
Expanding the notion of inconsistency in mathematics:
the theoretical foundations of inter-model inconsistency

Carolin Antos

April 4, 2022

Abstract

In this article I introduce a new notion of inconsistency in the philosophy of mathemat-
ics that is different from the usual notion of inconsistency via contradictory statements
in a formal theory. This notion, inter-model inconsistency, substantially relies on aspects
from mathematical practice. I develop this notion via the case study of set theory and dis-
cuss why this notion of inconsistency accurately captures the use and function of models
of set theory in current set-theoretic practice.

With the introduction of this new notion, I aim at providing a way in which the
debate about inconsistency toleration vs. consistency preservation in the sciences can be
connected to debates in the philosophy of mathematics. The article closes by discussing
further consequences of this notion for the inconsistency debate in the philosophy of
mathematics.

1 Introduction

When inconsistencies emerge in scientific theories they present serious challenges which are
generally regarded as important triggers for a change in the theories. The standard account of
how the scientific communities react towards the discovery of an inconsistency is to aim at the
removal of the inconsistency (consistency preservation). More recently, however, alternative
ways of dealing with inconsistencies have been discussed, in particular the possibility that
scientific communities may opt to tolerate inconsistencies instead of trying to resolve them
(Martínez-Ordaz and Estrada-González, 2017).

In these discussions, the case studies have mostly been drawn from the natural sciences,
whereas cases in which inconsistencies arise in mathematics have been discussed separately in
the philosophy of mathematics (see, for example, Colyvan, 2008). One of the reasons for the
relative disconnectedness of these two debates is that different forms of inconsistencies seem to
be discussed: in science, inconsistencies can arise within a scientific theory, between different
scientific theories, and between observations and scientific theories. Moreover, inconsistency in
the sciences appear at least partly informally, not being dependent on a formal mathematical
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theory.1 In contrast, we usually only speak of one form of inconsistency in standard mathemat-
ics. Such an inconsistency appears as a logical contradiction in a formal theory, i.e. there is
some mathematical statement P such that P ∧ ¬P holds in the theory. (We call this a logical
inconsistency.) A theory usually denotes a set of specific sentences, for example, some axioms
and their closure under a logic, for example, first-order logic. Taking set theory as an example,
the standard theory under consideration is the one stemming from the Zermelo-Fraenkel axioms
with the Axiom of Choice, ZFC, closed under classical first-order logic.2 If we were to find a
logical inconsistency in this theory, we would be able to prove from the axioms that P ∧¬P for
some P . On the semantic side, this means that the theory would not have a model, i.e. there
is no structure that satisfies all sentences of the theory.

But the differences between the cases of science and mathematics do not seem to be re-
stricted to the forms of inconsistency: the reaction of the community towards the appearance
of an inconsistency seem to differ as well. As mentioned above, in the sciences, a case can be
made for inconsistency toleration (see, for example, Meheus, 2002). In mathematics, on the
contrary, this is highly controversial: if an inconsistency occurs, it always seems to lead to a
concerned effort to remove it. A paradigmatic example for this is the case of Russell’s Paradox
in early set theory, which was removed by restricting the Axiom of Comprehension. Yet there
are cases where scholarship has argued for something like inconsistency toleration in mathemat-
ics. One often-cited example is the early calculus and its use of infinitesimals. Colyvan (2009)
argues that this is an example of an inconsistent theory that was fruitfully used for quite some
time3, despite the community being aware of the inconsistency. However, it has contested by
Vickers (2013) that this case actually constitutes an inconsistency, and similar objections hold
for other such cases.4 So, in mathematics, the focus lies almost exclusively on removing the
inconsistencies; as Colyvan (2009, 161) observes: ‘Looking for inconsistency so that it might
be avoided seems to be the extent of the interest.’

This article is the first in a two-part series of papers that approaches the question of in-
consistency toleration from a different perspective, namely, one that focuses on mathematical
practice (the second paper in this article series is Kuby, forthcoming).5 While investigating
the modern practice of set theory, I observed that the foundational debate prompted by math-
ematical results about models of set theory shows features quite similar to ones discussed in
the philosophy of science regarding cases of consistency preservation and inconsistency tolera-
tion. These similarities range from discussions about the adequacy of concepts to competing

1However, they mostly still depend on a general mathematical apparatus. These kinds of inconsistencies are
then neither fully formal nor fully informal. I would like to thank the anonymous reviewer for pressing me to
clarify this point.

2There is also second-order set theory, a theory that is based on second-order logic. Second-order theories
have been mostly absent from set-theoretic practice for quite some time, but have seen a bit of a revival in the
last decade (see, for example, Williams, 2018; Antos and Friedman, 2017; Gitman et al., 2021). However, set
theory in a first-order axiomatization is still the gold standard for set-theoretic practice; therefore we will take
this as the basis for our investigations.

3A rational reconstruction of the early calculus as an inconsistent theory can be found in (Brown and Priest,
2004). This reconstruction involves a specific kind of para-consistent logic to avoid the occurrence of explosion.

4For further discussion, see Bueno (2017).
5This article is also published in the present volume.
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foundational programs, in which some argue for consistency preservation whilst others imply
forms of inconsistency toleration. However, the underlying case study from set theory does not
match the notion of logical inconsistency, as we do not know of a logical contradiction in set
theory. This leads us to believe that there is a different form of inconsistency at play here, and
we propose inter-model inconsistency as this new notion of inconsistency.

In this paper I want to introduce this new concept and explore its fundamental properties
on the basis of the particular situation in set theory. In particular, I will show that while this
notion is a weaker form of inconsistency than logical inconsistency, it can still be considered to
be a proper form of inconsistency. Kuby (forthcoming) then shows that the pressing current
debates in the philosophy of set theory can indeed be interpreted as an answer to the situa-
tion of inter-model inconsistency by proposing consistency-preservation and, more interestingly,
inconsistency-toleration strategies.

It is important to point out that the aim of this series of papers is a descriptive one. I want to
show how the current situation in set theory can be described to constitute a case of inter-model
inconsistency toleration and explain why this is relevant for the current debate in the philosophy
of set theory. We do not propose this account via inter-model inconsistency as an alternative
to programs in the philosophy of set theory aiming to resolve the situation of inter-model
inconsistency such as forms of universism and multiversism do. Indeed, Kuby (forthcoming)
will argue that such normative programs react to the problematic situation described via inter-
model inconsistency. However, we will see that the notion of inter-model inconsistency provides
a challenge to these programs and can be used to argue for the introduction of other such
programs, therefore substantially contributing to the debate. In particular, we see that there
can be cases of inconsistency toleration based on inter-model inconsistency in mathematics
and therefore the discussions in philosophy of science and philosophy of mathematics can be
connected more closely after all.

The structure of this paper is as follows. In Section 2, I first present the case study of models
of set theory on which I base the introduction of the new notion of inconsistency. To justify its
introduction, in Section 2.1, I first provide an overview of the development of set theory since
the introduction of large-scale model-building techniques in the 1960s. Then, in Section 2.2, I
provide a detailed analysis of how the practice of models of set theory gives rise to what I call
the inconsistent practice of set theory. From that, I develop a definition of inter-model incon-
sistency in set theory (MIST) in Section 3 and I argue that MIST is a notion of inconsistency as
it correctly matches the inconsistent practice of set theory and makes it explicit. Section 4 con-
cludes by showcasing how MIST can contribute to several philosophical debates by introducing
the possibility of new consistency-preservation and inconsistency-toleration approaches.

