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ABSTRACT

A finer-grained delineation of a given explanandum reveals a nexus of closely related

causal and non-causal explanations, complementing one another in ways that yield fur-

ther explanatory traction on the phenomenon in question. By taking a narrower con-

strual of what counts as a causal explanation, a new class of distinctively mathematical

explanations pops into focus; Lange’s ([2013]) characterization of distinctively mathem-

atical explanations can be extended to cover these. This new class of distinctively math-

ematical explanations is illustrated with the Lotka–Volterra equations. There are at least

two distinct ways those equations might hold of a system, one of which yields straight-

forwardly causal explanations, and another that yields explanations that are distinctively

mathematical in terms of nomological strength. In the first case, one first picks out a

system or class of systems, and finds that the equations hold in a causal–explanatory way.

In the second case, one starts with the equations and explanations that must apply to any

system of which the equations hold, and only then turns to the world to see of what, if any,

systems it does in fact hold. Using this new way in which a model might hold of a system, I

highlight four specific avenues by which causal and non-causal explanations can com-

plement one another.
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5. Four Complementary Relationships between Mathematical and Causal

Explanation

5.1. Slight reformulations of explananda

5.2. Causal distortion of idealized mathematical models

5.3. Partial explanations requiring supplementation

5.4. Explanatory dimensionality
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1 Introduction

Causal explanation has been the focus of intense work in the last two decades,

which makes it useful to consider the nature of the boundary between causal

and non-causal explanations. I will consider the question of what we see when

we do a fine-grained examination of that boundary. What we find is that many

explananda are more like clusters of phenomena: the original phenomenon for

which an explanation was sought breaks into a variety of more precisely

delineated phenomena that when taken together with the right interrelation-

ships between them, constitute the explanatory cluster that was the original

phenomenon. As a consequence of this, the more clearly we specify an explan-

andum in question, the more we reveal closely related causal and non-causal

explanations for slight variations in the formulation. Small changes are just

enough to rock us back and forth across the distinction between causal and

non-causal explanation, which is helpful in understanding the boundaries

between causal and non-causal explanation while highlighting the importance

of precisely specified explananda.

The tendency to conceive of scientific explanation solely or primarily in

terms of causal explanation results in part from the ubiquity of causal struc-

ture in the world. At the same time, there are many relationships that can serve

an explanatory role that are not causal. Mathematical relationships, part–

whole relationships, and even relationships in a taxonomy can explain by

situating the explanandum with respect to the explanans in terms of a rela-

tionship that is not straightforwardly causal. Explanations might seem to be

causal, or mostly causal, if we are insufficiently ‘focused’ in terms of specifying

which explanandum is at stake. But once we clarify exactly what is being

explained, and by what it is being explained, then a host of non-causal rela-

tionships pop into focus as key to explanation, situated closely all around

causal explanation(s). Slight reformulations in the explanandum will change

the relevant explanation(s) from causal to non-causal and back again. When

considering scientific explanation, we are overwhelmingly often in the terri-

tory where causal and non-causal explanations fall closely together.
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Regardless of the specific kind of non-causal scientific explanation being con-

sidered, there will be a multitude of causal explanations just next door, so that

small reformulations of what precisely is being explained will shift the explan-

ans from non-causal to causal.

I’ll be using the term ‘non-causal’ as a catch-all term for any kind of ex-

planation that isn’t causal. This negative characterization of non-causal in

terms of what it is not results in a wildly heterogeneous category. This sheds

light on both causal explanation and non-causal explanation in terms of where

they leave off. I will consider a particular kind of non-causal explanation—

distinctively mathematical explanations—as a way of understanding an im-

portant proper subset of causal versus non-causal explanations.

This article offers several new points about causal explanations, how ex-

planations can complement, and a distinction between two ways in which a

model might hold of a system such that it changes the character of the result-

ing explanations from causal to mathematical. I do so in the service of also

making a broader point about causal versus non-causal explanation, where

my goal is not to offer a novel account of that distinction. The materials to

characterize the boundaries where causal explanations leave off and non-

causal explanations begin are already around, in my view, and simply need

to be dusted off and redeployed. With this aim, I make use of some of the

classic features of explanation, ones which have appeared over the last fifty

years, even while specific accounts of the structure of explanation have chan-

ged. The points made here will be applicable to any particular account of

explanation, causal or not—this includes new mechanistic explanation, inter-

ventionist causal explanation, distinctively mathematical scientific explan-

ations, and more.

The approach offered in this article for causal versus non-causal explan-

ations will have consequences for further questions such as the explanatory

role that mathematics and mathematically formulated laws may play in ex-

planation (consider especially Pincock [2012], [2015]; Saatsi [2011]), the role of

models in explanation (Sterrett [2002]; Bokulich [2008]), and alternative forms

of explanation that are not straightforwardly causal (Batterman [2002], [2010];

Batterman and Rice [2014]; Reutlinger [2014]). My discussion here should be

useful to a broad swath of these other, more specifically focused, discussions

about particular ways in which distinct explanatory techniques are to be

understood or deployed. For instance, Skow ([2014]) has argued that existing

examples of non-causal explanations are unconvincing, in that they can be

accommodated within causal explanation. On the view offered in this article,

the unconvincing examples indicated by Skow look more like insufficiently

well-clarified explananda, such that further clarification would reveal both

that he has identified genuinely causal explanations, and that the original
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examples could be reformulated in slightly different ways to retain their non-

causal character.

