one, value at any time t(n), where the value is
completely determined by some natural law which need not, however, be
representable by algorithmically computable expressions (and therefore be
mathematically predictable);

(ii) There are elements of such a physical reality whose properties at any time
t(n) are determined completely in terms of their putative properties at
some earlier time t(0).

Such properties are predictable mathematically since they are representable
by algorithmically computable functions. The values of any two such
functions with respect to their variables are, by definition, independent of
each other and must, therefore, obey Bell’s inequality.

The Laws of Classical Mechanics determine the nature and behaviour of
such physical reality only, and circumscribe the limits of reasoning and
cognition in any emergent mechanical intelligence;

(iii) There could be elements of such a physical reality whose properties at
any time t(n) cannot be theoretically determined completely from their
putative properties at some earlier time t(0).

Such properties are unpredictable mathematically since they are only
representable mathematically by algorithmically verifiable, but not algo-
rithmically computable, functions. The values of any two such functions
with respect to their variables may, by definition, be dependent on each
other and need not, therefore, obey Bell’s inequality.

The Laws of Quantum Mechanics determine the nature and behaviour of
such physical reality, and circumscribe the limits of reasoning and cognition
in any emergent humanlike intelligence.

In other words, we shall argue that the finitary, agnostic, perspective developed
in §3.3 to §27.3 may be the appropriate one from which to view the anomalous
philosophical issues underlying some current concepts of quantum phenomena, such
as:

267
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• Indeterminacy;

• Bell’s inequalities;

• The EPR paradox;

• Fundamental dimensionless constants;

• Conjugate properties;

• Entanglement;

• Schrödinger’s cat paradox.

29.1. The Copenhagen interpretation of Quantum Theory

We begin by briefly reviewing that, amongst the philosophically disturbing features
of the standard Copenhagen interpretation of Quantum Theory, are:

— its essential indeterminateness;

“It is a general principle of orthodox formulations of quantum theory that
measurements of physical quantities do not simply reveal pre-existing or

predetermined values, the way they do in classical theories. Instead, the

particular outcome of the measurement somehow “emerges” from the dy-
namical interaction of the system being measured with the measuring device,

so that even someone who was omniscient about the states of the system

and device prior to the interaction couldn’t have predicted in advance which
outcome would be realized”.

. . . Goldstein et al: [Sh+11].

— which was illustrated dramatically by Erwin Schrödinger’s caustic observa-
tion regarding the philosophical consequences of the proposed mathematical
interpretation of the ψ-function if taken to imply that the objective state
of nature is essentially probabilistic;

“One can even set up quite ridiculous cases. A cat is penned up in a steel

chamber, along with the following device (which must be secured against
direct interference by the cat): in a Geiger counter there is a tiny bit of

radioactive substance, so small, that perhaps in the course of the hour one

of the atoms decays, but also, with equal probability, perhaps none; if it
happens, the counter tube discharges and through a relay releases a hammer
which shatters a small flask of hydrocyanic acid. If one has left this entire

system to itself for an hour, one would say that the cat still lives if meanwhile
no atom has decayed. The ψ-function of the entire system would express

this by having in it the living and dead cat (pardon the expression) mixed
or smeared out in equal parts”.
. . . Schrödinger: [Sc35], §5.

— and its separation of the world into ‘system’ and ‘observer’ (cf. [Sh+11]).

In 1935 Albert Einstein, Boris Podolsky and Nathan Rosen noted ([EPR35])
that accepting Quantum Theory, but denying these features of the Copenhagen
interpretation, logically entails accepting:

— either that the world is non-local (thus contradicting Special Relativity);

“‘Non-local’ . . . means that there exist interactions between events that are too
far apart in space and too close together in time for the events to be connected

even by signals moving at the speed of light”.

. . . Goldstein et al: [Sh+11].
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— or that there are hidden variables which would eliminate the need for ac-
cepting these features as necesary to any sound interpretation of Quantum
Theory.

“Traditionally, the phrase ‘hidden variables’ is used to characterize any elements

supplementing the wave function of orthodox quantum theory. . . .

This terminology is, however, particularly unfortunate in the case of the de
Broglie-Bohm theory, where it is in the supplementary variables—definite particle
positions—that one finds an image of the manifest world of ordinary experience”.

. . . Goldstein et al: [Sh+11].

In 1952 David Bohm proposed ([Bo52]) an alternative mathematical develop-
ment of the existing Quantum Theory, which was essentially equivalent to it but
based on Louis de Broglie’s pilot wave theory.

However, even though Bohm’s interpretation eliminated the need for indeter-
minism and the separation of the world into ‘system’ and ‘observer’, it appealed
unappealingly to hidden variables and, presumably, hidden natural laws that—we
may reasonably presume further—were implicitly assumed by Bohm to be repre-
sentable in principle by well-defined classically computable mathematical functions
(which could be considered as having pre-existing or predetermined mathematical
values over the domain over which the functions are well-defined).

Moreover, experiments designed to test whether John Stewart Bell’s math-
ematical inequalities (in [Bl64]) are consistent with observational data, showed
conclusively that any interpretation of Quantum Theory which appeals to (presum-
ably classically computable) hidden variables and functions in the above sense must
necessarily be non-local.

“. . . In the seventies, a sequence of experiments was carried out to test for the
presence of nonlocality in the microworld described by quantum mechanics
(Clauser 1976; Faraci at al. 1974; Freeman and Clauser 1972; Holt and Pipkin

1973; Kasday, Ullmann and Wu 1970) culminating in decisive experiments
by Aspect and his team in Paris (Aspect, Grangier and Roger, 1981, 1982).
They were inspired by three important theoretical results: the EPR Paradox

(Einstein, Podolsky and Rosen, 1935), Bohms thought experiment (Bohm,
1951), and Bells theorem (Bell 1964).

Einstein, Podolsky, and Rosen believed to have shown that quantum
mechanics is incomplete, in that there exist elements of reality that cannot
be described by it (Einstein, Podolsky and Rosen, 1935; Aerts 1984, 2000).

Bohm took their insight further with a simple example: the ‘coupled spin- 1
2

entity’ consisting of two particles with spin 1
2

, of which the spins are coupled

such that the quantum spin vector is a nonproduct vector representing a
singlet spin state (Bohm 1951). It was Bohm’s example that inspired Bell

to formulate a condition that would test experimentally for incompleteness.

The result of his efforts are the infamous Bell inequalities (Bell 1964). The
fact that Bell took the EPR result literally is evident from the abstract of

his 1964 paper:

“The paradox of Einstein, Podolsky and Rosen was advanced

as an argument that quantum theory could not be a complete
theory but should be supplemented by additional variables. These

additional variables were to restore to the theory causality and

locality. In this note that idea will be formulated mathematically
and shown to be incompatible with the statistical predictions of
quantum mechanics. It is the requirement of locality, or more
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precisely that the result of a measurement on one system be
unaffected by operations on a distant system with which it has

interacted in the past, that creates the essential difficulty.”

Bell’s theorem states that statistical results of experiments performed

on a certain physical entity satisfy his inequalities if and only if the reality
in which this physical entity is embedded is local. He believed that if experi-
ments were performed to test for the presence of nonlocality as predicted

by quantum mechanics, they would show quantum mechanics to be wrong,
and locality to hold. Therefore, he believed that he had discovered a way
of showing experimentally that quantum mechanics is wrong. The physics
community awaited the outcome of these experiments. Today, as we know,

all of them agreed with quantum predictions, and as a consequence, it is
commonly accepted that the micro-physical world is incompatible with local
realism.”

. . . Aerts, Aerts, Broekaert and Gabora: [AABG], Introduction.

However, our above investigations into the (apparently unrelated) area of
evidence-based and finitary interpretations of the first order Peano Arithmetic PA
now suggest that:

— If our above presumption concerning an implicit appeal by Bohm and Bell
to functions that are implicitly assumed to be classically computable is
correct,

— then the hidden variables in the Bohm-de Broglie interpretation of Quan-
tum Theory could as well be presumed to involve natural laws which
are mathematically representable only by functions that are algorithmi-
cally verifiable, but not algorithmically computable (hence mathematically
determinate but unpredictable),

— in which case Bohm’s interpretation need not obey Bell’s inequalities and
might, therefore, avoid being held as admitting ‘non-locality’ by Bell’s
reasoning.

29.2. The underlying perspective of this thesis

The underlying perspective of this thesis is that:

(1) Classical physics assumes that all the observable laws of nature can be
mathematically represented in terms of well-defined functions that are
algorithmically computable.

– Since the functions are well-defined, their values are pre-existing
and predetermined as mappings that are capable of being known in
their infinite totalities to an omniscient intelligence, such as Laplace’s
intellect Li, even before the events that the functions describe unfold.

“We may regard the present state of the universe as the effect of
its past and the cause of its future. An intellect which at any given

moment knew all the forces that animate Nature and the mutual

positions of the beings that comprise it, if this intellect were vast
enough to submit its data to analysis, could condense into a single

formula the movement of the greatest bodies of the universe and
that of the lightest atom: for such an intellect nothing could be

uncertain; and the future just like the past would be present before

its eyes.”

. . . Laplace: A Philosophical Essay on Probabilities.

http://ia700506.us.archive.org/10/items/philosophicaless00lapliala/philosophicaless00lapliala.pdf
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(2) However, the overwhelming experimental verification of the mathematical
predictions of Quantum Theory suggests that the actual behavior of the
real world cannot be assumed as pre-existing and predetermined in this
Laplacian sense.

– In other words, the values of functions that describe the consequences
of some experimental interactions are theoretically incapable of being
completely known in advance even to an omniscient intelligence, such
as Laplace’s intellect Li, until after the events that the functions
describe unfold.

So all the observable laws of nature cannot be represented mathemat-
ically in terms of functions that are algorithmically computable.

(3) It follows that:

(a) Either there is no way of representing all the observable laws of nature
mathematically in a deterministic model;

(b) Or all the observable laws of nature can be represented mathematically
in a deterministic model—but in terms of functions that, minimally,
need only be algorithmically verifiable.

(4) The Copenhagen interpretation appears to opt for option (3)(a), and hold
that there is no way of representing all the observable laws of nature
mathematically in a deterministic model.

– In other words, the interpretation is not overly concerned with the
seemingly essential non-locality of Quantum Theory, and its conflict
with the deterministic mathematical representation of the laws of
Special Relativity.

(5) The Bohm-de Broglie interpretation appears to reject option (3)(a), and
to propose a way of representing all the observable laws of nature mathe-
matically in a deterministic model and, presumably, in terms of functions
that are taken implicitly to be algorithmically computable.

– However, the Bohm-de Broglie interpretation has not so far been
viewed as being capable of mathematically avoiding the seemingly
essential non-local feature of Quantum Theory implied by Bell’s
inequalities.

(6) In this investigation we therefore propose option (3)(b); i.e., that the appar-
ently non-local feature of Quantum Theory may actually be indicative of a
non-constructive and ‘counter intuitive-to-human-intelligence’ phenomena
in nature that could, however, be mathematically represented by functions
that:

— are algorithmically verifiable (Definition 5.2);

— but not algorithmically computable (Definition 5.3).

29.3. The EPR paradox

We shall now argue that the EPR paradox is essentially a mathematical argument
whose paradoxical conclusion merely reflects the implicit mathematical ambiguity
in interpreting quantification (highlighted in Chapter 21 and §4.3), and whose roots
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lie in the assumption of conventional Gödelian wisdom that (cf. Tarski’s Theorem
in §4.3):

— The ‘true’ sentences of a theory T (U) cannot be defined algorithmically
by any logic of the formal language L of the theory T (U),

— but are an essential feature of the structure U =< A,α >,

— which is defined by a non-empty domain A, and an algebra α defined over
A.

However, we hold that such a non-constructive perspective implicitly implies
that the concept of ‘truth’ must then ‘exist’ Platonically, in the sense of needing to
be discovered by some witness-dependent means—eerily akin to a ‘revelation’—if
the domain A is infinite.

29.4. Truth-values must be a computational convention

We therefore adopt the constructive perspective of §21.2 that:

— The ‘true’ sentences of a theory T (U) must be defined as objective assign-
ments,

— by a computational convention that is witness-independent,

— in terms of the Tarskian ‘satisfaction’ and ‘truth’ of the corresponding
formulas, over the structure U ,

— of the formal language L of T (U) under a constructive interpretation.

29.5. Chaitin’s constants

We then note that:

(i) All the mathematically defined functions known to, and used by, the ap-
plied sciences are algorithmically computable, including those that define
transcendental numbers such as π, e, etc. They can be computed algorith-
mically as they are all definable as the limit of some well-defined infinite
series of rationals.

(ii) The existence of mathematical constants that are defined by functions
which are algorithmically verifiable but not algorithmically computable—
suggested most famously by Georg Cantor’s diagonal argument—has been
a philosophically debatable deduction.

Such existential deductions have been viewed with both suspicion and
scepticism by scientists such as Henri Poincaré, L. E. J. Brouwer, etc., and
disputed most vociferously on philosophical grounds by Ludwig Wittgen-
stein ([Wi78]).

(iii) A constructive definition of an arithmetical Boolean function [R(x)]
that is true—hence algorithmically verifiable—but not provable in Peano
Arithmetic—hence algorithmically uncomputable (Corollary 11.5)—was
given by Kurt Gödel in his 1931 paper on formally undecidable arithmetical
propositions ([Go31]).
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(iv) The definition of a number-theoretic function that is algorithmically verifi-
able but not algorithmically computable was also given by Alan Turing in
his 1936 paper on computable numbers ([Tu36]).

He defined a halting function, say H(n), that is 0 if, and only if, the
Turing machine with code number n halts on input n. Such a function is
mathematically well-defined, but assuming that it defines an algorithmically
computable real number leads to a contradiction, Turing concluded the
mathematical existence of algorithmically uncomputable real numbers.

(v) A definition of a number-theoretic function that is algorithmically verifiable
but not algorithmically computable was given by Gregory Chaitin ([Ct82]);
he defined a class of constants—denoted by Ω—which is such that if C(n) is
the nth digit in the decimal expression of an Ω constant, then the function
C(x) is algorithmically verifiable but not algorithmically computable.

29.6. Physical constants

Similarly, since a consequence of the Provability Theorem for PA (Theorem 10.2) is
that a PA formula can denote only algorithmically computable constants (Theorem
11.10), some physical constants may be representable by real numbers which are
definable only by algorithmically verifiable but not algorithmically computable func-
tions (compare with §5.3, which addresses Brouwer’s perspective of such functions).

This is suggested by the following perspective of one of the challenging issues in
physics, which seeks to theoretically determine the magnitude of some fundamental
dimensionless constants:

“... the numerical values of dimensionless physical constants are independent of the
units used. These constants cannot be eliminated by any choice of a system of units.
Such constants include:

• α, the fine structure constant, the coupling constant for the electromagnetic
interaction (≈ 1/137.036). Also the square of the electron charge, expressed in
Planck units. This defines the scale of charge of elementary particles with charge.

• µ or β, the proton-to-electron mass ratio, the rest mass of the proton divided by
that of the electron (≈ 1836.15). More generally, the rest masses of all elementary
particles relative to that of the electron.

• αs, the coupling constant for the strong force (≈ 1)

• αG, the gravitational coupling constant (≈ 10−38) which is the square of the

electron mass, expressed in Planck units. This defines the scale of the mass of
elementary particles.

At the present time, the values of the dimensionless physical constants cannot be
calculated; they are determined only by physical measurement. This is one of the
unsolved problems of physics. . . .

The list of fundamental dimensionless constants decreases when advances in physics

show how some previously known constant can be computed in terms of others. A
long-sought goal of theoretical physics is to find first principles from which all of the

fundamental dimensionless constants can be calculated and compared to the measured
values. A successful ‘Theory of Everything’ would allow such a calculation, but so far,
this goal has remained elusive.”

. . . Dimensionless physical constant - Wikipedia

From the perspective of Theorem 11.10 we could thus suggest that:

http://en.wikipedia.org/wiki/Fundamental_physical_constant
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Thesis 29.1. Some of the dimensionless physical constants are only representable
in a mathematical language as real numbers that are defined by functions which are
algorithmically verifiable, but not algorithmically computable.

In other words, we cannot treat such constants as denoting—even in principle—a
measurable limit, as we could a constant that is representable mathematically by a
real number that is definable by algorithmically computable functions.

29.7. Completed Infinities

From the point of view of mathematical philosophy, this distinction would be
intuitively expressed by the assertion that:

• Whilst a symbol for an ‘unmeasurable’ physical constant may be introduced
into a physical theory as a primitive term without inviting inconsistency
in the theory (a consequence of Theorem 19.4), the sequence of digits in
the decimal representation of the ‘measure’ of an ‘unmeasurable’ physical
constant cannot be treated in the mathematical language of the theory as
a ‘completed’ infinite sequence;

• Whereas the corresponding sequence in the decimal representation of
the ‘measure’ of a ‘measurable’ physical constant, when introduced as
a primitive term into a physical theory, can be treated as a ‘completed’
infinite sequence in the mathematical language of the theory without
inviting inconsistency.

Of interest—particularly in view of Theorem 19.4—is the following perspective
on the difficulties of addressing unfinished infinities encountered in the mathematical
representation of physical phenomena:

“. . . we propose that Laplacian determinism be seen in the light of construc-

tive mathematics and Church’s Thesis. This means amongst other things
that infinite sequences (of natural numbers; a real number is then given by

such an infinite sequence) are never ‘finished’, instead we see them developing

in the course of time. Now a very consequent, therefore elegant interpretation
of Laplacian determinism runs as follows. Suppose that there is in the real
world a developing-infinite sequence of natural numbers, say α. Then how

to interpret the statement that this sequence is ‘uniquely determined’ by
the state of the world at time zero? At time zero we can have at most

finite information since, according to our constructive viewpoint, infinity is
never attained. So this finite information about α supposedly enables us to
‘uniquely determine’ α in its course of time. It is now hard to see another
interpretation of this last statement, than the one given by Church’s Thesis,
namely that this finite information must be a (Turing-)algorithm that we

can use to compute α(n) for any n ∈ (N).

With classical logic and omniscience, the previous can be stated thus:

‘for every (potentially infinite) sequence of numbers (an)n∈N taken from
reality there is a recursive algorithm α such that α(n) = an for each n ∈ N.
This statement is sometimes denoted as ‘CTphys’, . . . this classical omniscient

interpretation is easily seen to fail in real life. Therefore we adopt the

constructive viewpoint. The statement ‘the real world is deterministic’ can
then best be interpreted as: ‘a (potentially infinite) sequence of numbers

(an)n∈N taken from reality cannot be apart from every recursive algorithm
α (in symbols: ¬∀α ∈ σωREC∃n ∈ N [α(n) 6= an])’.”

. . . Waaldijk: [Wl03], §7.2, p.24.
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29.8. Zeno’s argument

We note that Zeno’s paradoxical arguments ([Rus37], pp.347-353) highlight the
philosophical and theological dichotomy (addressed in another context in §24.5
and §25) between our essentially ‘continuous’ perception of the physical reality
that we seek to capture with our measurements, and the essential ‘discreteness’
of any mathematical language of Arithmetic in which we seek to express such
measurements.

The distinction between algorithmic verifiability and algorithmic computability
of Arithmetical functions could be seen as reflecting the dichotomy mathematically.

29.9. Classical laws of nature

For instance, the distinction suggests that classical mechanics could be held as com-
plete, and certain in the sense of being predictable, with respect to the algorithmically
computable representations of physical phenomena:

Thesis 29.2. Classical laws of nature determine the nature and behaviour of
all those properties of the physical world which are mathematically describable
completely at any moment of time t(n) by algorithmically computable functions
from a given initial state at time t(0).

29.10. Neo-classical laws of nature

On the other hand, the distinction also suggests that quantum mechanics could be
held as essentially incompletable, and uncertain in the sense of being essentially
unpredictable, with respect to the algorithmically verifiable representation of physical
phenomena:

Thesis 29.3. Neo-classical laws of nature determine the nature and behaviour
of those properties of the physical world which are describable completely at any
moment of time t(n) by algorithmically verifiable functions; however such properties
are not completely describable by algorithmically computable functions from any
given initial state at time t(0).

A putative model for such behaviour is speculated upon by Waaldijk:

“The second way to model our real world is to assume that it is deterministic.
. . . It would be worthwhile to explore the consequences of a deterministic

world with incomplete information (since under the assumption of determi-
nancy in the author’s eyes this comes closest to real life). That is a world in

which each infinite sequence is given by an algorithm, which in most cases

is completely unknown. We can model such a world by introducing two
players, where player I picks algorithms and hands out the computed values
of these algorithms to player II, one at a time. Sometimes player I discloses

(partial) information about the algorithms themselves. Player II can of course
construct her or his own algorithms, but still is confronted with recursive

elements of player I about which she/he has incomplete information”.

. . . Waaldijk: [Wl03], §1.5, p.5.

Since such behaviour follows fixed laws and is determinate (even if not algorith-
mically predictable by classical laws), Albert Einstein could have been justified in
the belief oft ascribed to him as ‘God doesn’t play dice with the world’:
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“Einstein was not prepared to let us do what, to him, amounted to pulling

the ground from under his feet. Later in life, also, when quantum theory had

long since become an integral part of modern physics, Einstein was unable
to change his attitude-at best, he was prepared to accept the existence of
quantum theory as a temporary expedient. ‘God does not throw dice’ was

his unshakable principle, one that he would not allow anybody to challenge.
To which Bohr could only counter with: ‘Nor is it our business to prescribe
to God how He should run the world’.”

. . . Heisenberg: [Hei71]

29.11. Incompleteness: Arithmetical analogy

The distinction also suggests that neither classical mechanics nor neo-classical
quantum mechanics could be described as ‘mathematically complete’ with respect
to the algorithmically verifiable behaviour of the physical world.

The analogy here is that Gödel showed in 1931 ([Go31]) that any formal
arithmetic is not mathematically complete with respect to the algorithmically
verifiable nature and behaviour of the natural numbers (which—as shown in Chapter
§7—is the behaviour sought to be captured by the standard interpretation of PA).

We have, of course, shown that the first-order Peano Arithmetic PA is categorical
(Corollary 11.1)—hence complete—with respect to the algorithmically computable
nature and behaviour of the natural numbers.

In this sense, the EPR paper may not be entirely wrong in holding that:

“We are thus forced to conclude that the quantum-mechanical description
of physical reality given by wave functions is not complete.”

. . . Einstein, Podolsky and Rosen: [EPR35]

29.12. Conjugate properties

The above also suggests that:

Thesis 29.4. The nature and behaviour of two conjugate properties F1 and F2 of
a particle P that are determined by neo-classical laws are described mathematically at
any time t(n) by two algorithmically verifiable, but not algorithmically computable,
functions f1 and f2.

In other words, it is the very essence of the neo-classical laws determining the
nature and behaviour of the particle that—at any time t(n)—we can only determine
either f1(n) or f2(n), but not both.

Hence measuring either one makes the other indeterminate as we cannot go
back in time. This does not contradict the assumption that any property of an
object must obey some deterministic natural law for any possible measurement that
is made at any time.

29.13. Entangled particles

The above similarly suggests that:

Thesis 29.5. The nature and behaviour of an entangled property of two particles
P and Q is determined by neo-classical laws, and are describable mathematically at
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any time t(n) by two algorithmically verifiable—but not algorithmically computable—
functions f1 and g1.

In other words, it is the very essence of the neo-classical laws determining the
nature and behaviour of the entangled properties of two particles that—at any time
t(n)—determining the state of one immediately gives the state of the other without
measurement if the properties are entangled in a known manner.

This does not contradict the assumption that any property of an object must
obey some deterministic natural law for any possible measurement that is made at
any time. Nor does it require any information to travel from one particle to another
consequent to a measurement.

29.14. Schrödinger’s cat

If [F (x)] is an algorithmically verifiable but not algorithmically computable Boolean
function, we can take the query:

Query 29.6. Is F (n) = 0 for all natural numbers?

as corresponding to the Schrödinger question:

Query 29.7. If a live cat and a radioactive atom are locked in a steel chamber
at time t

0
, where the cat’s life or death depended on whether or not the radioactive

atom had decayed and emitted radiation, then can we categorically state that the
cat must be either dead or alive at any given time t > t0 without opening the
chamber?

We can then argue that there is no mathematical paradox involved in Schrödinger’s
assertion that the cat is both dead and alive (in the sense of [Pa08], §2, Inconsistent
beliefs) at any time t1 > t > t0 , where t1 is the time when the chamber is first
opened, if we take this to mean that:

I may either assume the cat to be alive until a given time t1 (in the future,
when the state of the cat is physically determined for the first time), or
assume the cat to be dead until the time t

1
, without arriving at any logical

contradiction in my existing Quantum description of nature.

In other words:

Once we accept Quantum Theory as a valid description of nature, then
there is no paradox in stating that the theory essentially cannot predict
the state of the cat at any moment of future time.

The inability to predict such a state does not arise out of a lack of sufficient
information about the laws of the system that Quantum theory is describing,
but stems from the very nature of these laws.

The mathematical analogy for the above would be (compare with the concept of
‘proximity spaces’ in [SRP17], §2):

Once we accept that Peano Arithmetic is consistent (Theorem 9.10) and
categorical (Corollary 11.1)—which means that any two models of the
Arithmetic are isomorphic—then we cannot deduce from the axioms and
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rules of inference of PA alone (see Theorem 11.7 in §11.2) whether F (n) = 0
for all natural numbers, or whether F (n) = 1 for some natural number, if
[F (x)] is an algorithmically verifiable but not algorithmically computable
Boolean function.
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CHAPTER 30

A brief review

In a paper: ‘The truth assignments that differentiate human reasoning from mecha-
nistic reasoning: The evidence-based argument for Lucas’ Gödelian thesis’, which
appeared in the December 2016 issue of Cognitive Systems Research [An16], we
briefly addressed the philosophical challenge that arises when an intelligence—
whether human or mechanistic—accepts arithmetical propositions as true under
an interpretation—either axiomatically or on the basis of subjective self-evidence—
without any specified methodology for objectively evidencing such acceptance in
the sense of Chetan Murthy and Martin Löb:

“It is by now folklore . . . that one can view the values of a simple functional
language as specifying evidence for propositions in a constructive logic . . . ”.
. . . Chetan. R. Murthy: [Mu91], §1 Introduction.

“Intuitively we require that for each event-describing sentence, φoιnι
say (i.e. the concrete object denoted by nι exhibits the property expressed
by φoι ), there shall be an algorithm (depending on I, i.e. M∗) to decide the

truth or falsity of that sentence.”

. . . Martin H Löb: [Lob59], p.165.

Definition 30.1 (Evidence-based reasoning in Arithmetic). Evidence-based
reasoning accepts arithmetical propositions as true under an interpretation if,
and only if, there is some specified methodology for objectively evidencing such
acceptance.

The significance of introducing evidence-based reasoning for assigning truth
values to the formulas of a first-order Peano Arithmetic, such as PA, under a
well-defined interpretation (see §3 in [An16]), is that it admits the distinction:

(1) algorithmically verifiable ‘truth’ (Definition 30.3); and

(2) algorithmically computable ‘truth’ (Definition 30.4).

Definition 30.2. A deterministic algorithm computes a mathematical function
which has a unique value for any input in its domain, and the algorithm is a process
that produces this particular value as output1.

For instance, under evidence-based reasoning the formula [(∀x)F (x)] of the first-
order Peano Arithmetic PA must always be interpreted weakly under the classical,
standard, interpretation of PA (see [An16], Theorem 5.6) in terms of algorithmic
verifiability (see [An16], Definition 1); where, if the PA-formula [F (x)] interprets
as an arithmetical relation F ∗(x) over N :

Definition 30.3. The number-theoretical relation F ∗(x) is algorithmically
verifiable if, and only if, for any natural number n, there is a deterministic algorithm

1Note that a deterministic algorithm can be suitably defined as a ‘realizer ’ in the sense of the
Brouwer-Heyting-Kolmogorov rules (see [Ba16], p.5).
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AL(F, n) which can provide evidence for deciding the truth/falsity of each proposition
in the finite sequence {F ∗(1), F ∗(2), . . . , F ∗(n)}.

Whereas [(∀x)F (x)] must always be interpreted strongly under the finitary
interpretation of PA (see [An16], Theorem 6.7) in terms of algorithmic computability
([An16], Definition 2), where:

Definition 30.4. The number theoretical relation F ∗(x) is algorithmically
computable if, and only if, there is a deterministic algorithm ALF that can provide
evidence for deciding the truth/falsity of each proposition in the denumerable
sequence {F ∗(1), F ∗(2), . . .}.

The significance of the distinction between algorithmically computable reasoning
based on algorithmically computable truth, and algorithmically verifiable reasoning
based on algorithmically verifiable truth, is that it admits the following, hitherto
unsuspected, consequences:

(i) PA has two well-defined interpretations over the domain N of the natural
numbers (including 0):

(a) the weak non-finitary standard interpretation IPA(N,SV ) ([An16],
Theorem 5.6), and

(b) a strong finitary interpretation IPA(N,SC) ([An16], Theorem 6.7);

(ii) PA is non-finitarily consistent under IPA(N,SV ) ([An16], Theorem 5.7);

(iii) PA is finitarily consistent under IPA(N,SC) ([An16], Theorem 6.8).

The relevance, for this investigation, of distinguishing between algorithmically
verifiable and algorithmically computable number-theoretic functions, as in Def-
initions 30.3 and 30.4, is that it assures us a formal foundation for placing in
perspective, and complementing, an uncomfortably counter-intuitive entailment in
number theory—Theorem 30.11—which has been treated by conventional wisdom
(see §30.3) as sufficient for concluding that the prime divisors of an integer cannot
be proven to be mutually independent.

However, we shall show that such informally perceived barriers are, in this
instance, illusory (§30.4); and that admitting the above distinction illustrates:

(a) Why the prime divisors of an integer are mutually independent (Theorem
31.9);

(b) Why determining whether the signature (Definition 30.5) of a given integer
n—coded as the key in a modified Bazeries-cylinder (Definition 31.1) based
combination lock—is that of a prime, or not, can be done in polynomial
time O(log

e
n) (Theorem 32.2); as compared to the time Ö(log15/2

e
n) given

by Agrawal et al in [AKS04], and improved to Ö(log6
e
n) by Lenstra and

Pomerance in [LP11], for determining whether the value of a given integer
n is that of a prime or not.

(c) Why it can be cogently argued that determining a factor of a given integer
cannot be polynomial time (Hypothesis 32.5).
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Definition 30.5. The2 signature of a given integer n is the sequence of residues
< an,i > where n+ an,i ≡ 0 mod (pi) for all primes pi such that 1 ≤ i ≤ π(

√
n).

Definition 30.6. The value of a given integer n is any well-defined interpretation—
over the domain of the natural numbers—of the (unique) numeral [n] that represents
n in the first-order Peano Arithmetic PA.

We note that Theorem 32.2 establishes a lower limit for [AKS04] and [LP11],
because determining the signature (Definition 30.5) of a given integer n does not
require knowledge of the value (Definition 30.6) of the integer as defined by the
Fundamental Theorem of Arithmetic (Theorem 30.9).

30.1. Are the prime divisors of an integer mutually independent?

We begin by addressing the query:

Query 30.7. Are the prime divisors of an integer n mutually independent?

Definition 30.8. Two events are independent if the occurrence of one event
does not influence (and is not influenced by) the occurrence of the other.

Prima facie, the prime divisors of an integer intuitively seem to be mutually
independent by virtue of the Fundamental Theorem of Arithmetic:

Theorem 30.9. Every positive integer n > 1 can be represented in exactly one
way as a product of prime powers:

n = pn1
1 pn2

2 · · · p
nk
k =

∏k
i=1 p

ni
i

where p1 < p2 < . . . < pk are primes and the ni are positive integers.

Moreover, the prime divisors of n can also be seen to be mutually independent
in the usual, linearly displayed, Sieve of Eratosthenes (see also Chapter 33, Tables
1 and 2), where whether an integer n is crossed out as a multiple of a prime p is
obviously independent (in the sense of Definition 30.8) of whether it is also crossed
out as a multiple of a prime q 6= p:

E(�1), E(2), E(3), E(�4), E(5), E(�6), E(7), E(�8), E(�9), E(��10), E(11), . . .

Despite such compelling evidence—which, admittedly, does fall short of the
criteria of ‘information that we agree to define as true on the basis of a convention’
in §23.2—conventional wisdom appears to unreasonably accept as definitive the
counter-intuitive conclusion (addressed in §30.3) that although we can see it as true,
we cannot mathematically prove the following proposition as true:

Proposition 30.10. Whether or not a prime p divides an integer n is indepen-
dent of whether or not a prime q 6= p divides the integer n.

We note that such an unprovable-but-intuitively-true conclusion is unreasonable
because it makes a stronger assumption than that in Gödel’s similar claim for
his arithmetical formula [(∀x)R(x)]—whose Gödel-number is 17Gen r—in [Go31],
p.26(2). Stronger, since Gödel does not assume his proposition to be intuitively

2Unique since, if p2
π(
√
m)+1

> m ≥ p2
π(
√
m)

and p2
π(
√
n)+1

> n ≥ p2
π(
√
n)

have the same

signature, then |m − n| = c1 .
∏π(

√
m)

i=1 pi = c2 .
∏π(

√
n)

i=1 pi ; whence c1 = c2 = 0 since
∏k
i=1 pi >

(
∏k−2
i=2 pi ).p

2

k
> p2

k+1
for k > 4 by appeal to Bertrand’s Postulate 2.pk > pk+1 ; and the uniqueness

is easily verified for k ≤ 4.
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true, but shows that though the arithmetical formula with Gödel-number 17Gen r
is not provable in his Peano Arithmetic P yet, for any P -numeral [n], the formula

[R(n)] whose Gödel-number is Sb

(
r

17
Z(n)

)
is P -provable, and therefore meta-

mathematically true under any well-defined Tarskian interpretation of P (cf., [An16],
§3.).

Expressed in computational terms (see [An16], Corollary 8.3), under any well-
defined interpretation of P , Gödel’s formula [R(x)] translates as an arithmetical
relation, say R′(x), such that R′(n) is algorithmically verifiable, but not algorithmi-
cally computable, as always true over N , since [¬(∀x)R(x)] is P-provable ([An16],
Corollary 8.2).

We thus argue that a perspective which denies Proposition 30.10 is based on
perceived barriers that reflect, and are peculiar to, only the argument that:

Theorem 30.11. There is no deterministic algorithm3 that, for any given n,
and any given prime p ≥ 2, will evidence that the probability P(p | n) that p divides
n is 1

p , and the probability P(p 6 | n) that p does not divide n is 1− 1
p .

Proof. By a standard result in the Theory of Numbers ([Ste02], Chapter 2,
p.9, Theorem 2.14), we cannot define a probability function for the probability that
a random n is prime over the probability space (1, 2, 3, . . . , ).

The theorem follows. �

However, such a perspective does not consider the possibility—which we show
has significant consequences for the resolution of outstanding problems in both
Computational Complexity and the Theory of Numbers—that there can be al-
gorithmically verifiable number-theoretic functions which are not algorithmically
computable; and that:

Theorem 30.12. For any given n, there is a deterministic algorithm that, given
any prime p ≥ 2, will evidence that the probability P(p | n) that p divides n is 1

p ,

and the probability P(p 6 | n) that p does not divide n is 1− 1
p .

Proof. The proof follows immediately if we take i as p in Corollary 31.4 and
Corollary 31.5. �

30.2. The informal argument for Theorem 30.11

The informal argument that we cannot define a probability function for the proba-
bility that a random n is prime over the probability space (1, 2, 3, . . . , ) (Theorem
30.11)—as also for the belief 5 that whether or not a prime p divides an integer n is

3We note that a deterministic algorithm computes a mathematical function which has a unique

value for any input in its domain, and the algorithm is a process that produces this particular value
as output. It can be suitably defined as a ‘realizer ’ in the sense of the Brouwer-Heyting-Kolmogorov
rules (see [Ba16], p.5).

4Compare with the informal argument in [HL23], pp.36-37; also with that in §30.11.
5Which, arguably, falls within the criteria of ‘information that we hold to be true—short of

Platonic belief —since it can be treated as self-evident ’ (see §23.2).
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not independent of whether or not a prime q 6= p divides the integer n—is expressed
at length in a referee’s critique of the author’s contrary contention:

“My objection is quite simply that I don’t know what you mean by a
randomly given positive integer n. If you want to make sense of it, then

you need to assign to each positive integer n a probability p(n). These

probabilities must have two properties: that they are non-negative, and that
their sum should be 1. If you do that, then you can talk about things like

the probability that m|n. It will be
∑∞
d=1 p(dm).

As an example, setting p(n) = 2−n for n = 1, 2, 3, . . . would satisfy the

conditions for a probability distribution, though obviously this would be

an unsuitable choice for your purposes. But the problem is that every
possible way of choosing the p(n) is unsuitable for your purposes. There

does not exist a way of choosing the p(n) such that for every m the equation∑∞
d=1 p(dm) = 1/m holds.

. . . Consider first the probability of an unspecified integer n being divisible
by an unspecified prime p. Given an arbitrary probability distribution on
the positive integers, there will always be some prime p for which the above

statement is false.

To see this, suppose that the probability that n is chosen is not zero. Let’s
write this probability as q(n). Now choose p so large that 1/p is less than
q(n). Then the probability that the remainder on division by p is n is at
least c(n) (since there is a probability c(n) of choosing the integer n) and
that is greater than 1/p.

. . . A typical way that number theorists deal with a difficulty like this is to
choose a random integer n in the range from N to 2N for some large integer

N . But then you cannot say that the probability that n is a multiple of p is

exactly 1/p—it is only approximately 1/p. And the various events are not
exactly independent but only approximately independent. So there are error

terms involved. And the entire difficulty of the subject is that these error

terms accumulate and it becomes hard to say what the final answer is to
any accuracy.

. . . Let me explain why what I did say is true. We pick an integer n uniformly

at random from the set {N,N + 1, N + 2, , 2N}. What is the probability
that n is even? If N is odd, then exactly half those integers are odd and half
are even.

If N is even, then we can write N = 2M , and in that case of the N + 1
elements of the set, M + 1 are even and M are odd, so the probability that n

is even is (M + 1)/2M . So that’s already an example where the probability
is only approximately equal to 1/p (which in this case is 1/2). In general,

the number of multiples of p in a set of R consecutive integers will be R/p if

p happens to be a factor of R, and otherwise it will be one of the integers
on either side of R/p.

In the second case, which has to happen for several p (since R cannot be
divisible by every prime less than R, or even than the square root of R), the

best we can say is that the probability that an integer chosen uniformly at
random from the R consecutive integers is a multiple of p is approximately
equal to 1/p.

. . . It is possible to define a notion of “density” for sets of integers in such a
way that the density of the set of all integers congruent to a mod p is 1/p

for every a and every p.

. . . It is not possible to define a probability distribution on the integers in
such a way that every integer is chosen with equal probability.

. . . . If you want to claim that you can make sense of the statement:
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‘The probability that an unspecified integer n is divisible by p is
1/p’,

you will need to develop some kind of probability theory that allows you to
do something that conventional probability theory (where you would need

to specify a probability distribution on the positive integers) does not.”

30.3. Conventional wisdom

However, we note that the basis for the conventional wisdom—that whether or not
a prime p divides an integer n is not independent of whether or not a prime q 6= p
divides the integer n—generally appears more faith-based than evidence-based since,
as the following examples show, it is expressed:

(i) either explicitly, but without formal proof:

– “Here is the code of the algorithm. . . . the input x is a product of
two prime numbers, φ is a polynomial in just one variable, and gcd
refers to the greatest-common-divisor algorithm expounded by Euclid
around 300 B.C.

* Repeat until exit:

* a := a random number in 1, . . . , x− 1;

* if gcd(b, x) > 1 then exit.

Exiting enables carrying out the two prime factors of x. . .

How many iterations must one expect to make through this maze
before exit? How and when can the choice of the polynomialφ speed
up the exploration? . . .

Note that we cannot consider the events b ≡ 0 mod(p) and b ≡
0 mod(q) to be independent, even though p and q are prime, because
b = φa and φ may introduce bias.”
. . . Regan: [Re16].

– “. . . the probabilities are not independent. . . . The probability that a
number n is divisible by a prime p is 1/p, if concerning n we know

only that it is large compared with p. If we know that n is near N
2

and not divisible by any prime smaller than p, then the probability
that n is divisible by p is not 1/p, but f/p.”
. . . Furry: [Fu42].

– “Prof. E. M. Wright, some months ago, sent me privately a proof
on somewhat similar lines that that the probabilities could not be

independent for primes greater than n
0.76

.”
. . . Cherwell: [Che42].

– “Find the probability that x, a large integer chosen at random, is a
prime number. . . . If the integer x is not divisible by any prime p which

does not exceed x
1/2

, x itself must be a prime—and so divisibility

by primes exceeding x
1/2

is, in fact, not independent of the smaller
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primes.”6

. . . Pólya: [Pol59].

(ii) or implicitly, by arguing—as, for instance, in [Ste02], Chapter 2, p.9, The-
orem 2.1—that a proof to the contrary must imply that, if P (n is a prime)
is the probability that an integer n has the property of being a prime, then∑∞

i=1
P (i is a prime) = 1.

30.4. Illusory barriers

However, we shall show in Chapter 31 that the barriers faced by conventional wisdom
in addressing Query 30.7 unequivocally are illusory; they dissolve if we differentiate
between the following probabilities:

(i) The probability P1(n ∈ φ) of selecting an integer that has the property φ
from a given set S of integers;

Example 1: If N is the set of natural numbers, what is the probability
of selecting an integer n ∈ N that has the property of being a prime?