2 An inconsistent practice in modern set theory?

In this section we will gather together all the elements we need to define a new notion of
inconsistency, which I will call inter-model inconsistency. This notion is based on the case study
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of modern set theory and a major goal of this section is to show that this part of mathematics
indeed calls for the introduction of such a notion. We will therefore aim at tracking what I call
inconsistent practice of set theory and see how it is correctly captured by the notion of inter-
model inconsistency. I will proceed in two steps. In Section 2.1, I will outline the historical
development of modern set theory in the last decades, specifically detailing how its practice has
changed since the introduction of large-scale model-building techniques since the 1960s. Then,
in Section 2.2, I give an analysis of this practice by showing how different aspects of it give rise
to an inherent inconsistency. However, before we start, let me provide the logical basis of this
model-related practice of set theory that will later serve also as the logical basis for the notion
of inter-model inconsistency.

With a model of set theory we usually mean a model that satisfies some appropriate axiom-
atization of set theory. The axioms are sentences formulated in the first-order language of set
theory6 containing one binary relation-symbol ∈ that is standardly interpreted by the model
as the usual ‘is element of’ relation. The axiomatic system normally used for set theory is
the Zermelo-Fraenkel axioms with the Axiom of Choice, ZFC. Additionally, variations of this
system are frequently used in practice: examples are fragments of ZFC such as ZF (without
Choice); or extensions of ZFC, where additional axioms such as large cardinal axioms claiming
the existence of large cardinals are added. So, there is a variety of axiomatizations that are
considered to be set-theoretic in character and at least some of their corresponding models are
usually called ‘models of set theory’.7

Usually, models of a theory will not be elementarily equivalent, meaning that they don’t
satisfy all of the same first-order sentences.8 In particular, this comprises situations where
the models disagree on a sentence A in the sense that A is true in one model and false in
the other. In areas like set theory this is a well-known phenomenon that is of foundational
importance to several of its research endeavours: in set theory, a major area of research is the
study of mathematical statements that are independent of an appropriate axiomatization of set
theory. The research is focused on establishing consistency and independence results as well
as investigating in which situations these sentences can become true or false. The most well-
known example is that of the Continuum Hypothesis, CH, stating that the cardinality of the
set of real numbers is the next biggest cardinality after the size of the set of natural numbers.
To prove that this statement is independent from some set-theoretic axiomatization, say ZFC,
one usually builds a model of ZFC + CH and one of ZFC + ¬CH showing that ZFC is
consistent with both statements. Gödel (1940) was able to provide such a model L in which

6One can also work with models of set theory in a second-order setting; this is especially fruitful when
considering questions of categoricity. However, in the set-theoretic practice of the last decades, working within
first-order logic has been the common standard as the main axiomatizations are first-order. So when we refer
to models of set theory we normally assume a first-order context and explicitly say differently otherwise.

7Some set theorists such as Hamkins (2012) understand this even more inclusively, considering also models
of much weaker theories than ZF to be models of set theory. Here we are not concerned with providing exact
boundaries for which models are models of set theory or not; it is enough to know that the notion is not only
used to denote models of ZFC, but also includes models for variations of it.

8I would like to thank the anonymous reviewer for pressing me on this point. It is fundamental to the new
notion I aim to introduce that it is not solely based on the existence of such models. We will see what other
ingredients this notion needs in due course.
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CH holds; twenty years later Cohen (1963) completed the proof of independence by showing
that there is a model of ZFC + ¬CH. Here we find explicit instances of non-elementarily
equivalent models of one theory, where in one model CH is true and in the other one it is false.
In the following we will call such models incompatible models for the independent sentence P .

Of course, this does not imply that the theory given by ZFC is logically inconsistent. On
the contrary, as CH is independent from ZFC, neither CH nor ¬CH can be proven from ZFC
(and the logical inconsistency of ZFC involving CH would mean that both can be proven).
However, we can undertake a change in perspective, which will also serve to highlight the
significance of this situation for inter-model inconsistency as defined below (Section 3): instead
of studying models for a given theory, we can also consider a specific model and study the
theories it is a model of. For instance, the model L provided by Gödel is not only a model of
the axiomatization ZFC, it is also a model of the theory of ZFC + CH.9 This also holds if we
do not want to name CH as an axiom for the extended formal theory, but prefer to regard it
as a theorem following from some axiom such as V = L, V = Ultimate L, etc. In the same
way, the model provided by Cohen is a model of ZFC + ¬CH. So the two models considered
here are not only models of the same theory, they can also be seen as models for two different
theories that disagree on (at least) one mathematical sentence. Again, this does not mean much
on a purely logical level, as we can of course find models of any theory that is not logically
inconsistent and models of different theories can coincide. But, on the mathematical level, this
a point worth highlighting, as this situation has been a motivation for, and subject of, much of
set-theoretic research in the last decades.

In general, the fact that the same state of affairs can be of different significance from a
mathematical and a logical point of view is not surprising. For example, finding a different
proof for an already proven theorem might not be very important, logically speaking10. Math-
ematically, however, an additional proof can have a huge impact, for example, when one proof
is constructive and the other abstract, one is more explanatory than the other, one uses only
resources from the specific field of research in mathematics and the other connects to previously
unconnected fields of research from mathematics, and so on. One reason for this is that formal-
ized theories of mathematics capture only certain aspects of mathematics and leave out others
that are closely related to the actual practice of mathematics.11 In this paper I do not claim
that one perspective is ‘better’ or more ‘important’ than the other; they all provide valuable
information and can address different questions or aspects in and about mathematics. However,
for the purpose of this paper, the inconsistency we are aiming at is of mathematical rather than
logical significance and relies on the practice-based aspects of the mathematics involved. In

9More accurately, the axiomatization considered for L is ZF; then it was shown that this is consistent with
the Axiom of Choice, AC, and the additional axiom of V=L, and CH then follows from this additional axiom.
But, of course, this also means that L is a model of ZFC plus CH.

10This assumes that important logical background information is kept constant or comparable; for example,
the proofs should be equal in being correct, formalizable, etc., and of the same logical strength, for example by
not requiring different axiomatizations. Also, logical assessments of proof might change when one changes the
background logic in which the mathematics is done, for example from classical to intuitionistic.

11This is one of the main motivations for the research done in the field of Philosophy of Mathematical Practice
(PMP) (for an introduction to this field see Mancosu, 2008).
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particular, it is based on the practice of model building in modern set theory and the extensive
study of set-theoretic models it has given rise to. This is what we will examine in the next
section.