A main take-away message will be the way in which philosophical fruit is

borne of an increased focus on precision and clarity in stipulating what pre-

cisely is getting explained, what precisely is doing the explaining, and what

precisely the explanatory relation between explanans and explanandum is

taken to be. Simply fine-tuning our focus in characterizing explananda will

have an enormous benefit in allowing a rich array of explanatory techniques

and relations to pop into view.

2 Delineating the Boundaries of Causal Explanation

There are three main elements in any explanation. The details about what

can fill these roles will vary depending on other commitments, such as an

ontic versus propositional construal of explanation. But all accounts agree

on these general features. The explanation also includes an explanans, and

some relationship between the explanans and explanandum. The explana-

tion explains by situating the explanandum in terms of the explanans via that

relationship. An explanandum is a target for explanation: anything that can

be identified for which an explanation is possible. While this might seem

unhelpfully vague, it reflects the wild heterogeneity of targets for explanation

that we actually find in the sciences and beyond. Why we identify particular

targets as worth explaining is an important question I set aside for this

article, and instead start from the point when a target for explanation has

already been identified. An explanation need not be total or even particularly

satisfying to count as explanatory. Weak, partial, even barely helpful ex-

planations are still explanatory of something, even if they leave much else

unexplained.

2.1 Why construe causal explanation narrowly? The land

of explanation versus grain-focusing

Compare a narrow versus broad construal of causal explanation:

Narrow: Any explanation that provides parts of the explanandum’s causal

history, including contextually relevant features that might not be in its direct

causal past, as explanans. Or, the connection between explanans and explan-

andum is a causal relationship(s)

Broad: Any explanation that explains by virtue of situating an explanan-

dum in the network of causal relations in the world. Or, any of the explanans,

explanandum, or connection between them involves a causal relationship(s) or

relata
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The key difference is that on the narrow construal, only those explanations

where the relationship connecting explanans and explanandum is causal will

thereby be causal explanations. There might be causal relationships that are

themselves the explanandum, or that are the explanans, but where the rela-

tionship connecting explanans and explanandum does not involve tracing out

a causal history, and thus are thereby non-causal explanations. On the broad

conception, any explanation that has a causal element anywhere—a causal

relationship or causal relata as the explanans, explanandum, or the connection

between them—will count as a causal explanation. On the narrow construal,

for instance, there might be non-causal explanations of causal structures,

whereas on the broad construal, any such explanation would have to count

as causal.

The narrower our construal of causal explanation, the more useful it is for

identifying and analysing particular instances of causal explanation that we

find in the sciences. It allows us to say something significant by calling a

particular explanation ‘causal’. The more broadly we construe causal explan-

ation, on the other hand, the less significance is involved in labelling a par-

ticular explanation as a causal explanation. At the extreme end of a broad

construal, causal explanation merely means nothing other than explanation.

This prevents us from being able to say anything about the distinctive char-

acter of causal explanation, and runs a host of different explanatory tech-

niques together into a muddy wash.

On the broad view, one might be tempted to think of the boundary that

divides causal and non-causal explanations like provinces in the land of ex-

planation. The provincial view construes an entire domain as to be explained

by one or other kind of explanation, be it causal or non-causal. The bound-

aries between them take you entirely out of one kind of explanation and

entirely into another; the border strictly divides them from one another.

One might even think that they occasionally have border skirmishes, fighting

over control of a given explanation as belonging in one province rather than

another. Some explanations might be hard to locate, in terms of finding the

right land in which they live.

This is a view I will argue we should entirely reject in favour of a different

metaphor that goes along with the narrow construal. Consider an old-

fashioned darkroom enlarger used for printing black-and-white photographs

from film. Once the image to be printed looks sharp enough to the naked eye,

one can still improve the picture quality by using a grain focuser. Using it to

make the individual grains of silver visible, one usually sees a gently variegated

smear of greys, black, and whites, continuously shading into one another.

Slight additional adjustments with the knob, all within the range of what

looked sharp to the naked eye, result in a sudden pop into focus of the

Causal and Mathematical Explanations 489

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article-abstract/69/2/485/2669791 by Sim

on Fraser U
niversity user on 16 January 2019

Deleted Text: back 
Deleted Text: and 


individual grains of silver on the film.1 With the grain enlarger, it becomes

apparent that the image really is composed of distinct dots or grains, large and

small, often with irregular edges, all nestled up closely and together composing

the image.

This metaphor results in a very different picture of how causal and non-

causal explanations fit together. Explanations might seem to be causal, or

mostly causal, if we squint or if we are insufficiently ‘focused’ in terms of

specifying which explanandum is at stake. But, once we clarify exactly what

is being explained and by what it is being explained, then a host of non-causal

relationships pop into focus, situated around the causal explanation(s). Slight

reformulations in the explanandum will change the relevant explanation(s)

from causal to non-causal and back again. The tendency to conceive of sci-

entific explanation solely or primarily in terms of causal explanation results in

part from the ubiquity of causal structure in the world. Regardless of the

specific kind of non-causal scientific explanation being considered, there will

be a multitude of causal explanations just next door, in that small reformula-

tions of what precisely is being explained will shift the explanans from non-

causal to causal.

The metaphor of grain-focusing thus means using specificity in delineating

given explananda. Shifting the way in which an explanandum is formulated,

even subtly, is overwhelmingly likely to change the required explanans enough

to skew the result in the direction of causation. There are always some causal

explanations of something in the vicinity for almost every explanandum, but

they may not be causal explanations of the original explanandum.

