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Abstract
Much has been written about the free energy principle (FEP), and much misunder-
stood. The principle has traditionally been put forth as a theory of brain function or 
biological self-organisation. Critiques of the framework have focused on its lack of 
empirical support and a failure to generate concrete, falsifiable predictions. I take 
both positive and negative evaluations of the FEP thus far to have been largely in 
error, and appeal to a robust literature on scientific modelling to rectify the situation. 
A prominent account of scientific modelling distinguishes between model struc-
ture and model construal. I propose that the FEP be reserved to designate a model 
structure, to which philosophers and scientists add various construals, leading to a 
plethora of models based on the formal structure of the FEP. An entailment of this 
position is that demands placed on the FEP that it be falsifiable or that it conform 
to some degree of biological realism rest on a category error. To this end, I deliver 
first an account of the phenomenon of model transfer and the breakdown between 
model structure and model construal. In the second section, I offer an overview of 
the formal elements of the framework, tracing their history of model transfer and 
illustrating how the formalism comes apart from any interpretation thereof. Next, 
I evaluate existing comprehensive critical assessments of the FEP, and hypothesise 
as to potential sources of existing confusions in the literature. In the final section, I 
distinguish between what I hold to be the FEP—taken to be a modelling language or 
modelling framework—and what I term “FEP models.”
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Introduction

The questions most frequently—and most fervently—asked about the FEP are: Is it 
true? What is it true of? How do we know (empirically) that it is true? These questions, 
I argue, rest on a category mistake. They presume that the FEP is the sort of thing that 
makes assertions about how things are, cuts at natural joints, and can be empirically 
verified or falsified. I urge that before we can make serious headway on understanding 
the FEP and putting it to work in scientific practice, we must answer an entirely dif-
ferent set of questions: What sort of scientific object is the FEP? To what discipline(s) 
does the FEP belong? What role is it intended to play in relation to empirical research? 
Does the FEP even properly belong to the domain of science? The extant literature has 
largely begged, dodged, dismissed, and skirted around these questions, without ever 
addressing them head-on. To the extent that existing works have attempted to address 
these questions, all have proceeded under the—mistaken, or so I will argue—assump-
tion that the FEP is, itself, fundamentally truth-apt. These questions must, I urge, 
be answered satisfactorily before we can make any headway on the theoretical con-
sequences of the FEP. Empirical work with the FEP has proceeded in the absence of 
such a clarificatory project, but it has not been unencumbered by it. I take preliminary 
steps towards answering these questions in this paper, first by examining the historical 
path traversed by key formal elements of the framework and the implications they hold 
for its utility, and second, by offering a route to interpreting the FEP, and models built 
therefrom, in light of an abundant philosophical literature on scientific modelling.

Existing literature on the FEP invokes “the free energy principle” to refer indiscrimi-
nately to both the raw formal structure of the framework and to various models con-
structed therefrom. My novel proposal is that we reserve the term “free energy princi-
ple” to designate the model structure, which can be differentiated from distinct models 
composed from the combination of that structure with a scientist’s or theorist’s con-
strual thereof. To this end, I first deliver an account of what is known as model transfer, 
which illustrates a phenomenon undergone by the FEP and helps us to see how models 
can be broken down into a structure and a construal. I also broach the topic of con-
ceptual reification in modelling. Next, I trace out the history of the core mathematical 
elements of the FEP, illustrating the formal skeleton of the framework, sans interpreta-
tion. In section three, I tackle the claims made in existing critical assessments of the 
FEP, elucidating where these have gone wrong in their interpretation of the framework. 
From there, I look to the literature on scientific modelling once again, drawing con-
clusions about how to wield and interpret the various scientific models built from this 
formal foundation. My hope is that this text can serve as a fruitful starting place for 
philosophers and scientists looking to utilise the FEP formalism.

Model transfer, structure & construal

This section introduces the notions of model transfer, model structure, model con-
strual, and model reification, which will enable us to better understand the FEP, 
along with its uses and misuses. According to several popular accounts of scientific 
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modelling, a scientific model is composed of a structure and an interpretation. This 
breakdown is most applicable to abstract, formal models. It is perhaps easiest to see 
this distinction play out in cases where a model structure, originally designed for 
one modelling purpose, is exapted away from its original interpretation and lent a 
new one.

The lotka‑volterra model

Take the Lotka-Volterra model. The structure, in this case, is a system of nonlinear 
differential equations. The Lotka-Volterra model originated in physics and chemis-
try. The equations were originally proposed by Alfred Lotka in 1910 as a model 
of autocatalysis—self-catalysing chemical sets. They describe the rate of change of 
chemical concentrations as a chemical system pushed out of equilibrium restores 
itself, by oscillations, back to steady state. A linearisation of the model produces a 
system similar to a harmonic oscillator.

A paradoxical trend was noted in fish populations of the Adriatic Sea surrounding 
World War I. Italian biologist Umberto d’Ancona measured the relative prevalence 
of fish of various species. He found that, during WWI, when fishing in the Adriatic 
Sea all but ceased, the predator population experienced a boom. In response, the 
prey populations diminished considerably. When fishing resumed after the war—an 
indiscriminate biocide—the prey population soared. Vito Volterra (1926) employed 
a system of nonlinear differential equations formally equivalent to Lotka’s (1910) 
chemical model to explain how the removal of a constraint (fishing) increased the 
amplitude of predator population size, while the reimposition of this constraint—the 
return of fishing after the war—increased the amplitude of the prey populations. In 
1956, Lotka independently proposed the same set of equations for the purpose of 
explaining predator-prey dynamics in his Elements of Mathematical Biology.