We note that since we cannot define a precise ratio of primes to
composites in N , but only an order of magnitude such as O( 1

logen
),

the probability P1(p) ≡ P1(n ∈ N is a prime) of selecting an integer
that has the property of being a prime obviously cannot be defined
in N .

(ii) The probability P2(n ∈ φ) that an unspecified integer, in a given set S of
integers, has the property φ;

Example 2: If N
+

is the set of positive integers, what is the probability

that an unspecified integer n ∈ N+

secreted in a black box is even?

We note that since any n ∈ N+

is either odd or even, the probability

P2(p) ≡ P2(n ∈ N
+

is even) that the unspecified integer n ∈ N
+

secreted in the black box has the property of being even must be 1
2 .

We note that the probability P2(p) ≡ P2(n ∈ N+

is even) cannot

depend upon the probability P
1
(p) ≡ P

1
(n ∈ N+

is even) of selecting

an integer n ∈ N+

that has the property of being even, as the latter

would require7 that
∑∞

i=1
P

2
(i ∈ N+

is even) = 1, which is not the
case in this example.

Such dependence would also appear to eerily echo the curious argument—
preferred by the Copenhagen interpretation of quantum theory (but
shown as violating the principle of Occam’s razor in §29.14)—that
whether or not the putative cat is alive—and not just known to
be alive—at any moment in Schrödinger’s famous gedanken, would
depend ultimately open whether or not we were to open the box at
that moment!

6It is not obvious whether Pólya’s—rather curious—perspective is unconsidered, or whether

it falls within the criteria of ‘information that we hold to be true—short of Platonic belief —since

it can be treated as self-evident ’ (see §23.2).
7See Steuding [Ste02], Chapter 2, p.9, Theorem 2.1.
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(iii) The probability P
3
(n ∈ φ) of determining that a given integer n has the

property φ.

Example 3: I give you a 5-digit combination lock along with a 10-digit
integer n. The lock only opens if you set the combination to a proper
factor of n which is greater than 1. What is the probability that a
given combination will open the lock.

We note that this is the basis for RSA encryption, which provides the
cryptosystem used by many banks for securing their communications.

It is the basis we shall use to illustrate that the probability P
3
(p|n)

of determining that a prime p divides a given integer n is 1
p , and is

independent of whether or not a prime q 6= p divides n.



CHAPTER 31

Why the prime divisors of an integer are mutually
independent

We define the probability P
3
(p|n) of determining (in the sense detailed in §30.4(iii)),

by the spin of a modified Bazeries Cylinder1, that a prime p divides a given integer
n, and show that it is independent of whether or not a prime q 6= p divides n.

Definition 31.1. A modified Bazeries Cylinder is a set of polygonal wheels—not
necessarily identical (such as B

i
and B

j
in Fig. 1 below)—mounted on a common

spindle, whose faces are coded with symbols, where the event B
i
(u) (Fig 2 below)

is the value 0 ≤ u ≤ i− 1 yielded by a spin of a single i-faced Bazeries wheel B
i
,

and the event B
ij

(u, v) (Fig, 3 below) is the value (u, v)—where 0 ≤ u ≤ i − 1
and 0 ≤ v ≤ j − 1—yielded by simultaneous, but independent, spins of an i-faced
Bazeries wheel Bi and a j-faced Bazeries wheel Bj . 2

i faces j faces

Fig. 1. An i-faced Bazeries wheel Bi and a j-faced Bazeries wheel Bj .

Hypothesis 31.2. The event yielded by the simultaneous spins of a set of
Bazeries wheels is random. 2

(1) We consider first, for any given n > i > 1, the probability P
3
(B

i
(u))—over the

probability space (0, 1, 2, . . . , i− 1)—of determining that the spin of the Bazeries
wheel B

i
—with faces numbered 0, 1, 2, . . . , i− 1—yields the event B

i
(u).

u

i faces

Fig. 2. The event Bi (u) for a single i-faced Bazeries wheel Bi

We conclude by Hypothesis 31.2 that, for any 0 ≤ u ≤ i− 1:

Lemma 31.3. P
3
(B

i
(u)) = 1

i . 2

1Compare Bazeries cylinder: https://en.wikipedia.org/wiki/Jefferson disk .
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Now, if n ≡ u (mod i) where i > u ≥ 0, then i divides n if, and only if, u = 0.
The probability P3(i|n) of determining by the spin of a Bazeries wheel whether i
divides n is thus:

Corollary 31.4. P
3
(i|n) = P

3
(B

i
(0)) = 1

i . 2

Hence the probability P3(i 6 | n) of similarly determining that i does not divide
n is:

Corollary 31.5. P3(i 6 | n) = 1− 1
i . 2

(2) We consider next, for any given n > i, j > 1 where i 6= j, the compound
probability P

3
(B

ij
(u, v)) of determining whether the simultaneous, but independent,

spins of the pair of Bazerian wheels B
i
—with faces numbered 0, 1, 2, . . . , i− 1—and

Bj—with faces numbered 0, 1, 2, . . . , j − 1—yields the event Bij (u, v).
u v

i faces j faces

Fig. 3. The event Bij (u, v) for a set of two Bazeries wheels Bi and Bj .

Since the two events B
i
(u) and B

j
(v) are mutually independent by definition,

we conclude by Hypothesis 31.2 that2:

Lemma 31.6. P
3
(B

ij
(u, v)) = P

3
(B

i
(u)).P

3
(B

j
(v)) = 1

ij . 2

(3) We conclude further by Hypothesis 31.2, Lemma 31.3, Corollary 31.4, and Lemma
31.6, that:

Lemma 31.7. P
3
(i|n & j|n) = P

3
(i|n).P

3
(j|n) if, and only if, n > i, j > 1 and

i, j are co-prime. 2

Proof. We note that:

(a) The assumption that i, j be co-prime is sufficient. Thus, if i, j are co-prime,
and:

n ≡ u (mod i), n ≡ v (mod j), n ≡ w (mod ij)
where i > u ≥ 0, j > v ≥ 0, ij > w ≥ 0, then the ij integers v.i+ u.j are
all incongruent and form a complete system of residues3.

Hence i|n and j|n if, and only if, u = v = 0.

It follows that P3(i|n & j|n) = P3(Bij (0, 0)).

By Corollary 31.4, P3(i|n) = P3(Bi(0)) = 1
i and P3(j|n) = P3(Bj (0)) = 1

j .

By Lemma 31.6, P3(Bij (0, 0)) = 1
ij .

Hence, if i, j are co-prime, then P
3
(i|n & j|n) = P

3
(i|n).P

3
(j|n).

2Grinstead and Snell [GS97], Chapter 4, §4.1, Definition 4.2, p.141.
3Hardy and Wright [HW60], p.52, Theorem 59.
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(b) The assumption that i, j be co-prime is necessary.

For instance, if j = 2i, then i|n and j|n if, and only if, v = 0.

Hence P3(i|n & j|n) = P3(Bj (0))

By Corollary 31.4, P3(i|n) = P3(Bi(0)) = 1
i and P3(j|n) = P3(Bj (0)) = 1

j .

Hence P3(i|n & j|n) 6= P3(i|n).P3(j|n).

The lemma follows. �

(4) We thus conclude from Lemma 31.7 that:

Corollary 31.8. If p and q are two unequal primes, P
3
(p|n & q|n) = P

3
(p|n).P

3
(q|n).

2

Theorem 31.9. The prime divisors of an integer are mutually independent. 2





CHAPTER 32

Why Integer Factorising cannot be
polynomial-time

32.1. The probability of determining that a given integer n is a prime

We consider the compound event where B
i
(0) does not occur for any of a set of

π(
√
n) Bazeries wheels.

6= 0 6= 0 6= 0

p
1

faces

. . .

p
i

faces

. . .

p
π(
√
n)

faces

Fig. 4. The event where Bi (0) does not occur for any of a set of π(
√
n) Bazeries wheels.

Now, even though we cannot define the probability P
1
(n is a prime) of selecting

an integer n from the set N of all natural numbers that has the property of being
prime1, since we have by Corollary 31.5 that the probability P3(i 6 | n) of determining
by the spin of a Bazeries wheel that a prime p < n does not divide a given n is
1− 1

p , it follows from Theorem 31.9 that:

Theorem 32.1. The probability P
3
(n is a prime)2 of determining that a given

integer n is prime is
∏π(

√
n)

i=1
(1− 1

p
i
). 2

Proof. By Definition 31.1, Hypothesis 31.2, and Lemma 31.6, the probability
that B

i
(0) does not occur for any i in a simultaneous spin of the π(

√
n) Bazeries

wheels—where p
i

is the i’th prime and B
i

has p
i

faces (Fig. 4)—is
∏π(

√
n)

i=1
(1− 1

p
i
).

If k is such that k 6≡ 0 (mod p) for any prime p ≤
√
n, then the probability

P3(k is co−prime to p ≤
√
n) of determining by the simultaneous spin of the above

π(
√
n) Bazeries wheels that k is not divisible by any prime p ≤

√
n is

∏π(
√
n)

i=1
(1− 1

p
i
).

In the particular case where n is such that n 6≡ 0 (mod p) for any prime p ≤
√
n, the

probability P
3
(n is co− prime to p ≤

√
n) of determining by the simultaneous spin

of the above π(
√
n) Bazeries wheels that n is not divisible by any prime p ≤

√
n is∏π(

√
n)

i=1
(1− 1

p
i
).

1See §30.3 (2)(i).
2See §30.3 (2)(iii).
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Since an integer n is a prime if, and only if, it is not divisible by any prime p ≤
√
n,

the theorem follows. �

32.2. Why determining primality is polynomial time

We now have that:

Lemma 32.2. The minimum number of events needed for determining that the
signature of a given integer n—coded as the key of a Bazeries combination lock—is
that of a prime is of order O(logen).

Proof. By Theorem 32.1, the expected number of events which determine
that a given n is prime in a set of k simultaneous spins of the π(

√
n) Bazeries

wheels3—where p
i

is the i’th prime and B
i

has p
i

faces (Fig.4)—is k.
∏π(

√
n)

i=1
(1− 1

p
i
);

which—by Mertens’ Theorem4
∏
p≤x(1− 1

p ) ∼ e−λ

logex
—is ≥ 1 if k ≥ eλ

2 .loge n. The

lemma follows by Definition 30.5 for minimum k. �

We note the standard definition:

Definition 32.3. A deterministic algorithm computes a number-theoretical
function f(n) in polynomial-time5 if there exists k such that, for all inputs n, the
algorithm computes f(n) in ≤ (loge n)k + k steps.

By Definition 32.3, we further conclude that:

Theorem 32.4. Determining whether the signature of a given integer n—coded
as the key in a modified Bazeries-cylinder (Definition 31.1) based combination
lock—is that of a prime, or not, can be simulated by a deterministic algorithm in
polynomial time O(log

e
n).6

32.3. Integer Factorising cannot be polynomial-time

Given that n is composite, Theorem 31.9 and Theorem 32.1 now yield the computa-
tional complexity consequence that no deterministic algorithm can further compute
a factor of n in polynomial time since:

Corollary 32.5. Any deterministic algorithm that always computes a prime
factor of n cannot be polynomial-time. 2

3We note that this is not equivalent to the throws of a
∏π(

√
n)

i=1
p
π(
√
i)

-sided die, each of

whose faces is equally possible as a key to the code in question, since such throws do not use the
fact—Theorem 31.9—that the prime divisors of n are mutually independent.

4Hardy and Wright [HW60], p. 351, Theorem 22.8; where λ = 0.57722 . . . is the Euler-

Mascheroni constant and eλ

2
= 0.89053 . . ..

5cf. Cook [Cook], p.1; also Brent [Brn00], p.1, fn.1: “For a polynomial-time algorithm the

expected running time should be a polynomial in the length of the input, i.e. O((logN)c) for some
constant c”.

6We note that, in a seminal paper ‘PRIMES is in P ’, Agrawal et al [AKS04] have shown
that deciding whether the given value of an integer n is that of a prime or not can be done in
polynomial time Ö(log15/2

e
n); improved to Ö(log6

e
n) by Lenstra and Pomerance in [LP11].
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Proof. By Theorem 32.1 and Mertens’ Theorem, the expected number of

primes ≤
√
n is O(

√
n

loge
√
n

). Moreover, any computational process that successfully

identifies a prime divisor of n must necessarily appeal to at least one logical operation
for identifying such a factor.

Since n is a prime if, and only if, it is not divisible by any prime p ≤
√
n, it follows

that, if n = p
k

for some prime p and k > 1, then determining p may require at least
one logical operation for algorithmically testing each prime ≤

√
n deterministically

if, for some n, the prime p is the one that is tested last in the particular method of
testing the primes ≤

√
n.

Since any algorithmically deterministic method of testing the primes ≤
√
n must be

independent of n, and always have some prime p that is tested last for any given n,
the algorithm cannot always determine in polynomial time that p is a prime factor

of n if n = p
k

for some k > 1.

In other words, since the number of primes to be tested if p is tested last, and

n = p
k

for some k > 1, is of the order O(
√
n/loge n), the number of computations

required by any deterministic algorithm that always computes a prime factor of n
cannot be polynomial-time—i.e. of order O((loge n)c) for any c—in the length of
the input n.

The corollary follows. �





Part 10

The significance of evidence-based
reasoning for the Theory of

Numbers





CHAPTER 33

The structure of divisibility and primality

“Prime numbers are the most basic objects in mathematics. They also are

among the most mysterious, for after centuries of study, the structure of the
set of prime numbers is still not well understood. Describing the distribution

of primes is at the heart of much mathematics . . . ”.1

The significance of evidence-based reasoning (Chapter 5)—and of the differentiation
between algorithmically verifiable and algorithmically computable number-theoretic
functions (as detailed in Definitions 5.2 and 5.3)—for the Theory of Numbers is
seen in the following identification of the natural number n with a corresponding
set of residues {r

i
(n)}, which shows how the usual, linearly displayed, Eratosthenes

sieve argument reveals the structure of divisibility (and, ipso facto, of primality)
more transparently when displayed as a 2-dimensional matrix representation of the
residues ri(n)2, defined for all n ≥ 2 and all i ≥ 2 by:

n+ ri(n) ≡ 0 (mod i), where i > ri(n) ≥ 0.

Table 1: Eratosthenes sieve I

Sequence: R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 . . . Rn

n = 1 0 1 2 3 4 5 6 7 8 9 10 . . . n-1

n = 2 0 0 1 2 3 4 5 6 7 8 9 . . . n-2

n = 3 0 1 0 1 2 3 4 5 6 7 8 . . . n-3
n = 4 0 0 2 0 1 2 3 4 5 6 7 . . . n-4

n = 5 0 1 1 3 0 1 2 3 4 5 6 . . . n-5
n = 6 0 0 0 2 4 0 1 2 3 4 5 . . . n-6
n = 7 0 1 2 1 3 5 0 1 2 3 4 . . . n-7

n = 8 0 0 1 0 2 4 6 0 1 2 3 . . . n-8
n = 9 0 1 0 3 1 3 5 7 0 1 2 . . . n-9

n = 10 0 0 2 2 0 2 4 6 8 0 1 . . . n-10

n = 11 0 1 1 1 4 1 3 5 7 9 0 . . . n-11

n r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 . . . 0

Density: For instance, the residues ri(n) can be defined for all n ≥ 1 as the values of
the non-terminating sequences Ri(n) = {i−1, i−2, . . . , 0, i−1, i−2, . . . , 0, . . .},
defined for all i ≥ 1 (as illustrated in Table 13).

• For any given i ≥ 2, each non-terminating sequence R
i
(n) can be viewed

as generated by the incremental face-by-face movement of a Bazeries

1Andrew Granville: from this AMS press release of 5 December 1997.
2See §41, Appendix I(A), Fig.7 and II(B), Fig.8.
3For ri read ri (n); for Ri read Ri (n).
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wheel (Definition 31.1), with i faces, which cycles through the values
(i− 1, i− 2, . . . , 0) with period i;

• For any i ≥ 2 the asymptotic density4—over the set of natural numbers—of
the set {n} of integers that are divisible by i is 1

i ; and the asymptotic

density of integers that are not divisible by i is i−1
i .

Table 2: Eratosthenes sieve II

Sequence: R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 . . . Rn

E(1): 0 1 2 3 4 5 6 7 8 9 10 . . . n-1
E(2): 0 0 1 2 3 4 5 6 7 8 9 . . . n-2

E(3): 0 1 0 1 2 3 4 5 6 7 8 . . . n-3
E(4): 0 0 2 0 1 2 3 4 5 6 7 . . . n-4

E(5): 0 1 1 3 0 1 2 3 4 5 6 . . . n-5

E(6): 0 0 0 2 4 0 1 2 3 4 5 . . . n-6
E(7): 0 1 2 1 3 5 0 1 2 3 4 . . . n-7

E(8): 0 0 1 0 2 4 6 0 1 2 3 . . . n-8

E(9): 0 1 0 3 1 3 5 7 0 1 2 . . . n-9
E(10): 0 0 2 2 0 2 4 6 8 0 1 . . . n-10

E(11): 0 1 1 1 4 1 3 5 7 9 0 . . . n-11

. . .
E(n): r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 . . . 0

Primality: The residues ri(n) can alternatively be defined for all i ≥ 1 as values
of the non-terminating sequences, E(n) = {ri(n) : i ≥ 1}, defined for all n ≥ 1 (as
illustrated in Table 2).

• The non-terminating sequences E(n) highlighted in red correspond to a
prime5 p (since ri(p) 6= 0 for 1 < i < p) in the usual, linearly displayed,
Eratosthenes sieve:

E(�1), E(2), E(3), E(�4), E(5), E(�6), E(7), E(�8), E(�9), E(��10), E(11), . . .

• The non-terminating sequences highlighted in cyan identify a crossed out
composite n (since ri(n) = 0 for some 1 < i < n) in the usual, linearly
displayed, Eratosthenes sieve.

From an evidence-based perspective, it immediately follows from Theorem 32.1
that—as illustrated by the 2-dimensional representation of Eratosthenes sieve—the
probability of determining that a number is prime is algorithmically verifiable, but
not algorithmically computable, in the sense that:

Lemma 33.1. For any given n, there is a set of Bazeries wheels that can generate
the sequence E(n) = {ri(n) : n ≥ i ≥ 1} and allow us to conclude that the probability

P
3
(n is a prime)6 of determining that a given integer n is prime is

∏π(
√
n)

i=1
(1− 1

p
i
).

2

4See §33.1(a); see also [Ste02], Chapter 2, p.10; [El79a], Notation, p.xxi; [GS97], Chapter 5,
pp.183-186.

5Conventionally defined as integers that are not divisible by any smaller integer other than 1.
6See §30.3 (2)(iii).
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Lemma 33.2. There is no set of Bazeries wheels that, for any given n, can
generate the sequence E(n) = {ri(n) : n ≥ i ≥ 1} and allow us to conclude that
the probability P3(n is a prime) of determining that a given integer n is prime is∏π(

√
n)

i=1
(1− 1

p
i
). 2

33.1. The residues ri(n) can be viewed in two different ways

The residues r
i
(n) can thus be viewed in two essentially different ways.

(a) First as the values, for any given i, of a function R
i
(n) over the domain

N of the natural numbers.

Classically, since we cannot define a probability function for the probability
that a random n is prime over the probability space (1, 2, 3, . . . , ) ([Ste02],
Chapter 2, p.9, Theorem 2.1), this definition does not admit an argument
which will allow us to conclude that the prime divisors of any given integer
n are independent.

(b) Second as the values, for any given n, of the sequence E(n) = {r
i
(n) : i ≥

1}.
This now allows us to define a probability model from which we may
conclude for any given n > 1, and any given prime p > 1, that the
probability of the event r

p
(n) = 0—whence p divides n—is 1

p ; and that the

probability of the event r
p
(n) 6= 0—whence p does not divide n—is 1− 1

p .

This further allows us to argue (§36.2; see also Theorem 31.9) that, given
p, q > 1 are two unequal primes, the compound probability that rp(n) = 0

and r
q
(n) = 0—whence both p and q divide n—is 1

pq ; and so the prime

divisors of any given integer n are mutually independent.





CHAPTER 34

Heuristic approximations of prime counting
functions

We next show how differentiating between algorithmic verifiabilty and algorithmic
computability in Lemmas 33.1 and 33.2 admits evidence-based solutions to the query
(where π(n) denotes the number of primes ≤ n):

Query 34.1. Can we estimate π(n) non-heuristically for all finite values of n?

34.1. Heuristically estimated behaviour of the primes

To place the significance of Query 34.1 in an appropriate historical perspective, we
note that Adrien-Marie Legendre and Carl Friedrich Gauss are reported1 to have
independently conjectured in 1796 that, if π(x) denotes the number of primes less
than or equal to x, then π(x) is asymptotically equivalent to x

logex
.

Fig.1: Heuristic behaviour of the primes

Fig.1: Graph showing ratio of the prime-counting function π(x) to two of its approximations,
x

ln x and Li(x). As x increases (note x axis is logarithmic), both ratios tend towards 1. The
ratio for x

ln x converges from above very slowly, while the ratio for Li(x) converges more

quickly from below.2

Around 1848/1850, Pafnuty Lvovich Chebyshev proved that π(x) � x
logex

, and

confirmed that if π(x)/ x
logex

has a limit, then it must be 13.

1
cf. Prime Number Theorem. (2014, June 10). In Wikipedia, The Free Encyclopedia. Retrieved

09:53, July 9, 2014, from http://en.wikipedia.org/w/index.php?titleP̄rime number theorem&oldid=612391868;

see also [Gr95].
2
cf. Prime Number Theorem. (2014, June 10). In Wikipedia, The Free Encyclopedia. Retrieved 09:53,

July 9, 2014, from http://en.wikipedia.org/w/index.php?titleP̄rime number theorem&oldid=612391868.
3[Dic52], p.439; see also [HW60], p.9, Theorem 7 and p.345, §22.4 for a proof of Chebychev’s

Theorem.
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The question of whether π(x)/ x
logex

has a limit at all, or whether it oscillates,

was purportedly answered—it has a limit—first by Jacques Hadamard and Charles
Jean de la Vallée Poussin independently in 1896, using advanced argumentation
involving functions of a complex variable4; and again independently by Paul Erdös
and Atle Selberg5 in 1949/1950, using only elementary—but still abstruse—methods
without involving functions of a complex variable.

34.2. Heuristic approximations to π(x)

We also note that, reportedly6:

“In a handwritten note on a reprint of his 1838 paper ‘Sur l’usage des séries

infinies dans la théorie des nombres’, which he mailed to Carl Friedrich
Gauss, Peter Gustav Lejeune Dirichlet conjectured (under a slightly different
form appealing to a series rather than an integral) that an even better

approximation to π(x) is given by the offset logarithmic integral Li(x)
defined by:

Li(x) =
∫ x
2

1
loget

.dt = li(x)− li(2).”7

Fig.2: Heuristic distributions of the primes

Fig.2: The above graph compares the actual number π(x) (red) of primes ≤ x with the
distribution of primes as estimated variously by the functions Li(x) (blue), R(x) (black),

and x
logex

(green), where R(x) is Riemann’s function
∑∞
n=1

µ(n)
(n)

li(x1/n).8

We further note that in 1889 Jean de la Vallée Poussin proved9 (cf. Fig.1):

4[Dic52], p.439; see also [Ti51], Chapter III, p.8 for details of Hadamard’s and de la Vallée
Poussin’s proofs of the Prime Number Theorem.

5See [HW60], p.360, Theorem 433 for a proof of Selberg’s Theorem.
6
cf. Prime Number Theorem. (2014, June 10). In Wikipedia, The Free Encyclopedia. Retrieved 09:53,

July 9, 2014, from: http://en.wikipedia.org/w/index.php?titleP̄rime number theorem&oldid=612391868.
7Where li(x) =

∫ x
0

1
loget

.dt.
8cf. How Many Primes Are There? In The Prime Pages. Retrieved 10:29, September 27,

2015, from:
https://primes.utm.edu/howmany.html.

9[Dic52], p.440.

http://en.wikipedia.org/w/index.php?title=Prime_number_theorem&oldid=612391868
https://primes.utm.edu/howmany.html


34.4. CONVENTIONAL WISDOM 305

“. . . that Li(x) represents π(x) more exactly than x
logex

and its remaining

approximations x
logex

+ x

log
2
ex

+ . . .+
(m−1)!x

log
m
e x

.”

Moreover, all the known approximations of π(n) for finite values of n are derived
from real-valued functions that are asymptotic to π(x), such as x

logex
, Li(x) and

Riemann’s function R(x) =
∑∞
n=1

µ(n)
(n) li(x

1/n).

Historically, however, the degree of approximation for finite values of n has been—
and apparently continues to be—determined only heuristically, by conjecturing
upon an error term in the asymptotic relation that can be seen to yield a closer
approximation than others to the actual values of π(n) (eg., Fig.2, where n = 1000).

For instance, the Riemann Hypothesis is that (compare [Bomb], p.4):

Riemann Hypothesis: For all k > 2, there is some constant c
k
> 0 such that:

|Li(x)− π(x)| ≤ c
k
.
√

(x).log
e
(x) for all x > k.

where Li(x) is the logarithmic integral and π(x) is the prime counting function.

34.3. Is the constant in the Riemann Hypothesis algorithmically
verifiable but not algorithmically computable?

The significance of evidence-based reasoning for Riemann’s Hypothesis is that it
admits the possibility that the constant in the hypothesis may be algorithmically
verifiable (Definition 5.2), but not algorithmically computable (Definition 5.2), if:

• For any given integer n > 2, there is always a deterministic algorithm that
will compute the digits in the decimal representation of a constant c

n
such

that:

|Li(x)− π(x)| ≤ cn .
√

(x).loge(x) for all x > n;

• There is no deterministic algorithm that, for any given integer n > 2, will
compute the digits in the decimal representation of a constant cn such
that:

|Li(x)− π(x)| ≤ c
n
.
√

(x).log
e
(x) for all x > n.

34.4. Conventional wisdom

We note that the focus on only heuristic approximations of π(n) for finite values of
n apparently reflects conventional number theory wisdom, which appears to be that
the distribution of primes is such that the probability P(n ∈ {p}) of an integer n
being a prime p can only be heuristically estimated as 1

logen
10—as suggested by the

limiting value for π(n) in the Prime Number Theorem, π(n) ∼ n
logen

11—and, further,

that such probability is not capable of being estimated or well-defined statistically12

independently of the Theorem.

10“The chance of a random integer x being prime is about 1/log x” . . . Chris K. Caldwell,
How Many Primes Are There? In The Prime Pages. Retrieved 10:29, September 27, 2015, from:
https://primes.utm.edu/howmany.html.

11[HW60], Theorem 6, p.9.
12See, for instance, [Ste02], Chapter 2, p.9, Theorem (sic) 2.1!

https://primes.utm.edu/howmany.html


306 34. HEURISTIC APPROXIMATIONS OF PRIME COUNTING FUNCTIONS

Thus—whilst conceding13 that the heuristic probability of an integer n being

prime could also be näıvely assumed as
∏√n
i=1(1− 1

p
i
)—such a perspective seems to

argue against undue reliance upon such näıvety, by concluding (erroneously, as we
show in §37.1, Lemma 37.5) that the number π(n) of primes less than or equal to
n suggested by such probability would then be approximated erroneously by the
prime counting function:

π
H

(n) =
∑n
j=1

∏π(
√
n)

i=1 (1− 1
p
i
) = n.

∏π(
√
n)

i=1 (1− 1
p
i
) ∼ 2.e−γn

logen
.

For instance, Hardy and Littlewood argue curiously that:

“In the first place we observe that any formula in the theory of primes,

deduced from considerations of probability, is likely to be erroneous in just
this way. Consider, for example, the problem ‘what is the chance that a

large number n should be prime?’ We know that the answer is that the
chance is approximately 1

log n
.

Now the chance that n should not be divisible by any prime less than a fixed
x is asymptotically equivalent to

∏
$<x

(1−
1

$
)

and it would be natural to infer1 that the chance required is asymptotically
equivalent to

∏
$<
√
x

(1−
1

$
)

But

∏
$<
√
x

(1−
1

$
) ∼

2e−C

log n

and our inference is incorrect, to the extent of a factor 2e−C .
1 One might well replace $ <

√
x by $ < x, in which case we should obtain a

probability half as large. This remark is in itself enough to show the unsatisfac-
tory character of the argument.”

. . . pp.36-37, G.H Hardy and J.E. Littlewood, Some problems of ‘partitio nu-
merorum:’ III: On the expression of a number as a sum of primes, Acta
Mathematica, December 1923, Volume 44, pp.1-70.

34.5. An illusory barrier

From an evidence-based perspective, however, such perspectives may need to admit
the possibility that—as we show in the examples of ‘discontinuous’ Cauchy sequences
(in §24.3) that represent physical processes which do not obey Cauchy convergence—
functions involving non-heuristic estimates of the prime counting function π(n) may
also involve a distinct discontinuity as n→∞, as is suggested by Fig.4 in §35.1.

Moreover, such reasoning could raise an illusory barrier in seeking non-heuristic
estimations of π(n)—and possibly of |Li(x) − π(x)|—if, as in the case of Lemma
33.2, the following theorem too is accepted as unsurpassable:

13[Gr95], p.13.

http://fuchs-braun.com/media/8cdd73c813c342f8ffff80d1fffffff0.pdf
http://fuchs-braun.com/media/8cdd73c813c342f8ffff80d1fffffff0.pdf
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Theorem 34.2. There is no algorithm which, for any given n, will allow us
to conclude that the probability P3(n is a prime) of determining that n is prime is∏π(

√
n)

i=1
(1− 1

p
i
).

Proof. The theorem follows immediately from Lemma 33.2 that there is no
set of Bazeries wheels that, for any given n, can generate the sequence E(n) =
{ri(n) : n ≥ i ≥ 1} and allow us to conclude that the probability P

3
(n is a prime)

of determining that a given integer n is prime is
∏π(

√
n)

i=1
(1− 1

p
i
). �

Illusory, because it follows immediately from Theorem 32.1 that:

Theorem 34.3. For any given n, there is an algorithm which will allow us to
conclude that the probability P

3
(n is a prime) of determining that n is prime is∏π(

√
n)

i=1
(1− 1

p
i
). 2

34.6. Non-heuristic estimations of prime counting functions

The significance of Theorem 34.3 is that, by considering the asymptotic density
of the set of all integers that are not divisible by the first k primes p

1
, p

2
, . . . , p

k

we shall show that the expected number of such integers in any interval of length
(p2
π(
√
n)+1
− p2

π(
√
n)

) is:

{(p2
π(
√
n)+1
− p2

π(
√
n)

)
∏k
i=1(1− 1

p
i
)}.

This then allows us to define and estimate various prime counting functions
non-heuristically, such as:

(a) For each n, the expected number of primes in the interval (1, n) is (as
illustrated in §35, Fig.1):

π
H

(n) = n
∏π(

√
n)

i=1 (1− 1
p
i
).

– The number π(n) of primes ≤ n is thus approximated non-heuristically
(Lemma 37.5 and Corollary 37.14) by:

π(n) ≈ π
H

(n) = n
∏π(

√
n)

i=1 (1− 1
p
i
) ∼ 2.e−γ . n

logen
→∞.

(b) For each n, the expected number of primes in the interval (p2
π(
√
n)
, p2

π(
√
n)+1

)

is (as illustrated in §35, Fig.2):

π
L

(p2
π(
√
n)+1

)− π
L

(p2
π(
√
n)

) = {(p2
π(
√
n)+1
− p2

π(
√
n)

)
∏π(

√
n)

i=1 (1− 1
p
i
)}.

– The number π(n) of primes ≤ n is also thus approximated non-
heuristically (Lemma 37.8 and Corollary 37.13) for n ≥ 4 by the
cumulative sum:

π(n) ≈ π
L

(n) =
∑n
j=1

∏π(
√
j)

i=1 (1 − 1
p
i
) ∼ a. n

logen
→ ∞ for some

constant a > 2.e−γ .

(c) For each n, the expected number of Dirichlet primes—of the form a+m.d
for some natural number m ≥ 1—in the interval (p2

π(
√
n)
, p2

π(
√
n)+1

) is:

{(p2
π(
√
n)+1
− p2

π(
√
n)

)
∏k
i=1

1

q
α
i

i

.
∏k
i=1(1− 1

q
i
)−1.

∏π(
√
n)

j=1 (1− 1
p
j
)}

where 1 ≤ a < d = q
α1
1 .q

α2
2 . . . q

α
k

k and (a, d) = 1.
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– The number π
(a,d)

(n) of Dirichlet primes ≤ n is thus approximated

non-heuristically (Lemma 38.10) for all n ≥ q2
k

by the cumulative
sum:

π
(a,d)

(n) ≈
∏k
i=1

1

q
α
i

i

.
∏k
i=1(1− 1

q
i
)−1.

∑n
l=1

∏π(
√
l)

j=1 (1− 1
p
j
)→∞.

(d) For each n, the expected number of TW primes—such that n is a prime
and n+ 2 is either a prime or p2

π(
√
n)+1

—in the interval (p2
π(
√
n)
, p2

π(
√
n)+1

)

is:

{(p2
π(
√
n)+1
− p2

π(
√
n)

)
∏π(

√
n)

i=2 (1− 2
p
i
)}.

– The number π
2
(p2
k+1

) of twin primes ≤ p2
k+1

is thus approximated

non-heuristically (Lemma 39.8) for all k ≥ 1 by the cumulative sum:

π2(p2
k+1

) ≈
∑p2

k+1

j=9

∏π(
√
j)−1

i=2 (1− 2
p
i
)→∞.



CHAPTER 35

Non-heuristic approximations of π(n) for all
values of n

Now, it follows from Theorem 34.3 that the asymptotic density1 of integers co-prime
to the first k primes, p

1
, p

2
, . . . , p

k
, over the set of natural numbers, is:∏k

i=1(1− 1
p
i
);

and that the expected number of such integers in the interval (a, b) is thus:

(b− a)
∏k
i=1(1− 1

p
i
),

where the binomial standard deviation of the expected number of integers co-prime
to p

1
, p

2
, . . . , p

k
in any interval of length (b− a) is:√

(b− a)
∏k
i=1(1− 1

p
i
)(1−

∏k
i=1(1− 1

p
i
)).

Fig.1: Graph of y =
∏π(

√
x)

i=1 (1− 1
p
i
) for estimating π

H
(n)

y ↑

8
35

4
15

1
3

1
2

x → 24 9 25 49 121
Not to scale

A

4
3

B

9
6.7

C

15
11.2

D

π(112)=30

π
H

(112)=25.1

Fig.1: Graph of y =
∏π(

√
x)

i=1 (1 − 1
p
i

) for estimating π
H

(n). The overlapping

rectangles A,B,C,D, . . . in fig. π
H

(n) represent π
H

(p2
j+1

) = p2
j+1

.
∏j
i=1(1 −

1
p
i

) for j ≥ 1. Figures within each rectangle are the primes and estimated primes

corresponding to the functions π(n) and π
H

(n), respectively, within the interval

(1, p2
j+1

) for j ≥ 2.

1cf. [Ste02], Chapter 2, p.10.
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Taking (a, b) as the intervals (p2
1
, p2

2
), (p2

2
, p2

3
), . . . , (p2

π(
√
n)
, p2

π(
√
n)+1

), we note

that (as illustrated in Fig.1):

(i) For any given n:

π
H

(p2
π(
√
n)+1

) = p2
π(
√
n)+1

∏π(
√
n)

i=1 (1− 1
p
i
) is (contrary to conventional wisdom

in §34.4) a non-heuristic estimate of π(p2
π(
√
n)+1

), with standard deviation:

p
π(
√
n)+1

√∏π(
√
n)

i=1 (1− 1
p
i
)(1−

∏π(
√
n)

i=1 (1− 1
p
i
)).

Fig.2: Graph of y =
∏π(

√
x)

i=1 (1− 1
p
i
) for estimating π

L
(n)

y ↑

8
35

4
15

1
3

1
2

x → 24 9 25 49 121

π
L
(n)

Not to scale

4
3.5

5
5.3

6
6.4

π(112−72)=15

π
L

(112−72)=16.4

Fig.2: Graph of y =
∏π(

√
x)

i=1 (1− 1
p
i

). The rectangles represent (p2
j+1
−p2

j
)
∏j
i=1(1−

1
p
i

) for j ≥ 1. Figures within each rectangle are the primes corresponding to

the functions π(n) and π
L

(n) within the interval (p2
j
, p2

j+1
) for j ≥ 2. The area

under the curve is π
L

(x) = (x−p2
n

)
∏n
i=1(1− 1

p
i

)+
∑n−1
j=1 (p2

j+1
−p2

j
)
∏j
i=1(1−

1
p
i

) + 2.

Moreover (as illustrated in Fig.2):

(ii) For any given n:

π
L

(p2
π(
√
n)+1

)− π
L

(p2
π(
√
n)

) is also a non-heuristic estimate of the number

of primes in the interval (p2
π(
√
n)
, p2

π(
√
n)+1

).

It follows that:

π
L

(p2
π(
√
n)+1

) =
∑π(

√
n)

j=1 {(p2
j+1
− p2

j
)
∏j
i=1(1− 1

p
i
)} is cumulatively a non-

heuristic estimate of π(p2
π(
√
n)+1

), with cumulative standard deviation:∑π(
√
n)

j=1

√
(p2
j+1
− p2

j
)
∏j
i=1(1− 1

p
i
)(1−

∏j
i=1(1− 1

p
i
)).

More generally (as illustrated in Fig.3):
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(iii) The non-heuristic approximations of the number π(n) of primes less than
or equal to n are given by the prime counting functions π

H
(n) (Lemma

37.5) and π
L

(n) (Lemma 37.8)2:

– π(n) ≈ π
H

(n) =
∑n
j=1

∏π(
√
n)

i=1 (1 − 1
p
i
) = n.

∏π(
√
n)

i=1 (1 − 1
p
i
) ∼

2e−λ n
logen

.

– π(n) ≈ π
L

(n) =
∑n
j=1

∏π(
√
j)

i=1 (1 − 1
p
i
) ∼ a. n

logen
→ ∞, a > 2.e−γ ≈

1.12292 . . .;

Fig.3: The graphs of y = π
H

(x) and y = π
L

(x)

y ↑ 2.0

5.5

10.8

17.2

33.6

x → 024 9 25 49 121
Not to scale

y = π
L

(x)

y = π
H

(x)8
35

1
5

4
15

19
100

1
3

17
100

1
2

Fig.3: Graph of: (i) y = π
H

(x) = x.
∏π(

√
x)

i=1 (1− 1
p
i

)3; and of: (ii) y = π
L

(x) =

(x − p2
n

)
∏n
i=1(1 − 1

p
i

) +
∑n−1
j=1 (p2

j+1
− p2

j
)
∏j
i=1(1 − 1

p
i

) + 2 in the interval

(p2
n
, p2

n+1
). Note that the gradient of y = π

L
(x) in the interval (p2

n
, p2

n+1
) is∏n

i=1(1− 1
p
i

)→ 0.

35.1. How good are the non-heuristic estimates of π(n)?

Based on the manual and spreadsheet calculations detailed in Chapter 42, we
compare the non-heuristically estimated values of π(n):

(i) π
H

(n) =
∑n
j=1

∏π(
√
n)

i=1 (1− 1
p
i
) = n.

∏π(
√
n)

i=1 (1− 1
p
i
) (green); and

(ii) π
L

(n) =
∑n
j=1

∏π(
√
j)

i=1 (1− 1
p
i
) (red);

with the actual values of π(n) (blue) for 4 ≤ n ≤ 3000 in Fig.4 (compare with Fig.2
in §34.2).

Now, we note that:

2Compare [HL23], pp.36-37.
3See §37.1
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(a) π(n) ∼ n
loge(n) by the Prime Number Theorem;

(b) π
H

(n) ∼ 2e−λ n
logen

where 2.e−γ ≈ 1.12292 . . . by Corollary 37.14;

(c) π
L

(n) > π
H

(n) for all n ≥ 9 by Corollary 37.9;

(d) π
L

(n) > π(n) > π
H

(n) for n ≤ 3000 by observation (Fig.4).

Fig.4: Non-heuristically estimated distributions of the primes ≤ 3000

Fig.4: The above graph compares the non-heuristically estimated values of π(n): π
H

(n) =∑n
j=1

∏π(
√
n)

i=1 (1 − 1
p
i

) = n.
∏π(

√
n)

i=1 (1 − 1
p
i

) (green) and π
L

(n) =
∑n
j=1

∏π(
√
j)

i=1 (1 − 1
p
i

)

(red), with the actual values of π(n) (blue) for 4 ≤ n ≤ 3000.

This raises the interesting queries:

Query 35.1. Which is the least n such that π
H

(n) > π(n)?

Query 35.2. Which is the largest n such that π(n) > π
H

(n)?

Query 35.3. Is π(n) an arithmetical function which tends to a discontinuity as
n→∞?4

35.2. Three intriguing observations

The following computations5 compare the actual values of π(n), n.
∏π(

√
n)

j=i
(1− 1

p
j
),

and n
loge n

in the range 4 ≤ n ≤ 100 (Fig.5), 4 ≤ n ≤ 1000 (Fig.6), 4 ≤ n ≤ 10000

(Fig.7), 4 ≤ n ≤ 100000 (Fig.8), 4 ≤ n ≤ 1000000 (Fig.9).