2.2 Reasons to narrow the scope of causal explanation

A useful counterpoint is Lange’s ([2013]) construal of distinctively mathem-

atical explanations. He takes up the question of what makes some scientific

explanations distinctively mathematical rather than causal. The explanations

he discusses are not simply mathematical explanations, where one bit of

mathematics explains another, nor are they simply explanations where math-

ematical representations are involved. They are scientific in that they are about

explananda in the world, but involve mathematical relationships in the ex-

planation in a way that goes beyond mere mathematical representation.

Lange’s ([2013], p. 493) characterization of distinctively mathematical ex-

planations starts with what he takes causal explanation to be: ‘I will adopt a

broad conception of what makes an explanation “causal”: it explains by virtue

of describing the contextually relevant features of the result’s causal history or,

1 Note that the issue of physical size is not what drives this metaphor. It is not that zooming in to a

microscopic size reveals better explanations; rather, the magnification is analogous to concep-

tual precision in formulating the explananda and explanans.
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more broadly, of the world’s network of causal relations’. He cites (Lange

[2013], p. 487) the following passage of Salmon as evidence of Salmon holding

that all explanations are causal, and adopts a broad reading of Salmon’s de-

scription of explanation: ‘To give scientific explanations is to show how events

and statistical regularities fit into the causal structure of the world’.

This construal of causal explanation is, as he puts it, broad. This makes

sense in light of Lange’s task of distinguishing distinctively mathematical ex-

planations from causal explanations. A more generous definition of causal

makes his argumentative task more difficult and the resulting conclusion more

compelling. However, I’ll urge adoption of the narrow rather than broad

construal for general use: the original construal of causal explanation is so

broad that it dilutes the usefulness of the category of causal explanation by

dramatically reducing the commonality between the different kinds of explan-

ations that all thus qualify as causal.2

Why should the narrow rather than broad construal of causal explanation

be adopted? There are several reasons: The first is that we can assent to

Salmon’s description of explanation as situating the explanandum in the

network of causal relations in the world without thereby committing to all

such situatings being causal situatings. For non-causal situatings of expla-

nanda in the network of causal relationships, the explanatory work is not

done through causal relationships—it is not by tracing along the pathways of

the causal network that the explanandum gets explained. Consider ‘new

mechanism’ explanations (Andersen [2014a], [2014b]). A mechanism can ex-

plain a phenomenon when that phenomenon is the product of the organized

causal chain at the termination conditions of the mechanism: this would be a

causal explanation on the narrow and broad construals both. A mechanism

can also explain when it gives rise to, or constitutes, the phenomenon to be

explained. This clearly situates the explanandum in the network of causal

relations, since a mechanism is just a special kind of recurrent, organized

causal chain in that network. On this broad construal, this would also be a

causal explanation, just like the first explanation. But on the narrow con-

strual, it would be a constitutive, rather than causal, explanation. It is non-

causal even though there are clearly causal relationships and relata involved

in the explanation; it is the special causal structure of the mechanism that is

the explanans. But the connection between explanandum and explanans is

2 Skow ([2014]) offers a characterization of causal explanation that involves a broad versus

narrow distinction, but his concern is more about the totality of explanation: while he rejects

an overly narrow view of causal explanation, he takes it to be a rejection of the idea that a causal

explanation must be complete, total, or otherwise sufficient to count as explanatory. In this

regard, both Skow and I agree that a causal explanation can be both causal and explanatory

without explaining the totality of an explanans’ past causal history. It is not clear whether he

would endorse the construal of narrowness I offer here.
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one of constitution, not causation. The broad construal is unable to mark

this difference.

Another reason to adopt the narrow construal is that it allows for a more

accurate portrayal of the diversity of explanatory practices, especially in the

sciences. By allowing any explanation involving causation in any way to count

as causal, we smear together a host of distinct but closely related explananda

and connecting relationships. Maintaining our explanatory resources in terms

of distinct types of connections that can be explanatorily deployed is necessary

to accurately describe and distinguish the wide variety of species of explan-

ations found in the sciences.

A third reason involves a stronger way in which two kinds of explanations

might be related. While more precise specifications of explananda may often

enough yield two closely related but distinct explananda, that is not always

or necessarily the case: sometimes there may be more than one kind of ex-

planation available for a single well-specified explanandum. An explanation

in which the explanandum is constituted by the explanans is another example

of a non-causal situating in the causal network. In contrast, that same ex-

planandum could be given an alternative causal explanation in terms of the

causally upstream portions of the network, rather than in terms of what

constitutes it. These are two distinct explanatory perspectives on the same

explanandum, which can be extraordinarily illuminating. Losing focus on

these distinct ways of situating something in the causal network means losing

the ability to understand the full range of existing explanations and how they

fit together.

Finally, adopting the narrow construal encourages good practice in terms

of formulating explananda in a sufficiently precise way. As we’ll see in the

next section, rocking back and forth between slightly different formulations

of the phenomenon to be explained results in shifting between causal and

non-causal explanations for the closely related but non-identical expla-

nanda. When considering scientific explanation, we are often in the territory

where causal and non-causal explanations fall closely together. If we accept

Salmon’s view that scientific explanations involve situating explananda in

the network of causal relations in the world, we are always in the immediate

vicinity of causal relationships. This means that it is deceptively easy to

phrase explananda in vague ways that make it appear causal, by latching

onto whatever causal relationships are in the vicinity. If we switch what

precisely is getting explained, we thereby switch what, precisely, can explain

it. Fudging the explanandum will almost always result in apparently causal

explanations. More precise formulation of explananda, on the other hand,

will bring into focus the non-causal relationships nestled nearby, and will

highlight the details in those explananda that result in shifts between causal

and non-causal explanations.
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3 Broadening the Scope of Mathematical Explanation

Lange identifies distinctively mathematical explanations by the extra modal

force they have compared to the necessity associated with causal laws. He

illustrates this with the example of a mother trying to divide twenty-three

strawberries evenly among three children without cutting any berries. There

is no way to do this, and the explanation—that twenty-three is not evenly

divisible by three—puts a constraint on any causal laws. There are no causal

laws, actual or possible, such that they would result in a causal process by

which twenty-three strawberries could be evenly divided. The modal force of

the explanation, therefore, must come from something other than a causal

relation—in this case, from the mathematical relation.