How does this exemplar help us to understand the free energy principle? In two 
ways. First, it is common for a relatively coarse-grained formal model initially uti-
lised in one domain (in this case, physical chemistry) to be later imported into an 
altogether different discipline (in this case, population biology, ecology, and ethol-
ogy). Second, the case renders intuitive the distinction between the structure and the 
construal of a model. The structure—a system of differential equations—remains 
the same for both the (1910) model of catalytic sets and the (1926, 1956) models of 
predator-prey dynamics. The two models differ in that, in the first instance, scientists 
interpret the equations to represent chemical concentrations, while in the second 
instance, scientists interpret the equations to represent population density.

Conceptual reification is a common ailment of scientific modelling. It is particu-
larly likely to occur in cases in which models have somewhat convoluted histories. 
Reification involves mistaking an aspect of a model—its structure, its construal, or 
the union of both—for an aspect of empirical data or the natural world; mistaking 
the math for the territory, so to speak. Reification also occurs when we take an ana-
logical relationship to be a literal one, or when elements of a model’s construal in its 
original domain of application get brought along parasitically into a novel domain in 
model transfer.
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In the next section, we will examine the historical trajectory undertaken by sev-
eral of the key formal elements of the framework; its legacy of model transfer. This 
historical exercise allows us to clearly separate the formalism from its interpreta-
tions in various domains and lends us insight into some of the reification that has led 
to confusions surrounding the FEP.

The free energy principle

History of the formalism

To understand the FEP, separated from the various construals attached to it in its 
various contemporary instantiations for theoretical or simulation purposes, and sep-
arated from various construals which may have attached themselves parasitically to 
the framework during its elaborate history of model transfer, it will be necessary 
to trace out this historical record. Many of the formal tricks embodied in the FEP 
originated in physics, some in machine learning, some in physics via machine learn-
ing. The FEP, however, is not a law of physics, nor is it a theory, model, or principle 
belonging to the physical domain. It is not a machine learning technology, though it 
draws upon some of the same underlying statistical techniques.

A relevant contingent of people concerned with the FEP take it to be, in one way 
or another, a physical description of natural systems. This has an obvious form: tak-
ing notions such as energy, entropy, dissipation, equilibrium, heat, or steady state, 
which play important roles in the FEP, in their senses as originally developed in 
physics. There is a more subtle form of this tendency, however, in which people 
begin with the assumption of an analogical relationship to physics, or a mere for-
mal equivalence, but conclude that the formalism of the FEP nonetheless picks out 
real and measurable properties of natural systems, albeit perhaps more loosely and 
abstractly than its physical equivalents would. This, I argue, is a conceptual reifica-
tion; a vestigial interpretation from the formal methods’ origin in statistical physics.

The epistemic turn in statistical mechanics

An important precursor to the FEP that seldom comes up in the literature is Jaynes’ 
maximum entropy principle.1 The classical interpretation of statistical mechanics 
views the macroscopic variables of some physical system of interest—say, heat, 
volume, and pressure—as physical constraints on the microscopic behaviour of 
the system. This is a decidedly physical interpretation of the maths. Jaynes’ (1957) 
critical insight was that we could give this all a subjectivist, epistemological read-
ing, casting these macroscopic variables as knowledge about the system, with the 
lower-order details to be inferred. The principle of maximum entropy guarantees 
the maximum (information) entropy of a probability distribution given known vari-
ables. Maximising the entropy of the distribution guarantees that we are not building 
in any more assumptions than we have evidence for. This principle of maximum 

1  For a thorough overview of the FEP/MaxEnt connection, refer to Gottwald and Braun 2020.
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entropy took the formalism of statistical mechanics and gave it an information-
theoretic interpretation, turning the second law of thermodynamics into a sort of 
Occam’s razor for Bayesian inference. This is because the maximum entropy princi-
ple brings us to adopt the probability density with the most widely dispersed proba-
bility density function, given the known variables, just as entropy will be maximised 
with respect to macroscopic variables in statistical mechanics. These are formally 
identical. Given the frequency with which the literature on the FEP makes refer-
ence to Jaynes, one might think it a rather inconsequential piece of the puzzle. In 
order to understand the FEP, however—and why it is closer to a statistical technique 
than it is to a falsifiable theory of biological self-organisation—it is important to see 
that there is a clear precedent for leveraging the maths of statistical mechanics as a 
method for Bayesian inference. Jaynes’ maximum entropy principle (often referred 
to as MaxEnt) has had tremendous success as a tool for scientific modeling across 
the sciences. The free energy principle, much like the maximum entropy principle, 
takes the mathematical machinery of statistical mechanics and lends the formal tools 
therein a distinctly epistemic, inferentialist bent.

The mean field approximation

Independently, an approach known as mean field theory emerged in statisti-
cal mechanics at the beginning of the twentieth century that enabled physicists to 
study high-dimensional, stochastic systems by means of an idealised model of the 
system that would average out, rather than summing over, the interactions of ele-
ments within the system. Feynman (1972) introduced what are known as variational 
methods within the path-integral formulation of mean field theory. By exploitation 
of the Gibbs-Bogoliubov-Feynman inequality, one is able to achieve a highly accu-
rate approximation of the energetics of a target system under a range of conditions. 
This is accomplished via minimisation of free energy by variations on a simplified 
candidate Hamiltonian to bring it into accord with the true Hamiltonian.2 What is 
important to understand about Feynman’s original formulation of the free energy 
minimisation technique is that it is 1. not to be taken as a literal representation of a 
target system but rather it is a formal trick for approximating otherwise intractable 
computational problems that arise in dealing with certain physical systems, and 2. 
that the free energy involved nonetheless refers to a physical quantity: Helmholtz 
free energy.