2.1 The development of modern set theory

Set theory, as it is done today, has been shaped by groundbreaking methods and results obtained
in the 1960s. What we call the ‘modern’ development of set theory has not been the object of
much investigation in historical studies yet;12 however, it is essential prerequisite knowledge for
understanding current set-theoretic practice and the new concept of inconsistency I introduce
in this paper. I will therefore give an overview of the development since the 1960s concentrating
on the relevant issues of independence and model building.13

The mathematical value of being able to explicitly produce models of set theory and study
what holds in them had been theoretically understood since Gödel’s incompleteness theorems.
Finding models of statements (as well as finding models for their negations) that were conjec-
tured to be independent from some axiomatization of set theory has provided a reliable way
of actually showing their independence ever since. Gödel (1940) himself developed a very im-
portant model, the so-called constructible universe L, with which he showed that the Axiom of
Choice, AC, is consistent with ZF, and that the Continuum Hypothesis, CH, is consistent with
ZF+AC. However, actually building such incompatible models explicitly, or even only one of
them, was hard work. One reason for this is that for a long time the techniques to build models
were not very broadly adaptable: Gödel’s method of building L, by using constructible sets,
cannot be adapted to show complementary results, namely, to show that ¬AC is consistent
with ZF and ¬CH is consistent with ZF+AC. Other model-building techniques known during
that time, such as the construction of models with urelements, exhibited similar limitations.

This situation changed drastically with the introduction of large-scale, flexible model-
building techniques which were introduced in the 1960s, with Cohen’s technique of forcing
leading the way.14 Cohen introduced forcing to prove the consistency of ¬AC with ZF and
¬CH with ZFC, but more importantly, he provided a technique that can be applied to a very
wide variety of questions of independence: for a great number of appropriate statements P , one
can use forcing to build specific models that satisfy ZFC+P. This construction is done along
the following lines. We start from a model of ZFC15, called the ground model, and from this

12An example for this is Ferreirós (2007); notable exceptions are the work of Moore (1987) and Kanamori
(2008).

13For a more comprehensive overview of the historical development of set theory from its beginning, see, for
example, (Kanamori, 2010).

14There are other such model-building techniques, such as Ultraproduct constructions and Scott’s Ultrafilter
method (see, for example, Scott, 1961; Kunen, 1970; Silver, 1971). This was groundbreaking work for the area
of inner model theory, see, for example, (Mitchell, 2010) and (Steel, 2010).

15Actually, the meta-mathematical set-up of forcing is much more involved. The main approaches used in
practice are the Boolean-valued model approach (for more detail, see Jech, 2003) and the countable transitive
model approach (for more detail, see Kunen, 1980). The arguments of this article do not rely on the technical
details of these approaches and go through in both of them, therefore I refrain from providing further detail
here.
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build other models, the extension models. These extensions are then the models of statements
P or ¬P that are independent of ZFC. The fundamental theorem for forcing states that the
models built this way are again models of ZFC16 and are definable in the ground model. So,
one builds models via forcing that are both models of ZFC and models of an extension of this
axiomatization while having the possibility to ‘access’ mathematical truths in the extension
models from the ground model.

Here we can see how the change in perspective allowing us to focus on models as relevant
informants about independent sentences actually works: with forcing, we start from some model
of (a fragment of) ZFC and build two extensions, namely one of ZFC+P and the other of
ZFC + ¬P. The extensions are models of ZFC but they are also models of extensions of ZFC
that correspond to theories that decide the sentence P differently. This allows set theorists to
study different formal theories within the mathematical field of set theory, where the models
provide them with detailed insight into the set-theoretic truth within these models: through
the access the forcing method provides us with, one can study these models in detail. Taking
models of the negation of CH as an example, in addition to knowing that CH fails, one can
also specify how it fails, i.e. which exact cardinality of an uncountable cardinal greater than
ℵ1 the continuum takes.17

This change in perspective is actually even more pronounced than this description seems
to imply at first: in set-theoretic practice, it is often no longer explicitly considered which
theory the model extensions correspond to, apart from trivial observations as to which addi-
tional statements hold.18 Instead, one focuses on the models themselves and the set-theoretic
information they provide. As set theorist Joel Hamkins puts it:

A large part of set theory over the past half-century has been about constructing
as many different models of set theory as possible, often to exhibit precise features or
to have specific relationships with other models. Would you like to live in a universe
where CH holds, but ⋄ fails? Or where 2ℵn = ℵn+2 for every natural number n?
Would you like to have rigid Suslin trees? Would you like every Aronszajn tree to
be special? Do you want a weakly compact cardinal κ for which ⋄κ(REG) fails?
Set theorists build models to order. (Hamkins, 2012, 418)19

Nowadays, if a set-theorist wants to know if a certain statement holds in set theory, it often
requires an answer that is dependent on models along the lines of ‘It holds in the following
models and not in others...’ followed by an explanation how these models can be built and how

16As mentioned before, this also holds for fragments of ZFC. Forcing only requires a surprisingly weak
fragment of ZFC to be carried out (see Mathias, 2015).

17In general this can be a great number of cardinals. However, there are some restrictions to this, as the
continuum cannot take the size of a cardinal of cofinality ω. This follows from König’s theorem (König, 1905).

18A good example is the model Cohen produced when showing that ¬CH is consistent with ZFC. It is usually
only said that it is a model of ZFC+¬CH, although ¬CH is not considered to be a good axiom. Of course,
logically one can use ¬CH (or CH for that matter) as an additional axiom to ZFC. However giving them the
status of axioms is only justified by the desired resolution of their independence and therefore seems quite ad
hoc.

19The exact meaning of the symbols used here are not relevant for the rest of the article. They can be found
in any of the usual textbooks of set theory such as (Jech, 2003) or (Kunen, 1980).
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they interrelate.20 To push this further, new research programs have been developed, which
study the modal structure of the relation between models (e.g. Hamkins and Löwe, 2008) and
how they overlap via definability (e.g. Fuchs et al., 2015). But also research programs in
the philosophy of set theory that aim at resolving the issue of the truth value of independent
sentences have been impacted by this: Gödel’s (1947) call for the search for new axioms was the
prevalent approach for trying to decide independent statements, but nowadays programs in this
vein concentrate on building a model that has certain desirable properties to make it a good
candidate for providing information about independent statements. Which axiomatization
this model corresponds to is then only a second step that requires further research. Here,
independent statements are decided according to the way in which this desirable model decides
the statements. Examples for such programs are (Woodin, 2001a) and (Woodin, 2017); we will
discuss this in more detail in the next sections.

Summarizing, we can say that the introduction of model-building techniques such as forcing
has had a significant impact on set-theoretic practice in terms of results, methodology, research
goals and research topics. Akihiro Kanamori, one of the few set theorists giving a historical
account of set theory from the introduction of forcing onward, describes forcing and the study
of models it enables as having been a deeply transformative experience for the mathematical
field:

If Gödels construction of L had launched set theory as a distinctive field of
mathematics, then Cohen’s forcing began its transformation into a modern, sophis-
ticated one. [...] Set theory had undergone a sea-change and with the subject so
enriched, it is difficult to convey the strangeness of it. (Kanamori, 2008, 351)

He concludes with the following assessment:

Forcing has thus come to play a crucial role in the transformation of set theory
into a modern, sophisticated field of mathematics, one tremendously successful in
the investigations of the continuum, transfinite combinatorics, and strong proposi-
tions and their consistency strength. In all these directions forcing became integral
to the investigation and became part of their very sense, to the extent that issues
about the method became central and postulations in its terms, ‘forcing axioms’,
became pivotal. (Kanamori, 2008, 374)

So, we see that in the mathematical field of set theory the independence phenomenon is not
the end point of its overall research endeavour. Instead, it is the starting point of the majority
of the research done today. The logical basis of having incompatible models for an independent
sentence can be made mathematically specific by being able to target mathematical statements
that are of special import to set theory and build models specifically tailored towards making