The class of explanations Lange thus identifies is that whose explanations

that apply anywhere, in any possible world. There is no causal process, under

any circumstances anywhere, such that it could involve an even division of

twenty-three by three. No physical laws or facts are presupposed or utilized.

These distinctively mathematical explanations are indeed quite interesting in

terms of the explanatory relationship connecting explanandum and explan-

ans, which results in a degree of necessity higher than any causal laws could

achieve. It is striking to find explanations of physical events that involve

purely mathematical relationships as key to the explanation (this is in contrast

to the role mathematics plays when causal relationships are represented math-

ematically, or even when arguably non-causal physical laws in mathematical

form are involved).

In this section, I show how some of the extra ‘space’ in the territory of

explanation opened up by a narrow construal of causal explanation, in com-

bination with an expanded version of Lange’s criterion, reveals the existence

of an additional set of distinctively mathematical explanations. These explan-

ations have a weaker degree of necessity than the very strongest degree of

necessity associated with claims such as ‘twenty-three is not evenly divisible by

three’, but they are nevertheless modally stronger than ordinary causal rela-

tionships. They constrain possible causal relationships, but only for properly

picked-out subsets of the causal network and with sets of conditions in

place that might, for instance, include constraints on what the physical laws

must be for the explanations to hold. The way in which these subsets are

picked out, however, means that once we have found them, we can give ex-

planations about their causal structure that are distinctively mathematical,

rather than simply causal.

Once again, distinctively mathematical explanations cannot be identified

simply by having a mathematical form. There are many straightforwardly

causal relationships that can be represented mathematically without thereby

rendering them mathematical rather than causal. The key feature ought to
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involve mathematical relationships as the, or part of the, connection between

explanandum and explanans:

Distinctively mathematical explanations are such that, given some set of

conditions A, then the connection between explanandum and explanans is

mathematical in character, such that the resulting explanation involves a

modal force stronger than that of causal generalizations.

This just is Lange’s characterization, preceded by the stipulation that some

set of conditions must hold; these conditions concern the nature of the rela-

tionship between explanans and explanandum. Instead of asserting that the

mathematical modal character holds (call that B), it asserts a conditional: If A,

then B. For the examples Lange identifies, the conditions hold vacuously, or

are trivially fulfilled—no conditions must be met for twenty-three to not be

evenly divisible by three. What about non-trivial conditions? One important

way, perhaps one of the most central ways, to cash out what those conditions

are that must be met for a distinctively mathematical explanation to result,

concerns the notion of ‘holding of’. When a mathematical equation or set of

equations holds of the world in the right way, it is the mathematical relation-

ship(s) doing the explanatory work, even though they are representing causal

relationship(s).

What does it mean to hold of the world in different ways? Since I’ll be using

a model-based example in the next section, I will consider this question in

terms of what it means for a model to hold, or fail to hold, of a particular

system in the world. This is a rich topic for discussion, on which this article will

only briefly touch. In general, it means that the model is applicable to the

system, such that elements within the model provide a sufficiently veridical

representation of parts of the system thus represented. It might also correctly

describe at least some of the causal structure of the system (although, to be

clear, it need not). The model holds of the system just in case the system is

within the domain of systems to which the model can even be applied, and that

application yields at least some degree of fit between the model as a represen-

tational device and the actual system in the world. Holding of can be a matter

of degree: a model can hold to a greater or lesser extent, or it can hold of one

system more than it holds of another, even while holding of both above some

level. This is vague and broad, but requires as few philosophical assumptions

as possible.

To say that a model holds of a particular system, then, is a situating per

Salmon. Since the world is densely packed with causal relationships, this is a

situating of the model in the causal network of the world. It lines up the model

and a proper subset of the world, conceptually super-imposing the former over

the latter to show how it fits there. To say that a model holds of some part of

the network is not to make a causal claim. ‘Holding of’ has the wrong relata to

Holly Andersen494

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article-abstract/69/2/485/2669791 by Sim

on Fraser U
niversity user on 16 January 2019

Deleted Text: paper


be causal, since one relatum is a chunk of the world, and one relatum is a

representational device.

There are different ways in which a model might hold, or fail to hold, of any

particular system. Some of the ways in which a model holds are not themselves

explanatory—it is merely a representational relationship, with no added ex-

planatory force of its own. But there are also times when it is explanatory

simply to say that the model holds. Note that these are different ways in which

it might hold, not merely different degrees to which it might hold. Some of

the ways of holding of a system yield a causal version of the model.

Explanations using the model that holds in this way will be causal explan-

ations. But there are ways a model might hold of a system such that explan-

ations using the model are distinctively mathematical, modally stronger than

merely causal ones. This is a kind of situating of a model in the network of

causal relations in the world that gives explanatory leverage on the system as

an explanandum, but in a way that is not causal, even though it is because of

the causal structure of the system that the model holds of it. This will be

clearer with an example.