4As in the case of a virus cluster, or that of an elastic string, considered in §24.3.
5Courtesy Mathematica.
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Fig.5: The above graph compares the actual values of π(n) in the range 4 ≤ n ≤
100, with n.

∏π(
√
n)

j=i
(1− 1

p
j

) in the range 4 ≤ n ≤ 110, and n
loge n in the range

4 ≤ n ≤ 120.

Fig.6: The The above graph compares the actual values of π(n) in the range

4 ≤ n ≤ 1000, with n.
∏π(

√
n)

j=i
(1 − 1

p
j

) in the range 4 ≤ n ≤ 1100, and n
loge n

in the range 4 ≤ n ≤ 1200.
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Fig.7: The above graph compares the actual values of π(n) in the range 4 ≤ n ≤
10000, with n.

∏π(
√
n)

j=i
(1 − 1

p
j

) in the range 4 ≤ n ≤ 11000, and n
loge n in the

range 4 ≤ n ≤ 12000.

Fig.8: The above graph compares the actual values of π(n) in the range 4 ≤ n ≤
100000, with n.

∏π(
√
n)

j=i
(1− 1

p
j

) in the range 4 ≤ n ≤ 110000, and n
loge n in the

range 4 ≤ n ≤ 120000.
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Fig.9: The above graph compares the actual values of π(n) in the range 4 ≤ n ≤
1000000, with n.

∏π(
√
n)

j=i
(1− 1

p
j

) in the range 4 ≤ n ≤ 1100000, and n
loge n in

the range 4 ≤ n ≤ 1200000.

We note that Query 35.1 is answered by Figs.8-9, which show that the least n
such that π

H
(n) ≥ π(n) occurs somewhere around n = 100000.

As regards Query 35.2 however, we conjecture Fig.9 suggests that if k is the
least n such that π

H
(n) ≥ π(n), then k − 1 is the largest n such that π(n) > π

H
(n).

Finally, we conjecture that—despite what is suggested by the Prime Number
Theorem—Query 35.3 can be answered affirmatively if the three functions π(n),

n.
∏π(

√
n)

j=i
(1− 1

p
j
), and n

loge n
are as well-behaved as Fig.9 suggests6!

35.3. Conventional estimates of π(x) for finite x > 2 are heuristic

The above observations reflect the circumstance that all conventional estimates of
π(x) for finite x > 2 are heuristic

Moreover, we note Guy Robin ([Rob83]) proved that the following changes
sign infinitely often:

(loge n).
∏
p≤n(1− 1

p )− e−γ

Robin’s result is analogous to Littlewood’s curious theorem7 that the difference
π(x)− Li(x) changes sign infinitely often. No analogue of the Skewes number (an

6See also computations for 4 ≤ n ≤ 5000000 and 4 ≤ n ≤ 6000000 here.
7Since there is no English translation of Littlewood’s 1914 paper, which was presented in

French on his behalf by Hadamard at a conference, the author has had to rely upon his own

translation of Littlewood’s theorem based on both his limited knowledge of French, and his limited
knowledge of the substance of Littlewood’s paper. Hopefully, the following remarks will not reflect
seriously upon his ignorance of either!

https://www.dropbox.com/s/prt58yxn0xflucd/40_8_Factorising_PNT_Dir_Twin_Query_M001_5.pdf?dl=0
https://gallica.bnf.fr/ark:/12148/bpt6k3111d/f1873.item.r=littlewood
https://gallica.bnf.fr/ark:/12148/bpt6k3111d/f1873.item.r=littlewood
https://foundationalperspectives.wordpress.com/2018/10/14/littlewoods-1914-theorem-on-pix-li-x/
https://foundationalperspectives.wordpress.com/2018/10/14/littlewoods-1914-theorem-on-pix-li-x/
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upper bound on the first natural number x for which π(x) > Li(x)) is, however,
known for Robin’s result.

Littlewood’s theorem is ‘curious’ since:

(a) There is no explicitly defined arithmetical formula that, for any x > 2, will
yield π(x). Hence, Littlewood’s proof deduces the behaviour of π(x)−Li(x)
for finite values of x > 2 by implicitly appealing to the relation of π(x) to
ζ(s), defined as

∑
1
ns over all integers n ≥ 1, through the identity of the

infinite summation with the Euler product
∏

(1− 1
ps )
−1

over all primes,

which is valid only for Re(s) > 1; as is its consequence (which involves
the re-arrangement of an infinite summation that, too, is valid only for
Re(s) > 1):

log
e
ζ(s) = s.

∫∞
2

π(x)
x(xs−1)dx = s.

∫∞
2

π(x)/(1− 1
xs )

xs+1 dx

(b) Littlewood’s proof deduces the behaviour of π(x)− Li(x) for finite values
of x > 0 by8 appealing to the analytically continued behaviour of ζ(s) in
areas where π(x) is not defined!

Moreover, we note that—unlike π
H

(n) and π
L

(n)—conventional estimates of
π(x) for finite values of x > 0 can be treated as heuristic, since they appeal only to
the limiting behaviour ([HW60], Theorem 420, p.345) of a formally (i.e., explicitly)
undefined arithmetical function, π(n), as based upon the limiting behaviours of
formally defined arithmetical functions φ(n) and ψ(n):

π(x) ∼ φ(x)
loge x

∼ ψ(x)
loge x

where:

φ(x) =
∑

p≤x
log

e
p = log

e

∏
p≤x

p

ψ(x) =
∑

pm≤x
log

e
p

and the latter is curiously stipulated as valid only for x > 1, but definable in terms
of a summation over the zeros of the zeta function in the critical strip 0 < Re(ρ) < 1:

“ψ(x) is given by the so-called explicit formula

ψ(x) = x−
∑

ρ

x
ρ

ρ − loge (2.π)− 1
2 loge (1− x2

)

for x > 1 and x not a prime or prime power, and the sum is
over all nontrivial zeros ρ of the Riemann zeta function ζ(s), i.e.,
those in the critical strip so 0 < R(ρ) < 1, and interprets as

limt→∞

∑
|I(ρ)|<t

x
ρ

ρ .”
. . . http://mathworld.wolfram.com/MangoldtFunction.html

8Which needs further justification from an evidence-based perspective, as I argue in my blog-
page: https://foundationalperspectives.wordpress.com/2018/09/26/michael-atiyah-on-the-riemann-
hypothesis-and-the-fine-structure-constant/.

http://mathworld.wolfram.com/MangoldtFunction.html
https://foundationalperspectives.wordpress.com/2018/09/26/michael-atiyah-on-the-riemann-hypothesis-and-the-fine-structure-constant/
https://foundationalperspectives.wordpress.com/2018/09/26/michael-atiyah-on-the-riemann-hypothesis-and-the-fine-structure-constant/


CHAPTER 36

The residues ri(n).

We begin formal proofs of the foregoing considerations by defining the residues ri(n)
for all n ≥ 2 and all i ≥ 2 as below1:

Definition 36.1. n+ ri(n) ≡ 0 (mod i) where i > ri(n) ≥ 0.

Since each residue ri(n) cycles over the i values (i− 1, i− 2, . . . , 0), these values
are all incongruent and form a complete system of residues2 mod i.

It immediately follows that:

Lemma 36.2. ri(n) = 0 if, and only if, i is a divisor of n. 2

36.1. The probability model Mi = {(0, 1, 2, . . . , i− 1), ri(n), 1
i }

By the standard definition of the probability P(e) of an event e3, we have by Lemma
36.2 that:

Lemma 36.3. For any n ≥ 2, i ≥ 2 and any given integer i > u ≥ 0:

• the probability P(ri(n) = u) that ri(n) = u is 1
i ;

•
∑u=i−1
u=0 P(ri(n) = u) = 1;

• and the probability P(ri(n) 6= u) that ri(n) 6= u is 1− 1
i . 2

By the standard definition of a probability model, we conclude that:

Theorem 36.4. For any i ≥ 2, Mi = {(0, 1, 2, . . . , i − 1), ri(n), 1
i } yields a

probability model for each of the values of ri(n). 2

Corollary 36.5. For any given n, i and u such that ri(n) = u, the probability
that the roll of an i-sided cylindrical die will yield the value u is 1

i by the probability
model defined in Theorem 36.4 over the probability space (0, 1, 2, . . . , i− 1). 2

Corollary 36.6. For any n ≥ 2 and any prime p ≥ 2, the probability P(rp(n) =
0) that rp(n) = 0, and that p divides n, is 1

p ; and the probability P(rp(n) 6= 0) that

rp(n) 6= 0, and that p does not divide n, is 1− 1
p . 2

We also note the standard definition4:

1The residues ri(n) can also be graphically displayed variously as shown in the Appendix I in

§41.
2[HW60], p.49.
3See [Kol56], Chapter I, §1, Axiom III, pg.2.
4See [Kol56], Chapter VI, §1, Definition 1, pg.57 and §2, pg.58.
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Definition 36.7. Two events ei and ej are mutually independent for i 6= j if,
and only if, P(ei ∩ ej) = P(ei).P(ej).

36.2. The prime divisors of any integer n are mutually independent

We begin by formally noting first that:

Lemma 36.8. If n ≥ 2 and n > i, j > 1, where i 6= j, then:

P((ri(n) = u) ∩ (rj(n) = v)) = P(ri(n) = u).P(rj(n) = v)

where i > u ≥ 0 and j > v ≥ 0.

Proof. We note that:

(i) If n ≥ 2 and n > i, j > 1, where i 6= j, then we can always determine
a unique pair of residues ri(n) = u and rj(n) = v, where i > u ≥ 0,
j > v ≥ 0, i divides n+ u, and j divides n+ v.

(ii) There are i.j pairs (u, v) such that i > u ≥ 0 and j > v ≥ 0.

(iii) The compound probability that the simultaneous roll of one i-sided cylin-
drical die and one j-sided cylindrical die will yield the values u and v,
respectively, is thus 1

i.j by the probability model for such a simultaneous

event as defined over the probability space {(u, v) : i > u ≥ 0, j > v ≥ 0},
where we note that:

– the probability P((ri(n) = u) ∩ (rj(n) = v)) that ri(n) = u and
rj(n) = v is 1

i.j ;

–
∑
All (u,v): i>u≥0, j>v≥0 P((ri(n) = u) ∩ (rj(n) = v)) = 1;

(iv) By Lemma 36.3, the product of the probability 1
i that the roll of an i-sided

cylindrical die will yield the value u, and the probability 1
j that the roll of

a j-sided cylindrical die will yield the value v, is 1
i.j .5

(v) It follows that:

P((ri(n) = u) ∩ (rj(n) = v)) = 1
i.j

P(ri(n) = u).P(rj(n) = v) = (1
i )(

1
j ).

The lemma follows. �

Corollary 36.9. P((ri(n) = 0) ∩ (rj(n) = 0)) = P(ri(n) = 0).P(rj(n) = 0). 2

Since, by Lemma 36.2, ri(n) = 0 if, and only if, i is a divisor of n, it follows from
Corollary 36.9 that:

Theorem 36.10. If i and j are co-prime and i 6= j, then whether, or not, i
divides any given natural number n is independent of whether, or not, j divides n.
2

5In other words, the compound probability of determining u and v correctly from the

simultaneous roll of one i-sided cylindrical die and one j-sided cylindrical die, is the product of the
probability of determining u correctly from the roll of an i-sided cylindrical die, and the probability
of determining v correctly from the roll of a j-sided cylindrical die.



36.2. THE PRIME DIVISORS OF ANY INTEGER n ARE MUTUALLY INDEPENDENT 319

Proof. We note that

(i) By Corollary 36.8, we have that:

P((ri(n) = 0) ∩ (rj(n) = 0)) = 1
i.j

P(ri(n) = 0).P(rj(n) = 0) = ( 1
i )(

1
j ).

(ii) Further, if i and j are co-prime, and n + ri.j(n) ≡ 0 (mod i.j), then
the i.j integers rj(n).i+ ri(n).j are all incongruent and form a complete
system of residues. It follows that n = a.i—whence i divides n—and also
n = b.j—whence j divides n—if, and only if ri(n) = rj(n) = ri.j(n) = 0.

The lemma follows. �

We thus have a formal proof of Theorem 31.9 that:

Corollary 36.11. The prime divisors of any integer n are mutually indepen-
dent. 2





CHAPTER 37

Density of integers not divisible by primes
Q = {q

1
, q

2
, . . . , q

k
}

Continuing our consideration of prime distribution, we conclude from Lemma 36.3
and Corollary 36.11 that:

Lemma 37.1. The asymptotic density of the set of all integers that are not
divisible by any of a given set of primes Q = {q1 , q2 , . . . , qk} is:∏

q∈Q(1− 1/q). 2

It follows that:

Lemma 37.2. The expected number of integers in any interval (a,b) that are
not divisible by any of a given set of primes Q = {q1 , q2 , . . . , qk} is:

(b− a)
∏
q∈Q(1− 1/q). 2

37.1. The function π
H

(n)

In particular, the expected number π
H

(n) of integers ≤ n that are not divisible by
any of the primes p1 , p2 , . . . , pπ(

√
k)

is:

Corollary 37.3. π
H

(n) = n.
∏π(

√
k)

i=1 (1− 1
p
i
).

It follows that:

Corollary 37.4. The expected number of primes ≤ p2
π(
√
n)+1

is (as illustrated

in Chapter 35, Fig.1):

π
H

(p2
π(
√
n)+1

) = p2
π(
√
n)+1

∏π(
√
n)

i=1 (1− 1
p
i
)

with cumulative standard deviation:

p
π(
√
n)+1

√∏π(
√
n)

i=1 (1− 1
p
i
)(1−

∏π(
√
n)

i=1 (1− 1
p
i
)). 2

We conclude that π
H

(n) is a non-heuristic approximation of the number of
primes ≤ n:

Lemma 37.5. π(n) ≈ π
H

(n) = n.
∏π(

√
n)

i=1 (1− 1
p
i
).
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1
, q

2
, . . . , q

k
}

37.2. The function π
L

(n)

It also follows immediately from Theorem 37.2 that:

Corollary 37.6. The expected number of primes in the interval (p2
π(
√
n)
, p2

π(
√
n)+1

)

is (as illustrated in §35, Fig.2):

(p2
π(
√
n)+1
− p2

π(
√
n)

)
∏π(

√
n)

i=1 (1− 1
p
i
)

with standard binomial deviation:√
(p2
π(
√
n)+1
− p2

π(
√
n)

)
∏π(

√
n)

i=1 (1− 1
p
i
)(1−

∏π(
√
n)

i=1 (1− 1
p
i
)). 2

It further follows from Lemma 37.2 and Corollary 37.6 that:

Corollary 37.7. The number π(p2
π(
√
n)+1

) of primes less than p2
π(
√
n)+1

is also

approximated by the cumulative sum:

π
L

(p2
π(
√
n)+1

) =
∑π(

√
n)

j=1 {(p2
j+1
− p2

j
)
∏j
i=1(1− 1

p
i
)}

with cumulative standard deviation:∑π(
√
n)

j=1

√
(p2
j+1
− p2

j
)
∏j
i=1(1− 1

p
i
)(1−

∏j
i=1(1− 1

p
i
)). 2

We conclude that π
L

(n) is a cumulative non-heuristic approximation of the
number of primes ≤ n1:

Lemma 37.8. π(n) ≈ π
L

(n) =
∑n
j=1

∏π(
√
j)

i=1 (1− 1
p
i
).

It immediately follows from Lemma 37.5 and Lemma 37.8 that:

Corollary 37.9. π
L

(n) > π
H

(n) for all n ≥ 9.

37.3. The interval (p2
n
, p2

n+1
)

It follows immediately from the definition of π(x) as the number of primes less than
or equal to x that:

Lemma 37.10.
∏π(

√
x)

i=1 (1− 1
p
i
) =

∏π(
√
x+1)

i=1 (1− 1
p
i
) for p2

n ≤ x < p2
n+1. 2

We can thus generalise the number-theoretic function of Lemma 37.8 as the
real-valued function:

Definition 37.11. π
L

(x) = π
L

(p2
n
) + (x− p2

n
)
∏n
i=1(1− 1

p
i
) for p2

n ≤ x < p2
n+1.

We note that the graph of π
L

(x) in the interval (p2
n
, p2

n+1
) for n ≥ 1 is now

a straight line with gradient
∏n
i=1(1 − 1

p
i
), as illustrated in §35, Fig.3 where we

defined π
L

(x) equivalently by:

π
L

(x) = (x− p2
n
)
∏n
i=1(1− 1

p
i
) +

∑n−1
j=1 (p2

j+1
− p2

j
)
∏j
i=1(1− 1

p
i
) + 2

1Fig.12 in §42, and Fig.15 in §42.1, comparatively analyse the values of π(n) and πL(n) for

4 ≤ n ≤ 1500.
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(x)/ x
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AND π
H

(x)/ x
logex
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37.4. The functions π
L

(x)/ x
logex

and π
H

(x)/ x
logex

We consider next the function π
L

(x)/ x
logex

in the interval (p2
n
, p2

n+1
):

π
L

(x)/ x
logex

= (π
L

(p2
n
) + (x− p2

n
)
∏n
i=1(1− 1

p
i
))/ x

logex

This now yields the derivative (π
L

(x). logexx )′ in the interval (p2
n
, p2

n+1
) as:

π
L

(x).( logexx )′ + (π
L

(x))′. logexx

(π
L

(p2
n
)+(x−p2

n
)
∏n
i=1(1− 1

p
i
)).( logexx )′+(π

L
(p2
n
)+(x−p2

n
)
∏n
i=1(1− 1

p
i
))′. logexx

(π
L

(p2
n
) + (x− p2

n
)
∏n
i=1(1− 1

p
i
)).( 1

x2 − logex
x2 ) + (

∏n
i=1(1− 1

p
i
)). logexx

Since p2
n ≤ x < p2

n+1, by Mertens’2 and Chebyshev’s Theorems we can express
the above as:

∼ (π
L

(p2
n
) +

e−γ(x−p2
n

)

logen
).( 1

x2 − logex
x2 ) + e−γ .logex

x.logen

∼ (
π
L

(p2
n

)

x + e−γ

logen
(1− p2

n

x )). (1−logex)
x + e−γ .logex

x.logen

∼ (
π
L

(p2
n

)

p2
n

.
p2
n

x + e−γ

logen
(1− p2

n

x )).
(1−2.logepn )

p2
n

+
2.e−γ .logepn
p2
n
.logen

Since each term → 0 as n → ∞, we conclude that the function π
L

(x)/ x
logex

does not oscillate but tends to a limit as x→∞ since:

Lemma 37.12. (π
L

(x)/ x
logex

)′ ∈ o(1). 2

We further conclude that:

Corollary 37.13. π
L

(n) =
∑n
j=1

∏π(
√
j)

i=1 (1− 1
p
i
) ∼ a. n

logen
for some constant

a. 2

We note that a > 2.e−γ3, since
∏π(

√
j)

i=1 (1 − 1
p
i
) ≥

∏π(
√
n)

i=1 (1 − 1
p
i
) for all

1 ≤ j ≤ n, and it follows from Definition 37.3 that:

Corollary 37.14. π
H

(n) = n.
∏π(

√
n)

i=1 (1− 1
p
i
) ∼ 2.e−γ . n

logen
4. 2

2[HW60], Theorem 429, p.351.
3 Where 2.e−λ ≈ 1.12292 . . .; [Gr95], p.13.
4By Mertens’ Theorem; since logeπ(

√
n) ∼ (loge

√
n − loge loge

√
n) by the Prime Number

Theorem.





CHAPTER 38

Primes in an arithmetic progression

We consider now Dirichlet’s Theorem, which is the assertion that if a and d are
co-prime and 1 ≤ a < d, then the arithmetic progression a + m.d, where m ≥ 1,
contains an infinitude of (Dirichlet) primes.

We first note that, by Lemma 36.8:

Lemma 38.1. If p
i

and p
j

are two primes where i 6= j then, for any n ≥
2, α, β ≥ 1, we have:

P((rpα
i

(n) = u) ∩ (rpβj
(n) = v)) = P(rpα

i
(n) = u).P(rpβj

(n) = v)

where pα
i
> u ≥ 0 and pβ

j
> v ≥ 0. 2

Now, the pα
i
.pβ
j

numbers d.pα
i

+ c.pβ
j
, where pα

i
> c ≥ 0 and pβ

j
> d ≥ 0, are all

incongruent and form a complete system of residues1 mod (pα
i
.pβ
j
). It follows that

n = a.pα
i

—whence pα
i

divides n—and also n = b.pβ
i
—whence pβ

i
divides n—if, and

only if rpα
i

(n) = rpβi
(n) = 0.

If u = 0 and v = 0 in Lemma 38.1, so that both p
i

and p
j

are prime divisors of
n, we immediately conclude that:

P((rpα
i

(n) = 0) ∩ (rpβj
(n) = 0)) = 1

pα
i
.pβj

P(rpα
i

(n) = 0).P(rpβj
(n) = 0) = ( 1

pα
i

)( 1

pβj
).

Corollary 38.2. P((rpα
i

(n) = 0) ∩ (rpβj
(n) = 0)) = P(rpα

i
(n) = 0).P(rp

j
β(n) =

0). 2

It also immediately follows that Corollary 36.11 can be extended to prime
powers in general2:

Theorem 38.3. For any two primes p 6= q and natural numbers n, α, β ≥ 1,
whether or not pα divides n is independent of whether or not qβ divides n. 2

38.1. The asymptotic density of Dirichlet integers

We note next that:

1[HW60], p.52, Theorem 59.
2Hint : The following arguments may be easier to follow if we visualise the residues rpα

i
(n)

and r
p
β
i

(n) as they would occur in §41, Fig.7 and Fig.8.
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326 38. PRIMES IN AN ARITHMETIC PROGRESSION

Lemma 38.4. For any co-prime natural numbers 1 ≤ a < d = q
α

1
1 .q

α
2

2 . . . q
α
k

k

where:

q
1
< q

2
< . . . < q

k
are primes and α

1
, α

2
. . . α

k
≥ 1 are natural

numbers;

the natural number n is of the form a+m.d for some natural number m ≥ 1 if, and
only if:

a+ r
q
α
i

i

(n) ≡ 0 (mod q
α
i

i ) for all 1 ≤ i ≤ k

where 0 ≤ r
i
(n) < i is defined for all i > 1 by:

n+ ri(n) ≡ 0 (mod i) .

Proof. First, if n is of the form a + m.d for some natural number m ≥ 1,
where 1 ≤ a < d = q

α
1

1 .q
α

2
2 . . . q

α
k

k , then:

n ≡ a (mod d)

and : n+ r
q
α
i

i

(n) ≡ 0 (mod q
α
i

i ) for all 1 ≤ i ≤ k

whence : a+ r
q
α
i

i

(n) ≡ 0 (mod q
α
i

i ) for all 1 ≤ i ≤ k

Second:

If : a+ r
q
α
i

i

(n) ≡ 0 (mod q
α
i

i ) for all 1 ≤ i ≤ k

and : n+ r
q
α
i

i

(n) ≡ 0 (mod q
α
i

i ) for all 1 ≤ i ≤ k

then : n− a ≡ 0 (mod q
α
i

i ) for all 1 ≤ i ≤ k
whence : n ≡ a (mod d)

The Lemma follows. �

By Lemma 36.3, it follows that:

Corollary 38.5. The probability that a + r
q
α
i

i

(n) ≡ 0 (mod q
α
i

i ) for any

1 ≤ i ≤ k is 1

q
α
i

i

. 2

By Lemma 38.1 and Theorem 38.3, it further follows that:

Corollary 38.6. The joint probability that a+ r
q
α
i

i

(n) ≡ 0 (mod q
α
i

i ) for all

1 ≤ i ≤ k is
∏k
i=1

1

q
α
i

i

. 2

We conclude by Lemma 38.4 that:

Corollary 38.7. The asymptotic density of Dirichlet integers, defined as
numbers of the form a+m.d for some natural number m ≥ 1 which are not divisible
by any given set of primes R = {r

1
, r

2
, . . . , r

l
}, where 1 ≤ a < d = q

α
1

1 .q
α

2
2 . . . q

α
l

k

is: ∏k
i=1

1

q
α
i

i

.
∏
r∈R & r 6=q

i
(1− 1

r ).

Proof. Since a, d are co-prime, we have by Lemma 38.4 that if n is of the form
a + m.d for some natural number m ≥ 1, where 1 ≤ a < d = q

α
1

1 .q
α

2
2 . . . q

α
k

k , we
have that:
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n ≡ a (mod q
i
) for all 1 ≤ i ≤ k

whilst : n+ ri(n) ≡ 0 (mod i) for all 1 ≤ i
whence : a+ rq

i
(n) ≡ 0 (mod qi) for all 1 ≤ i ≤ k

r
q
i
(n) 6= 0 for all 1 ≤ i ≤ k

and : q
i

6 | n for all 1 ≤ i ≤ k

Hence, if n is of the form a+m.d for some natural number m ≥ 1, where 1 ≤ a <
d = q

α
1

1 .q
α

2
2 . . . q

α
k

k and (a, d) = 1, the probability that q
i
6 |n for all 1 ≤ i ≤ k is 1.

By Lemma 37.1, Theorem 37.2 and Theorem 38.3, the asymptotic density of Dirichlet
numbers of the form a + m.d which are not divisible by any given set of primes
R = {r

1
, r

2
, . . . , r

l
} is thus:∏k

i=1
1

q
α
i

i

.
∏
r∈R & r 6=q

i
(1− 1

r )

The Corollary follows. �

Corollary 38.8. The expected number of Dirichlet integers in any interval
(a, b) is:

(b− a)
∏k
i=1

1

q
α
i

i

.
∏k
i=1(1− 1

q
i
)−1.

∏
r∈R(1− 1

r ). 2

38.2. An elementary non-heuristic proof of Dirichlet’s Theorem

Since n is a prime if, and only if, it is not divisible by any prime p ≤
√
n, it follows

that the number π
(a,d)

(n) of Dirichlet primes, of the form a+m.d for some natural

number m ≥ 1 and 1 ≤ a < d = q
α

1
1 .q

α
2

2 . . . q
α
k

k , that are less than or equal to any
n ≥ q2

k
is cumulatively approximated by the non-heuristic Dirichlet prime counting

function:

Definition 38.9. π
D

(n) =
∑n
l=1(

∏k
i=1

1

q
α
i

i

.
∏k
i=1(1− 1

q
i
)−1.

∏π(
√
l)

j=1 (1− 1
p
j
)).

We conclude that:

Lemma 38.10. π
(a,d)

(n) ≈ π
D

(n)→∞ as n→∞.

Proof. If a, d are co-prime and 1 ≤ a < d = q
α

1
1 .q

α
2

2 . . . q
α
k

k , we have for any
n ≥ q2

k
:

π
D

(n) =
∑n
l=1(

∏k
i=1

1

q
α
i

i

.
∏k
i=1(1− 1

q
i
)−1.

∏π(
√
l)

j=1 (1− 1
p
j
))

=
∏k
i=1

1

q
α
i

i

.
∏k
i=1(1− 1

q
i
)−1.

∑n
l=1

∏π(
√
l)

j=1 (1− 1
p
j
)

≥
∏k
i=1

1

q
α
i

i

.
∏k
i=1(1− 1

q
i
)−1.n.

∏π(
√
n)

j=1 (1− 1
p
j
)

Since, by Mertens’ Theorem,
∏
p≤x(1− 1

p ) ∼ e−λ

logex
, we have that:

n.
∏π(

√
n)

j=1 (1− 1
p
j
) ∼ 2e−γn

loge(n) →∞ as n→∞.

the lemma follows. �
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Since p2
n+1
− p2

n
→∞ as n→∞, we conclude further that:

Theorem 38.11. There are an infinity of primes in any arithmetic progression
a+m.d where (a, d) = 13. 2

3Compare [HW60], p.13, Theorem 15*.



CHAPTER 39

A non-heuristic proof that there are infinite
twin-primes

We define π
2
(n) as the number of integers p ≤ n such that both p and p + 2 are

prime.

In order to estimate π
2
(n), we first define:

Definition 39.1. An integer n is a TW(k) integer if, and only if, rp
i
(n) 6= 0

and rp
i
(n) 6= 2 for all 1 ≤ i ≤ k, where 0 ≤ r

i
(n) < i is defined for all i > 1 by:

n+ ri(n) ≡ 0 (mod i) .

We note that:

Lemma 39.2. If n is a TW(k) integer, then both n and n+ 2 are not divisible
by any of the first k primes {p

1
, p

2
, . . . , p

k
}.

Proof. The lemma follows immediately from Definition 39.1, Definition 6.9
and Lemma 36.2. �

Since each residue ri(n) cycles over the i values (i− 1, i− 2, . . . , 0), these values
are all incongruent and form a complete system of residues mod i.

It thus follows from Definition 39.1 that the asymptotic density of TW(k)
integers over the set of natural numbers is:

Lemma 39.3. D(TW(k)) =
∏k
i=2(1− 2

p
i
). 2

We also have that:

Lemma 39.4. If p2
k
≤ n ≤ p2

k+1
is a TW(k) integer, then n is a prime and either

n+ 2 is also a prime, or n+ 2 = p2
k+1

.

Proof. By Definition 39.1 and Definition 6.9:

rp
i
(n) 6= 2 for all 1 ≤ i ≤ k

n+ 2 6= λ.p
i
for all 1 ≤ i ≤ k, λ ≥ 1

Hence n is prime; and either n+2 is divisible by p
k+1

, in which case n+2 = p2
k+1

,
or it is a prime. �

If we define πTW(k)
(n) as the number of TW(k) integers ≤ n, by Lemma 39.3 the

expected number of TW(k) integers in any interval (a, b) is given—with a binomial
standard deviation—by:

Lemma 39.5. πTW(k)
(b)− πTW(k)

(a) ≈ (b− a)
∏k
i=2(1− 2

p
i
). 2
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Since n is a prime if, and only if, it is not divisible by any prime p ≤
√
n, it

follows from Lemma 39.4 that πTW(k)
(p2
k+1

)− πTW(k)
(p2
k
) is at most one less than the

number of twin-primes in the interval (p2
k+1
− p2

k
).

Lemma 39.6. πTW(k)
(p2
k+1

)−πTW(k)
(p2
k
)+1 ≥ π2(p2

k+1
)−π2(p2

k)
) ≥ πTW(k)

(p2
k+1

)−
πTW(k)

(p2
k
)

Now, by Lemma 39.5 the expected number of TW(k) integers in the interval
(p2
k+1
− p2

k
) is given by:

Lemma 39.7. πTW(k)
(p2
k+1

)− πTW(k)
(p2
k
) ≈ (p2

k+1
− p2

k
)
∏k
i=2(1− 2

p
i
). 2

We conclude that the number π2(p2
k+1

) of twin primes ≤ p2
k+1

is given by the
cumulative non-heuristic approximation:

Lemma 39.8.
∑k
j=1(π

2
(p2
j+1

)−π
2
(p2
j
)) = π

2
(p2
k+1

) ≈
∑k
j=1(p2

j+1
−p2

j
)
∏j
i=2(1−

2
p
i
). 2

We further conclude that:

Theorem 39.9. π2(n)→∞ as n→∞.

Proof. We have that, for k ≥ 2:∑k
j=1(p2

j+1
− p2

j
)
∏j
i=2(1− 2

p
i
) =

∑p2
k+1

j=9

∏π(
√
j)−1

i=2 (1− 2
p
i
)

≥ (p2
k+1
− 9).

∏k
i=2(1− 2

p
i
)

≥ (p2
k+1
− 9).

∏k
i=2(1− 1

p
i
)(1− 1

(p
i
−1) )

≥ (p2
k+1
− 9).

∏k
i=2(1− 1

p
i
)(1− 1

p
i−1

)

≥ (p2
k+1
− 9).

∏k
i=2(1− 1

p
i−1

)2

≥ (p2
k+1
− 9).

∏k
i=1(1− 1

p
i
)2

Now, by Mertens’ Theorem, we have that:

(p2
k+1
− 9).

∏k
i=1(1− 1

p
i
)2 ∼ (p2

k+1
− 9).( e−γ

logek
)2

→ ∞ as n→∞
The theorem follows by Lemma 39.8. �



CHAPTER 40

The Generalised Prime Counting Function:∑n
j=1

∏π(
√
j)

i=a (1− b
p
i
)

We note that the argument of Theorem 39.9 in Chapter 39 is a special case of the

behaviour as n→∞ of the Generalised Prime Counting Function
∑n
j=1

∏π(
√
j)

i=a (1−
b
p
i
), which estimates the number of integers ≤ n such that there are b values that

cannot occur amongst the residues rp
i
(n) for a ≤ i ≤ π(

√
j)1:

Theorem 40.1.
∑n
j=1

∏π(
√
j)

i=a (1− b
p
i
)→∞ as n→∞ if p

a
> b ≥ 1.

Proof. For pa > b ≥ 1, we have that:∑n
j=1

∏π(
√
j)

i=a (1− b
p
i
) ≥

∑n
j=p2

a

∏π(
√
j)

i=a (1− b
p
i
)

≥
∑n
j=p2

a

∏π(
√
n)

i=a (1− b
p
i
)

≥ (n− p2
a
).
∏π(

√
n)

i=a (1− b
p
i
)

≥ (n− p2
a
).
∏n
i=a(1− b

p
i
)

The theorem follows if:

log
e
(n− p2

a
) +

∑n
i=a loge(1−

b
p
i
)→∞

(i) We note first the standard result for |x| < 1 that:

log
e
(1− x) = −

∑∞
m=1

xm

m

For any pi > b ≥ 1, we thus have:

log
e
(1− b

p
i
) = −

∑∞
m=1

(b/p
i
)m

m = − b
p
i
−
∑∞
m=2

(b/p
i
)m

m

Hence:∑n
i=a loge(1−

b
p
i
) = −

∑n
i=a( bp

i
)−

∑n
i=a(

∑∞
m=2

(b/p
i
)m

m )

(ii) We note next that, for all i ≥ a:

c < (1− b
pa

)→ c < (1− b
p
i
)

It follows for any such c that:

1Thus b = 1 yields an estimate for the number of primes ≤ n, and b = 2 an estimate for the
number of TW primes (Definition 39.1) ≤ n.
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332 40. THE GENERALISED PRIME COUNTING FUNCTION:
∑n
j=1

∏π(
√
j)

i=a (1− b
p
i

)∑∞
m=2

(b/p
i
)m

m ≤
∑∞
m=2( bp

i
)m =

(b/p
i
)2

1−b/p
i
≤ b2

c.p2
i

Since:∑∞
i=1

1
p2
i

= O(1)

it further follows that:∑n
i=a(

∑∞
m=2

(b/p
i
)m

m ) ≤
∑n
i=a( b2

c.p2
i

) = O(1)

(iii) From the standard result2:∑
p≤x

1
p = logelogex+O(1) + o(1)

it then follows that:∑n
i=a loge(1−

b
p
i
) ≥ −

∑n
i=a( bp

i
)−O(1)

≥ −b.(logelogen+O(1) + o(1))−O(1)

The theorem follows since:

log
e
(n− p2

a
)− b.(logelogen+O(1) + o(1))−O(1)→∞

and so:

log
e
(n− p2

a
) +

∑n
i=a loge(1−

b
p
i
)→∞ �

2[HW60], p.351, Theorem 427.



CHAPTER 41

Algorithms for generating the residue function
ri(n)

We graphically illustrate how the residues ri(n) occur naturally as values of:

A: The natural-number based residue sequences Ri;

B: The natural-number based residue sequences E(n);

and as the output of:

C: The natural-number based algorithm EN;

D: The prime-number based algorithm EP;

E: The prime-number based algorithm EQ.

A: The natural-number based sequences Ri(n)

Density: For instance, the residues ri(n) can be defined for all n ≥ 1 as the values of the sequences
Ri(n), defined for all i ≥ 1, as illustrated below in Fig.11, where:

• For any i ≥ 2, each sequence Ri (n) cycles through the values (i− 1, i− 2, . . . , 0) with
period i;

• For any i ≥ 2 the asymptotic density—over the set of natural numbers—of the set {n}
of integers that are divisible by i is 1

i
; and the asymptotic density of integers that are

not divisible by i is i−1
i

.

Sequence:R
1
R

2
R

3
R

4
R

5
R

6
R

7
R

8
R

9
R

10
R

11
. . .Rn

n = 1 0 1 2 3 4 5 6 7 8 9 10 . . . n-1
n = 2 0 0 1 2 3 4 5 6 7 8 9 . . . n-2
n = 3 0 1 0 1 2 3 4 5 6 7 8 . . . n-3
n = 4 0 0 2 0 1 2 3 4 5 6 7 . . . n-4
n = 5 0 1 1 3 0 1 2 3 4 5 6 . . . n-5
n = 6 0 0 0 2 4 0 1 2 3 4 5 . . . n-6
n = 7 0 1 2 1 3 5 0 1 2 3 4 . . . n-7
n = 8 0 0 1 0 2 4 6 0 1 2 3 . . . n-8
n = 9 0 1 0 3 1 3 5 7 0 1 2 . . . n-9
n = 10 0 0 2 2 0 2 4 6 8 0 1 . . . n-10
n = 11 0 1 1 1 4 1 3 5 7 9 0 . . . n-11

n r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
9

r
10

r
11

. . . 0

Fig.1: The natural-number based residue sequences Ri(n)

B: The natural-number based sequences E(n)

Primality: The residues ri(n) can also be viewed alternatively as values of the associated

sequences, E(n) = {ri(n) : i ≥ 1}, defined for all n ≥ 1, as illustrated below in Fig.2, where:

• The sequences E(n) highlighted in red correspond to a prime2 p (since ri(p) 6= 0 for

1 < i < p) in the usual, linearly displayed, Eratosthenes sieve:

E(�1), E(2), E(3), E(�4), E(5), E(�6), E(7), E(�8), E(�9), E(��10), E(11), . . .

1For ri read ri (n); for Ri read Ri (n).
2Conventionally defined as integers that are not divisible by any smaller integer other than 1.
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• The sequences highlighted in cyan identify a crossed out composite n (since ri(n) = 0
for some i < i < n) in the usual, linearly displayed, Eratosthenes sieve.

• The ‘boundary’ residues r1(n) = 0 and rn(n) = 0 are identified in cyan.

Sequence:R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 . . .Rn

E(1): 0 1 2 3 4 5 6 7 8 9 10 . . . n-1
E(2): 0 0 1 2 3 4 5 6 7 8 9 . . . n-2
E(3): 0 1 0 1 2 3 4 5 6 7 8 . . . n-3
E(4): 0 0 2 0 1 2 3 4 5 6 7 . . . n-4
E(5): 0 1 1 3 0 1 2 3 4 5 6 . . . n-5
E(6): 0 0 0 2 4 0 1 2 3 4 5 . . . n-6
E(7): 0 1 2 1 3 5 0 1 2 3 4 . . . n-7
E(8): 0 0 1 0 2 4 6 0 1 2 3 . . . n-8
E(9): 0 1 0 3 1 3 5 7 0 1 2 . . . n-9
E(10): 0 0 2 2 0 2 4 6 8 0 1 . . . n-10
E(11): 0 1 1 1 4 1 3 5 7 9 0 . . . n-11
. . .
E(n): r

1
r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
9

r
10

r
11

. . . 0
. . .

Fig.2: The natural-number based residue sequences E(n)

C: The output of a natural-number based algorithm EN

We give below in Fig.3 the output for 1 ≤ n ≤ 11 of a natural-number based algorithm EN that

computes the values ri(n) of the sequence EN(n) for only 1 ≤ i ≤ n for any given n.

Divisors: 1 2 3 4 5 6 7 8 9 10 11 . . . n . . .

EN(1): 0
EN(2): 0 0
EN(3): 0 1 0
EN(4): 0 0 2 0
EN(5): 0 1 1 3 0
EN(6): 0 0 0 2 4 0
EN(7): 0 1 2 1 3 5 0
EN(8): 0 0 1 0 2 4 6 0
EN(9): 0 1 0 3 1 3 5 7 0
EN(10): 0 0 2 2 0 2 4 6 8 0
EN(11): 0 1 1 1 4 1 3 5 7 9 0
. . .
EN(n): r

1
r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
9

r
10

r
11

. . . 0
. . .

Fig.3: The output of the natural-number based algorithm EN

D: The output of the prime-number based algorithm EP

Fig.4 gives the output for 2 ≤ n ≤ 31 of a prime-number based algorithm EQ that computes the
values qi (n) = rp

i
(n) of the sequence EP(n) for only each prime 2 ≤ pi ≤ n for any given n.

Prime: p
1
p
2
p
3
p
4
p
5
p
6
p
7
p
8
p
9
p
10

p
11

. . . pn . . .
Divisor: 2 3 5 7 11 13 17 19 23 29 31 . . . pn . . .