20A nice example on how these mathematical developments impact approaches in the philosophical debate
in set theory can be found in (Maddy, 2017), in which she revises one of her foundational goals for set theory
from (Maddy, 1997, 26) to accommodate this dependence on models.
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them true or false. This is strictly more than knowing the simple fact that a sentence is
independent from one formal theory—it shows how the sentence behaves over incompatible
models of (possibly different) formal theories of the mathematical field of set theory as well
as showing how the models of these (possibly different) formal theories behave and interrelate.
Through these constructions we can gain much additional knowledge about these sentences, the
models in which they hold and the theories that may decide them or not. What is even more
important: to set theorists, all of this knowledge is decidedly set-theoretic, meaning that it gives
us insight into the structure and theorems of the mathematical field of set theory. So the logical
phenomenon of having incompatible models of the same formal theory that decide a sentence
P differently gains further mathematical traction: these models are not merely vehicles for
carrying diverging truth values for the statement showing its independence; they become the
relevant objects of research for the practice.21 This is a major ingredient for the inter-model
inconsistency which will be properly defined in Section 3; I will spell out more closely what this
means in the next section.

2.2 The practice of models of set theory

In the last section, we have seen that modern set-theoretic practice22 very much depends on
the practice with models of set theory. This practice pursues two very fundamental research
endeavours.23 First, set theorists want to know if certain set-theoretic statements are true or
false. For statements that can be decided in (some sufficient fragment of) ZFC this goal is
achieved by proving or disproving the statement. For statements independent of ZFC this
method is not viable (within ZFC). However, we have seen in the last section that model-
building techniques like forcing provide us with a powerful method to tackle this problem. We
can investigate the independent statements in different models of set theory, gaining much
knowledge about when they are true inside a model or false inside a different one. Second, set
theorists want to gain as much knowledge about their set-theoretic objects as possible, exploring
the full extent and variety of their field of research. Again, model-building techniques constitute
a most powerful tool, as they provide detailed knowledge about a wide variety of possible ‘set
theories’ as instantiated by models of set theory.

Both research endeavours are therefore tightly connected with the set-theoretic practice
dealing with models. In particular, they delineate two dimensions of the practice with models
in set theory—what I want to call the singular-model dimension and the multi-model dimension.

21With this, I don’t necessarily mean that they have become fundamental objects of research, as for example
claimed by Hamkins (2012). Even if we only consider sets to be the fundamental objects of research of set
theory, it remains a fact that they are investigated primarily inside some model of set theory, and in general
their properties depend on the model in which they are studied.

22When I write about ‘practice’ here, I refer (mainly, but not exclusively) to the professional mathematical
output of the set-theoretic community, like textbooks and research articles. This includes, in particular, the
books and articles referred to in this paper. I will therefore refrain from listing more works except for the most
recent and very comprehensive Handbook of Set Theory (Foreman and Kanamori, 2010).

23Of course, I do not claim that these are the only research endeavours of set-theoretic practice. Also, they are
not specific to set theory. Interest in the truth of mathematical statements as well as gaining broad knowledge
about the respective field of research is part of research in every mathematical discipline.
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Before detailing what these dimensions are, let me emphasize that I do not claim that they
instantiate two different practices in set theory that are pursued by different parts of the
community (or, even stronger, two different communities). My overall argument in this section
is that they are aspects of the same practice of one community, but nonetheless are incompatible
in a way that gives rise to what I will call the inconsistent character of the practice of set theory.
The rest of this section is dedicated to clarifying and arguing for this idea.

Considering the practice of models of set theory under the singular-model dimension means
that we concentrate on the knowledge one model can provide. As an example, let us take the
aforementioned model L. It was originally built to show the consistency of AC and CH, but
its study has contributed much more than this to set-theoretic knowledge. Of major impact
was, for example, the result that large cardinals that are greater than measurable cardinals do
not exist in L (this goes back to Scott, 1961), and that L gives rise to fine-structure theory (see
Jensen, 1972; Schindler and Zeman, 2009). So, set-theoretic study of a specific model24 answers
questions about consistency of statements, which set-theoretic entities it accommodates, what
properties its elements have, etc.

The multi-model dimension, on the other hand, concentrates on the way in which different
models relate: be it how models can arise from other models or how mathematical statements
behave over different models. Examples are general investigations into how models can be
built from other models (prime examples being the already discussed forcing and inner model
program and specific theories that are dedicated to such questions, such as (Fuchs et al., 2015))
or more specific questions like investigating absoluteness,25 or how sentences change their truth
values when going from one model to another.26 For a concrete example, take the fact that
L is the smallest transitive model of ZF that contains all ordinals (see, for example, Jech,
2003, 182–183). That tells us much about how models of ZF relate: transitive models of ZF
with the same ordinals and under a standard interpretation of ∈ always give rise to the same
constructible universe L.27 Another example is that the fine structure of L has been essential in
the first comprehensive study of how to generalize the technique of forcing from sets to classes,
therefore providing new models to consider and new facts about how they relate.28

When pursuing the research endeavours outlined above, the lines of reasoning employed for
each of them are deeply incompatible with one another, indeed inconsistent: when searching for
the truth value of independent statements, the reasoning rests on providing a good argument
for why the way a specific model resolves the independent statement under consideration29

24This often involves not only one model but a class of models that is similar in construction to the model.
In the case of L, these are model like L[A] for a parameter A, meaning that we build the models according to
the same construction process as L but relative to the use of A.

25Sentences that don’t change their truth value over models are called absolute (see, for example, Shoenfield,
1965)

26For forcing, there are sentences that can be fixed by some model so it cannot change when going to further
models and there are sentences that remain changeable. (See Hamkins and Löwe, 2008).

27In particular, the L of L is again L.
28This is done in Friedman (2011). Class forcing is the name for notions of forcing where the underlying

partially ordered set is class-sized. Although specific class forcings have been used since the seminal Easton
(1970), Friedman provides the first general study.

29Under the ‘search for new axioms’ approach, which was prevalent before the focus on models as outlined
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is the ‘right’ way to decide it, meaning that truth in that model informs us about the truth
simpliciter of the statement. This argument is fundamentally informed by the singular-model
dimension of the practice as the success of the argument rests on detailed information about
the specific properties of the model and the set-theoretic statements that hold or fail in it. So,
the singular-model dimension provides a valuable and straightforward strategy for reasoning
about the truth value of independent statements. In contrast, the multi-model dimension of
the practice, while still providing a helpful tool for finding model candidates, has no further
significance for deciding the truth value of the statements under consideration.

In the case of exploring the full extent of set theory, the situation is reversed. Here, the
reasoning of set theorists is fundamentally informed by the multi-model dimension; its aim lies
in providing many models of set theory, studying how they can be built (or otherwise reached)
from one another and how sentences behave when going from one model to another. So, the
multi-model dimension provides a valuable and straightforward strategy to investigate what
‘set theories’ there are by answering questions like ‘What models of set theory exist?’, ‘How are
these models connected (e.g. are they extensions or grounds of one another)?’ and ‘What does
this tell us about how the truth of independent statements varies over different models of set
theory?’ In contrast, the singular-model dimension of the practice, while still contributing to
this research by providing additional knowledge about specific models, is of only instrumental
import to this kind of reasoning.