4 Lotka–Volterra: Same Model, Different Explanation Types

My discussion so far has been rather abstract. A simplified version of the

Lotka–Volterra model serves as a useful illustration of how the same model

can be deployed in causal and in non-causal explanations, of how to find

distinctively mathematical explanations that only hold when given conditions

are met, and of how it can be explanatory as opposed to merely representa-

tional to say that the model holds of a system. This example also demonstrates

the general advantage of the narrow construal of causal explanation.

4.1 General biocide in the Lotka–Volterra model

The equations of the simplified version of the Lotka–Volterra model repre-

sent a predator and prey population over time as coupled harmonic oscilla-

tors:

dV=dt ¼ rV � ðaV ÞP;

dP=dt ¼ bðaV ÞP ��mP;

where V represents number of prey, P number of predators, r prey growth

rate, and m predator death rate.
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On the broad construal of causal explanation, the Lotka–Volterra (LV,

henceforth) equations provide causal explanations. Consider a recent descrip-

tion of the LV mathematical model:

Predation is of great interest to ecologists because it often represents a

force that keeps populations below their environments’ carrying

capacities. [Theoretical ecologists] construct models to study the factors

that control the maximum population size as well as the phase, amplitude,

and frequency of oscillations in the populations. (Weisberg [2013], p. 10;

emphasis added)

Emphasised phrases and terms in this quotation involve thick causal termin-

ology, such as ‘keeps’ and ‘control’, as well as terminology that is not causal

per se, but is closely connected to or implicitly represents causal factors, such

as the factors that control the relevant oscillation parameters. The LV equa-

tions represent many kinds of causal relationships. Individual prey and preda-

tor organisms are born, eat, sometimes get eaten, reproduce, and die. Some of

these are explicitly represented, like the predator death rate, while some influ-

ence a variable but are not directly represented, such as prey eating.

Populations sizes grow or diminish over time; they causally interact in a var-

iety of ways, such as when a scarcity of prey making hunting harder. The size

and rate at which each population grows is causally affected by the size and

rate of which the other grows, or crashes. The predator–prey systems repre-

sented in the model are rich in causal structure.3

The LV model is a useful example because it is often utilized as a toy model

to illustrate a simplified version of population dynamics, in full awareness that

few if any actual populations precisely mirror these dynamics. Now consider

what Weisberg and Reisman ([2008]) call the ‘Volterra principle’: any general

biocide, something that indiscriminately kills both prey and predators, will

result in an increase in the ratio of prey to predators. This follows purely from

a consideration of the mathematics in terms of solutions to the equations for

equilibrium values (in other words, not immediately upon introduction of the

general biocide, but once the oscillations have stabilized with the new causal

factor of the biocide), and for the stability of those equilibrium solutions to

3 There are extremely interesting questions about getting from a welter of causal relationships to

the spare mathematical lines in the model, though, such that the model might not be directly

representing anything causal. There are different ways of summing across causal histories, some

of which may yield higher-level causal histories, and some of which may yield some other kind of

relationship that is about causal relationships and is constituted by them, but is not thereby itself

causal. This connects to debates about drift as a causal force, or fitness as causal versus math-

ematical. Another question raised by the LV model worth exploring is how, on the face of it, a

causal–mechanical account and an interventionist account of causation seem to yield different

answers as to whether a summed set of causal trajectories is itself causal. These questions are left

to the side for this paper.

Holly Andersen496

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article-abstract/69/2/485/2669791 by Sim

on Fraser U
niversity user on 16 January 2019

Deleted Text:  


small perturbations in parameter values (Weisberg and Reisman [2008]).

Consider:

p ¼ average predator population size/average prey population size,

p ¼ rb/m.

Recall, r is prey reproduction rate and m is predator death rate. In the

presence of general biocide, r goes down (that is, prey are not reproducing

as quickly) and m goes up (that is, the predator death rate increases). Thus, a

general biocide must decrease p. Changes in r and m just are changes to

average population sizes, so that the ratio of predators to prey increases or

decreases. The effect of the general biocide on both populations need not be

equal or balanced in any particular way. By definition, a general biocide will

be such that it affects those two factors, regardless of the quantitative distri-

bution of that effect.

Some sample values can be plugged into the equations to illustrate this

point. Figure 1 shows a baseline for the two populations; R and m are the

two parameters that will change. Now compare to Figure 2, which is the graph

for a light general biocide. This involves changing the relevant parameters

slightly, so the predator death rate is higher and the prey birth rate is lower.

Note how the peaks for the prey population have gotten higher, while the

peaks for the predator population stay very close to where they were before.

This illustrates an increase in the ratio of prey to predators. The frequency of

oscillations has also changed, but that does not affect the ratio. The effect is

more pronounced with a massive biocide, in Figure 3. The prey population

peaks are strikingly higher than in Figure 1 and the predator population peaks

have dropped significantly.

We have something here that looks distinctively mathematical. The modal

force of the ‘must’ by which a general biocide must increase the relative pro-

portion of prey to predators is stronger than any causal relationship. It will

hold of any possible causal relationship that instantiates those equations. But

the key question is, if this is a distinctively mathematical explanation, of what

is it an explanation?