EP(2): 0
EP(3): 1 0
EP(4): 0 2
EP(5): 1 1 0
EP(6): 0 0 4
EP(7): 1 2 3 0
EP(8): 0 1 2 6
EP(9): 1 0 1 5
EP(10): 0 2 0 4
EP(11): 1 1 4 3 0
EP(12): 0 0 3 2 10
EP(13): 1 2 2 1 9 0
EP(14): 0 1 1 0 8 12
EP(15): 1 0 0 6 7 11
EP(16): 0 2 4 5 6 10
EP(17): 1 1 3 4 5 9 0
EP(18): 0 0 2 3 4 8 16
EP(19): 1 2 1 2 3 7 15 0
EP(20): 0 1 0 1 2 6 14 18
EP(21): 1 0 4 0 1 5 13 17
EP(22): 0 2 3 6 0 4 12 16
EP(23): 1 1 2 5 10 3 11 15 0
EP(24): 0 0 1 4 9 2 10 14 22
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EP(25): 1 2 0 3 8 1 9 13 21
EP(26): 0 1 4 2 7 0 8 12 20
EP(27): 1 0 3 1 6 12 7 11 19
EP(28): 0 2 2 0 5 11 6 10 18
EP(29): 1 1 1 6 4 10 5 9 17 0
EP(30): 0 0 0 5 3 9 4 8 16 28
EP(31): 1 2 4 4 2 8 3 7 15 27 0
. . .
EP(n): q

1
q
2

q
3

q
4

q
5

q
6

q
7

q
8

q
9

q
10

q
11

. . . 0
. . .

Fig.4: The output of the prime-number based algorithm EP

E: The output of the prime-number based algorithms EP and EQ

We give below in Fig.5 the output for 2 ≤ n ≤ 121 of the two prime-number based algorithms

EP (whose output {qi(n) = rp
i
(n) : 1 ≤ i ≤ π(n)} is shown only partially, partly in cyan) and

EQ (whose output qi(n) = {rp
i
(n) : 1 ≤ i ≤ π(

√
n)} is highlighted in black and red, the latter

indicating the generation of a prime sequence3.

Prime: p
1
p
2
p
3
p
4
p
5
p
6
p
7
p
8
p
9
p
10

p
11

. . . pn . . .
Divisor: 2 3 5 7 11 13 17 19 23 29 31 . . . pn . . .
Function:Q

1
Q

2
Q

3
Q

4
Q

5
Q

6
Q

7
Q

8
Q

9
Q

10
Q

11
. . .

EQ(2): 0 (Prime by definition)
EQ(3): 1 0
EQ(4): 0 2
EQ(5): 1 1 0
EQ(6): 0 0 4
EQ(7): 1 2 3 0
EQ(8): 0 1 2 6
EQ(9): 1 0 1 5
EQ(10): 0 2 0 4
EQ(11): 1 1 4 3 0
EQ(12): 0 0 3 2 10
EQ(13): 1 2 2 1 9 0
EQ(14): 0 1 1 0 8 12
EQ(15): 1 0 0 6 7 11
EQ(16): 0 2 4 5 6 10
EQ(17): 1 1 3 4 5 9 0
EQ(18): 0 0 2 3 4 8 16
EQ(19): 1 2 1 2 3 7 15 0
EQ(20): 0 1 0 1 2 6 14 18
EQ(21): 1 0 4 0 1 5 13 17
EQ(22): 0 2 3 6 0 4 12 16
EQ(23): 1 1 2 5 10 3 11 15 0
EQ(24): 0 0 1 4 9 2 10 14 22
EQ(25): 1 2 0 3 8 1 9 13 21
EQ(26): 0 1 4 2 7 0 8 12 20
EQ(27): 1 0 3 1 6 12 7 11 19
EQ(28): 0 2 2 0 5 11 6 10 18
EQ(29): 1 1 1 6 4 10 5 9 17 0
EQ(30): 0 0 0 5 3 9 4 8 16 28
EQ(31): 1 2 4 4 2 8 3 7 15 27 0
EQ(32): 0 1 3 3 1 7 2 6 14 26 30
EQ(33): 1 0 2 2 0 6 1 5 13 25 29
EQ(34): 0 2 1 1 10 5 0 4 12 24 28
EQ(35): 1 1 0 0 9 4 16 3 11 23 27
EQ(36): 0 0 4 6 8 3 15 2 10 22 26
EQ(37): 1 2 3 5 7 2 14 1 9 21 25
EQ(38): 0 1 2 4 6 1 13 0 8 20 24
EQ(39): 1 0 1 3 5 0 12 18 7 19 23
EQ(40): 0 2 0 2 4 12 11 17 6 18 22
EQ(41): 1 1 4 1 3 11 10 16 5 17 21
EQ(42): 0 0 3 0 2 10 9 15 4 16 20
EQ(43): 1 2 2 6 1 9 8 14 3 15 19
EQ(44): 0 1 1 5 0 8 7 13 2 14 18
EQ(45): 1 0 0 4 10 7 6 12 1 13 17
EQ(46): 0 2 4 3 9 6 5 11 0 12 16
EQ(47): 1 1 3 2 8 5 4 10 22 11 15
EQ(48): 0 0 2 1 7 4 3 9 21 10 14
EQ(49): 1 2 1 0 6 3 2 8 20 9 13
EQ(50): 0 1 0 6 5 2 1 7 19 8 12
EQ(51): 1 0 4 5 4 1 0 6 18 7 11

3For informal reference and perspective, formal definitions of both the prime-number based
algorithms EP and EQ are given in this work in progress Factorising all m ≤ n is of order

Θ(
∑n
i=2 π(

√
i)).

http://alixcomsi.com/40_Factorising_Update.pdf
http://alixcomsi.com/40_Factorising_Update.pdf
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EQ(52): 0 2 3 4 3 0 16 5 17 6 10
EQ(53): 1 1 2 3 2 12 15 4 16 5 9
EQ(54): 0 0 1 2 1 11 14 3 15 4 8
EQ(55): 1 2 0 1 0 10 13 2 14 3 7
EQ(56): 0 1 4 0 10 9 12 1 13 2 6
EQ(57): 1 0 3 6 9 8 11 0 12 1 5
EQ(58): 0 2 2 5 8 7 10 18 11 0 4
EQ(59): 1 1 1 4 7 6 9 17 10 28 3
EQ(60): 0 0 0 3 6 5 8 16 9 27 2
EQ(61): 1 2 4 2 5 4 7 15 8 26 1
EQ(62): 0 1 3 1 4 3 6 14 7 25 0
EQ(63): 1 0 2 0 3 2 5 13 6 24 30
EQ(64): 0 2 1 6 2 1 4 12 5 23 29
EQ(65): 1 1 0 5 1 0 3 11 4 22 28
EQ(66): 0 0 4 4 0 12 2 10 3 21 27
EQ(67): 1 2 3 3 10 11 1 9 2 20 26
EQ(68): 0 1 2 2 9 10 0 8 1 19 25
EQ(69): 1 0 1 1 8 9 16 7 0 18 24
EQ(70): 0 2 0 0 7 8 15 6 22 17 23
EQ(71): 1 1 4 6 6 7 14 5 21 16 22
EQ(72): 0 0 3 5 5 6 13 4 20 15 21
EQ(73): 1 2 2 4 4 5 12 3 19 14 20
EQ(74): 0 1 1 3 3 4 11 2 18 13 19
EQ(75): 1 0 0 2 2 3 10 1 17 12 18
EQ(76): 0 2 4 1 1 2 9 0 16 11 17
EQ(77): 1 1 3 0 0 1 8 18 15 10 16
EQ(78): 0 0 2 6 10 0 7 17 14 9 15
EQ(79): 1 2 1 5 9 12 6 16 13 8 14
EQ(80): 0 1 0 4 8 11 5 15 12 7 13
EQ(81): 1 0 4 3 7 10 4 14 11 6 12
EQ(82): 0 2 3 2 6 9 3 13 10 5 11
EQ(83): 1 1 2 1 5 8 2 12 9 4 10
EQ(84): 0 0 1 0 4 7 1 11 8 3 9
EQ(85): 1 2 0 6 3 6 0 10 7 2 8
EQ(86): 0 1 4 5 2 5 16 9 6 1 7
EQ(87): 1 0 3 4 1 4 15 8 5 0 6
EQ(88): 0 2 2 3 0 3 14 7 4 28 5
EQ(89): 1 1 1 2 10 2 13 6 3 27 4
EQ(90): 0 0 0 1 9 1 12 5 2 26 3
EQ(91): 1 2 4 0 8 0 11 4 1 25 2
EQ(92): 0 1 3 6 7 12 10 3 0 24 1
EQ(93): 1 0 2 5 6 11 9 2 22 23 0
EQ(94): 0 2 1 4 5 10 8 1 21 22 30
EQ(95): 1 1 0 3 4 9 7 0 20 21 29
EQ(96): 0 0 4 2 3 8 6 18 19 20 28
EQ(97): 1 2 3 1 2 7 5 17 18 19 27
EQ(98): 0 1 2 0 1 6 4 16 17 18 26
EQ(99): 1 0 1 6 0 5 3 15 16 17 25
EQ(100): 0 2 0 5 10 4 2 14 15 16 24
EQ(101): 1 1 4 4 9 3 1 13 14 15 23
EQ(102): 0 0 3 3 8 2 0 12 13 14 22
EQ(103): 1 2 2 2 7 1 16 11 12 13 21
EQ(104): 0 1 1 1 6 0 15 10 11 12 20
EQ(105): 1 0 0 0 5 12 14 9 10 11 19
EQ(106): 0 2 4 6 4 11 13 8 9 10 18
EQ(107): 1 1 3 5 3 10 12 7 8 9 17
EQ(108): 0 0 2 4 2 9 11 6 7 8 16
EQ(109): 1 2 1 3 1 8 10 5 6 7 15
EQ(110): 0 1 0 2 0 7 9 4 5 6 14
EQ(111): 1 0 4 1 10 6 8 3 4 5 13
EQ(112): 0 2 3 0 9 5 7 2 3 4 12
EQ(113): 1 1 2 6 8 4 6 1 2 3 11
EQ(114): 0 0 1 5 7 3 5 0 1 2 10
EQ(115): 1 2 0 4 6 2 4 18 0 1 9
EQ(116): 0 1 4 3 5 1 3 17 22 0 8
EQ(117): 1 0 3 2 4 0 2 16 21 28 7
EQ(118): 0 2 2 1 3 12 1 15 20 27 6
EQ(119): 1 1 1 0 2 11 0 14 19 26 5
EQ(120): 0 0 0 6 1 10 16 13 18 25 4
EQ(121): 1 2 4 5 0 9 15 12 17 24 3
. . .
EQ(n): q

1
q
2

q
3

q
4

q
5

q
6

q
7

q
8

q
9

q
10

q
11

. . .
. . .

Prime: p
1
p
2
p
3
p
4
p
5
p
6
p
7
p
8
p
9
p
10

p
11

. . . pn . . .
Divisor: 2 3 5 7 11 13 17 19 23 29 31 . . . pn . . .

Fig.5: The output of the prime-number based algorithms EP and EQ



CHAPTER 42

Analysing non-heuristic estimates of primes ≤ n
for n ≤ 1500

Fig.1: The following table gives comparative values for π(n) as approximated non-

heuristically by πL(n) =
∑n
j=1

∏π(
√
j)

i=1 (1 − 1/pj ), the actual values π(n) of the primes

less than or equal to n, and the values for π(n) as estimated non-heuristically by

πH (n) = n.
∏π(

√
n)

i=1 (1− 1/pj ) of π(n), for 4 ≤ n ≤ 1500.

n pn π(
√
n)

∏n
j=1(1− 1/p

j
) [

√
n]

∏π(
√
n)

j=1 (1− 1/p
j

)
∑n
j=1

∏π(
√
j)

i=1 (1− 1/p
j

) π(n) n.
∏π(
√
n)

i=1 (1− 1/p
j

)

1 2 0 1/2 1 0.0000 0 0.000
2 3 0 1/3 1 1/2 0.5000 1 1.0000
3 5 0 4/15 1 1/2 1.0000 2 1.5000

4 7 1 8/35 2 1/3 1.3333 2 1.3333
5 11 1 16/77 2 1/3 1.6667 3 1.6667
6 13 1 89/464 2 1/3 2.0000 3 2.0000
7 17 1 165/914 2 1/3 2.3333 4 2.3333
8 19 1 157/918 2 1/3 2.6667 4 2.6667
9 23 2 62/379 3 4/15 2.9333 4 2.4000

10 29 2 157/994 3 4/15 3.2000 4 2.6667
11 31 2 142/929 3 4/15 3.4667 5 2.9333
12 37 2 29/195 3 4/15 3.7333 5 3.2000
13 41 2 139/958 3 4/15 4.0000 6 3.4667
14 43 2 89/628 3 4/15 4.2667 6 3.7333
15 47 2 62/447 3 4/15 4.5333 6 4.0000
16 53 2 112/823 4 4/15 4.8000 6 4.2667
17 59 2 40/299 4 4/15 5.0667 7 4.5333
18 61 2 5/38 4 4/15 5.3333 7 4.8000
19 67 2 7/54 4 4/15 5.6000 8 5.0667
20 71 2 40/313 4 4/15 5.8667 8 5.3333
21 73 2 15/119 4 4/15 6.1333 8 5.6000
22 79 2 85/683 4 4/15 6.4000 8 5.8667
23 83 2 15/122 4 4/15 6.6667 9 6.1333
24 89 2 31/255 4 4/15 6.9333 9 6.4000
25 97 3 106/881 5 8/35 7.1619 9 5.7143
26 101 3 109/915 5 8/35 7.3905 9 5.9429
27 103 3 86/729 5 8/35 7.6190 9 6.1714
28 107 3 97/830 5 8/35 7.8476 9 6.4000
29 109 3 11/95 5 8/35 8.0762 10 6.6286
30 113 3 7/61 5 8/35 8.3048 10 6.8751
31 127 3 101/887 5 8/35 8.5333 11 7.0857
32 131 3 20/177 5 8/35 8.7619 11 7.3143
33 137 3 47/419 5 8/35 8.9905 11 7.5429
34 139 3 49/440 5 8/35 9.2190 11 7.7714
35 149 3 25/226 5 8/35 9.4476 11 8.0000
36 151 3 10/91 6 8/35 9.6762 11 8.2286
37 157 3 63/577 6 8/35 9.9048 12 8.4571
38 163 3 79/728 6 8/35 10.1333 12 8.6857
39 167 3 48/445 6 8/35 10.3619 12 8.9143
40 173 3 77/718 6 8/35 10.5905 12 9.1429
41 179 3 61/572 6 8/35 10.8190 13 9.3714
42 181 3 7/66 6 8/35 11.0476 13 9.6000
43 191 3 94/891 6 8/35 11.2762 14 9.8286
44 193 3 89/848 6 8/35 11.5048 14 10.0571
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n pn π(
√
n)

∏n
j=1(1− 1/p

j
) [

√
n]

∏π(
√
n)

j=1 (1− 1/p
j

)
∑n
j=1

∏π(
√
j)

i=1 (1− 1/p
j

) π(n) n.
∏π(
√
n)

i=1 (1− 1/p
j

)

45 197 3 26/249 6 8/35 11.7333 14 10.2857
46 199 3 8/77 6 8/35 11.9619 14 10.5143
47 211 3 76/735 6 8/35 12.1905 15 10.7429
48 223 3 7/68 6 8/35 12.4190 15 10.9714
49 227 4 33/322 7 16/77 12.6268 15 10.1818
50 229 4 5/49 7 16/77 12.8346 15 10.3896
51 233 4 19/187 7 16/77 13.0424 15 10.5974
52 239 4 43/425 7 16/77 13.2502 15 10.8052
53 241 4 40/397 7 16/77 13.4580 16 11.0130
54 251 4 57/568 7 16/77 13.6658 16 11.2208
55 257 4 1/10 7 16/77 13.8736 16 11.4286
56 263 4 24/241 7 16/77 14.0814 16 11.6364
57 269 4 63/635 7 16/77 14.2892 16 11.8442
58 271 4 60/607 7 16/77 14.4970 16 12.0519
59 277 4 13/132 7 16/77 14.7048 17 12.2597
60 281 4 58/591 7 16/77 14.9126 17 12.4675
61 283 4 31/317 7 16/77 15.1203 18 12.6753
62 293 4 23/236 7 16/77 15.3281 18 12.8831
63 307 4 17/175 7 16/77 15.5359 18 13.0909
64 311 4 58/599 8 16/77 15.7437 18 13.2987
65 313 4 61/632 8 16/77 15.9515 18 13.5065
66 317 4 61/634 8 16/77 16.1593 18 13.7143
67 331 4 40/417 8 16/77 16.3671 19 13.9221
68 337 4 68/711 8 16/77 16.5749 19 14.1299
69 347 4 72/755 8 16/77 16.7827 19 14.3377
70 349 4 31/326 8 16/77 16.9905 19 14.5455
71 353 4 11/116 8 16/77 17.1983 20 14.7532
72 359 4 33/349 8 16/77 17.4061 20 14.9610
73 367 4 43/456 8 16/77 17.6139 21 15.1688
74 373 4 79/840 8 16/77 17.8216 21 15.3766
75 379 4 59/629 8 16/77 18.0294 21 15.5844
76 383 4 45/481 8 16/77 18.2372 21 15.7922
77 389 4 60/643 8 16/77 18.4450 21 16.0000
78 397 4 39/419 8 16/77 18.6528 21 16.2078
79 401 4 61/657 8 16/77 18.8606 22 16.4156
80 409 4 64/691 8 16/77 19.0684 22 16.6234
81 419 4 79/855 9 16/77 19.2762 22 16.8312
82 421 4 33/358 9 16/77 19.4840 22 17.0390
83 431 4 8/87 9 16/77 19.6918 23 17.2468
84 433 4 89/970 9 16/77 19.8996 23 17.4545
85 439 4 13/142 9 16/77 20.1074 23 17.6623
86 443 4 39/427 9 16/77 20.3152 23 17.8701
87 449 4 37/406 9 16/77 20.5229 23 18.0779
88 457 4 1/11 9 16/77 20.7307 23 18.2857
89 461 4 48/529 9 16/77 20.9385 24 18.4935
90 463 4 67/740 9 16/77 21.1463 24 18.7013
91 467 4 73/808 9 16/77 21.3541 24 18.9091
92 479 4 11/122 9 16/77 21.5619 24 19.1169
93 487 4 35/389 9 16/77 21.7697 24 19.3247
94 491 4 51/568 9 16/77 21.9775 24 19.5325
95 499 4 69/770 9 16/77 22.1853 24 19.7403
96 503 4 11/123 9 16/77 22.3931 24 19.9481
97 509 4 54/605 9 16/77 22.6009 25 20.1558
98 521 4 71/797 9 16/77 22.8087 25 20.3636
99 523 4 77/866 9 16/77 23.0165 25 20.5714

100 541 4 71/800 10 16/77 23.2242 25 20.7792
101 547 4 59/666 10 16/77 23.4320 26 20.9870
102 557 4 81/916 10 16/77 23.6398 26 21.1948
103 563 4 73/827 10 16/77 23.8476 27 21.4026
104 569 4 43/488 10 16/77 24.0554 27 21.6104
105 571 4 19/216 10 16/77 24.2632 27 21.8182
106 577 4 85/968 10 16/77 24.4710 27 22.0260
107 587 4 27/308 10 16/77 24.6788 28 22.2338
108 593 4 7/80 10 16/77 24.8866 28 22.4416
109 599 4 65/744 10 16/77 25.0944 29 22.6494
110 601 4 43/493 10 16/77 25.3022 29 22.8571
111 607 4 31/356 10 16/77 25.5100 29 23.0649
112 613 4 2/23 10 16/77 25.7177 29 23.2727
113 617 4 23/265 10 16/77 25.9255 30 23.4805
114 619 4 50/577 10 16/77 26.1333 30 23.6883
115 631 4 77/890 10 16/77 26.3411 30 23.8961
116 641 4 85/984 10 16/77 26.5489 30 24.1039
117 643 4 37/429 10 16/77 26.7567 30 24.3117
118 647 4 80/929 10 16/77 26.9645 30 24.5195
119 653 4 46/535 10 16/77 27.1723 30 24.7273
120 659 4 54/629 10 16/77 27.3801 30 24.9351
121 661 5 3/35 11 89/464 27.5719 30 23.2088
122 673 5 41/479 11 89/464 27.7637 30 23.4006
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n pn π(
√
n)

∏n
j=1(1− 1/p

j
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√
n]

∏π(
√
n)

j=1 (1− 1/p
j

)
∑n
j=1

∏π(
√
j)

i=1 (1− 1/p
j

) π(n) n.
∏π(
√
n)

i=1 (1− 1/p
j

)

123 677 5 10/117 11 89/464 27.9555 30 23.5924
124 683 5 46/539 11 89/464 28.1473 30 23.7842
125 691 5 64/751 11 89/464 28.3391 30 23.9760
126 701 5 4/47 11 89/464 28.5309 30 24.1678
127 709 5 56/659 11 89/464 28.7227 31 24.3596
128 719 5 51/601 11 89/464 28.9146 31 24.5514
129 727 5 5/59 11 89/464 29.1064 31 24.7433
130 733 5 60/709 11 89/464 29.2982 31 24.9351
131 739 5 6/71 11 89/464 29.4900 32 25.1269
132 743 5 33/391 11 89/464 29.6818 32 25.3187
133 751 5 59/700 11 89/464 29.8736 32 25.5105
134 757 5 25/297 11 89/464 30.0654 32 25.7023
135 761 5 67/797 11 89/464 30.2572 32 25.8941
136 769 5 45/536 11 89/464 30.4490 32 26.0859
137 773 5 68/811 11 89/464 30.6408 33 26.2777
138 787 5 17/203 11 89/464 30.8326 33 26.4695
139 797 5 23/275 11 89/464 31.0244 34 26.6613
140 809 5 35/419 11 89/464 31.2163 34 26.8531
141 811 5 73/875 11 89/464 31.4081 34 27.0450
142 821 5 1/12 11 89/464 31.5999 34 27.2368
143 823 5 64/769 11 89/464 31.7917 34 27.4286
144 827 5 33/397 12 89/464 31.9835 34 27.6204
145 829 5 45/542 12 89/464 32.1753 34 27.8122
146 839 5 17/205 12 89/464 32.3671 34 28.0040
147 853 5 41/495 12 89/464 32.5589 34 28.1958
148 857 5 23/278 12 89/464 32.7507 34 28.3876
149 859 5 79/956 12 89/464 32.9425 35 28.5794
150 863 5 26/315 12 89/464 33.1343 35 28.7712
151 877 5 31/376 12 89/464 33.3261 36 28.9630
152 881 5 7/85 12 89/464 33.5179 36 29.1548
153 883 5 51/620 12 89/464 33.7098 36 29.3467
154 887 5 47/572 12 89/464 33.9016 36 29.5385
155 907 5 49/597 12 89/464 34.0934 36 29.7303
156 911 5 71/866 12 89/464 34.2852 36 29.9221
157 919 5 19/232 12 89/464 34.4770 37 30.1139
158 929 5 76/929 12 89/464 34.6688 37 30.3057
159 937 5 38/465 12 89/464 34.8606 37 30.4975
160 941 5 4/49 12 89/464 35.0524 37 30.6893
161 947 5 19/233 12 89/464 35.2442 37 30.8811
162 953 5 29/356 12 89/464 35.4360 37 31.0729
163 967 5 52/639 12 89/464 35.6278 38 31.2647
164 971 5 10/123 12 89/464 35.8196 38 31.4565
165 977 5 51/628 12 89/464 36.0115 38 31.6484
166 983 5 46/567 12 89/464 36.2033 38 31.8402
167 991 5 62/765 12 89/464 36.3951 39 32.0320
168 997 5 57/704 12 89/464 36.5869 39 32.2238
169 1009 6 11/136 13 165/914 36.7674 39 30.5088
170 1013 6 8/99 13 165/914 36.9479 39 30.6893
171 1019 6 49/607 13 165/914 37.1285 39 30.8698
172 1021 6 5/62 13 165/914 37.3090 39 31.0504
173 1031 6 17/211 13 165/914 37.4895 40 31.2309
174 1033 6 59/733 13 165/914 37.6700 40 31.4114
175 1039 6 39/485 13 165/914 37.8506 40 31.5919
176 1049 6 67/834 13 165/914 38.0311 40 31.7725
177 1051 6 37/461 13 165/914 38.2116 40 31.9530
178 1061 6 17/212 13 165/914 38.3921 40 32.1335
179 1063 6 29/362 13 165/914 38.5727 41 32.3140
180 1069 6 2/25 13 165/914 38.7532 41 32.4946
181 1087 6 79/988 13 165/914 38.9337 42 32.6751
182 1091 6 56/701 13 165/914 39.1142 42 32.8556
183 1093 6 17/213 13 165/914 39.2948 42 33.0361
184 1097 6 37/464 13 165/914 39.4753 42 33.2167
185 1103 6 29/364 13 165/914 39.6558 42 33.3972
186 1109 6 71/892 13 165/914 39.8363 42 33.5777
187 1117 6 47/591 13 165/914 40.0169 42 33.7582
188 1123 6 70/881 13 165/914 40.1974 42 33.9388
189 1129 6 62/781 13 165/914 40.3779 42 34.1193
190 1151 6 51/643 13 165/914 40.5584 42 34.2998
191 1153 6 21/265 13 165/914 40.7390 43 34.4803
192 1163 6 27/341 13 165/914 40.9195 43 34.6609
193 1171 6 25/316 13 165/914 41.1000 44 34.8414
194 1181 6 43/544 13 165/914 41.2805 44 35.0219
195 1187 6 68/861 13 165/914 41.4611 44 35.2024
196 1193 6 58/735 14 165/914 41.6416 44 35.3830
197 1201 6 41/520 14 165/914 41.8221 45 35.5635
198 1213 6 62/787 14 165/914 42.0026 45 35.7440
199 1217 6 27/343 14 165/914 42.1832 46 35.9245
200 1223 6 7/89 14 165/914 42.3637 46 36.1051



340 42. ANALYSING NON-HEURISTIC ESTIMATES OF PRIMES ≤ n FOR n ≤ 1500

n pn π(
√
n)

∏n
j=1(1− 1/p

j
) [

√
n]

∏π(
√
n)

j=1 (1− 1/p
j

)
∑n
j=1

∏π(
√
j)

i=1 (1− 1/p
j

) π(n) n.
∏π(
√
n)

i=1 (1− 1/p
j

)