Free eenergy in machine learning

The method of variational free energy minimisation was adapted for statistics and 
machine learning towards the end of the twentieth century as ensemble learning or 
learning with noisy weights (Hinton and Van Camp 1993; Hinton and Zemel 1993; 
MacKay 2001). Thus free energy minimisation in statistics is a variational method 
for approximate inference where intractable integrals are involved. A quantity, termed 

2  We may think of the Hamiltonian of a physical system as the net kinetic and potential energies of all 
of the particles in the system.
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variational free energy, is minimised, thus bringing the ensemble density or variational 
density—the approximate posterior probability density, on a Bayesian interpreta-
tion—into approximate conformity with the true target density (Friston et  al. 2006; 
Hinton and Van Camp 1993; MacKay 1995a, b, c; Neal and Hinton 1998). According 
to Friston, this method of approximating the posterior density or ensemble density is 
a statistical analogue of the mean field approximation in statistical physics (Friston 
et al. 2006). We can see that both the free energy term and the construct it is being 
leveraged to approximate refer to energetic properties of the physical systems under 
study—Helmholtz free energy, and the system’s Hamiltonian—as the method was 
originally purposed by Feynman (1972). The variational free energy and the varia-
tional or posterior probability density involved in the variational free energy minimisa-
tion technique as employed by Hinton and Van Camp (1993), however, are purely sta-
tistical constructs. Thus, although it may be tempting to lend the “free energy” under 
the FEP a physical interpretation, it is not meant to invoke a physical quantity. Vari-
ational free energy is not Helmholtz free energy, despite the formal similarity.

Variational bayes

The finer points of the formulation of variational Bayes in use today were worked out 
by Beal (2003) and Attias (2000). Beal (2003) illustrates how conceiving of approxi-
mate Bayesian inference in terms of conditional probabilities can be facilitated via 
graphical models, such as Markov random networks, highlighting the import of the 
set of nodes that form the Markov blanket of the set of interest. An exact deployment 
of Bayes’ theorem almost always leads to intractable integrals—the sort of calculus 
it would take an adept mathematician years to solve. By contrast, approximate vari-
ational Bayesian methods generate candidate probability distributions and assess the 
Kullback-Leibler (K-L) divergence between candidate and target distributions.

Innovations in friston’s free energy minimisation

Karl Friston took the method of variational free energy minimisation and gave it a 
dynamical-systems interpretation, specifying the free energy minimisation dynamic 
in terms of the Fokker-Planck equation and, in particular, the solenoidal and irrota-
tional flows that fall out of the Helmholtz decomposition thereof, of which the irro-
tational flow can be conceptualised as a gradient-ascent on an attracting set (Friston 
2009, 2010, 2012, 2019; Friston and Stephan 2007; Friston et al. 2008). This allows 
us to think of free energy minimisation simultaneously as a method of approximate 
Bayesian inference and as a flow.3

3  Friston notes that it is interesting that the formulation of free energy minimisation using gradient flows 
(otherwise known as gradient descent) was an important practical development for the data analysis tools 
commonly applied in neuroscience—for example, in dynamic causal modelling. In brief, this freed one 
from the analytic derivations of vanilla variational Bayes and the use of conjugate priors; enabling a 
generic variational scheme for modelling empirical data known as variational Laplace.
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Jaynes’ maximum entropy principle took the formalism of statistical mechanics 
and leveraged it to accommodate the process of inference given limited and noisy 
data. Friston’s FEP goes a step further, borrowing mathematical tools from the phys-
ical sciences to enable the formal representation of processes of inference about the 
(stipulated) inferential dynamics of systems in nature.

Fundamentals of the FEP

The Fokker-Planck, or Kolmogorov Forward equation describes the time evolution 
of a probability density function. The Fokker-Planck equation originated in statisti-
cal mechanics, in which it described the evolution of the probability density func-
tion of the velocity of some particle, or its position, in which case it was known as 
the Smoluchowski equation. In the context of the FEP, the Fokker-Planck equation 
describes the evolution of the probability density function of the state of a system. 
As such it can be thought of as a trajectory through one abstract state space which is 
a probabilistic representation of some lower-order abstract state space representing 
what state a given system is in over some definite time window. Any vector field that 
satisfies the appropriate conditions for smoothness and decay can be broken down 
into solenoidal (curl) and irrotational (divergence) components. This is known as the 
Helmholtz decomposition; the fact that we can perform the Helmholtz decomposi-
tion is then known as the fundamental theorem of vector calculus.

The static solution to the Fokker-Planck equation is a probability density termed 
the Nonequilibrium Steady State density, or NESS density (Friston 2019; Friston 
and Ao 2012). The notion of nonequilibrium steady state is native to statistical 
mechanics, wherein it describes a particular energetic dynamic between a system 
and its surrounding heatbath. NESS is best understood as the breaking of detailed 
balance. Detailed balance is a condition in which the temporal evolution of any 
variable is the same forwards as it is backwards (the system’s dynamics are fully 
time-reversible). Detailed balance holds only at thermodynamic equilibrium. In non-
equilibrium steady state, balance holds in that none of the variables that define the 
system will undergo change on average over time, but there is entropy production, 
and there are flows in and out of the system. Jiang et  al. (2004) and Zhang et  al. 
(2012) have demonstrated that nonequilibrium steady state can be represented as a 
stationary, irreversible Markov process. This development paved the way towards a 
purely statistical rendering of the notion of NESS.