The examples we’ve just seen in the figures involve toy values—they were

made up to provide a baseline and to illustrate how changing the predator

death rate and prey birth rate changed the relationship between the two aver-

age populations. There is nothing in the world that is being modelled by this

toy example using these values. Yet there is something undeniably explanatory

about comparing those three graphs in terms of understanding the changes to

them resulting from a general biocide. If there are any systems in the world of

which this toy model holds, then we already have in hand a powerful explan-

ation that constrains the possible causal mechanisms in such a system: they

would be unable to violate this principle.
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4.2 Two ways a model can hold, yielding causal versus

mathematical explanations

This leads to the contrast I want to draw between two different ways in

which the LV model can hold of a system. The first, which is causal on

both the narrow and broad construal, involves starting with a particular

system in the world, such a given population of moose and wolves, model-

ling it as accurately as we can, and seeing what comes out of it. By starting

Figure 1. Without biocide; r ¼ 1, a ¼ 0.2, c ¼ 0.2, m ¼ 0.5.

Figure 2. With biocide; r ¼ 0.8, a ¼ 0.2, c ¼ 0.2, m ¼ 0.7.
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with a particular system, modelling it, and finding that the LV equations

hold of the system, we end up with a causal model of the system, and a

merely representational relationship between the model and the system.

There is no reason to think in this case that the resulting model would

apply elsewhere, or to assume similar outcomes for another system with

broadly similar mechanisms. If we find out that the causal mechanisms of

this system are such that under some circumstances, the model fails to hold,

we would have to develop a different model for this system, not choose a

different system.

It could turn out that this model does not apply, or that we could change the

dynamics of the system such that it no longer applies. This means that the

explanation for why a general biocide in that population results in an increase

in the proportion of prey to predators does not have the modal force of a

mathematical explanation. It doesn’t have to hold of the causal relationships

when the model holds of the system in this way. They could be found, by the

failure of the Volterra principle in this system, to violate the LV equations

instead. Insofar as it does hold, it holds with the contingency associated with

causal explanations, not with the stronger necessity of mathematical explana-

tions. It is a situating in the network of causal relations that starts with a

specific chunk of the network and then tries to find a model that holds of it

well enough.

In contrast, if we start with the toy model in which we know with mathem-

atical certainty that the Volterra principle holds, we can then go looking for

some part of the world of which it might hold. This turns out to license a host

Figure 3. Massive biocide; r ¼ 0.5, a ¼ 0.2, c ¼ 0.2, m ¼ 1.5.
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of additional explanatory resources, including ones that have the modal force

of distinctively mathematical explanations. If the model holds of some chunk

of the network of causal relations, that of which it holds must conform to the

Volterra principle. We know, before ever finding such a system, that the causal

structure of the system must yield that result. This is because we are picking

out the system(s) in question because they conform to the LV equations.

This is an entirely different use of the model than when we start with a

system and build a model for it. In this second approach, the model is already

in hand and we go looking for parts of the world to which it fits—that is, the

group of systems found to conform to the model must have specific features to

which the systems fit. In the first case, in which we start with a system, it could

turn out that the model developed to represent it fails. This is a representa-

tional failure, and means that conclusions drawn from the model needn’t

apply to the system itself. But when we start with the model and then pick

out only those systems to which it applies, we don’t get representational fail-

ures because, by definition, only those systems to which it actually applies

were picked out. It failing to apply doesn’t mean the conclusions drawn from

the model don’t fit the systems it models, it means that the system that we have

picked out is not the right kind of system for that model.

In the first case, the chunk of the network of causal relations being con-

sidered is held fixed and if the equations do not apply, we need different

equations. In the second, the equations are held fixed and if one part of the

network of causal relations doesn’t fit those equations, we move on to another

part of the network. By contrasting these two cases, we can see the modified

definition of the distinctively mathematical explanation at play. If the condi-

tions are met—namely, if this model holds of a system in the world—then such

a system must conform to the Volterra principle.

That the model holds already provides explanatory traction on that part of

the world, in the way that had thus far been represented but not yet

explained. This is a way of situating the model in the network of causal

relations by selectively picking out pieces of that network such that the

pieces of the network thus picked are governed by the mathematical rela-

tionships of the model in a way that is modally stronger than merely iden-

tifying instances of a particular causal relation. The model holds of that set

of systems differently than it holds of a system that was found to follow the

equations.

On the broad construal, both of these modelling scenarios involve causal

explanation, because they are about a causal system. On the narrow construal,

the first is a causal explanation involving situating the LV model in the net-

work of causal relations. One could find that a particular set of causal rela-

tions in the system constitute a general biocide and that the system itself thus

conforms to the Volterra principle.
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But the second way of using the model is not providing a narrow causal

explanation when we say that the Volterra principle holds, even though it is

also a way of situating the model in the network of causal relations, and even

though it is explanatory of the system in the world thus identified to say that

the LV equations hold of it. The Volterra principle must hold, with a math-

ematical and not causal degree of necessity, in any system we identify to which

this model applies.

When we start from a mathematical relationship within a model that is

being considered separately from particular systems, it is explanatory of

these systems to which it applies that the model holds of them. It is putting

all such systems together into a special type, namely, that of the systems of

which this model holds. It situates the model in the network of causal rela-

tions in the world such that we can then make further claims about any

system of that type, since that type is defined as any system of which this

particular model holds.

Construing causal explanation narrowly allows us to make this useful

distinction between ways of building or deploying a model. It highlights

the intriguing and distinctive character of the explanation that general bio-

cide results in an increase in the proportion of prey to predators: it is not

merely that there are causal structures described by these equations, but that

any causal structures described by these equations must conform to this

principle, no matter how differently they are implemented in terms of mech-

anistic detail. There are substantive conditions that must be met for the

distinctively mathematical explanation to hold. It does not apply under

any circumstances, which is why it requires amending Lange’s original char-

acterization; but once those conditions are met, it carries a distinctive modal

necessity with it. We discover something about the world by finding that this

model holds of a particular system, and this allows us to recognize two ways

of making such a discovery: by starting with the system and finding that the

model holds, or starting with the model and finding a part of the world of

which it holds.