So, while both dimensions play a certain role in both lines of reasoning, their respective
role differs fundamentally. If one dimension is particularly informative as the basis for one type
of reasoning, the other dimension is reduced to only providing technical tools. If set theorists
ask whether CH is true or false, they cannot accept equally all the models they obtain in the
multi-model dimension as models of set theory, as this would lead to reasoning that justifies
a conclusion about the truth simpliciter of CH as being both true and false (according to
its truth value in different models of set theory). If set theorists want to know what other
‘set theories’ exist and how they are related (therefore asking the questions about models of
set theory from above), they cannot accept that these models of set theory inform them on
the truth simpliciter of CH, as this would again lead to reasoning that justifies a conclusion
about the truth simpliciter of CH as being both true and false (according to its truth value
in different models of set theory). In this sense, reasoning in set-theoretic practice is deeply
incompatible, because set theorists employ contradictory assumptions when following each line
of reasoning. If set theorists both assume that all the models are models of set theory and
they inform us about truth simpliciter, we arrive at a contradiction. However, if we reject
one of these assumptions, we don’t do justice to the actual practice of set theory; as we have
seen from the discussion in the last and present sections, current set-theoretic practice jointly
pursues both of these lines of reasoning by pursuing both of the above research endeavours and
contributing to both of the above dimensions of practice.

In the inconsistency debate in the sciences, such an inconsistent situation is described as

in Section 2.1, this would have been the way in which one specific axiomatization decides the independent
statement.
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pertaining to reasoning (patterns). As correctly noted by Brown (2015, 416-7), most philoso-
phers who argue for the existence of (interesting) cases of inconsistencies and their toleration
in the sciences do so with respect to the reasoning of scientists, rather than their beliefs. The
main issue is not the question of whether scientists held inconsistent beliefs at any given time,
but whether the putative presence of inconsistent assumptions in their scientific reasoning gave
way to explosion.30 Until now, I have analogously argued for the claim that the practice of
set theory is inconsistent as it employs mutually inconsistent reasoning patterns. Now, I want
to defend the stronger but independent claim that the inconsistent practice in set theory even
leads to inconsistent beliefs.31

In current practice, set theorists accept both models that decide CH as true and models
that decide CH as false as providing putative evidence about CH. This situation occurs be-
cause some incompatible models, which decide CH differently, not only provide set-theoretic
knowledge, but also provide justification for a belief about the truth simpliciter of CH, in fact
a knowledge claim about the truth simpliciter of CH.32 In other words, set-theoretic practice
gives rise to justified belief that CH is true and justified belief that CH is false. This, again,
means that set-theoretic practice is inconsistent not only with regard to reasoning, but also
with regard to the collective epistemic situation of the set-theoretic community, as it gives rise
to contradictory justified beliefs. But clarification is still needed to meet possible objections.

Firstly, let us come back to a claim I made at the beginning of this section, namely, that
we have one practice of set theory that comprises both dimensions, instead of giving rise to
two practices. Evidence for that can be found in a most different setting: standard textbooks
of set theory treat the dimensions alluded to here as part of the same practice.33 Practitioners
of set theory that can be identified as emphasizing the significance of different dimensions do
nonetheless work together frequently and fruitfully. One example is Joel Hamkins and Hugh
Woodin (see e.g. Hamkins and Woodin, 2000, 2005, 2018). Deborah Kant recently conducted
an interview study with 28 set theorists. She comes to the conclusion that set theorists agree at
the level of mathematical practice, therefore providing no evidence for the claim of the existence
of practices split along the line of the dimensions introduced above. I thus conclude that we
are justified to speak of the practice of set theory.

Secondly, when I make claims about experience or knowledge in set-theoretic practice,
30Brown (2015) uses this observation to conclude that Vickers (2013), in arguing against putative examples

of scientists holding inconsistent beliefs, simply misses the point:

A preservationist study of inconsistency in science need not claim that the scientists involved
believed an inconsistent set of sentences to be trueonly that they reasoned with sentences that
were inconsistent in a way that preserved some interesting logical property of those sentences.
(Vickers, 2013, 417)

31That is, mathematical beliefs, which are strictly larger than the sentences of some axiomatization of set
theory closed under logical consequence; see above, Section 2, p. 5.

32Obviously, these are not justified true beliefs, because I take knowledge to be veridical and therefore—on
pain of assuming dialetheism—cannot be both true and false.

33As the notions of singular-model and multi-model dimensions were introduced by the author of this article,
one will not find them under this name in textbooks. But one can find the set-theoretic results and methods I
subsumed under these dimensions there.
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I assume groups to be the epistemic agents, on the collective level of the community, not
individuals or particular research groups.34 To illustrate this point: even if research group A
spends all their lives working only with models of ZFC+X and research group B does the same
for models of ZFC+¬X, they both contribute to the collective knowledge of the community
about models of set theory that do or do not fulfill X. This leads to extensive knowledge and
experience of the community with models incompatible with respect to X and in turn to our
claim about justified belief in contradictory statements.35

Concluding, let me explain the scope and implications of my claim that the practice of set
theory is inconsistent. First, my claim is descriptive. By diagnosing an inconsistency at the level
of set-theoretic practice, I do not intend to suggest or prescribe a change of the practice: it is
fully reasonable for set-theoretic practice to pursue the endeavours formulated above. As such,
it is fully reasonable for the practice to comprise both the multi-model and the singular-model
dimensions. As it is now, set-theoretic practice is in a state of indecision about which way to go
or even whether such a way has to be chosen at all. The community as a whole does not endorse
the additional commitment that only some of these models really are models of set theory, nor
has it given up on resolving the open questions of independent statements.36 Importantly, this
shows that the inconsistency has not led to suspension of judgement, as is sometimes the case
(and often normatively appropriate) when equally good evidence is found for a claim and its
negation. On the contrary, the set-theoretic community is in a state of de facto inconsistency
toleration. Set-theoretic practice can simply go on in this manner, continuing to not resolve the
tensions between these endeavours and dimensions of the practice and therefore continuing to
tolerate the inconsistency. Following the practice of set theory in the last decades, we have seen
that such a situation is not detrimental to set-theoretic progress as it has not led to stagnation,
but, on the contrary, has brought about vast and fruitful research producing impressive results.

This state of inconsistency, however, becomes a point of contention when the state of in-
decision is called into question and the de facto inconsistency toleration of the set-theoretic
community is either challenged or underwritten by advancing normative philosophical reasons
against or for it. From the inconsistency perspective developed so far, I see various philosoph-
ical programs in the philosophy of set theory as taking on this role, a claim I will preview in
Section 4 and that is argued in Kuby (forthcoming) in full. In that section, I will also show
that this new concept of inconsistency has wider consequences for the general inconsistency
debate in the philosophy of mathematics. But first, in the next section I will make the concept
of inconsistency—which I motivated, developed and defended in the previous sections—more
precise by providing a matching definition.

34See, for example, Bird (2014) for a distributive model of group knowledge.
35Tying the epistemic dimension to the group level makes it unnecessary to show that there are set-theorists

that believe both X and ¬X at the same time, therefore making a debate about inconsistent beliefs of the
individual, like the line of attack pursued by Vickers (2013), a moot point in our case.