The literature on the FEP also rests centrally on the notion of a Markov blanket 
(Kirchhoff et al. 2018), an adaptation of Pearl’s (1988) Markov boundary. A Markov 
blanket essentially partitions the world into a thing which can be conceived of as, 
in its very existence and dynamics, performing a kind of inference, and a thing it 
is inferring—on a yet more basic level, the Markov blanket allows us to partition 
the world into a system of interest, and all that lies outside of that system of inter-
est. Systems are represented under the FEP as being subject to random fluctuations, 
which are responsible for the stochasticity of the systems involved. These fluctua-
tions would result in the dissolution of the systems of interest, were it not for some 
balancing flow. In the absence of a counteracting flow, the system, as defined by its 
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Markov blanket, would cease to exist as such. If the set of states considered to be 
the system (internal states and their Markov blanket) are to resist this dissipative 
tendency, they must counteract it. This counteracting flow can be conceptualised in 
a number of ways. For one, we can think of the perturbations as causing the NESS 
density to disperse, and the irrotational flow under the Fokker-Planck equation as 
countering these fluctuations. We can also think of it as ascending the gradients 
induced by the logarithm of the NESS density. The system is hillclimbing on a land-
scape of probability. It seeks to ascend peaks of maximum likelihood and escape 
from improbable valleys. In fact, the FEP is a form of dynamic expectation maximi-
sation, which is itself a maximum likelihood function (Friston et al. 2008). The flow 
of the system must also, moment by moment, minimise surprisal or self-information 
by gradient descent. Variational free energy constrains this activity by placing an 
upper bound on surprisal.

Under the FEP, a system of interest can be represented as being subject to random 
perturbations, which would induce dissipation were it not for some flow countering 
this dissipation. The Fokker-Planck equation encapsulates these random perturba-
tions as w—the Wiener process, or Brownian motion. The curl-free (irrotational) 
dimension of the flow described by the Fokker-Planck under the Helmholtz decom-
position will be seen to counter this flux, maintaining the integrity of the NESS 
density, which places high probability mass over the system’s pullback, or random 
global attractor (Friston 2019). All this means is that, statistically speaking, the sys-
tem prefers this region of its phase space—the way a cat likes a laptop computer or a 
ball likes to roll downhill. The NESS density can also be cast as a generative model, 
as the highest probability region of the system’s phase space will be a joint distribu-
tion over all of the system’s variables. By generative model, we mean here a joint 
probability distribution over external and blanket states. For this reason, we can con-
ceptualise the behaviours of the systems treated under the FEP as statistical models 
of the causes impinging upon them from their environments. This follows from the 
complete class theorem which, in its Bayesian, statistical generalisation, states that 
any decision procedure operating according to a loss or risk function in a finite sam-
ple space is, under certain assumptions, Bayes optimal with respect to some prior. 
By extension, then, any dynamical system that minimises some loss or risk function 
according to some decision procedure is taken to be Bayes optimal under some gen-
erative model and priors.

This brings us back to the inferential interpretation of the dynamic described by 
the FEP. When we apply Bayes theorem to a problem of inference or belief updat-
ing, we want to maximise marginal likelihood. Marginal likelihood is the likelihood 
of some observation given our model; it is also termed Bayesian model evidence, 
or simply evidence. Surprise and evidence are inverse functions. When we mini-
mise surprisal, we are maximising model evidence. Thus, systems under the FEP are 
said to be ‘self-evidencing’ (Hohwy 2016). Over time and on average, the minimisa-
tion of surprisal minimises information entropy. This effectively prevents a system’s 
states from dispersing in a statistical sense—it keeps the values of certain key vari-
ables within certain existential (that is, definitive of the system) bounds. In minimis-
ing (an upper bound on) surprisal, we minimise (a lower bound on) model or mar-
ginal evidence, or simply evidence. This makes free energy minimisation equivalent 
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to evidence lower bound optimisation (ELBO), an objective function that anyone 
with a background in machine learning or Bayesian statistics will find themselves 
familiar with.

Here we have traced the history of key formal elements of the FEP in Jaynes, 
Feynman, Hinton, Pearl, Beal, and Friston. Having a handle on this history is 
necessary in order to grasp the subtle turn away from statistical approximations 
of physical properties of physical systems to a pure, substrate-neutral method of 
statistical inference. When we speak of annealing a model in statistical mechan-
ics, ratcheting the temperature of the system up and down in the hopes of bump-
ing it out of local minima, this does not refer to an act of literally injecting energy 
into a physical system to increase the speed of particle motion. It is a statistical 
analogue of a physical process. Likewise, the energy and entropy of the FEP are 
formal analogues of concepts defined in thermodynamics and statistical mechan-
ics with a long history of use in information theory, statistics, and machine learn-
ing, in which they have lost their correspondence to any measurable properties of 
physical systems.