This also illustrates the usefulness of the grain-focusing metaphor for dis-

cussions about the role of models in explanation. Does the LV model provide

mathematical or causal explanations? This is not yet a sufficiently well-defined

question—it can be used for either, depending on the specific explanandum in

question. The model itself is neither intrinsically causal nor non-causal.

Applied in one way, to one part of the causal network, it yields mathematical

explanations; applied a different way, to a different part of the network, it

yields causal explanations.
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5 Four Complementary Relationships between Mathematical and

Causal Explanation

There are (at least) four different ways in which causal and distinctively math-

ematical explanations can complement one another in terms of filling out a

richer explanatory picture of a target phenomenon.4 Some of these points also

apply directly to, or can be extended to, other forms of non-causal explan-

ation. I’ll focus on the complementary roles for distinctively mathematical and

causal explanations here, in keeping with the example in the previous section.

There is a weaker and a stronger version of the claim that these explanations

complement rather than compete, and in what follows I argue for both. The

weaker claim is that a more precise specification of a broad but fuzzy explan-

andum results in closely related but non-identically formulated explananda,

each of which will thus involve a slightly different explanans. The resulting

explanans fill out a richer picture of the original fuzzily formulated expla-

nanda as comprising these more specific explananda. The stronger claim is

that there may be times when a single well-specified explanandum itself is

amenable to both mathematical and causal explanation. This is an extremely

interesting situation, where two distinct explanatory perspectives can be taken

on a single explanandum.

5.1 Slight reformulations of explananda

The first complementary role for distinctively mathematical and causal ex-

planation is simply that where slight reformulations of the explanandum pivot

between a causal and mathematical explanation. In the LV example above,

one can consider two different explananda: one is the behaviour of this system,

to which the LV equations can be applied; another is any system to which the

LV equations can be applied. Using the LV model, similar explanations can be

given of behaviour in the specific system being modelled and in the class of

systems to which the model applies. But they are not identical explanations,

since they will involve slightly different explanans according to the slight

differences in explananda. A particular population of moose and wolves on

a single island in a wilderness area might be one of which the LV equa-

tions holds such that the changes over the past five years in their populations

can be causally explained in terms of the model. Or their population changes

have been tied together in the way that they have over the past five years can be

explained in terms of showing that this island is an instance of the LV equa-

tions. Finding the precise boundaries across which slight reformulations of

4 These are not intended to be exhaustive or exclusive. My goal is to pick out some central avenues

for complementary roles with sufficient richness of detail to enable identification of such

instances.
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explananda shift between causal and non-causal explanations gives us further

insight into the overall phenomenon of which they are reformulations.

5.2 Causal distortion of idealized mathematical models

A second complementary role can be that of providing a causal explanation of

why a particular non-causal explanation doesn’t hold, or only holds to a low

degree. For instance, we might find a particular set of predator–prey popula-

tions that initially seem like good candidates for modelling using the LV equa-

tions. However, it can turn out that this particular set of populations are not

very well modelled by these equations, because there is some further causal

factor(s) not included in the equations but which have a relevant effect on

population dynamics. The way(s) in which the mathematics does not do an

adequate job representing the actual system can itself be explained in terms of

those additional causal factors and the way(s) in which they affect the solu-

tions to the original equations. In the moose–wolf case, a particular island

might have otherwise been well modelled by these equations, except for the

presence of hunters that regularly cull a specific number of moose, which does

not appear in the equations and is not tied to the population of moose. This

can be especially enlightening if the LV equations can partially model the

system: if they get some explanatory traction on what is going on, the way

in which they fail to explain more than they do is itself a target for explanation

in terms of additional causal relations. The equations might be good enough

up to a limit in terms of numerical accuracy, or they might be good but

only under a constrained set of conditions, such that causal details provide

information about the system conditions in which they will break down, and

so on.

5.3 Partial explanations requiring supplementation

A third complementary role involves distinctively mathematical explanations

that provide a genuine explanation of some phenomenon, but only a partial

one. This is different than failing to apply; a mathematical explanation might

explain part of the explanandum, but require supplementation to adequately

account for what happens. Often a number of different elements must be taken

together to constitute a full explanation, and some of those elements may be

distinctively mathematical, right alongside straightforwardly causal ones. For

instance, a classic example of mathematical explanation is that of the prime

year life cycle of the cicada (Baker [2005], [2009]; Saatsi [forthcoming]). It is

extremely difficult for predators of cicadas to time their own reproductive

cycles to that of their prey when the cicadas reproduce in prime year life

cycles. The explanation involves pointing to the way in which primes are
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divisible only by themselves and one; odd numbers like nine could still let a

predator with a three-year reproductive cycle capitalize on the bounty of ci-

cadas every three generations, whereas a thirteen-year cicada cycle does not

allow that.

This is certainly some kind of explanation of why cicadas have a prime year

life cycle, rather than even or non-prime odd year life cycles. But it is not a

complete explanation. It has to be supplemented with a lot of other explan-

ations in order to finish the explanatory task (Lehmann-Ziebarth et al. [2005]).