36In the interview study by Kant this was expressed multiple times. Quotations include transcribed statements
such as: ‘I’m kind of optimistic about the things of the level like the continuum hypothesis. I think there is a
good chance that has an answer and we’ll answer it.’
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3 Inter-model inconsistency in set theory

In the last section, I detailed the inconsistency present in set-theory at the level of its practice.
In the following, I will present a new concept of inconsistency, inter-model inconsistency, which
aims at capturing this inconsistent practice. This new concept will be introduced as an inconsis-
tency in set theory. However, from the outset it is unclear what this means.37 The usual notion
of logical inconsistency is defined with respect to a formal theory. In the wider debate about
inconsistency in mathematics, this is sometimes transferred to include practices that produce
direct contradictions without specifying the formal theory behind this practice (for instance,
when such a formal theory was not worked with in the practice). An example of this is the
practice of the early calculus that operated amongst others with a parameter that was treated
as being equal to zero and greater than zero in the same calculation (see, for example, Bueno,
2017). However, the inconsistency we are to define here is conceptually situated at the level of
the collective knowledge that arises from the practice of set theory. In this situation, we are
not given one proof or calculation in which it arises and that we can simply pick out, but have
to take into account different aspects of the practice and the reasoning within it and study how
they are interconnected. It is then the body of knowledge arising from there that is targeted by
the new concept of inconsistency. This is a crucial point: it could prima facie be assumed that
by referring to ‘set theory’ we always mean the formal theory based on the axioms of ZFC.
However, we have already seen that this is not always the case. The term ‘set theory’ refers in
practice to formal theories arising from different axiomatizations that can be weaker or stronger
than ZFC. More importantly, there is a use of the term ‘set theory’ that is not primarily being
defined by some specific formal theory, but rather refers to what I have called ‘the mathematical
field of set theory’. This is the body of knowledge to which set-theoretic practice gives rise and
which goes beyond the set of sentences that follow from some axiomatization.38 For example,
it includes knowledge about how sentences behave over different models of set theory (that in
turn can correspond to different formal theories): set theorists know that CH can be forced to
hold or to fail over arbitrary models of set theory. This has consequences for how CH can be
decided (or not) by certain formal theories; for example, it follows that CH cannot be decided
when adding large cardinal axioms to ZFC.39

We now define the new concept of inconsistency as an inconsistency in the mathematical
field of set theory, meaning the body of knowledge the practice gives rise to. With the following
definition, we aim at grasping the inconsistent practice of set theory as closely as possible:

Inter-Model Inconsistency in Set Theory (MIST) The mathematical field of set theory
is inter-model inconsistent if there are at least two first-order models of some appropriate

37I would like to thank the anonymous reviewer for pressing me to clarify this point.
38This is not specific to set theory and indeed is comparable to other mathematical fields, such as analysis and

differential geometry as well as more formalizable fields like algebra and number theory. Here, despite being
able to give axiomatizations and formal theories depending on them, the usual understanding when talking
about ‘algebra’ or ‘analysis’ is that of a non-axiomatized, informal body of knowledge.

39This is due to the fact that CH can be forced to hold or fail via small forcing notions that are not impacted
by large cardinals, see Lévy and Solovay (1967).
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axiomatization of set theory, M1 and M2, and at least one statement P such that

1. P holds in one model and ¬P holds in the other, so either M1 |= P and M2 |= ¬P or
M1 |= ¬P and M2 |= P (Incompatibility Clause);

2. P is considered to be an important open problem40 by the set-theoretic community. A
resolution of this problem can have fundamental consequences for the entire field, and
this is shown by concrete mathematical results. (Open Problem Clause); and

3. the models M1 and M2 (and possibly others like them) are recognized to represent the
mathematical field of set theory. This recognition is grounded in the practice of the field,
meaning that extensive research is done which leads to plentiful and fruitful knowledge
about M1 and M2, recognizing them as models of set theory that decide the statement P
differently. (Models of Set Theory Clause)

We say that M1, M2 and P witness the inter-model inconsistency if they fulfill the above clauses.

To show that MIST matches the inconsistent practice, let us look more closely at its different
clauses. The Incompatibility Clause describes the basic logical situation of non-elementarily
equivalent models of set theory and the fact that this can be made mathematically specific
by being able to actually build such models and investigate the mathematics within them (see
the discussion at the beginning of Section 2). As such, this clause also provides the logical
and mathematical basis for MIST. However, as we have already discussed in Section 2, this
clause alone does not provide us with an inconsistency: neither a logical one (as we don’t
have a contradiction within a formal theory) nor one related to the inconsistent practice of set
theory. Taken by itself, the Incompatibility Clause only says that the sentence P can be shown
to be undecidable in the base theory of M1 and M2, therefore simply matching the notion of
independence in set theory.

The Open Problem Clause now encapsulates different aspects of the practice that we iden-
tifies as relevant for its inconsistent character in Section 2.2. Primarily, this is the research
endeavour to resolve the question of truth values for independent statements and the way in
which this emphasizes the singular-model dimension of the practice. The clause further provides
a sharpening of the general situation given in the Incompatibility Clause. Instead of simply
grasping facts about independence, this clause addresses the research that is done to resolve
them. It also clarifies that MIST does not hold for independent statements generally, but only
for ones that are considered to be of special mathematical interest for set theory. This special
interest is determined by the way these independent statements are treated in set-theoretic
practice, depending on how much research has been done about them, which role they might
play in further developments in set theory, how many and which results they produce, etc. In

40This means that it is unknown whether P is true or false. If P is solvable in ZFC this is simply the question
of whether it can be proven or refuted. However, as we have seen in Section 2.1, many of the sentences currently
considered in set-theoretic practice are not of this kind. Here, the question becomes more complicated, because
we first have to clarify the mathematical premises to resolve this question (such as under which axiomatization
or in which model we consider them).
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general, which P satisfies these conditions has to be clarified on a case-by-case basis. Examples
are, amongst others, sentences such as CH, the generalized Continuum Hypothesis GCH,41 the
Borel Conjecture,42 or Suslin’s Hypothesis.43 Statements that do not fulfil the Open Problem
Clause are, amongst others, the Axiom of Choice (as it is generally regarded to be decided),
the statement that ZF(C) is consistent (as this is generally assumed to be true; also, it being
false would imply a logical inconsistency, therefore putting it outside the purview of MIST), or
the original Gödel sentence used in his Incompleteness Theorem (it was constructed ad hoc to
be independent, but is of no further set-theoretic importance or interest).44

The Models of Set Theory Clause captures the aspects of the practice of set theory opposed
to the ones in the Open Problem Clause. As detailed in Section2.2, these aspects are connected
to the research endeavour aiming at exploring the full extent of set theory and the associated
multi-model dimension. It emphasizes the essential practice of recognizing those models as
models of set theory which significantly contribute to set-theoretic knowledge. Like the Open
Problem Clause, this clause also places constraints on the entities whose existence fulfills the
Incompatibility Clause, but this time on the models that give rise to independence (instead of
the sentence P under consideration, as in the Open Problem Clause). Again, a decision about
which models fulfill these requirements is dependent on case-by-case studies. Candidates for
models that will not give rise to MIST are ones that do not fulfil enough of ZFC, for example,
missing the Powerset Axiom and/or the Axiom of Foundation.45

Taking all of the clauses of MIST together, I claim that the concept of inter-model in-
consistency matches the inconsistency we described in the practice of set theory. Recall, the
inconsistency in the practice of set theory as described in Section 2.2 arose out of the way the
practice reasons about the truth of a suitable P and the truth of ¬P either as truth simpliciter
in answer to the open problem of P or as truth in a model under the perspective of acquir-
ing knowledge about the breadth of set theory. This situation is mirrored in MIST: taking
the Incompatibility Clause as the common logical and mathematical basis, the inconsistency
arises out of jointly acknowledging what is described in both the Open Problem Clause and
the Models of Set Theory Clause as fundamental parts of the mathematical field of set theory.
Specifically, this includes the knowledge about how models can make some suitable P true or

41CH says that the size of the continuum 2ℵ0 = ℵ1 and GCH generalizes this to the other cardinalities
2ℵα = ℵα+1 for every ordinal α.