Critical appraisals

Mine is not the first paper to attempt to get to the bottom of the FEP. There 
have been, to date, a number of attempts at comprehensive critical assessment 
of the FEP, including Colombo (2017) Colombo and Wright (2017, 2018), van 
Es (2020), Gershman and Daw (2012) Gershman (2019) Klein (2018), and Sims 
(2016). The nominal worries of these critical accounts include that the FEP 
lacks biophysical or cognitive realism, that it somehow contravenes experimen-
tal observation, that it is incapable of providing an all-encompassing account of 
brain function, or that it fails to make novel predictions (Colombo 2017; Colombo 
and Wright 2017, 2018; Gershman and Daw 2012; Gershman 2019; Klein 2018). 
The real worry, though, the worry that is only made explicit a few beers in to the 
spillover of the conference proceedings into some smoke-filled local tavern, the 
worry that is only put to words in the manuscripts that get rejected before they 
ever make it to print, is that the FEP is somehow empty; that it lacks all concep-
tual content. My claim is that the FEP is, indeed, empty in just this way, that that 
is not—or ought not to be—a secret, and that its contentlessness does not count as 
a mark against the framework.

Indeed, existing works in this genre all stack the solutions they arrive at against 
this conclusion. They all appear to beg the question. These critical accounts, 
much like the preponderance of positive accounts, fail to differentiate between 
the FEP as formal model structure and the various models built from or atop this 
structure, which themselves are often casually referred to as “the FEP” in the 
literature.
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Colombo & Wright

Colombo and Wright (2018) do entertain the idea that the FEP is merely a formal 
modelling tool—indeed, they even diagnose the problem of reification in model-
ling, “the risk of conflating scientific models and their targets” (p. 12)—but they 
never take this hypothesis seriously. Colombo and Wright (2018) raise the matter 
as a serious question to be addressed: “should we understand FEP as a modeler’s 
tool to characterize and predict adaptive behavior, or should it be understood as an 
objective feature of target systems?” (Colombo and Wright 2018,  pp. 15-16). As 
they proceed, however, they merely “assume that the probabilities involved in FEP 
aren’t simply modelers’ tools” (Colombo and Wright 2018, p. 17). It is unclear on 
what grounds they justify this assumption, beyond the further (unjustified) assump-
tion that the aim of the modelling exercise must be realism and that “Friston (2013) 
seems to interpret the probabilities involved in FEP as objective features of real-
world systems” (Colombo and Wright 2018). Ultimately, the hypothesis that the 
FEP is empirically contentless is swept aside: “what’s intended cannot be that FEP is 
unfalsifiable because it fails to be truth-apt” (Colombo and Wright 2018, pp. 22-23).

Gershman, Klein, & Williams

Gershman’s (2019) supposed critique of the framework does not actually counte-
nance the FEP, but diverts its attention to process models, writing “we will be con-
cerned with [the FEP’s] credentials as a theory, and therefore we will pay particular 
attention to specific implementations (process models)” (Gershman 2019, p. 2). Sims 
(2016) likewise conflates the FEP with associated corrolaries and process theories. 
For example, he writes: “In its form as a theory of cognition, the application of this 
theory to explain mental phenomena draws heavily upon the notion of expected pre-
cision” (Sims 2016, 970). Expected precision is a notion proper to predictive coding 
and various models that fall under the heading of predictive processing. In a similar 
vein, Sims writes that the “free energy principle makes certain non-trivial predic-
tions about brain structure and function,” listing among these predictions a greater 
preponderance of top-down (feedback) connections than bottom-up, feedforward 
connections, and the organisation of the cortical hierarchy, likewise the purview of 
hierarchical predictive coding or predictive processing models. Klein (2018) argues 
that the FEP is either susceptible to the dark room problem or it is something like an 
idealised model. On this deflationary depiction of the FEP, it is taken as “a starting 
point from which one might develop explanations,” and its success (or failure) as a 
scientific tool ultimately rests on “the empirical adequacy of detailed models which 
spring from it” (Klein 2018, p. 2554). This, I think, is precisely the right mode of 
understanding FEP-based models. Thus, models built from the formal architecture 
of the FEP offer “a deliberate simplification, which buys scientific fruitfulness at 
the cost of literal truth” (Klein 2018, p. 2554). Notably, this is quite close to a Wim-
satt (1987) view of the epistemic virtues of modelling. Williams (2020) delivers a 
description of the FEP that is diametrically opposed to Sims’ (2016) depiction: “the 
FEP does not advance a causal hypothesis. Specifically, it provides no information 
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about how self-organization is causally generated and sustained in the systems that it 
applies to” (Williams 2020, p. 20).

It appears that we have the theoretical equivalent of binocular rivalry when it 
comes to depictions of the FEP’s empirical commitments and epistemic status. How, 
then, do we resolve this conflicting vision? First, we ought to note that both Sims 
(2016) and Williams (2020), like most of their predecessors, take “the free energy 
principle” to refer to both the raw formalism and to various models predicated on 
that formalism which Friston and colleagues have described over the years. Addi-
tionally, Klein (2018) seemingly takes “the free energy principle” to refer to active 
inference and perceptual active inference, hierarchical predictive coding, and vari-
ous predictive processing models, describing all as one and the same theory of cog-
nition. The deflationary conclusion he reaches, however, maps onto the role played 
by various models constructed from the formal framework of the FEP: FEP-based 
models act as heavily-idealised, generic or targetless mathematical models. One core 
function such models serve in relation to scientific practice is as a stepping stone 
on the road to more fine-grained and empirically rich models. Williams (2020), on 
the other hand, adequately differentiates the FEP from various associated process 
models and adjacent theories within the Bayesian brain canon. The conclusions he 
reaches in regards to the FEP’s explanatory scope and epistemological status fail to 
cohere to what the literature has, to date, descriptively used “the FEP” to denote. 
However, I contend that Williams (2020) assessments of the FEP are precisely on 
the mark as an appraisal of what the FEP ought, normatively, to refer to: namely, the 
formal structure, absent any interpretation relating it to a target.