201 1229 6 69/878 14 165/914 42.5442 46 36.2856
202 1231 6 34/433 14 165/914 42.7247 46 36.4661
203 1237 6 55/701 14 165/914 42.9053 46 36.6466
204 1249 6 45/574 14 165/914 43.0858 46 36.8272
205 1259 6 64/817 14 165/914 43.2663 46 37.0077
206 1277 6 49/626 14 165/914 43.4468 46 37.1882
207 1279 6 14/179 14 165/914 43.6274 46 37.3687
208 1283 6 44/563 14 165/914 43.8079 46 37.5493
209 1289 6 36/461 14 165/914 43.9884 46 37.7298
210 1291 6 65/833 14 165/914 44.1689 46 37.9103
211 1297 6 63/808 14 165/914 44.3495 47 38.0909
212 1301 6 6/77 14 165/914 44.5300 47 38.2714
213 1303 6 71/912 14 165/914 44.7105 47 38.4519
214 1307 6 62/797 14 165/914 44.8910 47 38.6324
215 1319 6 37/476 14 165/914 45.0716 47 38.8130
216 1321 6 8/103 14 165/914 45.2521 47 38.9935
217 1327 6 69/889 14 165/914 45.4326 47 39.1740
218 1361 6 47/606 14 165/914 45.6131 47 39.3545
219 1367 6 31/400 14 165/914 45.7937 47 39.5351
220 1373 6 57/736 14 165/914 45.9742 47 39.7156
221 1381 6 64/827 14 165/914 46.1547 47 39.8961
222 1399 6 29/375 14 165/914 46.3352 47 40.0766
223 1409 6 67/867 14 165/914 46.5158 48 40.2572
224 1423 6 59/764 14 165/914 46.6963 48 40.4377
225 1427 6 24/311 15 165/914 46.8768 48 40.6182
226 1429 6 31/402 15 165/914 47.0574 48 40.7987
227 1433 6 43/558 15 165/914 47.2379 49 40.9793
228 1439 6 69/896 15 165/914 47.4184 49 41.1598
229 1447 6 1/13 15 165/914 47.5989 50 41.3403
230 1451 6 1/13 15 165/914 47.7795 50 41.5208
231 1453 6 1/13 15 165/914 47.9600 50 41.7014
232 1459 6 47/612 15 165/914 48.1405 50 41.8819
233 1471 6 33/430 15 165/914 48.3210 51 42.0624
234 1481 6 51/665 15 165/914 48.5016 51 42.2429
235 1483 6 21/274 15 165/914 48.6821 51 42.4235
236 1487 6 53/692 15 165/914 48.8626 51 42.6040
237 1489 6 61/797 15 165/914 49.0431 51 42.7845
238 1493 6 27/353 15 165/914 49.2237 51 42.9650
239 1499 6 12/157 15 165/914 49.4042 52 43.1456
240 1511 6 11/144 15 165/914 49.5847 52 43.3261
241 1523 6 10/131 15 165/914 49.7652 53 43.5066
242 1531 6 46/603 15 165/914 49.9458 53 43.6871
243 1543 6 17/223 15 165/914 50.1263 53 43.8677
244 1549 6 8/105 15 165/914 50.3068 53 44.0482
245 1553 6 67/880 15 165/914 50.4873 53 44.2287
246 1559 6 7/92 15 165/914 50.6679 53 44.4092
247 1567 6 53/697 15 165/914 50.8484 53 44.5898
248 1571 6 69/908 15 165/914 51.0289 53 44.7703
249 1579 6 6/79 15 165/914 51.2094 53 44.9508
250 1583 6 17/224 15 165/914 51.3900 53 45.1313
251 1597 6 38/501 15 165/914 51.5705 54 45.3119
252 1601 6 26/343 15 165/914 51.7510 54 45.4924
253 1607 6 5/66 15 165/914 51.9315 54 45.6729
254 1609 6 67/885 15 165/914 52.1121 54 45.8534
255 1613 6 23/304 15 165/914 52.2926 54 46.0340
256 1619 6 71/939 16 165/914 52.4731 54 46.2145
257 1621 6 30/397 16 165/914 52.6536 55 46.3950
258 1627 6 29/384 16 165/914 52.8342 55 46.5755
259 1637 6 4/53 16 165/914 53.0147 55 46.7561
260 1657 6 66/875 16 165/914 53.1952 55 46.9366
261 1663 6 64/849 16 165/914 53.3757 55 47.1171
262 1667 6 11/146 16 165/914 53.5563 55 47.2976
263 1669 6 71/943 16 165/914 53.7368 56 47.4782
264 1693 6 38/505 16 165/914 53.9173 56 47.6587
265 1697 6 37/492 16 165/914 54.0978 56 47.8392
266 1699 6 59/785 16 165/914 54.2784 56 48.0197
267 1709 6 16/213 16 165/914 54.4589 56 48.2003
268 1721 6 53/706 16 165/914 54.6394 56 48.3808
269 1723 6 67/893 16 165/914 54.8199 57 48.5613
270 1733 6 3/40 16 165/914 55.0005 57 48.7418
271 1741 6 32/427 16 165/914 55.1810 58 48.9224
272 1747 6 37/494 16 165/914 55.3615 58 49.1029
273 1753 6 39/521 16 165/914 55.5420 58 49.2834
274 1759 6 30/401 16 165/914 55.7226 58 49.4639
275 1777 6 8/107 16 165/914 55.9031 58 49.6445
276 1783 6 55/736 16 165/914 56.0836 58 49.8250
277 1787 6 18/241 16 165/914 56.2641 59 50.0055
278 1789 6 58/777 16 165/914 56.4447 59 50.1860
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279 1801 6 47/630 16 165/914 56.6252 59 50.3666
280 1811 6 17/228 16 165/914 56.8057 59 50.5471
281 1823 6 74/993 16 165/914 56.9862 60 50.7276
282 1831 6 61/819 16 165/914 57.1668 60 50.9082
283 1847 6 30/403 16 165/914 57.3473 61 51.0887
284 1861 6 59/793 16 165/914 57.5278 61 51.2692
285 1867 6 67/901 16 165/914 57.7083 61 51.4497
286 1871 6 11/148 16 165/914 57.8889 61 51.6303
287 1873 6 13/175 16 165/914 58.0694 61 51.8108
288 1877 6 49/660 16 165/914 58.2499 61 51.9913
289 1879 7 21/283 17 157/918 58.4209 61 49.4259
290 1889 7 31/418 17 157/918 58.5920 61 49.5970
291 1901 7 55/742 17 157/918 58.7630 61 49.7680
292 1907 7 2/27 17 157/918 58.9340 61 49.9390
293 1913 7 2/27 17 157/918 59.1050 62 50.1100
294 1931 7 41/554 17 157/918 59.2761 62 50.2811
295 1933 7 27/365 17 157/918 59.4471 62 50.4521
296 1949 7 19/257 17 157/918 59.6181 62 50.6231
297 1951 7 15/203 17 157/918 59.7891 62 50.7941
298 1973 7 63/853 17 157/918 59.9602 62 50.9652
299 1979 7 11/149 17 157/918 60.1312 62 51.1362
300 1987 7 47/637 17 157/918 60.3022 62 51.3072
301 1993 7 25/339 17 157/918 60.4732 62 51.4782
302 1997 7 30/407 17 157/918 60.6443 62 51.6493
303 1999 7 61/828 17 157/918 60.8153 62 51.8203
304 2003 7 31/421 17 157/918 60.9863 62 51.9913
305 2011 7 63/856 17 157/918 61.1573 62 52.1623
306 2017 7 32/435 17 157/918 61.3284 62 52.3334
307 2027 7 5/68 17 157/918 61.4994 63 52.5044
308 2029 7 28/381 17 157/918 61.6704 63 52.6754
309 2039 7 57/776 17 157/918 61.8414 63 52.8464
310 2053 7 29/395 17 157/918 62.0125 63 53.0174
311 2063 7 51/695 17 157/918 62.1835 64 53.1885
312 2069 7 41/559 17 157/918 62.3545 64 53.3595
313 2081 7 64/873 17 157/918 62.5255 65 53.5305
314 2083 7 17/232 17 157/918 62.6965 65 53.7015
315 2087 7 26/355 17 157/918 62.8676 65 53.8726
316 2089 7 50/683 17 157/918 63.0386 65 54.0436
317 2099 7 3/41 17 157/918 63.2096 66 54.2146
318 2111 7 52/711 17 157/918 63.3806 66 54.3856
319 2113 7 25/342 17 157/918 63.5517 66 54.5567
320 2129 7 35/479 17 157/918 63.7227 66 54.7277
321 2131 7 13/178 17 157/918 63.8937 66 54.8987
322 2137 7 10/137 17 157/918 64.0647 66 55.0697
323 2141 7 17/233 17 157/918 64.2358 66 55.2408
324 2143 7 52/713 18 157/918 64.4068 66 55.4118
325 2153 7 39/535 18 157/918 64.5778 66 55.5828
326 2161 7 29/398 18 157/918 64.7488 66 55.7538
327 2179 7 26/357 18 157/918 64.9199 66 55.9249
328 2203 7 19/261 18 157/918 65.0909 66 56.0959
329 2207 7 35/481 18 157/918 65.2619 66 56.2669
330 2213 7 4/55 18 157/918 65.4329 66 56.4379
331 2221 7 45/619 18 157/918 65.6040 67 56.6090
332 2237 7 21/289 18 157/918 65.7750 67 56.7800
333 2239 7 56/771 18 157/918 65.9460 67 56.9510
334 2243 7 31/427 18 157/918 66.1170 67 57.1220
335 2251 7 50/689 18 157/918 66.2881 67 57.2930
336 2267 7 14/193 18 157/918 66.4591 67 57.4641
337 2269 7 53/731 18 157/918 66.6301 68 57.6351
338 2273 7 5/69 18 157/918 66.8011 68 57.8061
339 2281 7 46/635 18 157/918 66.9721 68 57.9771
340 2287 7 58/801 18 157/918 67.1432 68 58.1482
341 2293 7 49/677 18 157/918 67.3142 68 58.3192
342 2297 7 62/857 18 157/918 67.4852 68 58.4902
343 2309 7 35/484 18 157/918 67.6562 68 58.6612
344 2311 7 6/83 18 157/918 67.8273 68 58.8323
345 2333 7 25/346 18 157/918 67.9983 68 59.0033
346 2339 7 13/180 18 157/918 68.1693 68 59.1743
347 2341 7 27/374 18 157/918 68.3403 69 59.3453
348 2347 7 7/97 18 157/918 68.5114 69 59.5164
349 2351 7 22/305 18 157/918 68.6824 70 59.6874
350 2357 7 23/319 18 157/918 68.8534 70 59.8584
351 2371 7 8/111 18 157/918 69.0244 70 60.0294
352 2377 7 17/236 18 157/918 69.1955 70 60.2005
353 2381 7 71/986 18 157/918 69.3665 71 60.3715
354 2383 7 28/389 18 157/918 69.5375 71 60.5425
355 2389 7 10/139 18 157/918 69.7085 71 60.7135
356 2393 7 21/292 18 157/918 69.8796 71 60.8846
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357 2399 7 56/779 18 157/918 70.0506 71 61.0556
358 2411 7 12/167 18 157/918 70.2216 71 61.2266
359 2417 7 13/181 18 157/918 70.3926 72 61.3976
360 2423 7 14/195 18 157/918 70.5637 72 61.5686
361 2437 8 15/209 19 62/379 70.7272 72 59.0553
362 2441 8 33/460 19 62/379 70.8908 72 59.2189
363 2447 8 18/251 19 62/379 71.0544 72 59.3825
364 2459 8 61/851 19 62/379 71.2180 72 59.5461
365 2467 8 23/321 19 62/379 71.3816 72 59.7097
366 2473 8 53/740 19 62/379 71.5452 72 59.8733
367 2477 8 31/433 19 62/379 71.7088 73 60.0369
368 2503 8 37/517 19 62/379 71.8724 73 60.2005
369 2521 8 47/657 19 62/379 72.0359 73 60.3640
370 2531 8 64/895 19 62/379 72.1995 73 60.5276
371 2539 8 1/14 19 62/379 72.3631 73 60.6912
372 2543 8 1/14 19 62/379 72.5267 73 60.8548
373 2549 8 1/14 19 62/379 72.6903 74 61.0184
374 2551 8 1/14 19 62/379 72.8539 74 61.1820
375 2557 8 1/14 19 62/379 73.0175 74 61.3456
376 2579 8 58/813 19 62/379 73.1811 74 61.5092
377 2591 8 44/617 19 62/379 73.3447 74 61.6727
378 2593 8 71/996 19 62/379 73.5082 74 61.8363
379 2609 8 30/421 19 62/379 73.6718 75 61.9999
380 2617 8 26/365 19 62/379 73.8354 75 62.1635
381 2621 8 68/955 19 62/379 73.9990 75 62.3271
382 2633 8 20/281 19 62/379 74.1626 75 62.4907
383 2647 8 18/253 19 62/379 74.3262 76 62.6543
384 2657 8 50/703 19 62/379 74.4898 76 62.8179
385 2659 8 61/858 19 62/379 74.6534 76 62.9815
386 2663 8 14/197 19 62/379 74.8169 76 63.1450
387 2671 8 13/183 19 62/379 74.9805 76 63.3086
388 2677 8 37/521 19 62/379 75.1441 76 63.4722
389 2683 8 23/324 19 62/379 75.3077 77 63.6358
390 2687 8 11/155 19 62/379 75.4713 77 63.7994
391 2689 8 31/437 19 62/379 75.6349 77 63.9630
392 2693 8 49/691 19 62/379 75.7985 77 64.1266
393 2699 8 28/395 19 62/379 75.9621 77 64.2902
394 2707 8 9/127 19 62/379 76.1257 77 64.4537
395 2711 8 17/240 19 62/379 76.2892 77 64.6173
396 2713 8 65/918 19 62/379 76.4528 77 65.7809
397 2719 8 39/551 19 62/379 76.6164 78 64.9445
398 2729 8 15/212 19 62/379 76.7800 78 65.1081
399 2731 8 36/509 19 62/379 76.9436 78 65.2717
400 2741 8 7/99 20 62/379 77.1072 78 65.4353
401 2749 8 47/665 20 62/379 77.2708 79 65.5989
402 2753 8 13/184 20 62/379 77.4344 79 65.7625
403 2767 8 44/623 20 62/379 77.5979 79 65.9260
404 2777 8 67/949 20 62/379 77.7615 79 66.0896
405 2789 8 59/836 20 62/379 77.9251 79 66.2532
406 2791 8 63/893 20 62/379 78.0887 79 66.4168
407 2797 8 39/553 20 62/379 78.2523 79 66.5804
408 2801 8 65/922 20 62/379 78.4159 79 66.7440
409 2803 8 58/823 20 62/379 78.5795 80 66.9076
410 2819 8 36/511 20 62/379 78.7431 80 67.0712
411 2833 8 5/71 20 62/379 78.9067 80 67.2347
412 2837 8 44/625 20 62/379 79.0702 80 67.3983
413 2843 8 62/881 20 62/379 79.2338 80 67.5619
414 2851 8 14/199 20 62/379 79.3974 80 67.7255
415 2857 8 41/583 20 62/379 79.5610 80 67.8891
416 2861 8 49/697 20 62/379 79.7246 80 68.0527
417 2879 8 61/868 20 62/379 79.8882 80 68.2163
418 2887 8 64/911 20 62/379 80.0518 80 68.3799
419 2897 8 46/655 20 62/379 80.2154 81 68.5435
420 2903 8 45/641 20 62/379 80.3789 81 68.7070
421 2909 8 4/57 20 62/379 80.5425 82 68.8706
422 2917 8 59/841 20 62/379 80.7061 82 69.0342
423 2927 8 27/385 20 62/379 80.8697 82 69.1978
424 2939 8 19/271 20 62/379 81.0333 82 69.3614
425 2953 8 67/956 20 62/379 81.1969 82 69.5250
426 2957 8 11/157 20 62/379 81.3605 82 69.6886
427 2963 8 18/257 20 62/379 81.5241 82 69.8522
428 2969 8 53/757 20 62/379 81.6876 82 70.0157
429 2971 8 66/943 20 62/379 81.8512 82 70.1793
430 2999 8 41/586 20 62/379 82.0148 82 70.3429
431 3001 8 37/529 20 62/379 82.1784 83 70.5065
432 3011 8 43/615 20 62/379 82.3420 83 70.6701
433 3019 8 13/186 20 62/379 82.5056 84 70.8337
434 3023 8 16/229 20 62/379 82.6692 84 70.9973
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435 3037 8 19/272 20 62/379 82.8328 84 71.1609
436 3041 8 28/401 20 62/379 82.9964 84 71.3245
437 3049 8 43/616 20 62/379 83.1599 84 71.4880
438 3061 8 3/43 20 62/379 83.3235 84 71.6516
439 3067 8 3/43 20 62/379 83.4871 85 71.8152
440 3079 8 50/717 20 62/379 83.6507 85 71.9788
441 3083 8 29/416 21 62/379 83.8143 85 72.1424
442 3089 8 63/904 21 62/379 83.9779 85 72.3060
443 3109 8 65/933 21 62/379 84.1415 86 72.4696
444 3119 8 53/761 21 62/379 84.3051 86 72.6332
445 3121 8 11/158 21 62/379 84.4686 86 72.7967
446 3137 8 68/977 21 62/379 84.6322 86 72.9603
447 3163 8 43/618 21 62/379 84.7958 86 73.1239
448 3167 8 8/115 21 62/379 84.9594 86 73.2875
449 3169 8 21/302 21 62/379 85.1230 87 73.4511
450 3181 8 13/187 21 62/379 85.2866 87 73.6147
451 3187 8 41/590 21 62/379 85.4502 87 73.7783
452 3191 8 38/547 21 62/379 85.6138 87 73.9419
453 3203 8 5/72 21 62/379 85.7774 87 74.1055
454 3209 8 52/749 21 62/379 85.9409 87 74.2690
455 3217 8 49/706 21 62/379 86.1045 87 74.4326
456 3221 8 63/908 21 62/379 86.2681 87 74.5962
457 3229 8 12/173 21 62/379 86.4317 88 74.7598
458 3251 8 19/274 21 62/379 86.5953 88 74.9234
459 3253 8 54/779 21 62/379 86.7589 88 75.0870
460 3257 8 7/101 21 62/379 86.9225 88 75.2506
461 3259 8 23/332 21 62/379 87.0861 89 75.4142
462 3271 8 41/592 21 62/379 87.2496 89 75.5777
463 3299 8 9/130 21 62/379 87.4132 90 75.7413
464 3301 8 29/419 21 62/379 87.5768 90 75.9049
465 3307 8 42/607 21 62/379 87.7404 90 76.0685
466 3313 8 46/665 21 62/379 87.9040 90 76.2321
467 3319 8 13/188 21 62/379 88.0676 91 76.3957
468 3323 8 58/839 21 62/379 88.2312 91 76.5593
469 3329 8 66/955 21 62/379 88.3948 91 76.7229
470 3331 8 19/275 21 62/379 88.5584 91 76.8865
471 3343 8 23/333 21 62/379 88.7219 91 77.0500
472 3347 8 29/420 21 62/379 88.8855 91 77.2136
473 3359 8 39/565 21 62/379 89.0491 91 77.3772
474 3361 8 59/855 21 62/379 89.2127 91 77.5408
475 3371 8 2/29 21 62/379 89.3763 91 77.7044
476 3373 8 2/29 21 62/379 89.5399 91 77.8680
477 3389 8 2/29 21 62/379 89.7035 91 78.0316
478 3391 8 59/856 21 62/379 89.8671 91 78.1952
479 3407 8 39/566 21 62/379 90.0306 92 78.3587
480 3413 8 29/421 21 62/379 90.1942 92 78.5223
481 3433 8 23/334 21 62/379 90.3578 92 78.6859
482 3449 8 59/857 21 62/379 90.5214 92 78.8495
483 3457 8 17/247 21 62/379 90.6850 92 79.0131
484 3461 8 15/218 22 62/379 90.8486 92 79.1767
485 3463 8 13/189 22 62/379 91.0122 92 79.3403
486 3467 8 59/858 22 62/379 91.1758 92 79.5039
487 3469 8 11/160 22 62/379 91.3394 93 79.6675
488 3491 8 20/291 22 62/379 91.5029 93 79.8310
489 3499 8 9/131 22 62/379 91.6665 93 79.9946
490 3511 8 34/495 22 62/379 91.8301 93 80.1582
491 3517 8 16/233 22 62/379 91.9937 94 80.3218
492 3527 8 67/976 22 62/379 92.1573 94 80.4854
493 3529 8 7/102 22 62/379 92.3209 94 80.6490
494 3533 8 33/481 22 62/379 92.4845 94 80.8126
495 3539 8 19/277 22 62/379 92.6481 94 80.9762
496 3541 8 12/175 22 62/379 92.8116 94 81.1397
497 3547 8 17/248 22 62/379 92.9752 94 81.3033
498 3557 8 49/715 22 62/379 93.1388 94 81.4669
499 3559 8 52/759 22 62/379 93.3024 95 81.6305
500 3571 8 5/73 22 62/379 93.4660 95 81.7941
501 3581 8 48/701 22 62/379 93.6296 95 81.9577
502 3583 8 23/336 22 62/379 93.7932 95 82.1213
503 3593 8 49/716 22 62/379 93.9568 96 82.2849
504 3607 8 13/190 22 62/379 94.1204 96 82.4485
505 3613 8 29/424 22 62/379 94.2839 96 82.6120
506 3617 8 8/117 22 62/379 94.4475 96 82.7756
507 3623 8 35/512 22 62/379 94.6111 96 82.9392
508 3631 8 49/717 22 62/379 94.7747 96 83.1028
509 3637 8 11/161 22 62/379 94.9383 97 83.2664
510 3643 8 64/937 22 62/379 95.1019 97 83.4300
511 3659 8 45/659 22 62/379 95.2655 97 83.5936
512 3671 8 37/542 22 62/379 95.4291 97 83.7572
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513 3673 8 23/337 22 62/379 95.5926 97 83.9207
514 3677 8 67/982 22 62/379 95.7562 97 84.0843
515 3691 8 56/821 22 62/379 95.9198 97 84.2479
516 3697 8 3/44 22 62/379 96.0834 97 84.4115
517 3701 8 3/44 22 62/379 96.2470 97 84.5751
518 3709 8 58/851 22 62/379 96.4106 97 84.7387
519 3719 8 34/499 22 62/379 96.5742 97 84.9023
520 3727 8 25/367 22 62/379 96.7378 97 85.0659
521 3733 8 19/279 22 62/379 96.9014 98 85.2294
522 3739 8 16/235 22 62/379 97.0649 98 85.3930
523 3761 8 13/191 22 62/379 97.2285 99 85.5566
524 3767 8 23/338 22 62/379 97.3921 99 85.7202
525 3769 8 10/147 22 62/379 97.5557 99 85.8838
526 3779 8 27/397 22 62/379 97.7193 99 86.0474
527 3793 8 65/956 22 62/379 97.8829 99 86.2110
528 3797 8 52/765 22 62/379 98.0465 99 86.3746
529 3803 9 7/103 23 157/994 98.2044 99 83.5541
530 3821 9 57/839 23 157/994 98.3624 99 83.7120
531 3823 9 65/957 23 157/994 98.5203 99 83.8700
532 3833 9 11/162 23 157/994 98.6783 99 84.0279
533 3847 9 26/383 23 157/994 98.8362 99 84.1859
534 3851 9 49/722 23 157/994 98.9942 99 84.3438
535 3853 9 65/958 23 157/994 99.1521 99 84.5018
536 3863 9 66/973 23 157/994 99.3100 99 84.6597
537 3877 9 63/929 23 157/994 99.4680 99 84.8177
538 3881 9 4/59 23 157/994 99.6259 99 84.9756
539 3889 9 65/959 23 157/994 99.7839 99 85.1336
540 3907 9 33/487 23 157/994 99.9418 99 85.2915
541 3911 9 67/989 23 157/994 100.0998 100 85.4494
542 3917 9 17/251 23 157/994 100.2577 100 85.6074
543 3919 9 13/192 23 157/994 100.4157 100 85.7653
544 3923 9 22/325 23 157/994 100.5736 100 85.9233
545 3929 9 67/990 23 157/994 100.7316 100 86.0812
546 3931 9 50/739 23 157/994 100.8895 100 86.2392
547 3943 9 37/547 23 157/994 101.0475 101 86.3971
548 3947 9 33/488 23 157/994 101.2054 101 86.5551
549 3967 9 24/355 23 157/994 101.3634 101 86.7130
550 3989 9 39/577 23 157/994 101.5213 101 86.8710
551 4001 9 5/74 23 157/994 101.6793 101 87.0289
552 4003 9 5/74 23 157/994 101.8372 101 87.1869
553 4007 9 67/992 23 157/994 101.9951 101 87.3448
554 4013 9 21/311 23 157/994 102.1531 101 87.5028
555 4019 9 59/874 23 157/994 102.3110 101 87.6607
556 4021 9 11/163 23 157/994 102.4690 101 87.8187
557 4027 9 67/993 23 157/994 102.6269 102 87.9766
558 4049 9 57/845 23 157/994 102.7849 102 88.1346
559 4051 9 64/949 23 157/994 102.9428 102 88.2925
560 4057 9 6/89 23 157/994 103.1008 102 88.4504
561 4073 9 6/89 23 157/994 103.2587 102 88.6084
562 4079 9 31/460 23 157/994 103.4167 102 88.7663
563 4091 9 19/282 23 157/994 103.5746 103 88.9243
564 4093 9 13/193 23 157/994 103.7326 103 89.0822
565 4099 9 20/297 23 157/994 103.8905 103 89.2402
566 4111 9 41/609 23 157/994 104.0485 103 89.3981
567 4127 9 7/104 23 157/994 104.2064 103 89.5561
568 4129 9 36/535 23 157/994 104.3644 103 89.7140
569 4133 9 59/877 23 157/994 104.5223 104 89.8720
570 4139 9 53/788 23 157/994 104.6803 104 90.0299
571 4153 9 39/580 23 157/994 104.8382 105 90.1879
572 4157 9 8/119 23 157/994 104.9961 105 90.3458
573 4159 9 33/491 23 157/994 105.1541 105 90.5038
574 4177 9 17/253 23 157/994 105.3120 105 90.6617
575 4201 9 35/521 23 157/994 105.4700 105 90.8197
576 4211 9 9/134 24 157/994 105.6279 105 90.9776
577 4217 9 28/417 24 157/994 105.7859 106 91.1355
578 4219 9 29/432 24 157/994 105.9438 106 91.2935
579 4229 9 10/149 24 157/994 106.1018 106 91.4514
580 4231 9 31/462 24 157/994 106.2597 106 91.6094
581 4241 9 43/641 24 157/994 106.4177 106 91.7673
582 4243 9 67/999 24 157/994 106.5756 106 91.9253
583 4253 9 58/865 24 157/994 106.7336 106 92.0832
584 4259 9 12/179 24 157/994 106.8915 106 92.2412
585 4261 9 38/567 24 157/994 107.0495 106 92.3991
586 4271 9 53/791 24 157/994 107.2074 106 92.5571
587 4273 9 14/209 24 157/994 107.3654 107 92.7150
588 4283 9 29/433 24 157/994 107.5233 107 92.8730
589 4289 9 46/687 24 157/994 107.6812 107 93.0309
590 4297 9 65/971 24 157/994 107.8392 107 93.1889
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591 4327 9 17/254 24 157/994 107.9971 107 93.3468
592 4337 9 55/822 24 157/994 108.1551 107 93.5048
593 4339 9 39/583 24 157/994 108.3130 108 93.6627
594 4349 9 21/314 24 157/994 108.4710 108 93.8207
595 4357 9 45/673 24 157/994 108.6289 108 93.9786
596 4363 9 49/733 24 157/994 108.7869 108 94.1365
597 4373 9 53/793 24 157/994 108.9448 108 94.2945
598 4391 9 29/434 24 157/994 109.1028 108 94.4524
599 4397 9 65/973 24 157/994 109.2607 109 94.6104
600 4409 9 37/554 24 157/994 109.4187 109 94.7683
601 4421 9 42/629 24 157/994 109.5766 110 94.9263
602 4423 9 49/734 24 157/994 109.7346 110 95.0842
603 4441 9 58/869 24 157/994 109.8925 110 95.2422
604 4447 9 1/15 24 157/994 110.0505 110 95.4001
605 4451 9 1/15 24 157/994 110.2084 110 95.5581
606 4457 9 1/15 24 157/994 110.3664 110 95.7160
607 4463 9 1/15 24 157/994 110.5243 111 95.8740
608 4481 9 1/15 24 157/994 110.6822 111 96.0319
609 4483 9 1/15 24 157/994 110.8402 111 96.1899
610 4493 9 1/15 24 157/994 110.9981 111 96.3478
611 4507 9 1/15 24 157/994 111.1561 111 96.5058
612 4513 9 1/15 24 157/994 111.3140 111 96.6637
613 4517 9 61/916 24 157/994 111.4720 112 96.8216
614 4519 9 51/766 24 157/994 111.6299 112 96.9796
615 4523 9 44/661 24 157/994 111.7879 112 97.1375
616 4547 9 38/571 24 157/994 111.9458 112 97.2955
617 4549 9 34/511 24 157/994 112.1038 113 97.4534
618 4561 9 61/917 24 157/994 112.2617 113 97.6114
619 4567 9 55/827 24 157/994 112.4197 114 97.7693
620 4583 9 51/767 24 157/994 112.5776 114 97.9273
621 4591 9 47/707 24 157/994 112.7356 114 98.0852
622 4597 9 65/978 24 157/994 112.8935 114 98.2432
623 4603 9 61/918 24 157/994 113.0515 114 98.4011
624 4621 9 19/286 24 157/994 113.2094 114 98.5591
625 4637 9 18/271 25 157/994 113.3673 114 98.7170
626 4639 9 17/256 25 157/994 113.5253 114 98.8750
627 4643 9 16/241 25 157/994 113.6832 114 99.0329
628 4649 9 61/919 25 157/994 113.8412 114 99.1909
629 4651 9 29/437 25 157/994 113.9991 114 99.3488
630 4657 9 14/211 25 157/994 114.1571 114 99.5068
631 4663 9 40/603 25 157/994 114.3150 115 99.6647
632 4673 9 51/769 25 157/994 114.4730 115 99.8226
633 4679 9 49/739 25 157/994 114.6309 115 99.9806
634 4691 9 59/890 25 157/994 114.7889 115 100.1385
635 4703 9 34/513 25 157/994 114.9468 115 100.2965
636 4721 9 11/166 25 157/994 115.1048 115 100.4544
637 4723 9 53/800 25 157/994 115.2627 115 100.6124
638 4729 9 41/619 25 157/994 115.4207 115 100.7703
639 4733 9 10/151 25 157/994 115.5786 115 100.9283
640 4751 9 48/725 25 157/994 115.7366 115 101.0862
641 4759 9 28/423 25 157/994 115.8945 116 101.2442
642 4783 9 9/136 25 157/994 116.0525 116 101.4021
643 4787 9 44/665 25 157/994 116.2104 117 101.5601
644 4789 9 60/907 25 157/994 116.3683 117 101.7180
645 4793 9 25/378 25 157/994 116.5263 117 101.8760
646 4799 9 65/983 25 157/994 116.6842 117 102.0339
647 4801 9 8/121 25 157/994 116.8422 118 102.1919
648 4813 9 31/469 25 157/994 117.0001 118 102.3498
649 4817 9 15/227 25 157/994 117.1581 118 102.5077
650 4831 9 59/893 25 157/994 117.3160 118 102.6657
651 4861 9 36/545 25 157/994 117.4740 118 102.8236
652 4871 9 7/106 25 157/994 117.6319 118 102.9816
653 4877 9 7/106 25 157/994 117.7899 119 103.1395
654 4889 9 27/409 25 157/994 117.9478 119 103.2975
655 4903 9 53/803 25 157/994 118.1058 119 103.4554
656 4909 9 13/197 25 157/994 118.2637 119 103.6134
657 4919 9 19/288 25 157/994 118.4217 119 103.7713
658 4931 9 25/379 25 157/994 118.5796 119 103.9293
659 4933 9 49/743 25 157/994 118.7376 120 104.0872
660 4937 9 6/91 25 157/994 118.8955 120 104.2452
661 4943 9 59/895 25 157/994 119.0534 121 104.4031
662 4951 9 29/440 25 157/994 119.2114 121 104.5611
663 4957 9 57/865 25 157/994 119.3693 121 104.7190
664 4967 9 28/425 25 157/994 119.5273 121 104.8770
665 4969 9 11/167 25 157/994 119.6852 121 105.0349
666 4973 9 27/410 25 157/994 119.8432 121 105.1929
667 4987 9 16/243 25 157/994 120.0011 121 105.3508
668 4993 9 21/319 25 157/994 120.1591 121 105.5087



346 42. ANALYSING NON-HEURISTIC ESTIMATES OF PRIMES ≤ n FOR n ≤ 1500

n pn π(
√
n)

∏n
j=1(1− 1/p

j
) [

√
n]

∏π(
√
n)

j=1 (1− 1/p
j

)
∑n
j=1

∏π(
√
j)

i=1 (1− 1/p
j

) π(n) n.
∏π(
√
n)

i=1 (1− 1/p
j

)

669 4999 9 31/471 25 157/994 120.3170 121 105.6667
670 5003 9 5/76 25 157/994 120.4750 121 105.8246
671 5009 9 5/76 25 157/994 120.6329 121 105.9826
672 5011 9 64/973 25 157/994 120.7909 121 106.1405
673 5021 9 34/517 25 157/994 120.9488 122 106.2985
674 5023 9 43/654 25 157/994 121.1068 122 106.4564
675 5039 9 33/502 25 157/994 121.2647 122 106.6144
676 5051 9 14/213 26 157/994 121.4227 122 106.7723
677 5059 9 55/837 26 157/994 121.5806 123 106.9303
678 5077 9 9/137 26 157/994 121.7386 123 107.0882
679 5081 9 58/883 26 157/994 121.8965 123 107.2462
680 5087 9 22/335 26 157/994 122.0544 123 107.4041
681 5099 9 13/198 26 157/994 122.2124 123 107.5621
682 5101 9 30/457 26 157/994 122.3703 123 107.7200
683 5107 9 17/259 26 157/994 122.5283 124 107.8780
684 5113 9 46/701 26 157/994 122.6862 124 108.0359
685 5119 9 62/945 26 157/994 122.8442 124 108.1938
686 5147 9 49/747 26 157/994 123.0021 124 108.3518
687 5153 9 4/61 26 157/994 123.1601 124 108.5097
688 5167 9 4/61 26 157/994 123.3180 124 108.6677
689 5171 9 63/961 26 157/994 123.4760 124 108.8256
690 5179 9 35/534 26 157/994 123.6339 124 108.9836
691 5189 9 50/763 26 157/994 123.7919 125 109.1415
692 5197 9 19/290 26 157/994 123.9498 125 109.2995
693 5209 9 64/977 26 157/994 124.1078 125 109.4574
694 5227 9 41/626 26 157/994 124.2657 125 109.6154
695 5231 9 11/168 26 157/994 124.4237 125 109.7733
696 5233 9 51/779 26 157/994 124.5816 125 109.9313
697 5237 9 18/275 26 157/994 124.7395 125 110.0892
698 5261 9 25/382 26 157/994 124.8975 125 110.2472
699 5273 9 53/810 26 157/994 125.0554 125 110.4051
700 5279 9 7/107 26 157/994 125.2134 125 110.5631
701 5281 9 45/688 26 157/994 125.3713 126 110.7210
702 5297 9 24/367 26 157/994 125.5293 126 110.8790
703 5303 9 17/260 26 157/994 125.6872 126 111.0369
704 5309 9 37/566 26 157/994 125.8452 126 111.1948
705 5323 9 10/153 26 157/994 126.0031 126 111.3528
706 5333 9 33/505 26 157/994 126.1611 126 111.5107
707 5347 9 49/750 26 157/994 126.3190 126 111.6687
708 5351 9 55/842 26 157/994 126.4770 126 111.8266
709 5381 9 16/245 26 157/994 126.6349 127 111.9846
710 5387 9 54/827 26 157/994 126.7929 127 112.1425
711 5393 9 63/965 26 157/994 126.9508 127 112.3005
712 5399 9 25/383 26 157/994 127.1088 127 112.4584
713 5407 9 65/996 26 157/994 127.2667 127 112.6164
714 5413 9 46/705 26 157/994 127.4247 127 112.7743
715 5417 9 3/46 26 157/994 127.5826 127 112.9323
716 5419 9 3/46 26 157/994 127.7405 127 113.0902
717 5431 9 3/46 26 157/994 127.8985 127 113.2482
718 5437 9 3/46 26 157/994 128.0564 127 113.4061
719 5441 9 50/767 26 157/994 128.2144 128 113.5641
720 5443 9 35/537 26 157/994 128.3723 128 113.7220
721 5449 9 26/399 26 157/994 128.5303 128 113.8799
722 5471 9 43/660 26 157/994 128.6882 128 114.0379
723 5477 9 37/568 26 157/994 128.8462 128 114.1958
724 5479 9 48/737 26 157/994 129.0041 128 114.3538
725 5483 9 14/215 26 157/994 129.1621 128 114.5117
726 5501 9 25/384 26 157/994 129.3200 128 114.6697
727 5503 9 11/169 26 157/994 129.4780 129 114.8276
728 5507 9 52/799 26 157/994 129.6359 129 114.9856
729 5519 9 19/292 27 157/994 129.7939 129 115.1435
730 5521 9 62/953 27 157/994 129.9518 129 115.3015
731 5527 9 8/123 27 157/994 130.1098 129 115.4594
732 5531 9 8/123 27 157/994 130.2677 129 115.6174
733 5557 9 29/446 27 157/994 130.4256 130 115.7753
734 5563 9 34/523 27 157/994 130.5836 130 115.9333
735 5569 9 13/200 27 157/994 130.7415 130 116.0912
736 5573 9 49/754 27 157/994 130.8995 130 116.2492
737 5581 9 41/631 27 157/994 131.0574 130 116.4071
738 5591 9 28/431 27 157/994 131.2154 130 116.5651
739 5623 9 48/739 27 157/994 131.3733 131 116.7230
740 5639 9 5/77 27 157/994 131.5313 131 116.8809
741 5641 9 5/77 27 157/994 131.6892 131 117.0389
742 5647 9 52/801 27 157/994 131.8472 131 117.1968
743 5651 9 59/909 27 157/994 132.0051 132 117.3548
744 5653 9 22/339 27 157/994 132.1631 132 117.5127
745 5657 9 17/262 27 157/994 132.3210 132 117.6707
746 5659 9 53/817 27 157/994 132.4790 132 117.8286
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747 5669 9 12/185 27 157/994 132.6369 132 117.9866
748 5683 9 19/293 27 157/994 132.7949 132 118.1445
749 5689 9 26/401 27 157/994 132.9528 132 118.3025
750 5693 9 54/833 27 157/994 133.1108 132 118.4604
751 5701 9 7/108 27 157/994 133.2687 133 118.6184
752 5711 9 58/895 27 157/994 133.4266 133 118.7763
753 5717 9 53/818 27 157/994 133.5846 133 118.9343
754 5737 9 55/849 27 157/994 133.7425 133 118.0922
755 5741 9 41/633 27 157/994 133.9005 133 119.2502
756 5743 9 43/664 27 157/994 134.0584 133 119.4081
757 5749 9 9/139 27 157/994 134.2164 134 119.5660
758 5779 9 38/587 27 157/994 134.3743 134 119.7240
759 5783 9 20/309 27 157/994 134.5323 134 119.8819
760 5791 9 53/819 27 157/994 134.6902 134 120.0399
761 5801 9 11/170 27 157/994 134.8482 135 120.1978
762 5807 9 24/371 27 157/994 135.0061 135 120.3558
763 5813 9 13/201 27 157/994 135.1641 135 120.5137
764 5821 9 41/634 27 157/994 135.3220 135 120.6717
765 5827 9 15/232 27 157/994 135.4800 135 120.8296
766 5839 9 32/495 27 157/994 135.6379 135 120.9876
767 5843 9 17/263 27 157/994 135.7959 135 121.1455
768 5849 9 19/294 27 157/994 135.9538 135 121.3035
769 5851 9 21/325 27 157/994 136.1117 136 121.4614
770 5857 9 48/743 27 157/994 136.2697 136 121.6194
771 5861 9 27/418 27 157/994 136.4276 136 121.7773
772 5867 9 64/991 27 157/994 136.5856 136 121.9353
773 5869 9 39/604 27 157/994 136.7435 137 122.0932
774 5879 9 49/759 27 157/994 136.9015 137 122.2512
775 5881 9 2/31 27 157/994 137.0594 137 122.4091
776 5897 9 2/31 27 157/994 137.2174 137 122.5670
777 5903 9 2/31 27 157/994 137.3753 137 122.7250
778 5923 9 2/31 27 157/994 137.5333 137 122.8829
779 5927 9 2/31 27 157/994 137.6912 137 123.0409
780 5939 9 2/31 27 157/994 137.8492 137 123.1988
781 5953 9 63/977 27 157/994 138.0071 137 123.3568
782 5981 9 47/729 27 157/994 138.1651 137 123.5147
783 5987 9 37/574 27 157/994 138.3230 137 123.6727
784 6007 9 31/481 28 157/994 138.4810 137 123.8306
785 6011 9 27/419 28 157/994 138.6389 137 123.9886
786 6029 9 48/745 28 157/994 138.7969 137 124.1465
787 6037 9 21/326 28 157/994 138.9548 138 124.3045
788 6043 9 19/295 28 157/994 139.1127 138 124.4624
789 6047 9 17/264 28 157/994 139.2707 138 124.6204
790 6053 9 32/497 28 157/994 139.4286 138 124.7783
791 6067 9 15/233 28 157/994 139.5866 138 124.9363
792 6073 9 41/637 28 157/994 139.7445 138 125.0942
793 6079 9 13/202 28 157/994 139.9025 138 125.2521
794 6089 9 24/373 28 157/994 140.0604 138 125.4101
795 6091 9 57/886 28 157/994 140.2184 138 125.5680
796 6101 9 11/171 28 157/994 140.3763 138 125.7260
797 6113 9 51/793 28 157/994 140.5343 139 125.8839
798 6121 9 29/451 28 157/994 140.6922 139 126.0419
799 6131 9 9/140 28 157/994 140.8502 139 126.1998
800 6133 9 9/140 28 157/994 141.0081 139 126.3578
801 6143 9 59/918 28 157/994 141.1661 139 126.5157
802 6151 9 16/249 28 157/994 141.3240 139 126.6737
803 6163 9 39/607 28 157/994 141.4820 139 126.8316
804 6173 9 30/467 28 157/994 141.6399 139 126.9896
805 6197 9 7/109 28 157/994 141.7978 139 127.1475
806 6199 9 7/109 28 157/994 141.9558 139 127.3055
807 6203 9 47/732 28 157/994 142.1137 139 127.4634
808 6211 9 26/405 28 157/994 142.2717 139 127.6214
809 6217 9 19/296 28 157/994 142.4296 140 127.7793
810 6221 9 55/857 28 157/994 142.5876 140 127.9373
811 6229 9 12/187 28 157/994 142.7455 141 128.0952
812 6247 9 46/717 28 157/994 142.9035 141 128.2531
813 6257 9 56/873 28 157/994 143.0614 141 128.4111
814 6263 9 49/764 28 157/994 143.2194 141 128.5690
815 6269 9 37/577 28 157/994 143.3773 141 128.7270
816 6271 9 62/967 28 157/994 143.5353 141 128.8849
817 6277 9 5/78 28 157/994 143.6932 141 129.0429
818 6287 9 5/78 28 157/994 143.8512 141 129.2008
819 6299 9 48/749 28 157/994 144.0091 141 129.3588
820 6301 9 28/437 28 157/994 144.1671 141 129.5167
821 6311 9 64/999 28 157/994 144.3250 142 129.6747
822 6317 9 18/281 28 157/994 144.4830 142 129.8326
823 6323 9 57/890 28 157/994 144.6409 143 129.9906
824 6329 9 60/937 28 157/994 144.7988 143 130.1485
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825 6337 9 21/328 28 157/994 144.9568 143 130.3065
826 6343 9 37/578 28 157/994 145.1147 143 130.4644
827 6353 9 8/125 28 157/994 145.2727 144 130.6224
828 6359 9 8/125 28 157/994 145.4306 144 130.7803
829 6361 9 62/969 28 157/994 145.5886 145 130.9382
830 6367 9 19/297 28 157/994 145.7465 145 131.0962
831 6373 9 41/641 28 157/994 145.9045 145 131.2541
832 6379 9 11/172 28 157/994 146.0624 145 131.4121
833 6389 9 36/563 28 157/994 146.2204 145 131.5700
834 6397 9 39/610 28 157/994 146.3783 145 131.7280
835 6421 9 14/219 28 157/994 146.5363 145 131.8859
836 6427 9 48/751 28 157/994 146.6942 145 132.0439
837 6449 9 37/579 28 157/994 146.8522 145 132.2018
838 6451 9 63/986 28 157/994 147.0101 145 132.3598
839 6469 9 26/407 28 157/994 147.1681 146 132.5177
840 6473 9 61/955 28 157/994 147.3260 146 132.6757
841 6481 10 38/595 29 142/929 147.4789 146 128.5487
842 6491 10 56/877 29 142/929 147.6317 146 128.7015
843 6521 10 3/47 29 142/929 147.7846 146 128.8544
844 6529 10 3/47 29 142/929 147.9374 146 129.0072
845 6547 10 3/47 29 142/929 148.0903 146 129.1601
846 6551 10 3/47 29 142/929 148.2431 146 129.3129
847 6553 10 55/862 29 142/929 148.3960 146 129.4658
848 6563 10 40/627 29 142/929 148.5488 146 129.6186
849 6569 10 31/486 29 142/929 148.7017 146 129.7715
850 6571 10 25/392 29 142/929 148.8545 146 129.9243
851 6577 10 22/345 29 142/929 149.0074 146 130.0772
852 6581 10 19/298 29 142/929 149.1602 146 130.2300
853 6599 10 16/251 29 142/929 149.3131 147 130.3829
854 6607 10 29/455 29 142/929 149.4659 147 130.5357
855 6619 10 13/204 29 142/929 149.6188 147 130.6886
856 6637 10 49/769 29 142/929 149.7716 147 130.8414
857 6653 10 56/879 29 142/929 149.9245 148 130.9943
858 6659 10 10/157 29 142/929 150.0773 148 131.1471
859 6661 10 10/157 29 142/929 150.2302 149 131.3000
860 6673 10 27/424 29 142/929 150.3830 149 131.4529
861 6679 10 17/267 29 142/929 150.5359 149 131.6057
862 6689 10 24/377 29 142/929 150.6887 149 131.7586
863 6691 10 38/597 29 142/929 150.8416 150 131.9114
864 6701 10 7/110 29 142/929 150.9945 150 132.0643
865 6703 10 7/110 29 142/929 151.1473 150 132.2171
866 6709 10 46/723 29 142/929 151.3002 150 132.3700
867 6719 10 25/393 29 142/929 151.4530 150 132.5228
868 6733 10 18/283 29 142/929 151.6059 150 132.6757
869 6737 10 29/456 29 142/929 151.7587 150 132.8285
870 6761 10 11/173 29 142/929 151.9116 150 132.9814
871 6763 10 48/755 29 142/929 152.0644 150 133.1342
872 6779 10 41/645 29 142/929 152.2173 150 133.2871
873 6781 10 15/236 29 142/929 152.3701 150 133.4399
874 6791 10 19/299 29 142/929 152.5230 150 133.5928
875 6793 10 42/661 29 142/929 152.6758 150 133.7456
876 6803 10 27/425 29 142/929 152.8287 150 133.8985
877 6823 10 35/551 29 142/929 152.9815 151 134.0513
878 6827 10 55/866 29 142/929 153.1344 151 134.2042
879 6829 10 4/63 29 142/929 153.2872 151 134.3570
880 6833 10 4/63 29 142/929 153.4401 151 134.5099
881 6841 10 4/63 29 142/929 153.5929 152 134.6627
882 6857 10 53/835 29 142/929 153.7458 152 134.8156
883 6863 10 37/583 29 142/929 153.8986 153 134.9684
884 6869 10 54/851 29 142/929 154.0515 153 135.1213
885 6871 10 21/331 29 142/929 154.2043 153 135.2742
886 6883 10 55/867 29 142/929 154.3572 153 135.4270
887 6899 10 47/741 29 142/929 154.5101 154 135.5799
888 6907 10 13/205 29 142/929 154.6629 154 135.7327
889 6911 10 61/962 29 142/929 154.8158 154 135.8856
890 6917 10 22/347 29 142/929 154.9686 154 136.0384
891 6947 10 40/631 29 142/929 155.1215 154 136.1913
892 6949 10 9/142 29 142/929 155.2743 154 136.3441
893 6959 10 59/931 29 142/929 155.4272 154 136.4970
894 6961 10 55/868 29 142/929 155.5800 154 136.6498
895 6967 10 51/805 29 142/929 155.7329 154 136.8027
896 6971 10 14/221 29 142/929 155.8857 154 136.9555
897 6977 10 19/300 29 142/929 156.0386 154 137.1084
898 6983 10 43/679 29 142/929 156.1914 154 137.2612
899 6991 10 29/458 29 142/929 156.3443 154 137.4141
900 6997 10 44/695 30 142/929 156.4971 154 137.5669
901 7001 10 5/79 30 142/929 156.6500 154 137.7198
902 7013 10 5/79 30 142/929 156.8028 154 137.8726
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903 7019 10 5/79 30 142/929 156.9557 154 138.0255
904 7027 10 46/727 30 142/929 157.1085 154 138.1783
905 7039 10 31/490 30 142/929 157.2614 154 138.3312
906 7043 10 21/332 30 142/929 157.4142 154 138.4840
907 7057 10 53/838 30 142/929 157.5671 155 138.6369
908 7069 10 59/933 30 142/929 157.7199 155 138.7898
909 7079 10 38/601 30 142/929 157.8728 155 138.9426
910 7103 10 11/174 30 142/929 158.0257 155 139.0955
911 7109 10 50/791 30 142/929 158.1785 156 139.2483
912 7121 10 45/712 30 142/929 158.3314 156 139.4012
913 7127 10 57/902 30 142/929 158.4842 156 139.4450
914 7129 10 52/823 30 142/929 158.6371 156 139.7069
915 7151 10 41/649 30 142/929 158.7899 156 139.8597
916 7159 10 6/95 30 142/929 158.9428 156 140.0126
917 7177 10 6/95 30 142/929 159.0956 156 140.1654
918 7187 10 6/95 30 142/929 159.2485 156 140.3183
919 7193 10 37/586 30 142/929 159.4013 157 140.4711
920 7207 10 25/396 30 142/929 159.5542 157 140.6240
921 7211 10 19/301 30 142/929 159.7070 157 140.7768
922 7213 10 45/713 30 142/929 159.8599 157 140.9297
923 7219 10 13/206 30 142/929 160.0127 157 141.0825
924 7229 10 53/840 30 142/929 160.1656 157 141.2354
925 7237 10 47/745 30 142/929 160.3184 157 141.3882
926 7243 10 34/539 30 142/929 160.4713 157 141.5411
927 7247 10 7/111 30 142/929 160.6241 157 141.6939
928 7253 10 7/111 30 142/929 160.7770 157 141.8468
929 7283 10 57/904 30 142/929 160.9298 158 141.9996
930 7297 10 29/460 30 142/929 161.0827 158 142.1525
931 7307 10 22/349 30 142/929 161.2355 158 142.3054
932 7309 10 15/238 30 142/929 161.3884 158 142.4582
933 7321 10 38/603 30 142/929 161.5413 158 142.6111
934 7331 10 31/492 30 142/929 161.6941 158 142.7639
935 7333 10 55/873 30 142/929 161.8470 158 142.9168
936 7349 10 8/127 30 142/929 161.9998 158 143.0696
937 7351 10 57/905 30 142/929 162.1527 159 143.2225
938 7369 10 58/921 30 142/929 162.3055 159 143.3753
939 7393 10 59/937 30 142/929 162.4584 159 143.5282
940 7411 10 43/683 30 142/929 162.6112 159 143.6810
941 7417 10 35/556 30 142/929 162.7641 160 143.8339
942 7433 10 9/143 30 142/929 162.9169 160 143.9867
943 7451 10 9/143 30 142/929 163.0698 160 144.1396
944 7457 10 37/588 30 142/929 163.2226 160 144.2924
945 7459 10 19/302 30 142/929 163.3755 160 144.4453
946 7477 10 29/461 30 142/929 163.5283 160 144.5981
947 7481 10 59/938 30 142/929 163.6812 161 144.7510
948 7487 10 10/159 30 142/929 163.8340 161 144.9038
949 7489 10 41/652 30 142/929 163.9869 161 145.0567
950 7499 10 21/334 30 142/929 164.1397 161 145.2095
951 7507 10 43/684 30 142/929 164.2926 161 145.3624
952 7517 10 11/175 30 142/929 164.4454 161 145.5152
953 7523 10 45/716 30 142/929 164.5983 162 145.6681
954 7529 10 23/366 30 142/929 164.7511 162 145.8210
955 7537 10 59/939 30 142/929 164.9040 162 145.9738
956 7541 10 12/191 30 142/929 165.0569 162 146.1267
957 7547 10 25/398 30 142/929 165.2097 162 146.2795
958 7549 10 51/812 30 142/929 165.3626 162 146.4324
959 7559 10 13/207 30 142/929 165.5154 162 146.5852
960 7561 10 27/430 30 142/929 165.6683 162 146.7381
961 7573 11 14/223 31 29/195 165.8170 162 142.9209
962 7577 11 43/685 31 29/195 165.9657 162 143.0696
963 7583 11 59/940 31 29/195 166.1144 162 143.2183
964 7589 11 61/972 31 29/195 166.2631 162 143.3671
965 7591 11 47/749 31 29/195 166.4119 162 143.5158
966 7603 11 49/781 31 29/195 166.5606 162 143.6645
967 7607 11 17/271 31 29/195 166.7093 163 143.8132
968 7621 11 35/558 31 29/195 166.8580 163 143.9619
969 7639 11 18/287 31 29/195 167.0067 163 144.1107
970 7643 11 19/303 31 29/195 167.1555 163 144.2594
971 7649 11 59/941 31 29/195 167.3042 164 144.4081
972 7669 11 41/654 31 29/195 167.4529 164 144.5568
973 7673 11 43/686 31 29/195 167.6016 164 144.7055
974 7681 11 45/718 31 29/195 167.7504 164 144.8543
975 7687 11 47/750 31 29/195 167.8991 164 145.0030
976 7691 11 49/782 31 29/195 168.0478 164 145.1517
977 7699 11 26/415 31 29/195 168.1965 165 145.3004
978 7703 11 55/878 31 29/195 168.3452 165 145.4491
979 7717 11 29/463 31 29/195 168.4940 165 145.5979
980 7723 11 31/495 31 29/195 168.6427 165 145.7466
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981 7727 11 33/527 31 29/195 168.7914 165 145.8953
982 7741 11 36/575 31 29/195 168.9401 165 146.0440
983 7753 11 38/607 31 29/195 169.0888 166 146.1928
984 7757 11 42/671 31 29/195 169.2376 166 146.3415
985 7759 11 45/719 31 29/195 169.3863 166 146.4902
986 7789 11 50/799 31 29/195 169.5350 166 146.6389
987 7793 11 56/895 31 29/195 169.6837 166 146.7876
988 7817 11 1/16 31 29/195 169.8324 166 146.9364
989 7823 11 1/16 31 29/195 169.9812 166 147.0851
990 7829 11 1/16 31 29/195 170.1299 166 147.2338
991 7841 11 1/16 31 29/195 170.2786 167 147.3825
992 7853 11 1/16 31 29/195 170.4273 167 147.5312
993 7867 11 1/16 31 29/195 170.5761 167 147.6800
994 7873 11 1/16 31 29/195 170.7248 167 147.8287
995 7877 11 1/16 31 29/195 170.8735 167 147.9774
996 7879 11 1/16 31 29/195 171.0222 167 148.1261
997 7883 11 1/16 31 29/195 171.1709 168 148.2748
998 7901 11 1/16 31 29/195 171.3197 168 148.4236
999 7907 11 1/16 31 29/195 171.4684 168 148.5723