42The Borel Conjecture states that all strong measure zero sets are countable. For more detail see, for
example, (Jech, 2003, 564)

43Suslin’s Hypothesis states that there are no Suslin Trees. For more detail see (Jech, 2003, 274).
44It might happen that there is a sentence P suitable for MIST that has logically equivalent formulations

that give rise to mathematically different statements (if the Axiom of Choice would still be considered to be
open, that would, for example, hold for Zorn’s Lemma). If these statements are not considered as important
open questions in set theory, they will not give rise to MIST: although fulfilling logical requirements such as the
Incompatibility Clause, they do not fulfil the additional requirements by practice. However, this is not really
problematic as every discussion about their truth value will be connected back to the discussion about the truth
value of P . Therefore the set-theoretically relevant situation of MIST for P is used as a proxy for the logically
equivalent statements.

45Note that we always regard models that decide a statement P satisfying the Open Problem Clause as ones
that differ substantially. This follows from the significance these sentences have for set theory according to
the Open Problem Clause. A possible objection along the lines of intertranslatability of models as discussed in
(Steel, 2004, 7) therefore does not hold for sentences which fulfill the clauses of MIST.
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false, the fact that set theorists recognize this as set-theoretic knowledge in their practice, and
that this knowledge provides possible answers to the question about the truth simpliciter of P .

This matches the inconsistency in the practice not only in the way the inconsistency holds,
but also in the way in which it can fail: if we have a statement P for which the Open Problem
Clause fails yet corresponding models M1 and M2 satisfy the Models of Set Theory Clause, P
does not witness inter-model inconsistency. As the search for the truth simpliciter of P is not
pursued, the knowledge provided by the Models of Set Theory Clause is just knowledge about
truth relative to these models and nothing more. If, on the other hand, we have M1, M2 and
P that satisfy the Open Problem Clause but the Models of Set Theory Clause fails, the truth
simpliciter of P can be decided according to the one model of set theory that decides P (as the
other is not viewed as providing evidence about the truth simpliciter of P ). Again, P does not
witness inter-model inconsistency.46 But for each of these scenarios, there is no inconsistency
in practice, and in both cases, practice does not provide justified belief that P and that ¬P in
the sense specified in Section 2.2.

4 Consequences and applications

Over the last sections, we have introduced a new concept of inconsistency in set theory. The
main motivation for this introduction is to relate the debate about inconsistency in mathematics
more closely to the inconsistency debate in the sciences. To address this, let me relate MIST
to the bigger picture of various concepts of inconsistency in the different debates.

As mentioned in Section 1, inconsistencies in the sciences are said to arise within a theory,
between different theories, or between theories and observations. Here, inconsistencies are
treated in an informal manner, as they do not occur in formal theories. In contrast to the science
context, until now, inconsistency in mathematics was tied to the existence of a contradiction in
a formal theory. In my view, the situation in set theory shows that there is a need for grasping
the phenomenon of inconsistency in mathematics in a more fine-grained manner. This does not
mean that MIST is informal in the same sense as inconsistencies in the sciences, as it has a logical
basis as expressed in the Incompatibility Clause. However, it is also not completely formal, as
it relies heavily on informal aspects of the practice. Specifically, I see MIST as describing a
situation from a mathematical practice that is analogous to the way inconsistencies between
theories occur in the sciences. The current situation between the Standard Model and General
Relativity is usually taken as an example for such a case. Here, the inconsistency does not
occur in one theory but comes up because two well-confirmed (collections of) theories disagree
on the fundamental nature of spacetime: quantum field theories describe a fixed background
and a preferred splitting of spacetime into space and time, while General Relativity describes
a dynamical spacetime, with no preferred reference frame. This becomes a problem when

46Note that we do not consider the case of sentences and models for which the Incompatibility Clause fails.
Such sentences are not independent and, as we have seen, they are handled differently by simply searching for
proofs of them or their negation.
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unification attempts across the whole body of knowledge of fundamental physics are made.47

Inter-model inconsistency addresses an analogous situation in the formal sciences. Here, the
mutually inconsistent theories are instantiated by models of set theory that disagree on a
relevant statement from the body of knowledge of set theory: remember that the models under
consideration are not only models of the base theory (e.g. ZFC) but also models of extensions
such as ZFC+CH. At the same time, just as physicists working in either General Relativity
theory or Electroweak theory and Quantum Chromodynamics are not impeded in their work
by the inconsistency when working within the confines of each theory, set theorists are not
impeded in their work when working within the confines of this or that model.48

So, with inter-model inconsistency we have broadened the topic of inconsistency in math-
ematics in a way that brings it closer to the more varied treatment of inconsistencies in the
philosophy of science. This opens a wide field of further questions and possible transfer opera-
tions between the inconsistency debate in the sciences and in mathematics. The most important
point in this regard is whether and how MIST gives rise to inconsistency-toleration strategies.
There is indeed a philosophy that can be interpreted to address the situation described by
MIST. This is the so-called universe/multiverse debate, which has been one of the main points
of discussion in the philosophy of set theory in the last decades. Here, universism claims that
there is an intended model of set theory that provides us with the truth simpliciter of the
statements independent from axiomatizations of set theory. The view can be spelled out in
different ways, for example, by discussions about the exact ontological status of this intended
model, how we can approximate it, etc.49 Recent examples of programs developing universist
positions are Woodin (2001b) and Woodin (2017).50

Multiversism is, roughly, the counterposition to universism and, in its broadest form, denies
that there is one intended model of set theory.51 As their positive goal, multiversist programs
aim at recognizing the variety of set theory provided by the different models available and
explore their philosophical significance: what the exact ontological status of these models is,
and what this tells us about the truth value of independent statements, a question which is
handled very differently in diverse multiversist approaches.52

This situation is discussed in detail in the accompanying article of Kuby (forthcoming). He
47See Carlip (2001) for a discussion of various approaches aiming at unification by quantizing gravity. Note

that mine is a very loose characterization of this situation, but in any case the details do not impact the analogy
I want to draw here, which is based only on the fact that there are mutually inconsistent theories for a broader
field of research in the sciences.

48The reason why they are not impeded might be different, however, as they are, for instance, tied to the
different way the practices in mathematics and the sciences (do not) rely on empirical information.

49Non-realist universist views are sometimes called absolutist views (see, for example, Koellner, 2013). An
example is the position of Arealism in Maddy (2011).