This includes information such as the fact that cicadas, and not other insect

species, have a safe place for larvae to wait for that many years without getting

eaten and with sufficient nourishment that nymphs don’t compete with one

another. Bees could not implement a prime year life cycle like this, even if it

would be equally advantageous for them to avoid predation. Other insects

might have also benefited from such a life cycle and the right conditions for

larvae to wait it out, but did not have the requisite genetic possibilities to

actually evolve such a life cycle. As such, part of the total explanation of

why cicadas have a prime year life cycle involves distinctive mathematical

features of prime numbers, but a more complete explanation of that phenom-

enon must involve causal explanations as well.

5.4 Explanatory dimensionality

Finally, a fourth complementary role for distinctively mathematical and

causal explanations comes closest to what one might have thought would

have been alternative explanations of the very same explanandum. Rather

than competing with one another, however, these explanations provide a

powerful and underappreciated dimensionality to their explanandum. This

fourth complementary role involves causal explanations that illustrate, instan-

tiate, or fall under a distinctively mathematical explanation. A distinctively

mathematical explanation provides limits on the space of possible causal

structures that could be involved in a given explanandum: only those within

the bounds of the mathematically possible could be realized, and any within

the bounds delineated mathematically would suffice. Every causal system of

the relevant sort must conform, in the sense of being locatable somewhere in

that space of possibility. Such a mathematical explanation explains not merely

particular instances of that kind of system, but also situates different instances

in the same space of possible structure. Adding a causal explanation involves

picking out some proper subset within the mathematically delineated bounds.

It provides further explanation of some particular causal system to see how it

fits in that space of possibility, how distinct but related systems fill out or fail

to fill out that space of possibility, and to see how those systems evolve

through the space of possible causal structures over time.
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The distinctively mathematical explanations provide the underlying topog-

raphy over which the actual causal systems are laid and across which they

travel through time. Picking out one of the systems to which the distinctively

mathematical explanation applies, it is explanatorily illuminating to see the

way in which the system’s causal structure, including mechanistic detail, con-

forms to or implements the spare equations of the model. The same phenom-

enon—the behaviour of those predator and prey populations in the system—is

grouped as a single instance of two distinct types, such that distinct explana-

tions are provided by situating the system as an instance of each type of

explanation. In one case, it is picked out as an instance of the type of

system to which the equations apply, such that its behaviour can be held up

to that of other systems picked out by the same criteria, to see how it is similar

and in what regards it differs. But it can also be picked out in terms of the

detailed causal structure of that system, which may differ relevantly from the

other systems, and which may group this system into a different type in terms

of causal detail. It is the same token, but considered as instances of different

types.

Picking out a part of the network of causal relations and zooming in to get

more details about its causal structure, versus picking out a part of the net-

work of causal relations as one instance of a type that is found elsewhere in the

network of causal relations: this is a complementary way for two kinds of

explanations to illuminate the same explanandum. Taking the causal and

mathematical explanatory perspectives on the very same explanandum

yields a powerful dimensionality that neither kind of explanation could pro-

vide alone.

This is not an exhaustive or exclusive list of the ways in which causal and

distinctively mathematical explanations can complement one another. And

again, ‘non-causal explanation’ is a heterogeneous category such that other

non-causal explanations, besides the distinctively mathematical, can comple-

ment causal explanations in yet further ways. However, it should be clear that

distinctively mathematical and causal explanations are not in explanatory

competition for explananda; rather, when taken together, they fill out a

richer view of their explananda.

6 Conclusion

Distinguishing causal explanation more sharply and precisely from other

forms of explanation by restricting what counts as causal has the, perhaps

unexpected, consequence of strengthening causal explanation. Such clarifica-

tion avoids lumping together other kinds of explanation, such as constitutive

or mathematical, with causal; it means more to provide a causal explanation,

rather than reducing causal explanation to a synonym for explanation in
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general. On a broad construal of causal explanation, arguably anything with

empirical content will turn out to be causal, and labelling an explanation as

‘causal’ consequently comes to mean little or nothing about that explanation.

On a narrow construal of causal explanation, though, adding the label ‘causal’

to an explanation adds substantive information about what is doing the ex-

planatory work. The result is that causal explanations are a more homogenous

category.

The difference between a causal and non-causal explanation often turns on

precise ways of formulating the explanandum in question: one way will require

an explanans that is causally upstream of the explanandum, while a slight shift

in formulation will change the explanandum sufficiently that a nearby non-

causal explanans pops into focus. Imprecise formulation of explananda re-

duces the explanatory resources at our disposal by flattening genuinely differ-

ent explanatory relationships into one generic category.

Distinctively mathematical explanations are those where the modal force of

the explanation is stronger than any causal explanation could provide—it

constrains all possible causal structures. Drawing on Lange ([2013]), I’ve

argued that we should amend the characterization of distinctively causal ex-

planations. Some mathematical explanations hold anywhere, always, under all

conditions, such as twenty-three not being evenly divisible by three. But some

apply once certain conditions are met, such as that a given model (such as the

LV model) holds of the system. Once those conditions are met, some explan-

ations have the modal necessity associated with distinctively mathematical

explanations, stronger than that of causal explanations. ‘Holding of’ is thus

a relation that can, under some circumstances, pack explanatory punch sep-

arately from the causal relations involved.

By combining a narrow construal of causal explanation with a broader

construal of distinctively mathematical explanation, we can see how there

are (at least) two distinct ways in which a model might hold of a system.

Considering the toy version of the LV equations highlights different ways of

situating that same model against the background framework of causal rela-

tions. Each distinct way of situating the model will result in different expla-

natory resources that can be used for the system of which the model holds.
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