1000 7919 11 1/16 31 29/195 171.6171 168 148.7210
1001 7927 11 1/16 31 29/195 171.7658 168 148.8697
1002 7933 11 1/16 31 29/195 171.9145 169 149.0185
1003 7937 11 1/16 31 29/195 172.0633 169 149.1672
1004 7949 11 60/961 31 29/195 172.2120 169 149.3159
1005 7951 11 54/865 31 29/195 172.3607 169 149.4646
1006 7963 11 48/769 31 29/195 172.5094 169 149.6133
1007 7993 11 44/705 31 29/195 172.6581 169 149.7621
1008 8009 11 41/657 31 29/195 172.8069 169 149.9108
1009 8011 11 38/609 31 29/195 172.9556 169 150.0595
1010 8017 11 35/561 31 29/195 173.1043 169 150.2082
1011 8039 11 33/529 31 29/195 173.2530 169 150.3569
1012 8053 11 61/978 31 29/195 173.4018 169 150.5057
1013 8059 11 29/465 31 29/195 173.5505 170 150.6544
1014 8069 11 27/433 31 29/195 173.6992 170 150.8031
1015 8081 11 26/417 31 29/195 173.8479 170 150.9518
1016 8087 11 49/786 31 29/195 173.9966 170 151.1005
1017 8089 11 47/754 31 29/195 174.1454 170 151.2493
1018 8093 11 45/722 31 29/195 174.2941 170 151.3980
1019 8101 11 43/690 31 29/195 174.4428 171 151.5467
1020 8111 11 62/995 31 29/195 174.5915 171 151.6954
1021 8117 11 20/321 31 29/195 174.7402 172 151.8442
1022 8123 11 19/305 31 29/195 174.8890 172 151.9929
1023 8147 11 55/883 31 29/195 175.0377 172 152.1416
1024 8161 11 53/851 32 29/195 175.1864 172 152.2903
1025 8167 11 17/273 32 29/195 175.3351 172 152.4390
1026 8171 11 33/530 32 29/195 175.4838 172 152.5878
1027 8179 11 16/257 32 29/195 175.6326 172 152.7365
1028 8191 11 31/498 32 29/195 175.7813 172 152.8852
1029 8209 11 15/241 32 29/195 175.9300 172 153.0339
1030 8219 11 44/707 32 29/195 176.0787 172 153.1826
1031 8221 11 57/916 32 29/195 176.2275 173 153.3314
1032 8231 11 14/225 32 29/195 176.3762 173 153.4801
1033 8233 11 27/434 32 29/195 176.5249 174 153.6288
1034 8237 11 13/209 32 29/195 176.6736 174 153.7775
1035 8243 11 13/209 32 29/195 176.8223 174 153.9262
1036 8263 11 25/402 32 29/195 176.9711 174 154.0750
1037 8269 11 61/981 32 29/195 177.1198 174 154.2237
1038 8273 11 12/193 32 29/195 177.2685 174 154.3724
1039 8287 11 35/563 32 29/195 177.4172 175 154.5211
1040 8291 11 57/917 32 29/195 177.5659 175 154.6699
1041 8293 11 11/177 32 29/195 177.7147 175 154.8186
1042 8297 11 11/177 32 29/195 177.8634 175 154.9673
1043 8311 11 32/515 32 29/195 178.0121 175 155.1160
1044 8317 11 21/338 32 29/195 178.1608 175 155.2647
1045 8329 11 41/660 32 29/195 178.3095 175 155.4135
1046 8353 11 10/161 32 29/195 178.4583 175 155.5622
1047 8363 11 10/161 32 29/195 178.6070 175 155.7109
1048 8369 11 29/467 32 29/195 178.7557 175 155.8596
1049 8377 11 19/306 32 29/195 178.9044 176 156.0083
1050 8387 11 28/451 32 29/195 179.0532 176 156.1571
1051 8389 11 46/741 32 29/195 179.2019 177 156.3058
1052 8419 11 9/145 32 29/195 179.3506 177 156.4545
1053 8423 11 62/999 32 29/195 179.4993 177 156.6032
1054 8429 11 61/983 32 29/195 179.6480 177 156.7519
1055 8431 11 60/967 32 29/195 179.7968 177 156.9007
1056 8443 11 59/951 32 29/195 179.9455 177 157.0494
1057 8447 11 25/403 32 29/195 180.0942 177 157.1981
1058 8461 11 49/790 32 29/195 180.2429 177 157.3468
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1059 8467 11 8/129 32 29/195 180.3916 177 157.4956
1060 8501 11 8/129 32 29/195 180.5404 177 157.6443
1061 8513 11 39/629 32 29/195 180.6891 178 157.7930
1062 8521 11 54/871 32 29/195 180.8378 178 157.9417
1063 8527 11 38/613 32 29/195 180.9865 179 158.0904
1064 8537 11 15/242 32 29/195 181.1352 179 158.2392
1065 8539 11 59/952 32 29/195 181.2840 179 158.3879
1066 8543 11 51/823 32 29/195 181.4327 179 158.5366
1067 8563 11 43/694 32 29/195 181.5814 179 158.6853
1068 8573 11 7/113 32 29/195 181.7301 179 158.8340
1069 8581 11 7/113 32 29/195 181.8789 180 158.9828
1070 8597 11 7/113 32 29/195 182.0276 180 159.1315
1071 8599 11 34/549 32 29/195 182.1763 180 159.2802
1072 8609 11 47/759 32 29/195 182.3250 180 159.4289
1073 8623 11 20/323 32 29/195 182.4737 180 159.5776
1074 8627 11 59/953 32 29/195 182.6225 180 159.7264
1075 8629 11 13/210 32 29/195 182.7712 180 159.8751
1076 8641 11 32/517 32 29/195 182.9199 180 160.0238
1077 8647 11 19/307 32 29/195 183.0686 180 160.1725
1078 8663 11 25/404 32 29/195 183.2173 180 160.3213
1079 8669 11 37/598 32 29/195 183.3661 180 160.4700
1080 8677 11 55/889 32 29/195 183.5148 180 160.6187
1081 8681 11 6/97 32 29/195 183.6635 180 160.7674
1082 8689 11 6/97 32 29/195 183.8122 180 160.9161
1083 8693 11 6/97 32 29/195 183.9609 180 161.0649
1084 8699 11 35/566 32 29/195 184.1097 180 161.2136
1085 8707 11 52/841 32 29/195 184.2584 180 161.3623
1086 8713 11 40/647 32 29/195 184.4071 180 161.5110
1087 8719 11 17/275 32 29/195 184.5558 181 161.6597
1088 8731 11 28/453 32 29/195 184.7046 181 161.8085
1089 8737 11 61/987 33 29/195 184.8533 181 161.9572
1090 8741 11 11/178 33 29/195 185.0020 181 162.1059
1091 8747 11 38/615 33 29/195 185.1507 182 162.2546
1092 8753 11 43/696 33 29/195 185.2994 182 162.4033
1093 8761 11 16/259 33 29/195 185.4482 183 162.5521
1094 8779 11 58/939 33 29/195 185.5969 183 162.7008
1095 8783 11 47/761 33 29/195 185.7456 183 162.8495
1096 8803 11 31/502 33 29/195 185.8943 183 162.9982
1097 8807 11 41/664 33 29/195 186.0430 184 163.1470
1098 8819 11 61/988 33 29/195 186.1918 184 163.2957
1099 8821 11 5/81 33 29/195 186.3405 184 163.4444
1100 8831 11 5/81 33 29/195 186.4892 184 163.5931
1101 8837 11 5/81 33 29/195 186.6379 184 163.7418
1102 8839 11 49/794 33 29/195 186.7866 184 163.8906
1103 8849 11 34/551 33 29/195 186.9354 185 164.0393
1104 8861 11 24/389 33 29/195 187.0841 185 164.1880
1105 8863 11 19/308 33 29/195 187.2328 185 164.3367
1106 8867 11 52/843 33 29/195 187.3815 185 164.4854
1107 8887 11 14/227 33 29/195 187.5302 185 164.6342
1108 8893 11 14/227 33 29/195 187.6790 185 164.7829
1109 8923 11 23/373 33 29/195 187.8277 186 164.9316
1110 8929 11 32/519 33 29/195 187.9764 186 1650803
1111 8933 11 9/146 33 29/195 188.1251 186 165.2290
1112 8941 11 9/146 33 29/195 188.2739 186 165.3778
1113 8951 11 49/795 33 29/195 188.4226 186 165.5265
1114 8963 11 31/503 33 29/195 188.5713 186 165.6752
1115 8969 11 57/925 33 29/195 188.7200 186 165.8239
1116 8971 11 13/211 33 29/195 188.8687 186 165.9726
1117 8999 11 13/211 33 29/195 189.0175 187 166.1214
1118 9001 11 30/487 33 29/195 189.1662 187 166.2701
1119 9007 11 17/276 33 29/195 189.3149 187 166.4188
1120 9011 11 38/617 33 29/195 189.4636 187 166.5675
1121 9013 11 21/341 33 29/195 189.6123 187 166.7163
1122 9029 11 54/877 33 29/195 189.7611 187 166.8650
1123 9041 11 33/536 33 29/195 189.9098 188 167.0137
1124 9043 11 41/666 33 29/195 190.0585 188 167.1624
1125 9049 11 61/991 33 29/195 190.2072 188 167.3111
1126 9059 11 4/65 33 29/195 190.3559 188 167.4599
1127 9067 11 4/65 33 29/195 190.5047 188 167.6086
1128 9091 11 4/65 33 29/195 190.6534 188 167.7573
1129 9103 11 4/65 33 29/195 190.8021 189 167.9060
1130 9109 11 51/829 33 29/195 190.9508 189 168.0547
1131 9127 11 39/634 33 29/195 191.0996 189 168.2035
1132 9133 11 58/943 33 29/195 191.2483 189 168.3522
1133 9137 11 50/813 33 29/195 191.3970 189 168.5009
1134 9151 11 42/683 33 29/195 191.5457 189 168.6496
1135 9157 11 19/309 33 29/195 191.6944 189 168.7983
1136 9161 11 49/797 33 29/195 191.8432 189 168.9471
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1137 9173 11 15/244 33 29/195 191.9919 189 169.0958
1138 9181 11 26/423 33 29/195 192.1406 189 169.2445
1139 9187 11 48/781 33 29/195 192.2893 189 169.3932
1140 9199 11 11/179 33 29/195 192.4380 189 169.5420
1141 9203 11 51/830 33 29/195 192.5868 189 169.6907
1142 9209 11 29/472 33 29/195 192.7355 189 169.8394
1143 9221 11 18/293 33 29/195 192.8842 189 169.9881
1144 9227 11 25/407 33 29/195 193.0329 189 170.1368
1145 9239 11 32/521 33 29/195 193.1816 189 170.2856
1146 9241 11 60/977 33 29/195 193.3304 189 170.4343
1147 9257 11 7/114 33 29/195 193.4791 189 170.5830
1148 9277 11 7/114 33 29/195 193.6278 189 170.7317
1149 9281 11 52/847 33 29/195 193.7765 189 170.8804
1150 9283 11 31/505 33 29/195 193.9253 189 171.0292
1151 9293 11 24/391 33 29/195 194.0740 190 171.1779
1152 9311 11 17/277 33 29/195 194.2227 190 171.3266
1153 9319 11 44/717 33 29/195 194.3714 191 171.4753
1154 9323 11 37/603 33 29/195 194.5201 191 171.6240
1155 9337 11 10/163 33 29/195 194.6689 191 171.7728
1156 9341 11 10/163 34 29/195 194.8176 191 171.9215
1157 9343 11 43/701 34 29/195 194.9663 191 172.0702
1158 9349 11 23/375 34 29/195 195.1150 191 172.2189
1159 9371 11 49/799 34 29/195 195.2637 191 172.3677
1160 9377 11 13/212 34 29/195 195.4125 191 172.5164
1161 9391 11 42/685 34 29/195 195.5612 191 172.6651
1162 9397 11 45/734 34 29/195 195.7099 191 172.8138
1163 9403 11 16/261 34 29/195 195.8586 192 172.9625
1164 9413 11 54/881 34 29/195 196.0073 192 173.1113
1165 9419 11 19/310 34 29/195 196.1561 192 173.2600
1166 9421 11 22/359 34 29/195 196.3048 192 173.4087
1167 9431 11 25/408 34 29/195 196.4535 192 173.5574
1168 9433 11 28/457 34 29/195 196.6022 192 173.7061
1169 9437 11 34/555 34 29/195 196.7510 192 173.8549
1170 9439 11 40/653 34 29/195 196.8997 192 174.0036
1171 9461 11 52/849 34 29/195 197.0484 193 174.1523
1172 9463 11 3/49 34 29/195 197.1971 193 174.3010
1173 9467 11 3/49 34 29/195 197.3458 193 174.4497
1174 9473 11 3/49 34 29/195 197.4946 193 174.5985
1175 9479 11 3/49 34 29/195 197.6433 193 174.7472
1176 9491 11 3/49 34 29/195 197.7920 193 174.8959
1177 9497 11 3/49 34 29/195 197.9407 193 175.0446
1178 9511 11 59/964 34 29/195 198.0894 193 175.1934
1179 9521 11 47/768 34 29/195 198.2382 193 175.3421
1180 9533 11 38/621 34 29/195 198.3869 193 175.4908
1181 9539 11 32/523 34 29/195 198.5356 194 175.6395
1182 9547 11 26/425 34 29/195 198.6843 194 175.7882
1183 9551 11 23/376 34 29/195 198.8330 194 175.9370
1184 9587 11 43/703 34 29/195 198.9818 194 176.0857
1185 9601 11 57/932 34 29/195 199.1305 194 176.2344
1186 9613 11 17/278 34 29/195 199.2792 194 176.3831
1187 9619 11 48/785 34 29/195 199.4279 195 176.5318
1188 9623 11 59/965 34 29/195 199.5767 195 176.6806
1189 9629 11 14/229 34 29/195 199.7254 195 176.8293
1190 9631 11 39/638 34 29/195 199.8741 195 176.9780
1191 9643 11 36/589 34 29/195 200.0228 195 177.1267
1192 9649 11 11/180 34 29/195 200.1715 195 177.2754
1193 9661 11 11/180 34 29/195 200.3203 196 177.4242
1194 9677 11 41/671 34 29/195 200.4690 196 177.5729
1195 9679 11 19/311 34 29/195 200.6177 196 177.7216
1196 9689 11 46/753 34 29/195 200.7664 196 177.8703
1197 9697 11 35/573 34 29/195 200.9151 196 178.0191
1198 9719 11 59/966 34 29/195 201.0639 196 178.1678
1199 9721 11 8/131 34 29/195 201.2126 196 178.3165
1200 9733 11 8/131 34 29/195 201.3613 196 178.4652
1201 9739 11 45/737 34 29/195 201.5100 197 178.6139
1202 9743 11 29/475 34 29/195 201.6587 197 178.7627
1203 9749 11 21/344 34 29/195 201.8075 197 178.9114
1204 9767 11 47/770 34 29/195 201.9562 197 179.0601
1205 9769 11 13/213 34 29/195 202.1049 197 179.2088
1206 9781 11 44/721 34 29/195 202.2536 197 179.3575
1207 9787 11 49/803 34 29/195 202.4024 197 179.5063
1208 9791 11 59/967 34 29/195 202.5511 197 179.6550
1209 9803 11 23/377 34 29/195 202.6998 197 179.8037
1210 9811 11 28/459 34 29/195 202.8485 197 179.9524
1211 9817 11 38/623 34 29/195 202.9972 197 180.1011
1212 9829 11 53/869 34 29/195 203.1460 197 180.2499
1213 9833 11 5/82 34 29/195 203.2947 198 180.3986
1214 9839 11 5/82 34 29/195 203.4434 198 180.5473
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1215 9851 11 5/82 34 29/195 203.5921 198 180.6960
1216 9857 11 5/82 34 29/195 203.7408 198 180.8448
1217 9859 11 42/689 34 29/195 203.8896 199 180.9935
1218 9871 11 32/525 34 29/195 204.0383 199 181.1422
1219 9883 11 49/804 34 29/195 204.1870 199 181.2909
1220 9887 11 22/361 34 29/195 204.3357 199 181.4396
1221 9901 11 17/279 34 29/195 204.4844 199 181.5884
1222 9907 11 46/755 34 29/195 204.6332 199 181.7371
1223 9923 11 41/673 34 29/195 204.7819 200 181.8858
1224 9929 11 12/197 34 29/195 204.9306 200 182.0345
1225 9931 11 12/197 35 29/195 205.0793 200 182.1832
1226 9941 11 31/509 35 29/195 205.2281 200 182.3320
1227 9949 11 19/312 35 29/195 205.3768 200 182.4807
1228 9967 11 26/427 35 29/195 205.5255 200 182.6294
1229 9973 11 26/427 35 29/195 205.6742 201 182.7781
1230 10007 11 33/542 35 29/195 205.8229 201 182.9268
1231 10009 11 33/542 35 29/195 205.9717 202 183.0756
1232 10037 11 54/887 35 29/195 206.1204 202 183.2243
1233 10039 11 54/887 35 29/195 206.2691 202 183.3730
1234 10061 11 7/115 35 29/195 206.4178 202 183.5217
1235 10067 11 7/115 35 29/195 206.5665 202 183.6705
1236 10069 11 7/115 35 29/195 206.7153 202 183.8192
1237 10079 11 7/115 35 29/195 206.8640 203 183.9679
1238 10091 11 58/953 35 29/195 207.0127 203 184.1166
1239 10093 11 58/953 35 29/195 207.1614 203 184.2653
1240 10099 11 37/608 35 29/195 207.3101 203 184.4141
1241 10103 11 37/608 35 29/195 207.4589 203 184.5628
1242 10111 11 23/378 35 29/195 207.6076 203 184.7115
1243 10133 11 23/378 35 29/195 207.7563 203 184.8602
1244 10139 11 39/641 35 29/195 207.9050 203 185.0089
1245 10141 11 39/641 35 29/195 208.0537 203 185.1577
1246 10151 11 16/263 35 29/195 208.2025 203 185.3064
1247 10159 11 16/263 35 29/195 208.3512 203 185.4451
1248 10163 11 41/674 35 29/195 208.4999 203 185.6038
1249 10169 11 41/674 35 29/195 208.6486 204 185.7525
1250 10177 11 59/970 35 29/195 208.7974 204 185.9013
1251 10181 11 59/970 35 29/195 208.9461 204 186.0500
1252 10193 11 52/855 35 29/195 209.0948 204 186.1987
1253 10211 11 52/855 35 29/195 209.2435 204 186.3474
1254 10223 11 9/148 35 29/195 209.3922 204 186.4961
1255 10243 11 9/148 35 29/195 209.5410 204 186.6449
1256 10247 11 9/148 35 29/195 209.6897 204 186.7936
1257 10253 11 9/148 35 29/195 209.8384 204 186.9423
1258 10259 11 38/625 35 29/195 209.9871 204 187.0910
1259 10267 11 38/625 35 29/195 210.1358 205 187.2398
1260 10271 11 49/806 35 29/195 210.2846 205 187.3885
1261 10273 11 49/806 35 29/195 210.4333 205 187.5372
1262 10289 11 20/329 35 29/195 210.5820 205 187.6859
1263 10301 11 20/329 35 29/195 210.7307 205 187.8346
1264 10303 11 31/510 35 29/195 210.8794 205 187.9834
1265 10313 11 31/510 35 29/195 211.0282 205 188.1321
1266 10321 11 11/181 35 29/195 211.1769 205 188.2808
1267 10331 11 11/181 35 29/195 211.3256 205 188.4295
1268 10333 11 11/181 35 29/195 211.4743 205 188.5782
1269 10337 11 11/181 35 29/195 211.6231 205 188.7270
1270 10343 11 46/757 35 29/195 211.7718 205 188.8757
1271 10357 11 46/757 35 29/195 211.9205 205 189.0244
1272 10369 11 24/395 35 29/195 212.0692 205 189.1731
1273 10391 11 24/395 35 29/195 212.2179 205 189.3218
1274 10399 11 50/823 35 29/195 212.3667 205 189.4706
1275 10427 11 50/823 35 29/195 212.5154 205 189.6193
1276 10429 11 13/214 35 29/195 212.6641 205 189.7680
1277 10433 11 13/214 35 29/195 212.8128 206 189.9167
1278 10453 11 54/889 35 29/195 212.9615 206 190.0655
1279 10457 11 54/889 35 29/195 213.1103 207 190.2142
1280 10459 11 28/461 35 29/195 213.2590 207 190.3629
1281 10463 11 28/461 35 29/195 213.4077 207 190.5116
1282 10477 11 15/247 35 29/195 213.5564 207 190.6603
1283 10487 11 15/247 35 29/195 213.7051 208 190.8091
1284 10499 11 47/774 35 29/195 213.8539 208 190.9578
1285 10501 11 47/774 35 29/195 214.0026 208 191.1065
1286 10513 11 49/807 35 29/195 214.1513 208 191.2552
1287 10529 11 49/807 35 29/195 214.3000 208 191.4039
1288 10531 11 17/280 35 29/195 214.4488 208 191.5527
1289 10559 11 17/280 35 29/195 214.5975 209 191.7014
1290 10567 11 36/593 35 29/195 214.7462 209 191.8501
1291 10589 11 36/593 35 29/195 214.8949 210 191.9988
1292 10597 11 19/313 35 29/195 215.0436 210 192.1475
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1293 10601 11 19/313 35 29/195 215.1924 210 192.2963
1294 10607 11 21/346 35 29/195 215.3411 210 192.4450
1295 10613 11 21/346 35 29/195 215.4898 210 192.5937
1296 10627 11 44/725 36 29/195 215.6385 210 192.7424
1297 10631 11 44/725 36 29/195 215.7872 211 192.8912
1298 10639 11 23/379 36 29/195 215.9360 211 193.0399
1299 10651 11 23/379 36 29/195 216.0847 211 193.1886
1300 10657 11 25/412 36 29/195 216.2334 211 193.3373
1301 10663 11 25/412 36 29/195 216.3821 212 193.4860
1302 10667 11 27/445 36 29/195 216.5308 212 193.6348
1303 10687 11 27/445 36 29/195 216.6796 213 193.7835
1304 10691 11 60/989 36 29/195 216.8283 213 193.9322
1305 10709 11 60/989 36 29/195 216.9770 213 194.0809
1306 10711 11 33/544 36 29/195 217.1257 213 194.2296
1307 10723 11 33/544 36 29/195 217.2745 214 194.3784
1308 10729 11 37/610 36 29/195 217.4232 214 194.5271
1309 10733 11 37/610 36 29/195 217.5719 214 194.6758
1310 10739 11 41/676 36 29/195 217.7206 214 194.8245
1311 10753 11 41/676 36 29/195 217.8693 214 194.9732
1312 10771 11 47/775 36 29/195 218.0181 214 195.1220
1313 10781 11 47/775 36 29/195 218.1668 214 195.2707
1314 10789 11 55/907 36 29/195 218.3155 214 195.4194
1315 10799 11 55/907 36 29/195 218.4642 214 195.5681
1316 10831 11 2/33 36 29/195 218.6129 214 195.7169
1317 10837 11 2/33 36 29/195 218.7617 214 195.8656
1318 10847 11 2/33 36 29/195 218.9104 214 196.0143
1319 10853 11 2/33 36 29/195 219.0591 215 196.1630
1320 10859 11 2/33 36 29/195 219.2078 215 196.3117
1321 10861 11 2/33 36 29/195 219.3565 216 196.4605
1322 10867 11 2/33 36 29/195 219.5053 216 196.6092
1323 10883 11 2/33 36 29/195 219.6540 216 196.7579
1324 10889 11 2/33 36 29/195 219.8027 216 196.9066
1325 10891 11 2/33 36 29/195 219.9514 216 197.0553
1326 10903 11 2/33 36 29/195 220.1002 216 197.2041
1327 10909 11 2/33 36 29/195 220.2489 217 197.3528
1328 10937 11 2/33 36 29/195 220.3976 217 197.5015
1329 10939 11 2/33 36 29/195 220.5463 217 197.6502
1330 10949 11 2/33 36 29/195 220.6950 217 197.7989
1331 10957 11 2/33 36 29/195 220.8438 217 197.9477
1332 10973 11 2/33 36 29/195 220.9925 217 198.0964
1333 10979 11 2/33 36 29/195 221.1412 217 198.2451
1334 10987 11 2/33 36 29/195 221.2899 217 198.3938
1335 10993 11 2/33 36 29/195 221.4386 217 198.5426
1336 11003 11 2/33 36 29/195 221.5874 217 198.6913
1337 11027 11 2/33 36 29/195 221.7361 217 198.8400
1338 11047 11 55/908 36 29/195 221.8848 217 198.9887
1339 11057 11 55/908 36 29/195 222.0335 217 199.1374
1340 11059 11 47/776 36 29/195 222.1822 217 199.2862
1341 11069 11 47/776 36 29/195 222.3310 217 199.4349
1342 11071 11 41/677 36 29/195 222.4797 217 199.5836
1343 11083 11 41/677 36 29/195 222.6284 217 199.7323
1344 11087 11 37/611 36 29/195 222.7771 217 199.8810
1345 11093 11 37/611 36 29/195 222.9259 217 200.0298
1346 11113 11 33/545 36 29/195 223.0746 217 200.1785
1347 11117 11 33/545 36 29/195 223.2233 217 200.3272
1348 11119 11 60/991 36 29/195 223.3720 217 200.4759
1349 11131 11 31/512 36 29/195 223.5207 217 200.6246
1350 11149 11 56/925 36 29/195 223.6695 217 200.7734
1351 11159 11 56/925 36 29/195 223.8182 217 200.9221
1352 11161 11 25/413 36 29/195 223.9669 217 201.0708
1353 11171 11 52/859 36 29/195 224.1156 217 201.2195
1354 11173 11 48/793 36 29/195 224.2643 217 201.3683
1355 11177 11 48/793 36 29/195 224.4131 217 201.5170
1356 11197 11 44/727 36 29/195 224.5618 217 201.6657
1357 11213 11 23/380 36 29/195 224.7105 217 201.8144
1358 11239 11 21/347 36 29/195 224.8592 217 201.9631
1359 11243 11 21/347 36 29/195 225.0079 217 202.1119
1360 11251 11 59/975 36 29/195 225.1567 217 202.2606
1361 11257 11 59/975 36 29/195 225.3054 218 202.4093
1362 11261 11 19/314 36 29/195 225.4541 218 202.5580
1363 11273 11 19/314 36 29/195 225.6028 218 202.7067
1364 11279 11 53/876 36 29/195 225.7515 218 202.8555
1365 11287 11 53/876 36 29/195 225.9003 218 203.0042
1366 11299 11 17/281 36 29/195 226.0490 218 203.1529
1367 11311 11 17/281 36 29/195 226.1977 219 203.3016
1368 11317 11 32/529 36 29/195 226.3464 219 203.4503
1369 11321 12 32/529 37 139/958 226.4915 219 198.6332
1370 11329 12 15/248 37 139/958 226.6366 219 198.7783
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1371 11351 12 15/248 37 139/958 226.7817 219 198.9234
1372 11353 12 15/248 37 139/958 226.9268 219 199.0685
1373 11369 12 15/248 37 139/958 227.0719 220 199.2136
1374 11383 12 28/463 37 139/958 227.2170 220 199.3587
1375 11393 12 28/463 37 139/958 227.3621 220 199.5038
1376 11399 12 54/893 37 139/958 227.5072 220 199.6489
1377 11411 12 54/893 37 139/958 227.6523 220 199.7940
1378 11423 12 13/215 37 139/958 227.7974 220 199.9391
1379 11437 12 13/215 37 139/958 227.9425 220 200.0842
1380 11443 12 50/827 37 139/958 228.0876 220 200.2293
1381 11447 12 50/827 37 139/958 228.2327 221 200.3744
1382 11467 12 24/397 37 139/958 228.3777 221 200.5195
1383 11471 12 24/397 37 139/958 228.5228 221 200.6645
1384 11483 12 35/579 37 139/958 228.6679 221 200.8096
1385 11489 12 35/579 37 139/958 228.8130 221 200.9547
1386 11491 12 11/182 37 139/958 228.9581 221 201.0998
1387 11497 12 11/182 37 139/958 229.1032 221 201.2449
1388 11503 12 11/182 37 139/958 229.2483 221 201.3900
1389 11519 12 11/182 37 139/958 229.3934 221 201.5351
1390 11527 12 53/877 37 139/958 229.5385 221 201.6802
1391 11549 12 53/877 37 139/958 229.6836 221 201.8253
1392 11551 12 31/513 37 139/958 229.8287 221 201.9704
1393 11579 12 31/513 37 139/958 229.9738 221 202.1155
1394 11587 12 20/331 37 139/958 230.1189 221 202.2606
1395 11593 12 20/331 37 139/958 230.2640 221 202.4057
1396 11597 12 29/480 37 139/958 230.4091 221 202.5508
1397 11617 12 29/480 37 139/958 230.5542 221 202.6959
1398 11621 12 38/629 37 139/958 230.6992 221 202.8410
1399 11633 12 38/629 37 139/958 230.8443 222 202.9860
1400 11657 12 9/149 37 139/958 230.9894 222 203.1311
1401 11677 12 9/149 37 139/958 231.1345 222 203.2762
1402 11681 12 9/149 37 139/958 231.2796 222 203.4213
1403 11689 12 9/149 37 139/958 231.4247 222 203.5664
1404 11699 12 9/149 37 139/958 231.5698 222 203.7115
1405 11701 12 9/149 37 139/958 231.7149 222 203.8566
1406 11717 12 34/563 37 139/958 231.8600 222 204.0017
1407 11719 12 43/712 37 139/958 232.0051 222 204.1468
1408 11731 12 25/414 37 139/958 232.1502 222 204.2919
1409 11743 12 25/414 37 139/958 232.2953 223 204.4370
1410 11777 12 57/944 37 139/958 232.4404 223 204.5821
1411 11779 12 57/944 37 139/958 232.5855 223 204.7272
1412 11783 12 16/265 37 139/958 232.7306 223 204.8723
1413 11789 12 16/265 37 139/958 232.8756 223 205.0174
1414 11801 12 39/646 37 139/958 233.0207 223 205.1624
1415 11807 12 39/646 37 139/958 233.1658 223 205.3075
1416 11813 12 23/381 37 139/958 233.3109 223 205.4526
1417 11821 12 23/381 37 139/958 233.4560 223 205.5977
1418 11827 12 30/497 37 139/958 233.6011 223 205.7428
1419 11831 12 30/497 37 139/958 233.7462 223 205.8879
1420 11833 12 44/729 37 139/958 233.8913 223 206.0330
1421 11839 12 44/729 37 139/958 234.0364 223 206.1781
1422 11863 12 7/116 37 139/958 234.1815 223 206.3232
1423 11867 12 7/116 37 139/958 234.3266 224 206.4683
1424 11887 12 7/116 37 139/958 234.4717 224 206.6134
1425 11897 12 7/116 37 139/958 234.6168 224 206.7585
1426 11903 12 7/116 37 139/958 234.7619 224 206.9036
1427 11909 12 7/116 37 139/958 234.9070 225 207.0487
1428 11923 12 54/895 37 139/958 235.0521 225 207.1938
1429 11927 12 54/895 37 139/958 235.1971 226 207.3389
1430 11933 12 33/547 37 139/958 235.3422 226 207.4839
1431 11939 12 40/663 37 139/958 235.4873 226 207.6290
1432 11941 12 26/431 37 139/958 235.6324 226 207.7741
1433 11953 12 26/431 37 139/958 235.7775 227 207.9192
1434 11959 12 45/746 37 139/958 235.9226 227 208.0643
1435 11969 12 45/746 37 139/958 236.0677 227 208.2094
1436 11971 12 19/315 37 139/958 236.2128 227 208.3545
1437 11981 12 19/315 37 139/958 236.3579 227 208.4996
1438 11987 12 31/514 37 139/958 236.5030 227 208.6447
1439 12007 12 31/514 37 139/958 236.6481 228 208.7898
1440 12011 12 12/199 37 139/958 236.7932 228 208.9349
1441 12037 12 12/199 37 139/958 236.9383 228 209.0800
1442 12041 12 12/199 37 139/958 237.0834 228 209.2251
1443 12043 12 12/199 37 139/958 237.2285 228 209.3702
1444 12049 12 53/879 38 139/958 237.3736 228 209.5153
1445 12071 12 53/879 38 139/958 237.5186 228 209.6604
1446 12073 12 29/481 38 139/958 237.6637 228 209.8054
1447 12097 12 29/481 38 139/958 237.8088 229 209.9505
1448 12101 12 17/282 38 139/958 237.9539 229 210.0956
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1449 12107 12 17/282 38 139/958 238.0990 229 210.2407
1450 12109 12 56/929 38 139/958 238.2441 229 210.3858
1451 12113 12 17/282 38 139/958 238.3892 230 210.5309
1452 12119 12 22/365 38 139/958 238.5343 230 210.6760
1453 12143 12 22/365 38 139/958 238.6794 231 210.8211
1454 12149 12 49/813 38 139/958 238.8245 231 210.9662
1455 12157 12 49/813 38 139/958 238.9696 231 211.1113
1456 12161 12 59/979 38 139/958 239.1147 231 211.2564
1457 12163 12 59/979 38 139/958 239.2598 231 211.4015
1458 12197 12 37/614 38 139/958 239.4049 231 211.5466
1459 12203 12 37/614 38 139/958 239.5500 232 211.6917
1460 12211 12 47/780 38 139/958 239.6951 232 211.8368
1461 12227 12 47/780 38 139/958 239.8401 232 211.9819
1462 12239 12 5/83 38 139/958 239.9852 232 212.1269
1463 12241 12 5/83 38 139/958 240.1303 232 212.2720
1464 12251 12 5/83 38 139/958 240.2754 232 212.4171
1465 12253 12 5/83 38 139/958 240.4205 232 212.5622
1466 12263 12 5/83 38 139/958 240.5656 232 212.7073
1467 12269 12 5/83 38 139/958 240.7107 232 212.8524
1468 12277 12 5/83 38 139/958 240.8558 232 212.9975
1469 12281 12 5/83 38 139/958 241.0009 232 213.1426
1470 12289 12 5/83 38 139/958 241.1460 232 213.2877
1471 12301 12 5/83 38 139/958 241.2911 233 213.4328
1472 12323 12 48/797 38 139/958 241.4362 233 213.5779
1473 12329 12 53/880 38 139/958 241.5813 233 213.7230
1474 12343 12 38/631 38 139/958 241.7264 233 213.8681
1475 12347 12 38/631 38 139/958 241.8715 233 214.0132
1476 12373 12 28/465 38 139/958 242.0166 233 214.1583
1477 12377 12 28/465 38 139/958 242.1616 233 214.3034
1478 12379 12 51/847 38 139/958 242.3067 233 214.4484
1479 12391 12 51/847 38 139/958 242.4518 233 214.5935
1480 12401 12 41/681 38 139/958 242.5969 233 214.7386
1481 12409 12 23/382 38 139/958 242.7420 234 214.8837
1482 12413 12 18/299 38 139/958 242.8871 234 215.0288
1483 12421 12 18/299 38 139/958 243.0322 235 215.1739
1484 12433 12 49/814 38 139/958 243.1773 235 215.3190
1485 12437 12 49/814 38 139/958 243.3224 235 215.4641
1486 12451 12 44/731 38 139/958 243.4675 235 215.6092
1487 12457 12 31/515 38 139/958 243.6126 236 215.7543
1488 12473 12 13/216 38 139/958 243.7577 236 215.8994
1489 12479 12 13/216 38 139/958 243.9028 237 216.0445
1490 12487 12 13/216 38 139/958 244.0479 237 216.1896
1491 12491 12 13/216 38 139/958 244.1930 237 216.3347
1492 12497 12 34/565 38 139/958 244.3380 237 216.4798
1493 12503 12 47/781 38 139/958 244.4831 238 216.6248
1494 12511 12 21/349 38 139/958 244.6282 238 216.7699
1495 12517 12 21/349 38 139/958 244.7733 238 216.9150
1496 12527 12 50/831 38 139/958 244.9184 238 217.0601
1497 12539 12 50/831 38 139/958 245.0635 238 217.2052
1498 12541 12 37/615 38 139/958 245.2086 238 217.3503
1499 12547 12 37/615 38 139/958 245.3537 239 217.4954
1500 12553 12 53/881 38 139/958 245.4988 239 217.6405

E & OE

Fig.1: The above table compares values for π(n) as approximated non-heuristically by
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n, and the values for π(n) as estimated non-heuristically by π
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j
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of π(n), for 4 ≤ n ≤ 1500.1

42.1. Error between actual and expected primes

Observation and analysis of the error between the actual (Act p) number, π(p2
n+1

) − π(p2
n

),

of primes in the interval (Int) (p2
n
, p2
n+1

), and the non-heuristically expected (Exp p) number,

πL (p2
n+1

)− πL (p2
n

), of primes in the interval (Int) (p2
n
, p2
n+1

) for 1 ≤ n ≤ 11 raises the following

query:

Query 42.1. Does the ratio:

1The downloadable .xlxs source file is accessible here.

http://alixcomsi.com/Primes_less_than_n_3000.xlsx
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n Interval Int Int Int Int Cum Cum Cum % Int density Int Cum Ratio

p2
n
− p2

n+1
Size Act p Exp p Error Act p Exp p Error Error

∏n
1 (1− 1

p
i

) SD SD R

1 4− 9 5 2 1.6 0.4000 2 1.6 0.4000 20.00 0.3333 1.0541 1.0541 0.6588
2 9− 25 16 5 4.2 0.7714 7 5.8 1.1714 16.73 0.2667 1.7689 2.8230 0.4843
3 25− 49 24 6 5.5 0.5351 13 11.3 1.7065 13.13 0.2286 2.0571 4.8801 0.4321
4 49− 121 72 15 14.9 0.0549 28 26.2 1.7614 6.29 0.2078 3.4427 8.3228 0.3172
5 121− 169 48 9 9.2 −0.1955 37 35.4 1.5659 4.23 0.1918 2.7278 11.0506 0.3119
6 169− 289 120 22 21.7 0.3465 59 57.1 1.9124 3.24 0.1805 4.2133 15.2640 0.2674
7 289− 361 72 11 12.3 −1.3063 70 69.4 0.6061 0.87 0.1710 3.1950 18.4589 0.2660
8 361− 529 168 29 27.5 1.5228 99 96.9 2.1289 2.15 0.1636 4.7945 23.2534 0.2400
9 529− 841 312 47 49.3 −2.2745 146 146.1 −0.1456 −0.10 0.1579 6.4417 29.6951 0.2032

10 841− 961 120 16 18.4 −2.3381 162 164.5 −2.4837 −1.53 0.1529 3.9419 33.6371 0.2045
11 961− 1369 408 57 60.7 −3.6745 219 225.2 −6.1582 −2.81 0.1487 7.1870 40.8241 0.1813
12 1369− 1500 131 20 19.0 0.9927 239 244.2 −5.1655 −2.16 0.1451 4.0311 44.8551 0.1837

E & OE

Fig.2: The above table compares values of the ratio for π
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Part 11

The significance of evidence-based
reasoning for Cognitive Science





CHAPTER 43

Mathematical idea analysis

In their compelling narrative Where Mathematics Comes From ([LR00]), cognitive
scientists Lakoff and Núñez attempt to address the nature of what is commonly
accepted as the body of knowledge intuitively viewed as the domain of abstract
mathematical ideas, by introducing the concept of mathematical idea analysis and
enquiring:

Query 43.1. How can cognitive science bring systematic scientific rigor to the
realm of human mathematical ideas, which lies outside the rigor of mathematics
itself?

Lakoff and Núñez argue that:

• Mathematics needs to be understood from a cognitive perspective;

• Mathematics is the epitome of precision;

• Intellectual content of mathematics lies in its ideas, not symbols;

• Formal symbols merely characterise the nature and structure of mathe-
matical ideas;

• Human ideas are grounded in sensory-motor mechanisms;

• Abstract human ideas make use of precisely formulatable cognitive mecha-
nisms such as conceptual metaphors that import modes of reasoning from
sensory-motor experience;

• It is always an empirical question what human ideas are like, mathematical
or not.

They specifically attempt to address the issues:

• How can human beings understand the idea of actual infinity?

• Where do the laws of mathematics come from?

• Why does every proposition follow from a contradiction?

They argue that this involves a prior understanding of:

• Basic cognitive semantics;

• Understanding the cognitive structure of mathematics.

Mathematical idea analysis: Lakoff and Núñez’ cognitive perspec-
tive

“We are cognitive scientists—a linguist and a psychologist—each with a
long-standing passion for the beautiful ideas of mathematics. As specialists

361
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within a field that studies the nature and structure of ideas, we realized that
despite the remarkable advances in cognitive science and a long tradition

in philosophy and history, there was still no discipline of mathematical idea
analysis from a cognitive perspective—no cognitive science of mathematics.
. . .

A discipline of this sort is needed for a simple reason. Mathematics is deep,
fundamental, and essential to the human experience. As such, it is crying

out to be understood.

It has not been.

Mathematics is seen as the epitome of precision, manifested in the use

of symbols in calculation and in formal proofs. Symbols are, of course,
just symbols, not ideas. The intellectual content of mathematics lies in its

ideas, not in the symbols themselves. In short, the intellectual content of
mathematics does not lie where the mathematical rigor can be most easily

seen—namely, in the symbols. Rather, it lies in human ideas.

But mathematics by itself does not and cannot empirically study human
ideas; human cognition is simply not its subject matter. It is up to cognitive

science and the neurosciences to do what mathematics itself cannot do—
namely apply the science of mind to human mathematical ideas. . . .

One might think that the nature of mathematical ideas is a simple and obvious

matter, that such ideas are just what mathematicians have consciously taken
them to be. From that perspective, the commonplace formal symbols do as
good a job as any at characterizing the nature and structure of those ideas.

If that were true, nothing more would need to be said.