Van Es

Van Es (2020) is the first to draw clear connections between FEP models and the 
literature on scientific modelling. Van Es’s (2020) argument is fairly straightforward: 
1. FEP models describe organism-environment interactions in terms of modelling. 
2. It is unclear to what extent it is intended that an FEP model models organisms 
as though they were, themselves, engaged in a practice of modelling their environ-
ments, and the extent to which proponents of FEP models intend the models pos-
ited thereunder to be literal, in the world, and independent of scientists’ modelling 
practice. 3. The existing literature utilising FEP models to address cognition seems 
to rest, fundamentally, on a conflation between the two. 4. Kirchhoff and Robert-
son (2018) argue that the sense in which organisms’ dynamics mirror their environ-
ments, under FEP models, is not representational in nature, but merely covariational. 
5. There is consensus in the literature on scientific modelling that scientific models 
are representational in nature. 6. The sole nonrepresentational account of scientific 
modelling on offer appeals to social practice of science to ground the representa-
tional features of models. 7. Models as leveraged by organisms, under FEP models, 
cannot recourse to the social practice of science to ground the representational fea-
tures of their models. 8. Therefore, models posited under FEP models fail to count 
as models. 9. We must, then, according to van Es, adopt an instrumentalist stance on 
models under the FEP.
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Van Es’s argument, however, ignores the lengthy and abundant history 
of arguing over whether scientific models must be representational in nature, 
and whether their sole epistemic virtue must be their representational status. 
Downes’ (2020) survey and introduction to the modeling literature supplies an 
overview of the debate between representationalists—those who hold that all 
models necessarily represent—and nonrepresentationalists—those who hold that 
not all models need necessarily represent. Downes (2011) argues for the position 
that not all scientific models represent. He notes here that the emerging consen-
sus among philosophers concentrated on scientific modeling is that models serve 
a plurality of epistemic purposes for research. The characterisation of scientific 
modelling in van Es (2020) thus comes across as quite far-afield from the state of 
the literature. Van Es saddles the literature on scientific modelling with the task 
of demonstrating that models are, by necessity, representational. In fact, the sci-
entific modelling literature shows quite the opposite: models need not represent, 
and representation is not the chief epistemic virtue of scientific modelling. Van 
Es points to Oliveira’s (2018) pragmatist approach to modelling as the singular 
example in the literature of a nonrepresentationalist approach to understanding 
scientific models. In fact, the modelling literature has undergone something of 
a pragmatist turn in the 21st century, and nonrepresentational accounts abound.

These are not the most fatal flaws in van Es’ argument, however. By far the 
more questionable premise is that the generative models embodied or entailed 
by organisms under various FEP models are models in precisely the sense in 
which scientific models are models. The assertion that all scientific models are 
generative models in the formal, statistical sense would be rejected by scientific 
modellers and philosophers of scientific modelling alike. It is clear that scien-
tific models do not denote statistical models of joint probability distributions. 
Why, then, should we assume that the generative modelling stipulated under the 
FEP is precisely the same sort of modelling that scientists engage in, and subject 
to the same constraints?

While instrumentalism with respect to the mathematical constructs leveraged 
in FEP models is a meritorious position, I do not think it is novel—in fact, I 
think it is presumed throughout the literature, and the argumentative route van 
Es traverses to arrive at this position is a nonstarter. Van Es contends that the 
existing FEP literature erroneously conflates two senses of modelling. In fact, 
van Es’ own paper demonstrates a conflation between various senses of the term. 
There are, in the first place, models as utilised by scientists to gain leverage over 
the natural world. There is a deflationary, statistical notion of a generative model 
as a statistical model of a joint probability distribution. Van Es (2020) seems to 
run the two together, and further conflates both with an unarticulated strawman 
notion of models, under which a brain may be said to “model” its environment 
in some cognitivist, representationalist sense. I believe the culprit here is a lack 
of fluency with both the philosophical literature on scientific modelling and the 
statistical techniques that undergird FEP models.
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A tentative diagnosis

Whence such confusion? For one, we have seen the convoluted history of model 
transfer the FEP has undergone, with formal elements drawn from a number of 
disciplines and passing through multiple interpretations before achieving their 
current form and use. For another, it is not often pragmatically necessary in the 
practice or research or theorising to specify in painstaking detail what formal 
models we are drawing from and in what mixture and quantity. For another, at 
the risk of psychologising, when one’s primary mode of relating to the world is 
not linguistic, but mathematical, the distinction between “maths” and “territory” 
makes little sense. In fact, I believe that a necessary precondition to being a good 
physicist is the loss of this distinction between literal description of the world 
and mere formal trick. This creates something of a barrier to interdisciplinary 
communication. Physicists or those with physics backgrounds are often known to 
say things which, to mathematical modellers in biology, cognitive science, pure 
maths, or machine learning often seem to mix metaphors. I view as symptomatic 
of this tendency Friston’s overly literal descriptions of the formalism.

There are many places throughout the literature on the FEP in which the lan-
guage used to describe the formalism can easily give rise to the misconception 
that the framework is a literal—perhaps physical—description of some measur-
able feature of natural systems, or cuts at natural joints. Ramstead et al. (2018), 
for example, write that “systems are alive if, and only if, there[sic] active infer-
ence entails a generative model” (p.33). Under the perspective of the FEP—that 
is, once we have elected to model biological systems using the formal tools the 
FEP provides us—any system we choose to model in this way will behave as the 
model dictates it must. Under the FEP, in order to be a system, certain mathemat-
ical assumptions must hold. In particular, we assume a weakly-mixing random 
dynamical system, a Markov blanket, and either ergodicity or (organisation to) 
nonequilibrium steady state (NESS). If we take the systems attracting set to be a 
NESS density, then its existence will entail a generative model. This is a result of 
the statistical generalisation of the complete class theorem. Thus in selecting to 
model a system under the FEP, we have presumed its dynamics to entail a gen-
erative model. This says nothing, however, about any empirically-ascertainable 
properties of living systems.