But those of us who study the nature of concepts within cognitive science

know, from research in the field, that the study of human ideas is not so

simple. Human ideas are, to a large extent, grounded in sensory-motor expe-
rience. Abstract human ideas make use of precisely formulatable cognitive

mechanisms such as conceptual metaphors that import modes of reasoning
from sensory-motor experience. It is always an empirical question what
human ideas are like, mathematical or not.

The central question we ask is this: How can cognitive science bring sys-

tematic scientific rigor to the realm of human mathematical ideas, which
lies outside the rigor of mathematics itself? Our job is to help make precise
what mathematics itself cannot—the nature of mathematical ideas.”

. . . Lakoff and Núñez: [LR00], Preface, pp.xi-xii.

Now, prima facie such a perspective faces a number of philosophical and mathe-
matical challenges from evidence-based reasoning. For instance:

• “The intellectual content of mathematics lies in its ideas, not in the symbols
themselves.”

As compared to the evidence-based perspective of this investigation that
mathematics is a set of formal languages (as detailed in §21.4; also Chapter
23), what is the concept of ‘mathematics’ that Lakoff and Núñez have in
mind? What is the assurance that both authors are referring to the same
concept? To what does ‘its’ refer?

• “In short, the intellectual content of mathematics does not lie where the
mathematical rigor can be most easily seen—namely, in the symbols. Rather,
it lies in human ideas.”

To what does the expression ‘human ideas’ refer in this context? From
the evidence-based perspective of this investigation, are what Lakoff and
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Núñez refer to as ‘human ideas’ here conceptual metaphors that ought
to be treated as Carnap’s explicandum (see Chapter 14); or ought they
to be treated, classically, as what mathematicians would refer to as the
interpretations of a formal mathematical language—over the domain in
which the metaphors are formulated or defined—in Tarski’s sense (as
detailed in Chapter 6)?

We note that this domain can also, again not unreasonably, be taken to
be that of an informal interpretation of the first-order set theory ZFC
over Lakoff and Núñez’s conceptual metaphors, since a tacit thesis of
this investigation (Thesis 44.1) is that their analysis establishes that
all the abstract mathematical concepts dissected in Chapters 5 to 14
of[LR00]—including concepts involving ‘potential’ and ‘actual’ infinities—
can be viewed as conceptual metaphors which are expressible (if treated as
Carnap’s explicandum) in the language of the first-order Set Theory ZFC;
a perspective that would lend legitimacy to conventional wisdom which—
as detailed in Chapter 18 (see also [Ma18])—is that all mathematical
concepts are definable in ZFC.

• “. . . human cognition is simply not its subject matter.”

What can the term ‘mathematics’ refer to in this context? Would the
authors accept that ‘mathematics’ is a set of formal, symbolic, languages?
If so, how can a language per se have a subject matter?

• “It is up to cognitive science and the neurosciences to do what mathematics
itself cannot do—namely apply the science of mind to human mathematical
ideas.”

Do the authors mean ideas about the interpretations of mathematical
symbols, or ideas expressible in mathematical symbols (where we would
take the former to be the conceptual metaphors by which we intend to
represent our sensory perceptions in a language)?

• “One might think that the nature of mathematical ideas is a simple and ob-
vious matter, that such ideas are just what mathematicians have consciously
taken them to be.”

Which mathematicians?

– Those (see §3.1) who believe—without evidence—both that first-order
logic is consistent, and that Hilbert’s formal, ε-based, definitions of
quantification will not lead to a fatal mathematical contradiction?

– Or those (see §3.2) who—again without evidence—do not accept first-
order logic as consistent (since they deny the Law of the Excluded
Middle), whilst following Brouwer in denying legitimacy to Hilbert’s
formal definitions of quantification in mathematical reasoning?

∗ The former treat mathematical reasoning as manipulation of a
selected, finite, set of identifiable symbols into patterns (termed
‘proofs’) obeying a well-defined set of finitary rules, without
requiring the symbols or patterns to be necessarily associated
with any meaning (interpretation). Mathematical ideas to
them are precisely the formal properties of, and inter-relations
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between, such patterns. They do not need an interpretation
into a non-symbolic universe.

∗ The latter treat mathematical reasoning as representing state-
ments that can be interpreted as either ‘true’ or “false’ with
reference to evidence-based properties of objects in the physical
universe.

• “It is always an empirical question what human ideas are like, mathematical
or not.”

Does this mean that, for Lakoff and Núñez, ideas can be mathematical
or not? If so, what would be a non-mathematical idea? Could an idea
expressed in English be termed as an ‘English’ idea?

• “Our job is to help make precise what mathematics itself cannot—the
nature of mathematical ideas.”

Would this not implicitly imply that ideas can exist in a Platonic universe
of ideas?

Thus, from the evidence-based perspective of this investigation, it would seem
that Lakoff and Núñez unwittingly conflate the use of the term ‘mathematics’ when
referring to a set of formal, symbolic, languages1 (in the sense of §21.4), with what
is intended to be expressed or represented in such languages.

The distinction may be significant for Lakoff and Núñez’s mathematical idea anal-
ysis, especially if the goal of such analysis is ‘to provide a new level of understanding
in mathematics’.

43.1. Extending Lakoff and Núñez’s intent on ‘understanding’

“ The purpose of of mathematical idea analysis is to provide a new level
of understanding in mathematics. It seeks to explain why theorems are

true on the basis of what they mean. It asks what ideas—especially what

metaphorical ideas—are built into axioms and definitions. It asks what ideas
are implicit in equations and how ideas can be expressed by mere numbers.

And finally it asks what is the ultimate grounding of each complex idea.

That, as we shall see, may require some complicated analysis:

1. tracing through a complex mathematical idea network to see what the
ultimate grounding metaphors in the network are;

2. isolating the linking metaphors to see how basic grounded ideas are
linked together;

3. figuring out how the immediate understanding provided by the indi-

vidual grounding metaphors permits one to comprehend thye complex

idea as a whole.”
. . . Lakoff and Núñez: [LR00], Chapter 15, p.338.

However, in this informal interpretation of Lakoff and Núñez’s argumentation,
we shall ignore such pedantries and, without engaging in technical niceties regarding
cognition and cognitive semantics2, for the purposes of this investigation attempt
to informally extend Lakoff and Núñez’s intent on the nature of understanding by

1Surprisingly, the word ‘language’ is indexed as occurring only on 5 pages in the book!
2For a critical review of Lakoff and Núñez’s concept of mathematical idea analysis from a

cognitive perspective see [Md01].



43.1. EXTENDING LAKOFF AND NÚÑEZ’S INTENT ON ‘UNDERSTANDING’ 365

an individual mind3 of a concept created in the mind by differentiating as below
(compare §23.2 in Chapter 23):

(a) Subjective understanding : which we view as an individual mind’s perspec-
tive involving pattern recognition of a selected set of truth assignments by
the individual to declarative sentences of a symbolic language, based on
the individual’s uncritical personal beliefs of a correspondence between:

– what is believed as true (as reflected by the truth assignments); and

– what is perceived or pronounced as ‘factual’ (reflecting uncritical
conclusions drawn from individual cognitive experience) in a common
external world;

(b) Projective understanding : which we view as an individual mind’s perspec-
tive involving pattern recognition of a selected set of truth assignments by
the individual to declarative sentences of a symbolic language, based on
the individual’s critical plausible belief of a correspondence between:

– what is assumed, or postulated, as true (as reflected by the truth
assignments); and

– what is perceived or projected as ‘factual’ (reflecting plausible con-
clusions drawn from individual cognitive experience) in a common
external world;

(c) Collaborative (objective) understanding : which we view as an individ-
ual mind’s perspective involving pattern recognition of a selected set of
truth assignments by the individual to declarative sentences of a sym-
bolic language, based on the individual’s shared evidence-based belief of a
correspondence between:

– what is accepted by convention as true (as reflected by evidence-
based truth assignments—such as those in Chapter 7, Chapter 8, and
Chapter 9); and

– what is perceived or conjectured as ‘factual’ (reflecting shared evidence-
based cognitive experiences) in a common external world.

In other words, from an evidence-based perspective, the ‘understanding’ of
an abstract mental concept—whether subjective, projective, or collaborative—is
not limited, as Lakoff and Núñez appear to suggest, in merely identifying the
conceptual metaphors that are used to describe the concept within a language; it
must encompass, further, awareness of the evidence-based assignments of truth values
to the declarative sentences of the language—in which the conceptual metaphors
are expressed—that correspond, or are believed to correspond, to what is perceived
or conjectured as ‘factual’ cognitive experiences in a common external world.

From the perspective of Information Theory, the distinction sought to be made
here may be broadly viewed as that drawn by Björn Lundgren between ‘the property
of being information and the property of being informative’:

3Although Lakoff and Núñez restrict their considerations to the sensory perceptions of the

human mind, we shall assume that their findings and conclusions would apply to the sensory

perceptions of any intelligence that is capable of creating a mechanical intelligence which can
reason as detailed in [An16].
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“Ever since Luciano Floridi re-invigorated the veridicality thesis (that [se-
mantic] information must be true, or truthful), the discussion of this issue

has been expanding (see Floridi 2004, 2005; cf. Fetzer 2004; Dodig-Crnkovic
2005). Although Floridi claims that various critical comments have “been
proved unjustified, and as a result, there is now a growing consensus” about

his approach (Floridi 2012, p. 432, footnotes removed), the discussion has
continued. Recently, I argued that Floridi’s proposed definitions suffer from
counter-examples such that the sentence x is information if, and only if, x is

not information (see Lundgren 2015a). The same idea was later developed
and expanded by Macaulay Ferguson (2015), who furthermore argues that
the choice of the definition of semantic information (between a veridical and
an alethically neutral conception) is a dilemma because it is a choice be-

tween two paradoxes: information liar paradoxes and the Bar-Hillel Carnap
paradox (BCP); both will be explained in this paper. This dilemma will
serve as part of the dialectics of this essay.

The main aim of this essay is to argue for an alethically neutral con-
ception of semantic information. This argument will be made by presenting
counter-arguments against Floridi’s main arguments for the veridicality

thesis, as well as showing that a veridical conception of semantic informa-
tion leads to a contradiction. I consider Floridi’s arguments because he is
currently the most influential proponent of the veridicality thesis and of a
semantic conception of information. The main contribution of this essay is

that an alethically neutral conception of semantic information can avoid the
BCP, thus resolving the supposed dilemma between alethically neutral and
veridical conceptions of semantic information. This is done by introducing a

distinction between the property of being information and the property of
being informative. Overall, combined with the other arguments, this speaks
in favor of an alethically neutral conception of semantic information and

against the veridicality thesis.

However, a preference for an alethically neutral conception over a

veridical conception of semantic information does not mean that we cannot,
or should not, retain the latter concept. I conclude that we should retain it as
a subconcept of the former concept, i.e., as veridical semantic information.”

. . . Lundgren: [Lun17], p.2.

Accordingly, we shall treat Lakoff and Núñez’s mathematical ideas to refer not to
some putative content of some abstract structure, conceived by an individual mind
in a platonic domain of ideas some of which can be termed as of a mathematical
nature, but to the pattern recognition of some selected set of ‘truth’ assignments to
(presumed faithful4) representations—of conceptual metaphors grounded in sensory
motor perceptions—by an individual mind in an artificially constructed symbolic
language that can be termed as ‘mathematical’.

‘Mathematical’ in the sense that the language—in sharp contrast to languages
of common discourse, which embrace ambiguity as essential for capturing and
expressing the full gamut of any cognitive experience of our common external
world5—is designed to facilitate unambiguous pattern recognition of a narrowly

4By some effective procedure such as, for example, Tarski’s inductive definitions of the
satisfiability and truth of the formulas of a formal mathematical language under a Tarskian

interpretation (as detailed in Chapter 6).
5The absurd extent to which languages of common discourse need to tolerate ambiguity;

both for ease of expression and for practical—even if not theoretically unambiguous and effective—
communication in non-critical cases amongst intelligences capable of a lingua franca, is briefly
addressed in Chapter 24.
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selected aspect of a cognitive experience6—and its effective communication to another
mind—between the limited perception which was sought to be represented, and its
representation at any future recall.

This reflects the underlying thesis of this investigation that (see §21.4; also
Chapter 23):

(i) Mathematics is to be considered as a set of precise, symbolic, languages.

(ii) Any language of such a set, say the first order Peano Arithmetic PA (or
Russell and Whitehead’s PM in Principia Mathematica, or the Set Theory
ZF), is intended to express—in a finite, unambiguous, and communicable
manner—relations between elements that are external to the language PA
(or to PM, or to ZF).

(iii) Moreover, each such language is two-valued if we assume that a specific rela-
tion either holds or does not hold externally under any valid interpretation
of the language.

43.2. How can human beings understand the idea of actual infinity?

Lakoff and Núñez’s lack of an unambiguous perspective towards their use of the term
‘mathematics’ is also reflected in their analysis of how human beings understand the
idea of actual infinity from a cognitive perspective:

How can human beings understand the idea of actual infinity?

“. . . Núñez had begun an intellectual quest to answer these questions: How can
human beings understand the idea of actual infinity?—infinity conceptualized
as a thing, not merely as an unending process? What is the concept of actual
infinity in its mathematical manifestations—points at infinity, infinite sets,

infinite decimals, infinite intersections, transfinite numbers, infinitesimals?
He reasoned that since we do not encounter actual infinity directly in the
world, since our conceptual systems are finite, and since we have no cognitive

mechanisms to perceive infinity, there is a good possibility that metaphorical
thought may be necessary for human beings to conceptualize infinity. If
so, new results about the structure of metaphorical concepts might make

it possible to precisely characterize the metaphors used in mathematical
concepts of infinity.

. . . We soon realized that such a question could not be answered in isolation.
We would need to develop enough of the foundations of mathematical idea

analysis so that the question could be asked and answered in a precise
way. We would need to understand the cognitive structure not only of
basic arithmetic but also of symbolic logic, the Boolean logic of classes, set

theory, parts of algebra, and a fair amount of classical mathematics: analytic

geometry, trigonometry, calculus, and complex numbers. That would be a
task of many lifetimes. . . .

So we adopted an alternative strategy. We asked, What would be the
minimum background needed

• to answer Núñez’s questions about infinity,

• to provide a serious beginning for a discipline of mathematical idea
analysis, . . .

6Compare this with Löb’s remarks that: “While classical mathematics owes its development

to a naive meta-physical conception of the physical world, from the constructivist point of view
mathematics may rather be regarded to be an abstract reconstruction of a private phenomenological
world.” [Lob59], p.164.
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As a consequence, our discussion of arithmetic, set theory, logic, and algebra
are just enough to set the stage for our subsequent discussions of infinity

and classical mathematics. just enough for that job, but not trivial . . .
. . . Lakoff and Núñez: [LR00], Preface, p.xii-p.xiii.

And as we shall see, Núñez was right about the centrality of conceptual
metaphor to a full understanding of infinity in mathematics. There are two

infinity concepts in mathematics—one literal and one metaphorical. The
literal concept (“in-finity”—lack of an end) is called “potential infinity”. It
is simply a process that goes on without end, like counting without stopping,
extending a line segment indefinitely, or creating polygons with more and

more sides. No metaphorical ideas are needed in this case. Potential infinity
is a useful notion in mathematics, but the main event is elsewhere. The idea
of “actual infinity,” where infinity becomes a thing—an infinite set, a point

at infinity, a transfinite number, the sum of an infinite series—is what is
really important. Actual infinity is fundamentally a metaphorical idea, just
as Núñez had suspected. The surprise for us was that all forms of actual
infinity—points at infinity, infinite intersections, transfinite numbers, and so

on—appear to be special cases of just one Basic Metaphor of Infinity. This
is anything but obvious. . . . ”

. . . Lakoff and Núñez: [LR00], Preface, p.xvi.

From the evidence-based perspective of this investigation, however, it is precisely
because ‘we do not encounter actual infinity directly’, and ‘since we have no cogni-
tive mechanisms to perceive infinity’, that mathematicians classically—following
Hilbert—postulate an ‘idealised’ existence for such a concept by means of a—not
necessarily evidence-based—‘definitional’ axiom in the sense of Weyl’s ‘implicit
definition’ (see §21.17) and then create symbols such as ∞, ω,ℵ, etc., in a purely
artificial mathematical universe.

The subjective—and arbitrary—postulational character of such axioms becomes
evident if we view axioms not as implicit or explicit definitions, but as part of the
rules of the logic that, reasonably, seeks to assign unambiguous truth values to the
well-formed formulas of a language as proposed by Definitions 21.3, 21.4 and 21.5 in
§21.2.

As further expressed by Weyl from an early-intuitionistic point of view:

“An arithmetical construction of geometry that respects the logical content

of the geometric axioms is clearly a significant step toward a system of

concepts explicitly defined on the basis of purely logical concepts. This quest
to logicize mathematics gains further ground in the well-known theory of the

irrationals due to Cantor, Dedekind, and Weierstrass in which the concept of
the real numbers is reduced to that of the rational and, eventually, the natural
numbers 1, 2, 3, . . .. But the work of Dedekind and Cantor showed that the

natural numbers and the associated operations of addition, multiplication,
etc. are based on a discipline exceedingly close to pure logic: Cantor’s set

theory. So we now consider set theory to be, from a logical standpoint, the

genuine foundation of the mathematical sciences and, hence, we must turn
to it if we wish to formulate principles of definition that suffice, not just for

elementary geometry, but for mathematics as a whole.

Now, however, suspicions having been aroused by some contradictions (real

or imagined), there is a clash of contrary opinions about the fundamental
questions of set theory. In discussions of these questions, logico-mathematical

and psychological points of view have often been mixed together.

In the development of the human intellect (Geist), the concept of set and
number has passed through distinct stages. At the first stage, an actual
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aggregation (eigentliche Inbegriffsvorstellung) occurs when a unitary interest
draws from the content of our consciousness the perceptions (Vorstellungen)

of several separately observed (für sich bemerkter) objects and unites them.
At this stage, the earliest numerals (e.g., 2, 3, and 4) designate immediately
observable differentiations of the psychic act operating in the aggregation.

At the second stage, symbolic representations replace actual perceptions
(tretenfür die eigentlichen Vorstellungen symbolische ein). The most signif-

icant product of this second period is the well-known symbolic procedure
of counting, familiar to every child, through which sets (and not just the
smallest) can be distinguished in terms of their cardinal number. Here a
certain feeling for the possible is one of the essential formative elements. In

our effort to cope with the external world, we do not feel constrained by the
accidental limitations and shortcomings of our sense organs and cognitive
faculties. Cantor’s introduction of his transfinite ordinals (an innovation

motivated by the iterated formation of derived point-sets) perfectly illus-
trates the procedure characteristic of this second stage. Cantor placed a new
element ω after the series 1, 2, 3, . . . and conceived the progressive extension
of the domain of numbers as follows:

1, 2, 3, . . .

ω, ω + 1, ω + 2, . . .
(ω2), (ω2) + 1, (ω2) + 2, . . .

. . . . . . . . .

ω
2
, ω

2
+ 1, ω

2
+ 2, . . .

ω
2

+ ω

. . . . . . . . .
ω

3
, . . .

. . . . . . . . .

ω
ω
, . . .

. . . . . . . . .

An actual perception of infinite sets—in the sense that their individual

elements are simultaneously present as separately observed contents in our
consciousness—is unattainable. It does not follow, though, that infinite sets
are logically illegitimate. After all, an actual presentation to consciousness

of a set with a large number of elements can be unattainable even when the
set is finite. So it is true that “there is no actual infinity” only in the sense
that the actual presence to consciousness of infinite manifolds is impossible.”

. . . Weyl: [We10], pp.6-7.

It is thus the axioms themselves that are, then, the conceptual metaphors for
the symbols that are intended to represent the postulated Platonic entities. In
the absence of evidence-based conventions, the symbols not only have no physical
significance—as Weyl seeks to convey—but, as the examples in §24.3 have shown,
they can be misleading as to the actual behaviour of physical systems in the limiting
cases which are sought to be adequately expressed and unambiguously communicated
in a mathematical language.

43.3. What does a mathematical representation reflect?

Nevertheless, the significance for evidence-based reasoning of Lakoff and Núñez’s
analysis of those conceptual metaphors which are most appropriately represented
in a mathematical language, lies in their conclusion that all representations of
physical phenomena in a mathematical language are ultimately grounded not in
any ‘abstract, transcendent’, genetically inherited, knowledge, but in conceptual
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metaphors that import modes of reasoning reflecting, and endemic to, human
sensory-motor-experience.

What do the mathematical representations of the laws of arith-
metic reflect?

“. . . We seek, from a cognitive perspective, to provide answers to such questions
as, Where do the laws of arithmetic come from?7 Why is there a unique

empty class and why is it a subclass of all classes? Indeed why, in formal logic,
does every proposition follow from a contradiction? Why should anything at

all follow from a contradiction?8

From a cognitive perspective, these questions cannot be answered merely
by giving definitions, axioms, and formal proofs. That just pushes the

question one step further back. How are those definitions and axioms
understood? To answer questions at this level requires an account of ideas
and cognitive mechanisms. Formal definitions and axioms are not basic
cognitive mechanisms; indeed, they themselves require an account in cognitive

terms.

One might think that the best way to understand mathematical ideas would
be simply to ask mathematicians what they are thinking. Indeed, many

famous mathematicians, such as Descartes, Boole, Dedekind, Poincaré,
Cantor, and Weyl, applied this method to themselves, introspecting about
their own thoughts. Contemporary research on the mind shows that as

valuable as this can be, it can at best tell a partial and not fully accurate
story. Most of our thoughts and our system of concepts are part of the
cognitive unconscious . . . We human beings have no direct access to our
deepest forms of understanding. The analytic techniques of cognitive science

are necessary if we are to understand how we understand.

But the more we have applied what we know about cognitive science to

understand the cognitive structure of mathematics, the more it has become
clear that this romance cannot be true. Human mathematics, the only
kind of mathematics that human beings know, cannot be a subspecies of an

abstract, transcendent mathematics. Instead, it appears that mathematics as
we know it arises from the nature of our brains and our embodied experience.
As a consequence, every part of the romance appears to be false, for reasons

that we will be discussing.

Perhaps most surprising of all, we have discovered that a great many of the

most fundamental mathematical ideas are inherently metaphorical in nature:

• The number line, where numbers are conceptualized metaphorically as

points on a line.

• Boole’s algebra of classes, where the formation of classes of objects
is conceptualized metaphorically in terms of algebraic operations and

elements: plus, times, zero, one, and so on.

• Symbolic logic, where reasoning is conceptualized metaphorically as
mathematical calculation using symbols.

• Trignometric functions, where angles are conceptualized metaphorically

as numbers.

• The complex plane, where multiplication is conceptualized metaphori-

cally in terms of rotation.

7From an evidence-based perspective, the ‘laws’ of a mathematical language (i.e., the axioms

and rules of inference) are the ‘logical’ conventions (in the sense of §21.2) that assign veridicality
to mathematical assertions purporting to adequately express and unambiguously communicate

properties about objects in the real world that are accessible to our senses.
8From an evidence-based perspective, ‘logic’ is purely a convention that, in the sense of §21.2,

artificially ‘completes’ the world of facts by adding non-facts (in the sense of §44.3(e)).
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. . . None of what we have discovered is obvious. Moreover, it requires a prior
understanding of a fair amount of basic cognitive semantics and of the overall

cognitive structure of mathematics.” . . .
. . . Lakoff and Núñez: [LR00], Preface, pp.xiii-xvii.

43.4. Lakoff and Núñez’s cognitive argument

Moreover, from the evidence-based perspective of this investigation, a significant
conclusion of Lakoff and Núñez’s cognitive argumentation is that:

“Mathematics as we know it has been created and used by human beings:

mathematicians, physicists, computer scientists, and economists—all mem-
bers of the species Homo sapiens. This may be an obvious fact, but it has an

important consequence. Mathematics as we know it is limited and structured

by the human brain and human mental capacities. The only mathematics
we know or can know is a brain-and-mind based mathematics.

As cognitive science and neuroscience have learned more about the human

brain and mind, it has become clear that the brain is not a general-purpose
device. The brain and body co-evolved so that the brain could make the
body function optimally. Most of the brain is devoted to vision, motion,

spatial understanding, interpersonal interaction, coordination, emotions,
language, and everyday reasoning. Human concepts and human language
are not random or arbitrary; they are highly structured and limited, because

of the limits and structure of the brain, the body, and the world.” . . .

. . . Lakoff and Núñez: [LR00], Introduction, p.1.

Accordingly—within the already noted limitations of their perspective of mathe-
matical idea analysis—Lakoff and Núñez argue that any postulation of the existence
of Platonic mathematical entities that are not ultimately grounded in metaphors
reflecting our sensory motor perceptions is not supported by the findings of cognitive
scientists.

Such postulation can only, therefore, be treated as an essentially unverifiable
article of faith that reflects a personal belief (in the sense of §23.2(i)) which can
have no bearing on any application of mathematical reasoning to the understanding
(in the sense of §43.1) of what is common to either our mental concepts, or our
external world (as argued persuasively by Krajewski on purely philosophical and
mathematical grounds in [Kr16]—see Chapter 2).

Moreover, Lakoff and Núñez argue further that their above observation immedi-
ately raises two questions:

“1. Exactly what mechanisms of the human brain and mind allow human

beings to formulate mathematical ideas and reason mathematically?

2. Is brain-and-mind based mathematics all that mathematics is? Or

is there, as Platonists have suggested, a disembodied mathematics
transcending all bodies and minds and structuring the universe—this

universe and every possible universe?

Question 1 asks where mathematical ideas come from and how mathematical

ideas are to be analyzed from a cognitive perspective. Question 1 is a scientific
question, a question to be answered by cognitive science, the interdisciplinary

science of the mind. As an empirical question about the human mind and

brain, it cannot be studied purely within mathematics. And as a question
for empirical science, it cannot be answered by an a priori philosophy or
by mathematics itself. It requires an understanding of human cognitive



372 43. MATHEMATICAL IDEA ANALYSIS

processes and the human brain. Cognitive science matters to mathematics
because only cognitive science can answer this question.

. . . We will be asking how normal human cognitive mechanisms are employed
in the creation and understanding of mathematical ideas. Accordingly, we

will be developing techniques of mathematical idea analysis.

But it is Question 2 that is at the heart of the philosophy of mathematics. It
is a question that most people want answered. Our answer is straightforward:

• Theorems that human beings prove are within a human mathematical
conceptual system.

• All the mathematical knowledge that we have or can have is knowledge
within human mathematics.

• There is no way to know whether theorems proved by human mathe-

maticians have any objective truth, external to human beings or any

other beings.

The basic form of the argument is this:

1. The question of the existence of a Platonic mathematics cannot be

addressed scientifically. At best, it can only be a matter of faith, much
like faith in a God. That is, Platonic mathematics, like God, cannot
in itself be perceived or comprehended via the human body, brain, and

mind. Science alone can neither prove nor disprove the existence of a
Platonic mathematics, just as it cannot prove or disprove the existence
of a God.

2. As with the conceptualization of God, all that is possible for human
beings is an understanding of mathematics in terms of what the human
brain and mind afford. The only conceptualization that we can have

of mathematics is a human conceptualization. Therefore, mathematics
as we know it and teach it can only be humanly created and humanly
conceptualized mathematics.

3. What human mathematics is, is an empirical scientific question, not a
mathematical or a priori philosophical question.

4. Therefore, it is only through cognitive science—the interdisciplinary

study of mind, brain, and their relation—that we can answer the
question: What is the nature of the only mathematics that human
beings know or can know?

5. Therefore, if you view the nature of mathematics as a scientific question,
then mathematics is mathematics as conceptualized by human beings

using the brain’s cognitive mechanisms.

6. However, you may view the nature of mathematics itself not as a

scientific question but as a philosophical or religious question. The
burden of scientific proof is on those who claim that an external

Platonic mathematics does exist, and that theorems proved in human

mathematics are objectively true, external to the existence of any
beings or any conceptual systems, human or otherwise. At present

there is no known way to carry out such a scientific proof in principle.
. . . ”
. . . Lakoff and Núñez: [LR00], Introduction, pp.1-3.

Lakoff and Núñez note that there is an important part of this argument that
needs further elucidation:

“What accounts for what the physicist Eugene Wigner has referred to as “the

unreasonable effectiveness of mathematics in the natural sciences” (Wigner,
1960)? How can we make sense of the fact that scientists have been able
to find or fashion forms of mathematics that accurately characterize many
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aspects of the physical world and even make correct predictions? It is
sometimes assumed that the effectiveness of mathematics as a scientific tool

shows that mathematics itself exists in the structure of the physical universe.
This, of course, is not a scientific argument with any empirical scientific
basis.

. . . Our argument, in brief, will be that whatever “fit” there is between
mathematics and the world occurs in the minds of scientists who have

observed the world closely, learned the appropriate mathematics well (or
invented it), and fit them together (often effectively) using their all-too-
human minds and brains. . . . ”
. . . Lakoff and Núñez: [LR00], Introduction, p.3.

Lakoff and Núñez then argue persuasively that any Platonic philosophy of
mathematics is not supported by the findings of cognitive science, since it ignores
that interpretation—a necessary prelude to understanding—of those concepts which
are expressed in a mathematical language involves identification—sometimes layers
upon layers—of conceptual metaphors grounded, ultimately, in our sensory-motor
experiences:

“Finally, there is the issue of whether human mathematics is an instance of, or
an approximation to, a transcendental Platonic mathematics. This position

presupposes a nonscientific faith in the existence of Platonic mathematics.
We will argue that even this position cannot be true. The argument rests on
analyses . . . to the effect that human mathematics makes fundamental use of

conceptual metaphor in characterizing mathematical concepts. Conceptual
metaphor is limited to the minds of living beings. Therefore, human math-
ematics (which is constituted in significant part by conceptual metaphor)
cannot be a part of Platonic mathematics, which—if it existed—would be

purely literal.

Our conclusions will be:

1. Human beings can have no access to a transcendent Platonic math-
ematics, if it exists. A belief in Platonic mathematics is therefore a
metaphor of faith, much like religious faith. There can be no scientific
evidence for or against the existence of a Platonic mathematics.

2. The only mathematics that human beings know or can know is, there-
fore, a mind-based mathematics, limited and structured by human

brains and minds. The only scientific account of the nature of math-
ematics is therefore an an account, via cognitive science, of human
mind-based mathematics. Mathematical idea analysis provides such
an account.

3. Mathematical idea analysis shows that human mind-based mathematics
uses conceptual metaphors as part of the mathematics itself.

4. Therefore human mathematics cannot be a part of a transcendent

Platonic mathematics, if such exists. . . . ”
. . . Lakoff and Núñez: [LR00], Introduction, p.4.

Lakoff and Núñez base their conclusions upon advances in cognitive science that
have deepened understanding of how human beings conceptualize abstract concepts
in concrete terms, using ideas and modes of reasoning grounded in the sensory-motor
system:

“In recent years, there have been revolutionary advances in cognitive science—

advances that have an important bearing on our understanding of mathe-

matics. Perhaps the most profound of these new insights are the following:
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1. The embodiment of mind. The detailed nature of our bodies, our
brains, and our everyday functioning in the world structures human

concepts and human reason. This includes mathematical concepts and
mathematical reason.

2. The cognitive unconscious. Most thought is unconscious—not repressed
in the Freudian sense but simply inaccessible to direct conscious in-
trospection. We cannot look directly at our conceptual systems and

at our low-level thought processes. This includes most mathematical
thought.

3. Metaphorical thought. For the most part, human beings conceptualize

abstract concepts in concrete terms, using ideas and modes of reason-

ing grounded in the sensory-motor system. The mechanism by which
abstract is comprehended in terms of the concrete is called concep-

tual metaphor. Mathematical thought also makes use of conceptual

metaphor, as when we conceptualize numbers as points on a line. . . . ”
. . . Lakoff and Núñez: [LR00], Introduction, pp.4-5.

They argue that, contrary to the wisdom prevailing even in the cognitive sciences
of the 1960’s—when symbolic logic was thought by many to be endemic to abstract
thinking—symbolic logic is itself a mathematical enterprise that requires a cognitive
analysis:

“. . . Insights of the sort we will be giving . . . were not even imaginable in
the days of the old cognitive science of the disembodied mind, developed

in the 1960s and early 1970s. In those days, thought was taken to be the

manipulation of purely abstract symbols and all concepts were seen as literal—
free of all biological constraints and of discoveries about the brain. Thought,

then, was taken by many to be a form of symbolic logic. As we shall see

. . . symbolic logic is itself a mathematical enterprise that requires a cognitive
analysis. For a discussion of the differences between the old cognitive science

and the new, see Philosophy in the Flesh (Lakoff & Johnson, 1999) and

Reclaiming Cognition (Núñez & Freeman, eds., 1999). . . . ”
. . . Lakoff and Núñez: [LR00], Introduction, p.5.

The central thesis of Lakoff and Núñez’s argument in [LR00] is that mathe-
matical reasoning layers metaphor upon metaphor with such intricacy that it is the
job of the cognitive scientist to tease them apart so as to reveal their underlying
cognitive structure, since the cognitive science of mathematics asks questions that
mathematics does not, and cannot, ask about itself :

“Mathematics, as we shall see, layers metaphor upon metaphor. When a
single mathematical idea incorporates a dozen or so metaphors, it is the job
of the cognitive scientist to tease them apart so as to reveal their underlying

cognitive structure.

This is a task of inherent scientific interest. But it also can have an important

application in the teaching of mathematics. We believe that revealing
the cognitive structure of mathematics makes mathematics much more

accessible and comprehensible. Because the metaphors are based on common

experiences, the mathematical ideas that use them can be understood for
the most part in everyday terms.

The cognitive science of mathematics asks questions that mathematics

does not, and cannot, ask about itself. How do we understand such basic

concepts as infinity, zero, lines, points, and sets using our everyday conceptual
apparatus? How are we to make sense of mathematical ideas that, to the
novice, are paradoxical—ideas like space-filling curves, infinitesimal numbers,
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the point at infinity, and non-well-founded sets (i.e., sets that “contain
themselves” as members)? . . .

. . . we will be concerned not just with what is true but with what mathe-
matical ideas mean, how they can be understood, and why they are true.

We will also be concerned with the nature of mathematical truth from the
perspective of a mind-based mathematics.

One of our main concerns will be the concept of infinity in its various

manifestations: infinite sets, transfinite numbers, infinite series, the point

at infinity, infinitesimals, and objects created by taking values of sequences
“at infinity,” such as space-filling curves. We will show that there is a

single Basic Metaphor of Infinity that all of these are special cases of. This

metaphor originates outside mathematics, but it appears to be the basis of
our understanding of infinity in virtually all mathematical domains. When we

understand the Basic Metaphor of Infinity, many classic mysteries disappear

and the apparently incomprehensible becomes relatively easy to understand.”
. . .

. . . Lakoff and Núñez: [LR00], Introduction, pp.7-8.

Lakoff and Núñez emphasise that the results of their inquiry are not results
reflecting the conscious thoughts of mathematicians; rather, they describe the uncon-
scious conceptual system used by people who do mathematics:

The results of our inquiry are, for the most part, not mathematical results

but results in the cognitive science of mathematics. They are results about
the human conceptual system that makes mathematical ideas possible and in
which mathematics makes sense. But to a large extent they are not results
reflecting the conscious thoughts of mathematicians; rather, they describe

the unconscious conceptual system used by people who do mathematics.
The results of our inquiry should not change mathematics in any way, but
they may radically change the way mathematics is understood and what

mathematical results are taken to mean.

Some of our findings may be startling to many readers. Here are examples:

• Symbolic logic is not the basis of all rationality, and it is not absolutely
true. It is a beautiful metaphorical system, which has some rather

bizarre metaphors. It is useful for certain purposes but quite inadequate
for characterizing anything like the full range of the mechanisms of
human reason.

• The real numbers do not “fill” the number line. There is a mathematical
subject matter, the hyperreal numbers, in which the real numbers are

rather sparse on the line.

• The modern definition of continuity for functions, as well as the so-
called continuum, do not use the idea of continuity as it is normally
understood.

• So-called space-filling curves do not fill space.

• There is no absolute yes-or-no answer to whether 0.99999 . . . = 1.

It will depend on the conceptual system one chooses. There is a

mathematical subject matter in which 0.99999 . . . = 1, and another in
which 0.99999 . . . 6= 1.

These are not new mathematical findings but new ways of understanding
well-known results. They are findings in the cognitive science of mathematics—

results about the role of the mind in creating mathematical subject matters.

Though our research does not affect mathematical results in themselves, it

does have a bearing on the understanding of mathematical results and on
the claims made by many mathematicians. Our research also matters for
the philosophy of mathematics. Mind-based mathematics, as we describe it
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. . . , is not consistent with any of the existing philosophies of mathematics:
Platonism, intuitionism, and formalism. Nor is it consistent with recent

post-modernist accounts of mathematics as a purely social construction.
Based on our findings, we will be suggesting a very different approach to the
philosophy of mathematics. We believe that the philosophy of mathematics

should be consistent with scientific findings about the only mathematics
that human beings know or can know. We will argue . . . that the theory
of embodied mathematics . . . determines an empirically based philosophy of

mathematics, one that is coherent with the “‘embodied realism” discussed in
Lakoff and Johnson (1999) and with “‘ecological naturalism” as a foundation
for embodiment (Núñez, 1995, 1997).

Mathematics as we know it is human mathematics, a product of the human
mind. Where does mathematics come from? It comes from us! We create it,
but it is not arbitrary—not a mere historically contingent social construction.

What makes ,mathematics nonarbitrary is that it uses the basic conceptual
mechanisms of the embodied mind as it has evolved in the real world.
Mathematics is a product of the neural capacities of our brains, the nature of
our bodies, our evolution, our environment, and our long social and cultural

history.” . . .
. . . Lakoff and Núñez: [LR00], Introduction, pp.8-9.



CHAPTER 44

The Veridicality of Mathematical Propositions

Based on our above interpretation of Lakoff and Núñez’s analysis in [LR00], we
could express a tacit thesis of this investigation as:

Thesis 44.1. Those of our conceptual metaphors which we commonly accept
as of a mathematical nature—whether grounded directly in an external reality,
or in an internally conceptualised Platonic universe of conceived concepts (such
as, for example, Cantor’s first transfinite ordinal ω)—when treated as Carnap’s
explicandum, are expressed most naturally in the language of the first-order Set
Theory ZFC.

This reflects the evidence-based perspective of this investigation that (see §21.4;
also Chapter 23):

• Mathematics is a set of symbolic languages;

• A language has two functions—to express and to communicate mental
concepts1;

• The language of a first-order Set Theory such as ZFC is sufficient to
adequately represent (Carnap’s explicatum: see Chapter 14) those of our
mental concepts (Carnap’s explicandum: see Chapter 14) which can be
communicated unambiguously; whilst the first-order Peano Arithmetic PA
best communicates such representations to an other categorically.

It also reflects Weyl’s perspective that the ‘genuine value and significance’ of
any mathematical language lies in the ‘extent that its concepts can be interpreted
intuitively without affecting the truth of our assertions about those concepts’:

“Returning now to Richard’s antinomy, we must acknowledge a kernel of truth

in the apparent contradiction: set theory and logicized mathematics involve

only countably many relation-concepts, but certainly not just countably
many things or sets. This is primarily because the introduction of new sets is

not limited to the extraction of subsets of a given set, as the aforementioned
axiom allows, the elements of that subset being characterized by a definite
property. There is also set formation through addition, multiplication,
and exponentiation, operations whose possibility is posited by Zermelo’s
remaining axioms. There is absolutely no question of an antinomy here.

Might we say that mathematics is the science of ε and those relations definable
from ε by means of the principles we have mentioned? Developments to

date make this seem likely and perhaps this analysis really does correctly
determine the logical content of mathematics. Consider, however, a set
theoretically constructed conceptual system for logicized mathematics. It

seems to me that this system will have genuine value and significance only to

1Qn: Is this reflected in the structure or activity of the brain?
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the extent that its concepts can be interpreted intuitively without affecting
the truth of our assertions about those concepts.”

. . . Weyl: [We10], p.10.

We would further conjecture that:

Thesis 44.2. The need for adequately expressing such conceptual metaphors in
a mathematical language reflects an evolutionary urge of an organic intelligence to de-
termine which of the metaphors that it is able to conceptualise can be unambiguously
communicated to another intelligence—whether organic or mechanical—by means of
evidence-based reasoning and, ipso facto, can be treated as faithful representations
of a commonly accepted external reality (universe).

The conjecture is obliquely reflected in Dennett’s remarks:

We and only we, among all the creatures on the planet, developed language. Language

is very special when it comes to being an information handling medium because it
permits us to talk about things that arent present, to talk about things that don’t
exist, to put together all manner of concepts and ideas in ways that are only indirectly

anchored in our biological experience in the world. Compare it, for instance, with a
vervet monkey alarm call. The vervet sees an eagle and issues the eagle alarm call. We
can understand that as an alarm signal, and we can see the relationship of the seen

eagle and the behavior on the part of the monkey and on the part of the audience of
that monkeys alarm call. Thats a nice root case.”

. . . Dennett: [De17].

Moreover, we may then need to consider whether:

• A plausible perspective as to what is, or is not, a valid mathematical
concept would be to regard such concepts as those conceptual metaphors
that:

(a) an ω-consistent (and demonstrably undecidable by [Go31], Theorem
VI) language—such as a first-order set theory ZFC—can adequately
express subjectively (in the sense of §23.1(a));

and, thereafter, which of these conceptual metaphors:

(b) an ω-inconsistent (and demonstrably categorical by [An16], Theorem
7.2) language—such as the first-order Peano Arithmetic PA—is able
to unambiguously communicate objectively (in the sense of §23.1(b)).