Both the literature forwarding the FEP and the literature critiquing it suffer 
from issues of translation: would-be interpreters of the framework face the bur-
den of translation between linguistic and mathematical descriptions, between 
discrepancies in disciplinary standards and terms of art, and the long history of 
translation between various applications and interpretations which components of 
the mathematical framework itself have undergone. I urge that by unpacking these 
discrepancies in disciplinary conventions, scrutinising the history of the formal-
ism, and divorcing it not only from meanings ascribed to it in past disciplinary 
settings and applications, but from meanings applied to it in what I term “FEP 
models,” operationalisations of the framework, we can come to a considered 
understanding of what the FEP is in its own right.
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Models & The FEP

The FEP as model structure

I propose here that we reserve “the free energy principle” to denote only the 
maths of which the FEP is composed. Models utilising this formalism to study 
natural systems bear also an interpretation, lending a means of interpreting the 
maths as about systems in nature. The papers that exist on the FEP, however, 
nearly all seem to leverage the FEP to address some issue, relating it to a target 
system. They are what we might call “FEP models.”

According to Weisberg’s (2007; 2013) account of models, a model’s struc-
ture—whether mathematical, computational, or physical—does not inherently 
relate to a target system in an epistemically fruitful way, e.g., by representing 
features of that target system. It is only with the addition of a scientist’s interpre-
tation or construal that we derive a mapping between a model structure and the 
world, and a model is born. Once we have that model in hand, however, it can be 
tempting to say that we have knowledge of the natural world. The existence of 
models, their features, and the output of modelling work, however, do not consti-
tute knowledge of nature over and above empirically-observed facts that we may 
have plugged into our models at the outset (if they are the type of models that 
incorporate measurements). To validate a model or its results and derive from it 
knowledge of natural laws, systems, or processes, we must match its predictions 
to experimental evidence.

We make a category mistake when we claim that a raw mathematical structure 
lends us predictions or places constraints on what can be observed in nature, and 
are guilty of reification: “there is no such thing as a solely mathematical account 
of a target system” (Nguyen and Frigg 2017,  p.1). Likewise when we take the 
existence or qualities of a model to constitute knowledge of the natural world we 
make a category error and reify the model.

Models have been proposed utilising the formal structure of the FEP that take as 
their targets cortical structure, neuronal organisation (Friston, Fagerholm, Zarghami, 
Parr, Hipólito, Magrou, & Razi, 2021), the brain as a whole (Friston 2010), organ-
isms acting in an environment (Bruineberg and Rietveld 2014; Bruineberg et  al 
2016, Buckley, Kim, McGregor, & Seth), morphogenesis of multicellular organisms 
(Kuchling et al. 2019; Friston et al. 2015), and even social structures and behaviours 
(Ramstead et  al. 2016). These have been representationalist, FEP models (Kiefer 
and Hohwy 2018, 2019), cognitivist FEP models (Kiefer and Hohwy 2018, 2019), 
nonrepresentational, Gibsonian FEP models (Bruineberg and Rietveld 2014; Bruin-
eberg et al 2016;), enactivist FEP models (Kirchhoff and Froese 2017Ramstead et al. 
2019), as well as both dualist (Hobson and Friston 2014) and materialist (Friston 
et al. 2020; Kiefer 2020) FEP models. Each of these is referred to in the literature 
as “the free energy principle,” and the ontologies, epistemologies, and predictions 
borne of each deemed consequences of “the free energy principle.”

That one and the same “theory” can lend itself explanations of neuronal, cel-
lular, and social organisation seems puzzling; that it can lend support for both 
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neurocentrism and extended cognition even more so. I propose that we can 
resolve the source of this error signal by denying, in the first place, that the FEP 
is a theory—or even a model. Instead, we ought to use “the FEP” to denote the 
model structure: the raw formal framework, sans interpretation. In combination 
with the numerous construals that exist in the literature, this structure becomes 
“FEP models.” The FEP itself, then, lacks all empirical or conceptual content. 
It is an empty formalism. The many models built thereon, however, can be seen 
to differ with respect to their content (thus different targets, conflicting interpre-
tations of the same target). If we continue to take the FEP to refer to all of the 
above, then the conclusion we must reach (and that critics of the framework have 
reached) is that the FEP must either be vacuous or internally inconsistent. I say 
we bite the bullet on vacuousness, but restrict the term to be used only in refer-
ence to the formalism.

To illustrate briefly what I mean here: Ramstead et  al. (2018) write that: “The 
FEP is a mathematical formulation that explains, from first principles, the charac-
teristics of biological systems that are able to resist decay and persist over time,” (p. 
2) and that it “asserts that all biological systems maintain their integrity by actively 
reducing the disorder or dispersion” (p. 3). I wish to urge that claims to the effect 
that the FEP “explains” or “asserts” anything are misguided. Rather it is only FEP 
based models which can assert or explain and, indeed, relate at all to the world. 
Compare this to Kiefer (2020) who more rather more carefully describes his work as 
a “conjunction of the free energy principle...and the identity thesis” (p.1). Here I am 
not making a prescriptive case that we ought to always and only ever refer to “the 
FEP” as the maths in the absence of any interpretation and to the models constructed 
therefrom as “FEP models,” though admittedly this might go a long ways in clearing 
up some of the misapprehensions in the literature. Rather it is my hope that this dis-
tinction will equip the casual reader with the conceptual tools necessary to parse the 
FEP literature, as notoriously dense and befuddling as it is. The “FEP” as it has been 
addressed in the literature thus far is something of an impossible figure: A pure for-
malism, empty of all content. A precise theory of neuronal signalling and transient 
ensembles. A tautology. A transcendental argument. It is both unfalsifiable and yet 
makes precise predictions about the physical or physiological systems and dynamics 
capable of instantiating it. Both materialist and dualist. Both representational, cog-
nitivist, and neurocentrist and, at the same time, ecological, enactive, and extended. 
In this section, I have argued that the only way around interpreting the FEP as over-
committed to conflicting claims is to distinguish the formal framework from various 
models composed therefrom. We ought, then, to think of the FEP as a mathematical 
structure alone, free of conceptual content, predictions, or representations of worldly 
systems. Models add to a structure an interpretation, or construal, which lends them 
a mapping function to worldly systems. Models composed from the formal structure 
of the FEP may or may not make predictions, or place constraints on the varieties of 
systems capable of realising the dynamics they specify. This is likely to differ from 
model to model. Attempting to saddle the formal architecture of the FEP itself with 
falsifiable predictions, however, is simply a category error.
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Conclusion

A recent and abundant literature concerns itself with the FEP, though its claims 
and status are contested. The FEP as it is addressed in this literature—both for 
and against—is a mathematical structure applied to the modelling of various 
phenomena across the social, cognitive, neuro-, and life sciences. Attempts to 
secure the precise nature of the FEP, its utility for scientific practice, just how 
it represents systems in its respective domains of application, how precisely it is 
bolstered or refuted by existing empirical evidence, what constraints it places on 
process theories and lower-order models, have thus far been foiled. I suspect that 
this is the case because the questions we have been asking of the framework make 
implicit category errors, attempting to saddle it with attributes that fail to apply 
to the framework in virtue of the sort of thing that it is. What are the FEP’s theo-
retical commitments? What empirical support does it receive? There are as many 
answers to these questions as there are papers on the FEP, and continuing to ask 
them of the modelling framework as a whole, without regard to the distinct forms 
it assumes, will remain a fruitless undertaking.

In this paper, I have argued the case that the free energy principle be consid-
ered not a theory, a law, a hypothesis, a paradigm, or a model, but a formal mod-
elling structure. One immediate consequence of this conclusion is that questions 
of the epistemic status of FEP models, their empirical content, the predictions 
they do or do not make, and their precise relation to various corollary models 
and process theories will have to be assessed piecemeal, for each FEP model in 
its own right. This seems to pass the explanatory buck. In this respect, the state 
of the FEP mirrors the state of the modelling literature at large: there is very lit-
tle that can be said evaluatively of models as an undifferentiated whole. There 
are, though, broad-brushstrokes appraisals to be made of the sorts of models that 
emerge from the FEP. Following this, there are more exacting claims to be made 
about specific instantiations of the framework. These, however, will have to be 
the subject of a later paper.

Another, more positive consequence, however, is that, having separated the 
formal essence of the FEP from various interpretations thereof, we are now free 
to build theoretical or empirical models with it without worrying about its theo-
retical commitments or empirical support, for it has none. The only barrier to uti-
lising the FEP is understanding the maths and understanding how to relate it to an 
open question or target system of interest. We did not enquire as to the theoreti-
cal commitments or empirical support of the evolutionary algorithm or Conway’s 
game of life; we simply played with them. Our approach to the FEP ought to be 
the same.

That no silver bullet will vanquish—or vindicate—the spectre of the FEP once 
and for all may come as a disappointment to some. Have all our attempts to nail 
it down been in vain? I, for one, think not. It is my sincere hope that one positive 
result of this exercise will have been to disabuse a few scholars of outmoded con-
ceptions of the scientific method. Scientists are not everywhere all the time deal-
ing in literally true direct representations of natural systems. Arguably, much of 
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what we are doing as scientists—especially now, especially in the younger disci-
plines—is far more heuristic and bottom-up than the theory-driven, hypothetico-
deductive, falsificationist frames of yore would have us believe.

It is perhaps natural—at least not uncommon—to think that without hard and 
universal desiderata for what differentiates scientific pursuits from other intellectual 
projects, for what separates good and bad science, that we will slip into everything-
goes relativism or pluralism. An effort is only scientific, and hence, worthwhile, if 
it makes concrete, falsifiable predictions. If we adopt this frame, most of today’s 
scientific methods are not scientific at all. In fact, many of our historical bastions of 
the scientific method have failed to live up to these rigorous standards. It should not 
be considered a failing, however, that Galileo, Newton, and Darwin’s work failed to 
be paradigmatic, failed to be theory-driven, failed to uncover mechanisms, or failed 
to conform to a hypothetico-deductive model. Model-based philosophy of science 
embraces the messiness and pluralism of scientific practice. It has, at times, done 
so at the cost of being overly-permissive. Pluralism as a thesis, however, does not 
absolve us of the responsibility of distinguishing good and bad science, working 
methodologies from those that have become enmired. That we cannot dismiss the 
FEP outright for failing to put forth a testable hypothesis—or accept it because it 
purports to explain a great many things—should not cause us to throw our hands in 
the air. It should be, rather, a call to arms, an impetus to get ever more exacting.
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