In other words, we may need to consider whether (in sharp contrast to the
perspective offered by Maddy in [Ma18] and [Ma18a]):

• Set theory is most appropriately viewed as the foundation for those of our
conceptual metaphors which can be adequately expressed in a first-order
mathematical language;

whilst:

• Arithmetic is most appropriately viewed as the foundation for those of our
conceptual metaphors which can be unambiguously communicated in a
first-order mathematical language.

Such a perspective would reflect an underlying thesis of this investigation (§23),
which is that mathematics ought to be viewed simply as a set of languages;
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• some of adequate expression,

• and some of unambiguous and effective communication,

for Lakoff and Núñez’s conceptual metaphors.

Moreover2, that the veridicality of mathematical propositions can ultimately be
grounded in only those conceptual metaphors whose formal representations within
the language we can either:

• label as ‘finitarily true’ by convention if, and only if, they either correspond
to evidence-based axioms and rules of inference (i.e., to some constructively
well-defined logic by Definition 21.5) of some language;

or:

• label as ‘experientally true’ by convention if, and only if, they are mappings
of evidence-based observations of a commonly accepted external universe.

One is then led to develop and isolate from these philosophies a more holistic per-
spective of ‘where mathematics comes from’, rather than the epistemically grounded
perspective of conventional wisdom—as articulated, for instance, in [LR00]3 or
[Shr13]—which ignores the distinction between the multi-dimensional nature of the
logic of a formal mathematical language (Definition 21.5), and the one-dimensional
nature of the veridicality of its assertions.

Such a synthesised view of ‘where mathematics comes from’ should, it seems, be
able to offer complementary perspectives for the basic issues on which the various
philosophies were founded. Such as, amongst others:

• the logicist’s identity of mathematics and logic;

• the formalist’s stress on the internal validity and self-sufficiency criteria of
a theory;

• the intuitionist’s objection to passing from the negation of a general
statement to an existential one without additional safeguards;

• the conventionalist’s contention that the rules of a language delineate its
ontology;

• as also the nominalist’s scruples about the existence of classes of classes.

We conclude by näıvely addressing some of the perspectives—implicit in this
investigation—on how we perceive the nature and formation of abstract mental
concepts that are expressed in the usual mathematical languages in terms of Carnap’s
explicatum and explicandum (see Chapter 14).

44.1. Where does the veridicality of mathematics come from?

We address the query: Where does the veridicality of mathematical propositions
come from?

2As expressed by Tarski in a broader context ([Ta35]): ‘Snow is white’ is a true sentence if,
and only if, snow is white.

3A more appropriate title for which, from such a perspective, would be Where the Veridicality

of Mathematical Propositions Comes From.
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(a) I form concepts. That much seems reasonably clear to me. Their location
I assume to be in the commonly referred to intuition. Concept space may
be a better name for it.

(b) An analysis of these concepts I find to be a more difficult task than indi-
cating their significance. So I intend to study merely the latter. However,
I do take individuals, properties and facts as concepts.

(c) Events in physical space, indeed the space itself, are perceived and digested
by my senses, whence they transform into concepts.

(d) My concepts I may map into a language. This map you may decode into
your concepts.

Assuming that both of us accept a common external world, I can understand
why language is so useful.

(e) When I set up a language, there is what I talk about. Serious dispute
cannot arise so long as my language faithfully refers to my concepts.

(f) I may feel the need to include Pegasus among my concepts. Your stoutest
efforts will not convince me to analyse the name out à la Russell. A
description into non-trivial terms of my ontology I would consider inad-
equate. And the trivial description of ‘pegasises’ I would only agree to
as an introduction of a name for a concept of being Pegasus—a concept
antecedent to the being of Pegasus among my concepts.

Or I may protest altogether against the being of any ‘pegasises’ concept in
my concept space, and refuse to admit discovery or creation of any such
concept.

(g) Confusion may sometimes arise. You may wrongly translate my language
into your concepts. My conceptual scheme may contradict the external
world. I may have concepts not accessible to you.

In the first case you would be mistaken. In the second I should be convicted
of error—or possibly idealism! But who is to judge?

Of some interest is the third. This I see as the cause of all genuine
ontological disputes. From philosophy through to theology.

Taken to be a question of individual concepts, ontology seems more a
matter of taste, inclination and, above all, feeling and belief in this case.

So its interest as a problem is, after all, trivial. As it should be.

(h) For, as long as I concern myself with ontology, restricting myself to a
language constructed on the basis of my mental concepts, I shall for all
practical purposes be dealing with the small aspect of the world which
is conceptualised by my senses. And this, as Zeno’s reflections seem to
indicate, can hardly be said to exhaust nature’s complexity (as sought to
be illustrated in §24.5 and §25.1.).

(i) So I turn my back for the moment on concepts. All I am left with then is
language, and possibly codifications of nature into language.

And my inability to grasp the totality of nature’s concepts is contained in
my use of variable names, and the transition from propositions to schemata.
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And the test of any codifications as suitable for nature will be the inclusion
in it of the concepts that are within my grasp.

(j) But what there is in addition may, after all, depend on language in cases
where empirical verification is lacking.

44.2. Russel’s paradox?

We briefly consider Russell’s paradox from a näıve set-theoretical perspective that
seeks to adequately express some of our conceptual metaphors in a symbolic language.

(a) Consider the ZFC expression:

(i) x /∈ x.

If we suppose that there is a class ‘a’ in our language ZFC representing an
individual entity ‘a∗—that exists, or must necessarily exist, as the root of
one of our conceptual metaphors—whose members are precisely those that
satisfy (a)(i), then we would hold that, in this instance, we have discovered
a true statement schema:

(ii) x ∈ a↔ x /∈ x,

which expresses a host of facts concerning ‘a∗’ and all the various members
of some pre-existing universe that the metaphors are taken to conceptualise.

But this belief is surely mistaken, for:

(iii) a ∈ a↔ a /∈ a,

is clearly false in ZFC.

(b) Suppose, on the other hand, we say that we are merely defining a class
‘a’ in ZFC that represents an individual entity that may already exist—or
might conceivably exist—as the root of our conceptual metaphors by:

(i) x ∈ a if, and only if, x /∈ x.

Though this should now be a true statement in our language ZFC about
the metaphors, it may no longer be a statement about anything in the
universe that the metaphors aim to conceptualise (Compare Skolem’s
remarks in [Sk22], p.295; see also §22.4).

(c) But if we treat definition as a creative activity for producing a larger
‘conceivable’ ontology, it is not surprising that we can arrive back at a
paradoxical, but supposedly true, ZFC statement:

(ii) a ∈ a↔ a /∈ a,

about the putative universe that the metaphors claim to conceptualise.

This position regarding creativity may differ but formally from our earlier
Platonistic stand.

(d) However, if we do not view definition as mere name-giving to newly born
or already flourishing objects, then it is not easy to see what all the fuss is
about.

For, if definition requires eliminability, then expressions such as ‘a ∈ a’
and ‘a /∈ a’ are immediately suspect—since we are able to eliminate only
‘x ∈ a’ from any expression.
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And ‘a’ in isolation is merely a strange creature giving rise to pseudo-
expressions which confuse us as to their admissibility into our formal
language because of their familiar appearance (a point that we have
illustrated when highlighting the fragility of the conventional arguments
for the existence of non-standard models of Arithmeetic in §20.1).

But then, so too does Pegasus confuse us into sometimes creating a putative
inhabitant of a putatively common Platonic world of permanent ideas
and unactualised possibilities out of merely the subjective, and fleeting,
conceptual metaphors created within our cognition with respect to the
word ‘Pegasus’ !

In other words, as Quine ([Qu53]) has compellingly argued, a name
need not name anything that we would accept as the root of a grounded
conceptual metaphor (even though a name might itself give rise to a
consequent conceptual metaphor grounded on the ‘name’ itself).

For names belong to language essentially. And, even when patently absurd
or vacuous—e.g., Squircle defined as a ‘square circle’, or ‘Louis XX’ defined
as ‘the present king of France’—are easy to construct.

(e) There is a fuss, for the contradictions still haunt some of us. So possibly
we are loath to admit an error in our earliest discovery. The seeming ‘truth’
of the statement schema:

(i) x ∈ a↔ x /∈ x.

Now could it be that this reluctance to accept the negation of Cantor’s
Comprehension Axiom is—as Lakoff and Núñez’s analysis of the origin of
‘mathematical’ conceptual metaphors seems to suggest—psychologically
motivated?

For instance, as Pereplyotchik remarks:

“There are, broadly speaking, three competing frameworks for answering the
foundational questions of linguistic theory—cognitivism (e.g., Chomsky 1995,
2000), platonism (e.g., Katz 1981, 2000), and nominalism (e.g., Devitt 2006,
2008).

Platonism is the view that the subject matter of linguistics is an uncountable set
ofabstracta—entities that are located outside of spacetime and enter into no causal

interactions. On this view, the purpose of a grammar is to lay bare the essential

properties of such entities and the metaphysically necessary relations between
them, in roughly the way that mathematicians do with numbers and functions.
The question of which grammar a speaker cognizes is to be settled afterward, by

psychologists, using methods that are quite different from thenonempiricalmethods
of linguistic inquiry.

The nominalist, too, denies that grammars are psychological hypotheses. But

she takes the subject matter of linguistics to consist in concrete physical tokens—

inscriptions, acoustic blasts, bodily movements, and the like. Taken together,
these entities comprise public systems of communication, governed by social

conventions. The purpose of a grammar, on this view, is to explain why some
of these entities are, e.g., grammatical, co-referential, or contradictory, and why
some entail, bind, or c-command others.

Cognitivism, by contrast, is the view that linguistics is a branch of psychology—

i.e., that grammars are hypotheses about the language faculty, an aspect of the

human mind/brain. A true grammar would be psychologically real, in the sense
that it would correctly describe the tacit knowledge that every competent speaker
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has—a system of psychological states that is causally implicated in the use and
acquisition of language.”

. . . Pereplyotchik: [Per17].

The cause to which we are clinging so stubbornly—armed with Russell’s
types, Zermelo’s efforts, amongst others—may be that starting from an on-
tological acceptance of some individuals and properties, we must somehow
have the right to build up further properties into our putative universe.
The paradoxes seem to prevent us from doing so with complete freedom.

(f) But why do we not feel the need to a similar liberty in the other direction?
Regarding individuals.

Why do we not feel as strongly or as readily that by defining all the
properties that occur in our ontology for a new individual, we may enlarge
our universe?

(g) The path may not be any smoother. For suppose we intend to introduce
the individual ‘k’ into our ontology. And our ontology contains a property
schema P (x, y). (Which may, for example be ‘y loves x’).

If our desire for liberty was sincere, we should feel free to then assign
properties at will to the new entry.

But what happens?

(h) Let us assign the P (x, y)’s to the entity ‘k’ as follows:

(i) P (x, k) if, and only if, ¬P (x, x).

Since ‘k’ is part of our ontology, do we have:

(ii) P (k, k)

or

(iii) ¬P (k, k)?

(i) My point is that as long as we have the desire to construct new relations
amongst existing entities, we should also have the equal desire to construct
new entities out of existing relations.

That if we have the feeling we can discover all kinds of possible relations
amongst the individuals, we should also feel we can discover all kinds of
individuals enmeshed in our relations.

That the guidelines in one case should be as useful in the other. That if
every open formula in individuals seems to define a predicate, then every
open formula in predicates should define an individual. To take a very
näıve view.

That we may be psychologically misled into feeling that a predicate open
formula defines an entity known as the predicate of a predicate.

(j) So maybe there is much to be said for the nominalist stand. And isn’t
the idea that every individual be equivalent to the set of all the predicates
that it satisfies at the heart of Leibniz’s notion of indiscernibles? As also
at the heart of phenomenalism and positivism?
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(k) And where the external world is concerned, is it possible that quantum-
interpreted phenomena may contain instances of plurality where the objects
are indiscernibles—notwithstanding Leibniz’s contention?

(k) And inspite of Russell’s claim of having no content to his universe does
not the fact that it has no indiscernibles give it content—at least in the
form of a special characteristic?

44.3. An illustrative model: language and ontology

(a) I have a concept of a possible universe that I should like to codify into
language.

(b) In my universe there are individuals, and there are properties. The
landscape is otherwise deserted.

(c) The individuals I shall name a, b, c, d, e. The properties F,G,H.

(d) There are also (in some sense of being which is not entirely clear to me)
facts in my universe. These I shall represent in my language as:

F (a), F (b), G(b), G(c), G(e), H(b), H(c) and H(e).

I shall call these true expressions in my language.

(e) There are no such things (or whatever it is that facts are supposed to be)
as non-facts in my universe. All the same, I admit certain expressions
into my language—possibly for the sake of symmetry, but more so because
tradition seems to demand such an action. These are:

F (c), F (d), F (e), G(a), G(d), H(a), and H(d).

I shall call these false expressions.

(f) Though my language, containing these expressions, is thus two-valued, in
my universe there are only facts.

(g) A very natural question may be asked for any set of individuals. Is there
a property satisfied by all the members of the set, and none others?

I think I must be very clear about the nature of my enquiry. I am not
asking whether my language can countenance the introduction of a further
expression purporting to be a property. Such an entry, like the introduction
of false expressions, may not present formidable difficulties. But I am
enquiring whether my universe already contains such a property.

(h) Taking {a, b, d}, as the set, I find no property which gives rise to true
expressions for this set only. My finding is, of course, empirical.

(i) For the set {a, b} however, the property F does give rise to true expressions;
and no other individual satisfies F . And I may conveniently identify the
set with F insofar as they are both names of the same entity.

(j) What of the set {b, c, e}? Both G and H express facts for the members
of this set only. But there is no unique property identifiable with this
set. And, in passing, I may remark that such an event does not cause any
concern usually. Properties with the same extension are tolerated easily.
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(k) I conclude that not every set of individuals can be identified with a unique
property.

So, a set of individuals may not name anything in my universe.

(l) A question of far greater significance is as to the nature of sets of properties.
Classically these have been treated as being identifiable with a different
quality of being in the universe from that of properties and individuals.

(m) But though my language is prolific in sets, my universe is starved for
entities. So I look for some more direct identifications for these sets than
those suggested by precedent.

Surprisingly, I am successful—or so it seems. And my solution appears so
natural that I begin to suspect that tradition may well have been merely
disguising it.

(n) For a set of properties, I ask the question whether any individual has just
those properties, and none others.

For the set {F,G} there is no such individual.

The set {F,G,H} may be identified with the individual b, which is the
only one satisfying all three properties.

Similarly, {F} may be identified with a.

(o) But now I consider the set {G,H}. Both c and e satisfy only this set.
Which is a most surprising characteristic of my universe. It contains two
indiscernibles!

(Inspite of Leibniz, and Russell’s subsequent backing of his ideas on the
intuitive notion of equality, modern physics has made a universe with such
characteristics rather feasible. What is required for such a feature is that
some set of properties be identified with a plurality of individuals.)

I find, then, that not every set of properties is identifiable with an individ-
ual.

(p) So, if I contain myself to the ontology outlined, some sets of properties, as
also of individuals, don’t exist, while some do, and still others exhibit an
ambiguous character.

But all this is peculiar to my universe. And not every universe need be
of this type. The universe being constructed by an intuitionist may have
differing qualities. Depending on the manner in which he sets up his
intuitive concepts of individuals and relations, and expresses his facts.

(q) But what is important to note—for I feel it has caused the greatest
confusion—is that sets belong to language, and their corresponding ex-
istence in the universe lies in their identifiability, along the lines already
indicated, with the entities of the universe.

Such identifiability may be empirically determinable, if the universe is
capable of representation as above. Or it may be conventional, when the
universe is being constructed.
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44.4. Is the Russell-Frege definition of number significant?

(a) I cannot countenance a predicate of predicates unreservedly.

I am able to cheerfully admit the existence of individuals in a universe.

I can also, hesitantly at first, embrace the seemingly necessary existence
of properties.

(b) But now I see two things.

That each property has an extension, in my language at least, of all the
individuals satisfying it. And each individual has an extension of all the
properties that it possesses.

And any class of individuals that I am able to construct in my language
can only—if at all—be identifiable as the extension of a possible property
satisfied by the members of the class. The existence of such a property—
and hence the reflection of the fact of this existence, in my language—must
remain an empirical truth—or a truth by convention.

And, similarly, any class of properties that I can produce in my language
is not the reflection of some creature known as a predicate of predicates,
but—at the most—the extension identifiable with a possible individual
having only the properties contained in the class. The existence of such
an individual is again, I dare say, an empirical fact—or a convention.

Now, why does my mind rebel at the thought of indiscriminately creating
such individuals?

The reason is chiefly heuristic. As may be expected.

(c) Given a set of individuals, and a two-valued language, I am able to construct
2n distinct classes. If all these exist as properties, then each property is
identifiable with some particular class of not more than n individuals. It
is not even necessary to insist for the moment that the class be evident to
me. So long as I admit that it is a determined class in my language.

Clearly each individual is also identifiable with some class of not more
than 2n properties.

(d) But now there are 22n new individuals which are constructible—at least
theoretically so—in my language (which may even embrace a class theory
for the construction of its classes, if this is in some way thought possible).

If I try to introduce these in my universe, then the extensions of some of
my previous properties will have to be enlarged.

In what sense can I then speak of a property as the static concept it usually
is taken to be? Without divorcing it completely from my individuals? In
which case, how may I even construct a new property? Unless, of course, I
adopt a system of double book-keeping.

And, possibly, this is the reason that Cantor’s axiom of comprehension,
when applied to ontology, is invalid. As also the reason that a distinction
needs to be drawn between classes and sets in set theory—which is, I
believe, implicitly taken to be applicable to both language and ontology.
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Whether such a distinction has been validly and consistently made relative
to the view that I have taken above is a different question. One well worth
investigating.

(e) But now I see a major defect in logicism.

2(f) is defined to mean that there exists an x, and there exists a y,
satisfying f , and x is not equal to y, and if there is some z satisfying f ,
then either z is equal to x, or z is equal to y.

The class, in my language of course, of fs for which this is true is then
identified with an object in the universe containing f over which x and y
range.

Such an object, as I have already averred, I can only take to be an
individual, say ‘2’.

But then it appears that every property which has only two true arguments
in my universe must necessarily have ‘2’ as one of these (amongst its)
arguments! A patently unacceptable conclusion.

At least from an aesthetic point of view, so far as my common sense is
concerned. But common sense is not a very reliable guide, and it remains
to be seen whether this is also logically (in some sense of the word logic)
unacceptable. As I feel it must be. The point is an important one and
needs to be investigated.

(f) So I do not accept the individual ‘2’ as identifiable anyhow in my universe.
Even though 2(f) is a meaningful, and very significant, sentential formula
in my language. For it does contain the essence of the meaning-in-use of
the number ‘two’. And this, I believe, is the really outstanding achievement
of logicism. Its analysis of the origin of the number concept ([Rus19],
Chapter II, pp.11-19). But not its so-called logical construction of the
concepts of the integers.

Of course Russell has, to my way of thinking, managed to cloud the issue
by ascribing a different level of existence to the individuals constructed
from classes of predicates. Which again appears to be a case of multiple
standards, since not all classes of predicates—as I have tried to show
earlier—need necessarily give rise to the type of difficulty discussed above.
Some classes are easily and most naturally identifiable with individuals.

Russell’s types are then seen to be nothing more than the setting up of
various synthetic universes in a kind of chain formation. The lowest being
a universe either set up by convention, or which is evident to my senses.
The next—not by addition to the first—but rather by identification with
expressions of the language in which I talk of my initial universe. And so
on.

(g) And of course the language I use to reflect my initial universe will con-
tain expressions for all the possible entities and facts that could possibly
occur in it, irrespective of what actually may be occurring at the time I
discover/construct it. So Russell may quite readily, though unpardonably
for having obfuscated the issue, claim that his universe—which actually
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contains all the members of the chain that I referred to above—has no
content.

And whether we call it one universe or a chain of universes is hardly worth
a demonstration at Trafalgar Square.

So long as we can remember that all the successor universes have been
constructed from language.

(h) Which gives me enough reason to try and explain why language and
ontology have so often been confused.

And my way of justifying the seeming prolificacy of language—which I
already hinted at above—is this.

I think it would be readily agreed that in the external world there are
facts—which may be said to have existence. To ascribe an existence to a
non-fact in this universe seems to me somewhat far-fetched, despite McX
and Wyman ([Qu53]).

Yet I am able, in my language about the external world, to create both
factual and non-factual or false expressions.

And this seems a very fortuitous occurrence in view of my desire to com-
municate with, and be communicated to faithfully by, a fallible humanity.

So the expressions in my language seem—at least to my näıvely finite
senses—to exceed the facts in the universe.

(i) Which of course may be an assumption of a very basic and significant
nature underlying all my mathematics—hence giving a possible circularity
to Cantor’s Theorem that 2n exceeds n for all numbers.

44.5. Summary

(01) Discovery of what there is, or construction (by convention—other means
if thought feasible) of what I feel should be, I take as the basic idea
underlying all my mental activity.

(02) Language, as the means by which such discovery, or construction, is
expressed or conveyed to you.

(03) Logical notions as the instruments used to extend what ‘is’ in any given
case to what is possible or could have been possible—in addition to, or as
alternative to—the given case.

(04) So logic in effect symmetricises language—originally conceived as a carrier
of only what there ‘is’, or, more precisely, of what I believe there ‘is’—into
containing ‘more’ than what actually ‘is’, in terms of what is possible or
conceivable.

(05) Which gives me a freedom, on the basis of these conceivable entities,
entertained by my language (corresponding to the expressions containing
free variables, or sets as they are also called) and taking into account what
already is, to construct by some means a ’larger’, clearly artificial, universe.
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(06) Larger in the sense that a suitable construction immediately seems to give
me Cantor’s Theorem—at least if I include all conceivable entities of the
first into the second.

(07) But my constructions necessarily give me a new universe. Though I may
be able to map my initial ontology into it in some way.

(08) And the obviously recursive procedure gives me a series of universes which
Russell calls types.

(09) Though there seems no meaningful way in which we can talk of all the
universes being united into a universe of universes, with their various
entities co-existing peaceably.

(10) And the Continuum Hypothesis may be but a convention (compare §19.3)—
a relation between two successive universes—reflecting the manner in
which one is constructed out of the other. A relation, then, (like Cantor’s)
between what is taken ‘to be’ in a universe, and all that can be constructed
from it by means of language.

(11) And, so, in some sense what there ‘is’ does depend on language. At least
in all the universes succeeding the initial. And on convention.

(12) And whether this thing is what we call ‘mathematics’ depends on whether
my initial universe has entities that are only expressed in a mathematical
language.





APPENDIX A

Some comments on standard definitions, notations,
and concepts

Axioms and rules of inference of the first-order Peano Arithmetic PA

PA1 [(x1 = x2)→ ((x1 = x3)→ (x2 = x3))];

PA2 [(x1 = x2)→ (x′1 = x′2)];

PA3 [0 6= x′1];

PA4 [(x′1 = x′2)→ (x1 = x2)];

PA5 [(x1 + 0) = x1];

PA6 [(x1 + x′2) = (x1 + x2)′];

PA7 [(x1 ? 0) = 0];

PA8 [(x1 ? x
′
2) = ((x1 ? x2) + x1)];

PA9 For any well-formed formula [F (x)] of PA:
[F (0)→ (((∀x)(F (x)→ F (x′)))→ (∀x)F (x))].

Generalisation in PA If [A] is PA-provable, then so is [(∀x)A].

Modus Ponens in PA If [A] and [A→ B] are PA-provable, then so is [B].

Cauchy sequence: A sequence x
1
, x

2
, x

3
, . . . of real numbers is a Cauchy sequence

if, and only if, for every real number ε > 0, there is a an integer N > 0 such that,
for all natural numbers m,n > N , |x

m
− x

n
| ≤ ε.

Conservative extension: A theory T
2

is a (proof theoretic) conservative extension
of a theory T

1
if the language of T

2
extends the language of T

2
; that is, every theorem

of T
1

is a theorem of T
2
, and any theorem of T

2
in the language of T

1
is already a

theorem of T
1
.

First-order language (we essentially follow the definitions in [Me64], p.29): A
first-order language L consists of:

(1) A countable set of symbols. A finite sequence of symbols of L is called an
expression of L;

(2) There is a subset of the expressions of L called the set of well-formed
formulas (abbreviated ‘wffs’) of L;

(3) There is an effective procedure (based on evidence-based reasoning) to
determine whether a given expression of L is a wff of L.

391
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Moreover—reflecting the evidence-based perspective of this investigation as detailed
in the proposed Definitions 21.3 to 21.7—we shall explicitly distinguish between a
first-order language and:

- any first-order theory that seeks—on the basis of evidence-based reasoning—
to assign the values ‘provable/unprovable’ to the well-formed formulas of
the language under a proof-theoretic logic;

- any first-order theory that seeks—on the basis of evidence-based reasoning—
to assign the values ‘true/false’ to the well-formed formulas of the language
under a model-theoretic logic.

First-order language with quantifiers (we essentially follow the definitions in
[Me64], pp.56-57): A first-order language K with quantifiers is a first-order language
whose alphabet consists of:

(1) The propositional connectives ‘¬’ and ‘→’;

(2) The punctuation marks ‘(’, ‘)’ and ‘,’;

(3) Denumerably many individual variables x
1
, x

2
, . . . ,;

(4) A finite or denumerable non-empty set of predicate letters A
n

j
(n, j ≥ 1);

(5) A finite or denumerable, possibly empty, set of function letters f
n

j
(n, j ≥ 1);

(6) A finite or denumerable, possibly empty, set of individual constants a
i
(i ≥

1);

where the function letters applied to the variables and individual constants generate
the terms as follows:

(a) Variables and individual constants are terms;

(b) If f
n

i
is a function letter, and t

1
, . . . , t

n
are terms, then f

n

i
(t

1
, . . . , t

n
) is a

term;

(c) An expression of K is a term only if it can be shown (on the basis of
evidence-based reasoning) to be a term on the basis of clauses (a) and (b).

Further:

(d) The predicate letters applied to terms yield the atomic formulas, i.e., if
A
n

i
is a predicate letter and t1 , . . . , tn are terms, then A

n

i
(t1 , . . . , tn) is an

atomic formula.

and:

(e) The well-formed formulas (wffs) of K are defined as follows:

(i) Every atomic formula is a wff;

(ii) If A and B are wffs and y is a variable, then ‘¬A’, ‘A → B’ and
‘(∀y)A’ are wffs;

(iii) An expression of K is a wff of K only if it can be shown (on the basis
of evidence-based reasoning) to be a wff on the basis of clauses (i) and
(ii).

Moreover, we follow the convention that defines:
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(f) ‘A ∧ B’ as an abbreviation for ‘¬(A → B)’;

(g) ‘A ∨ B’ as an abbreviation for ‘(¬A)→ B’;

(h) ‘A ≡ B’ as an abbreviation for ‘(A → B) ∧ (B → A)’;

(i) ‘(∃x)A’ as an abbreviation for ‘¬((∀x)¬A)’.

First-order theory with quantifiers (we essentially follow the definitions in
[Me64], pp.56-57): A first-order theory S with quantifiers is a first-order language
with quantifiers plus a set of rules—which we define as the proof-theoretic logic of
S—that assigns evidence-based ‘provability’ values to the wffs of S by means of
logical axioms, proper axioms, and rules of inference as follows:

I: If A,B, C are wffs of S, then the following logical axioms are designated as
provable wffs of S:

(1) A → (B → A);

(2) (A → (B → C))→ ((A → B)→ (A → C));
(3) (¬B → ¬A)→ ((¬B → A)→ B);

(4) (∀xi)A(xi)→ A(t) if A(xi) is a wff of S and t is a term of S free for
x
i

in A(x
i
);

(5) (∀xi)(A → B)→ (A → (∀xi)B) if A is a wff of S containing no free
occurences of xi .

II: The proper axioms of S which are to be designated as provable wffs of S
vary from theory to theory.

A first-order theory in which there are no proper axioms is called the
first-order logic FOL.

III: The rules of inference of any first-order theory are:

(i) Modus ponens: If A and A → B are provable wffs of S, then B is a
provable formula of S;

(ii) Generalisation: If A is a provable wff of S, then (∀x
i
)A is a provable

wff of S.

IV: A wff A of S is provable if, and only if:

– A is a logical axiom of S; or

– A is a proper axiom of S; or

– A is the final wff of a finite sequence of wffs of S such that each
formula of the sequence is:

- either an axiom of S,

- or is a provable formula of S by application of the rules of
inference of S to the formulas preceding it in the sequence.

Moreover, we define a first-order theory S with quantifiers as well-defined model-
theoretically if, and only if, it has a well-defined model in the sense of the proposed
Definitions 21.3 to 21.7.
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Hilbert’s Second Problem:1 In this investigation, we treat Hilbert’s intent2

behind the enunciation of his Second Problem as essentially seeking a finitary proof
for the consistency of arithmetic when formalised in a language such as the first
order Peano Arithmetic PA.

Interpretation (we essentially follow the definitions in [Me64], p.49): An inter-
pretation of the:

- predicate letters;

- function letters; and

- individual and logical constants;

of a formal system S consists of:

- a non-empty set D, called the domain of the interpretation;

and an evidence-based assignment:

- to each predicate letter A
n

j
of an n-place relation in D ;

- to each function letter f
n

j
of an n-place operation in D (i.e., a function

from D into D); and

- to each individual constant a
i

of some fixed element of D.

Given such an interpretation, variables are thought of as ranging over the set D,
and ¬,→, and quantifiers are given their usual meaning.

Moreover, we define an interpretation as well-defined if, and only if, all the above
assignments are well-defined in the sense of the proposed Definitions 21.3 to 21.7.

Model (we essentially follow the definitions in [Me64], p.49): An interpretation I
defines a model of a formal system S if, and only if, there is a set of rules—which we
define as the model-theoretic logic of S—that assign evidence-based truth values of
‘satisfaction’, ‘truth’, and ‘falsity’ to the formulas of S under I such that the axioms
of S interpret as ‘true’ under I, and the rules of inference of S preserve such ‘truth’
under I.

Moreover, we define a model as well-defined if, and only if, it is defined by a
well-defined interpretation in the sense of the proposed Definitions 21.3 to 21.7.

1“When we are engaged in investigating the foundations of a science, we must set up a system
of axioms which contains an exact and complete description of the relations subsisting between the
elementary ideas of that science. . . . But above all I wish to designate the following as the most

important among the numerous questions which can be asked with regard to the axioms: To prove
that they are not contradictory, that is, that a definite number of logical steps based upon them

can never lead to contradictory results. In geometry, the proof of the compatibility of the axioms

can be effected by constructing a suitable field of numbers, such that analogous relations between
the numbers of this field correspond to the geometrical axioms. . . . On the other hand a direct
method is needed for the proof of the compatibility of the arithmetical axioms.”

. . . Excerpted from Maby Winton Newson’s English translation [Nw02] of Hilbert’s address [Hi00] at the International

Congress of Mathematicians in Paris in 1900.

2Compare Curtis Franks’ thesis in [Fr09] that Hilbert’s intent behind the enunciation of his
Second Problem was essentially to establish the autonomy of arithmetical truth without appeal to
any debatable philosophical considerations.
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ω-consistency: A formal system S is ω-consistent if, and only if, there is no S-
formula [F (x)] for which, first, [¬(∀x)F (x)] is S-provable and, second, [F (a)] is
S-provable for any specified S-term [a].

Partial recursive: Classically, a partial function F of n arguments is called
partial recursive if, and only if, F can be obtained from the initial functions
(zero function), projection functions, and successor function (of classical recursive
function theory) by means of substitution, recursion and the classical, unrestricted,
µ-operator. F is said to come from G by means of the unrestricted µ-operator, where
G(x1, . . . , xn, y) is recursive, if, and only if, F (x1, . . . , xn) = µy(G(x1, . . . , xn, y) =
0), where µy(G(x1, . . . , xn, y) = 0) is the least number k (if such exists) such that,
if 0 ≤ i ≤ k,G(x1, . . . , xn, i) exists and is not 0, and G(x1, . . . , xn, k) = 0. We
note that, classically, F may not be defined for certain n-tuples; in particular, for
those n-tuples (x1, . . . , xn) for which there is no y such that G(x1, . . . , xn, y) = 0
(cf. [Me64], p.120-121).

Tarski’s inductive definitions: We shall assume that truth values of ‘satisfaction’,
‘truth’, and ‘falsity’ are assignable inductively to the compound formulas of a first-
order theory S under the interpretation IS(D) in terms of only the satisfiability of
the atomic formulas of S over D as usual (see [Me64], p.51; [Mu91]):

• A denumerable sequence s of D satisfies [¬A] under IS(D) if, and only if, s
does not satisfy [A];

• A denumerable sequence s of D satisfies [A→ B] under IS(D) if, and only
if, either it is not the case that s satisfies [A], or s satisfies [B];

• A denumerable sequence s of D satisfies [(∀xi)A] under IS(D) if, and only
if, specified any denumerable sequence t of D which differs from s in at
most the i’th component, t satisfies [A];

• A well-formed formula [A] of D is true under IS(D) if, and only if, specified
any denumerable sequence t of D, t satisfies [A];

• A well-formed formula [A] of D is false under IS(D) if, and only if, it is not
the case that [A] is true under IS(D).

Total: We define a number-theoretic function, or relation, as total if, and only if, it
is effectively computable, or effectively decidable, respectively, for any given set of
natural number values assigned to its free variables. We define a number-theoretic
function, or relation, as partial otherwise. We define a partial number theoretic
function, or relation, as effectively computable, or decidable, respectively, if, and
only if, it is effectively computable, or decidable, respectively, for any given set of
values assigned to its free variables for which it is defined (cf. [Me64], p.214).

Weak standard interpretation of PA (cf. [Me64], p.107): The weak standard
interpretation M of PA over the domain N of the natural numbers is the one
in which the logical constants have their ‘usual’ interpretations in the first-order
predicate logic FOL, and:

(a) The set of non-negative integers is the domain;

(b) The symbol [0] interprets as the integer 0;

(c) The symbol [′] interprets as the successor operation (addition of 1);
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(d) The symbols [+] and [?] interpret as ordinary addition and multiplication;

(e) The symbol [=] interprets as the identity relation.

Comment : In this investigation, unless explicitly specified otherwise,
we do not assume that Aristotle’s particularisation holds under the the
standard interpretation M of PA or under any interpretation of FOL.

Reason: Contrary to what is implicitly suggested in standard literature
and texts—Aristotle’s particularisation does not form any part of Tarski’s
inductive definitions of the satisfaction, and truth, of the formulas of PA
under the standard interpretation M of PA, but is an extraneous, generally
implicit, assumption in the underlying first-order logic FOL.

Moreover, its inclusion not only makes M non-finitary (as argued by
Brouwer in [Br08]) but, as we show (Corollary 15.11), the assumption of
Aristotle’s particularisation does not hold in any model of PA (and, ipso
facto, of FOL)!

Weak standard model of PA: The weak standard model of PA is the one defined
by the classical standard interpretation M of PA over the domain N of the natural
numbers.



APPENDIX B

Rosser’s Rule C

(Excerpted from Mendelson [Me64], p.73-74, §7, Rule C 1)

It is very common in mathematics to reason in the following way. Assume that
we have proved a wf of the form (Ex)A(x). Then, we say, let b be an object such
that A(b). We continue the proof, finally arriving at a formula which does not
involve the arbitrarily chosen element b. . . .

In general, any wf which can be proved using arbitrary acts of choice, can also
be proved without such acts of choice. We shall call the rule which permits us to go
from (Ex)A(x) to A(b), Rule C (“C” for “choice”). More precisely, the definition
of a Rule C deduction in a first-order theory K is as follows:

Γ `c A if and only if there is a sequence of wfs B
1
, . . . ,B

n
= A

such that the following four statements hold.

(I) For each i, either

(i) B
i

is an axiom of K, or

(ii) B
i

is in Γ, or

(iii) B
i

follows by MP or Gen from preceding wfs in the sequence, or

(iv) There is a preceding wf (Ex)C(x) and B
i

is C(d), where d is a new
individual constant. (Rule C)

(II) As axioms in (I)(i), we can also use all logical axioms involving the new
individual constants already introduced by applications of (I)(iv), Rule C.

(III) No application of Gen is made using a variable which is free in some
(Ex)C(x) to which Rule C has been previously applied.

(IV) A contains none of the new individual constants introduced in any appli-
cation of Rule C.

(Fn.† The first formulation of a version of Rule C similar to that given here seems to be due to Rosser ([Ro53],
pp.127-130).)

1But see also [Ro53], pp.127-130.
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Acknowledgement

C.1. If I have seen a little further it is by standing on the shoulders of Giants

Prior to Isaac Newton’s above tribute to René Descartes and Robert Hooke, in a letter to the latter, it was
reportedly the 12th century theologian and author, John of Salisbury, who was recorded as having used an even
earlier version of this humbling admission—in a treatise on logic called Metalogicon, written in Latin in 1159,
the gist of which is translatable as:

“Bernard of Chartres used to say that we are like dwarfs on the shoulders of giants, so
that we can see more than they, and things at a greater distance, not by virtue of any
sharpness of sight on our part, or any physical distinction, but because we are carried
high and raised up by their giant size.

(Dicebat Bernardus Carnotensis nos esse quasi nanos, gigantium humeris insidentes, ut
possimus plura eis et remotiora videre, non utique proprii visus acumine, aut eminentia
corporis, sed quia in altum subvenimur et extollimur magnitudine gigantea.)”

Contrary to a frequent interpretation of the remark:

• ‘Standing on the shoulders of Giants’

as describing:

• ‘Building on previous discoveries’,

it seems to me that what Bernard of Chartres apparently intended was to suggest that it doesn’t necessarily take
a genius to see farther; only someone both humble and willing to:

• First, clamber onto the shoulders of a giant and have the self-belief to see things at
first-hand as they appear from a higher perspective (achieved more by the nature of
height—and the curvature of our immediate space as implicit in such an analogy—than
by the nature of genius); and,

• Second, avoid trying to see things first through the eyes of the giant upon whose
shoulders one stands—for the giant might indeed be a vision-blinding genius!

C.2. Challenge it

It was this latter lesson that I was incidentally taught by—and one of the few that I learnt (probably far
too well for better or worse) from—one of my Giants, the late Professor Manohar S. Huzurbazaar, in my final
year of graduation in 1963 at the Institute of Science, Mumbai.

The occasion: I protested that the axiom of infinity (in the set theory course that he had just begun to
teach us) was not self-evident to me, as (I had heard him explain in his introductory lecture) an axiom should
seem if a formal theory were to make any kind of coherent sense under interpretation.

Whilst clarifying that his actual instruction to us had not been that an axiom should necessarily seem
self-evident, but only that it should be treated as self-evident, Professor Huzurbazar further agreed that the
set-theoretical axiom of infinity was not really as self-evident as an axiom ideally ought to seem in order to be
treated as self-evident.

To my natural response asking him if it seemed at all self-evident to him, he replied in the negative; adding,
however, that he believed it to be true despite its lack of an unarguable element of self-evidence.

It was his remarkably candid response to my incredulous—and youthfully indiscreet—query as to how an
unimpeachably objective person such as he (which was his defining characteristic) could hold such a subjective
belief that has shaped my thinking ever since.

He said that he had had to believe the axiom to be true, since he could not teach us what he did with
conviction if he did not have such faith!

Although I did not grasp it then, over the years I came to the realisation that committing to such a belief
was the price he had willingly paid for a responsibility that he had recognised—and accepted—consciously at
a very early age in his life (when he was tutoring his school going nephew, the renowned physicist Jayant V.
Narlikar):

Nature had endowed him with the rare gift shared by great teachers—the capacity to reach
out to, and inspire, students to learn beyond their instruction!

It was a responsibility that he bore unflinchingly and uncompromisingly, eventually becoming one of the
most respected and sought after teachers (of his times in India) of Modern Algebra (now Category Theory), Set
Theory and Analysis at both the graduate and post-graduate levels in the University of Mumbai.

At the time, however, Professor Huzurbazar pointedly stressed that his belief should not influence me into
believing the axiom to be true, nor into holding it as self-evident.
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His words—spoken softly as was his wont—were:

Challenge it.

Although I eventually elected not to follow an academic career, Professor Huzurbazar never faltered in
encouraging me to question the accepted paradigms of the day when I shared the direction of my reading and
thinking (particularly on Logic and the Foundations of Mathematics) with him on the few occasions that I met
him over the next twenty years.

Moreover, even if the desirable evidence-based nature of the most fundamental axioms of mathematics (those
of the first-order Peano Arithmetic PA that form the focus of this investigation) is finally accepted as formally
inconsistent with a belief in the classical ‘self-evident’ truth of any axiom of infinity (as suggested, for instance, by
the anomaly in Goodstein’s argument highlighted in §22.2, Theorem 22.3), I believe that the shades of Professor
Huzurbazaar would feel more liberated than bruised by the ‘fall’.

And finally, if this investigation has any underlying guiding philosophy, it derives from what was once
quoted to me in our early years by another of my Giants—my late friend, erstwhile classmate, and mentor,
Ashok Chadha:

“Let not posterity judge us as having spent our lives polishing the pebbles, and tarnish-
ing the diamonds.”
. . . Anonymous.
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