50Note that these really are different programs: while both were pursued by Woodin at different times, they
differ in their concrete methods and results. Amongst others, if the program based on Ω-logic (Woodin, 2001b)
is successful, CH will be decided negatively; however, if the ‘Ultimate L’ program (Woodin, 2017) is brought
to successful conclusion, CH will be decided positively. Both programs are currently in progress as major
conjectures are still open.

51Nowadays, a range of different versions of multiversism have been developed; see, e.g., the overview in Antos
et al. (2015).

52These programs range from full-blown Platonistic pluralism like Hamkins (2012) to non-realist pictures like
Arrigoni et al. (2013) or the more methodologically oriented views of Steel (2014).
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shows that various research programs in set theory and its philosophy, such as the universist
and multiversist programs, implicitly respond to MIST by proposing resolutions to inter-model
inconsistency. (Kuby, forthcoming) investigates in detail how MIST gives rise to a variety of
consistency-preserving and inconsistency-tolerating strategies. To give a preview of the fruit-
fulness of introducing MIST, I will give a brief overview of the results of (Kuby, forthcoming)
and refer to it for the complete argument.

Kuby (forthcoming) discusses three programs:53 the Ultimate L program by Woodin (2017),
the set-theoretic multiverse program by Hamkins (2012) and the hyperuniverse program by
Friedman (see Arrigoni et al., 2013; Friedman and Ternullo, 2018). First, the Ultimate L pro-
gram is taken as an example for an inter-model consistency-preserving strategy: the program
aims to eliminate the Models of Set Theory Clause in a way that recognizes just one of the
incompatible models from the Incompatibility Clause as the model representing the universe
of set theory (i.e. the intended model of set theory). This model is called Ultimate L, as it is
similar to Gödel’s model L in many respects (for example, by being impervious to forcing), but
still allows for large large cardinals (which Gödel’s L does not).54 If we acknowledge Ultimate
L to represent (an approximation of) the set-theoretic universe, not only does the Models of Set
Theory Clause fail, but in turn the Open Problem Clause is answered: in Ultimate L, CH holds
and therefore it is not an open problem anymore. This is a inter-model consistency-preservation
strategy because it eliminates the inter-model inconsistency in set theory completely by get-
ting rid of the two MIST Clauses that match the inconsistent practice of modern set-theory.
More precisely, using the classification of Bueno (2017), it is a case of consistency preservation
via information restriction as we eliminate the models inconsistent with the truth of CH by
excluding them from the set-theoretic universe.

The set-theoretic multiverse program goes a very different route: it argues that we should
fully embrace the Models of Set Theory Clause by recognizing that there are incompatible
universes of set theory, which Hamkins assumes to exist in a Platonistic manner. More than
that, Hamkins (2012) argues that the different models stand for different conceptions of sets,
each giving rise to its own set-theoretic universe, therefore making the incompatibility of the
models more fundamental than being only instantiated by deciding independent statements
differently. However, the multiverse program also partially resolves the inconsistency described
in MIST: according to Hamkins, the question of CH is not an open problem, because it has
already been answered—in, however, a very peculiar way: instead of deciding CH in one way
or the other, Hamkins sees the problem as resolved by the detailed knowledge set theorists have
about the behaviour of CH over the different models. If one accepts this as an answer to CH,
then the Open Problem Clause is resolved. Kuby (forthcoming) argues that this instantiates
a weak form of inter-model inconsistency toleration: the Open Problem Clause gets resolved
when assuming a changed meaning of what an answer to the question of CH is. However, the

53In the following, we will only discuss the situation where the undecidable sentence P from MIST is the
Continuum Hypothesis. Note, however, that all three programs work for other undecidable sentences as well.

54Large large cardinals are generally the large cardinals above and including the measurable cardinals, sepa-
rating them from the smaller large cardinals such as inaccessible cardinals.
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Models of Set Theory Clause is strengthened.
The hyperuniverse program can be interpreted to employ a full-blown inter-model inconsis-

tency toleration strategy. In essence, the hyperuniverse program proposes a compartmentaliza-
tion strategy to deal with the situation of MIST. Each compartment consists of a collection of
models that satisfy some intrinsically justified axiom (additional to ZFC) that in turn resolves
some of the independent sentences, such as CH. So, there are different compartments that sat-
isfy these sentences differently and we have reason to adopt the models in these compartments
as genuine models of set theory because they correspond to a well-justified axiomatization. In
this sense, we can see that the hyperuniverse program does not reject or resolve any of the
clauses of MIST. In particular, it retains both the Open Problem Clause55 and the Models of
Set Theory Clause. The program progresses by ‘thinning out’ the models that count as models
of set theory because it only recognizes intrinsically justified models. However, in general, this
still leaves a wide variety of models to be considered as set-theoretic and we are well justified
to acknowledge all of them as set-theoretic. It also organizes the models (and corresponding
theories) in a way which makes it easier to track and compare the different versions of the body
of knowledge of set theory the compartments give rise to. All of this is aimed at providing
an answer to the open question of CH and similar important independent statements. So,
in the end, it provides a way of doing further set-theoretic research while retaining the un-
derlying inter-model inconsistency (strengthening it to something like an ‘inter-compartment’
inconsistency).

According to Kuby (forthcoming), the last two programs provide inter-model inconsistency
toleration strategies. To be sure, none of the proponents of these programs use (or mention
the need for) para-consistent logics, which seems to divert from the usual discussion in the
philosophy of science (see, for example, Bueno, 2017). To explain this difference, one has to
keep in mind that the proponents, as logicians, only classify ‘contradictions in formal theories’
as inconsistencies—and no logical inconsistency has been detected in the cases discussed. Fur-
thermore, from a logical point of view, set theorists are still justified to work with classical and
have no need to adopt a para-consistent logic: after all, MIST describes an inconsistency in the
body of knowledge of set theory and this is not the logical notion of inconsistency. We can con-
clude that, even if philosophical programs in set theory started to adopt para-consistent logics
to explain how their compartmentalization strategies work, we expect from a MIST perspective
that the mathematical practice will continue to use classical logic.56

However, the question of how to accommodate inter-model inconsistency toleration in the
philosophical programs remains open. Kuby (forthcoming) elaborates how Hamkins manages
to avoid the use of para-consistent logics by re-defining what it means for an open question in
set theory to be answered. However, he also points out that a similar strategy is not available
for Friedman’s hyperuniverse program. Here, MIST provides a challenge to the program: by

55Indeed, one main motivation of the program is to find answers to the truth of CH and similar statements.
56This addresses a worry by Vickers (2013, 238) as to what can be gained by reconstructing a practice

employing classical logic by means of a para-consistent logic framework. In the case of MIST, the answer is
clear: the gain is a better understanding of global views on the practice, while leaving the actual mathematical
work with the logic used by its practitioners intact.
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pointing out that the program employs an inconsistency-tolerating strategy, it requires an
answer to how such a toleration can be accommodated on a philosophical level even if it
does not require the use of para-consistent logic on the mathematical level. This shows that
reinterpreting existing programs in the philosophy of set theory from the MIST perspective
provides new insight: first, we see that it is possible to present inconsistency-toleration strategies
that do not have to lead to the use of para-consistent logics; and second, it requires programs
like Friedman’s to provide further clarification on how to philosophically justify its strategy.

Further, MIST might also provide motivation to develop new programs. The multiverse
programs discussed above both gave rise to inconsistency-toleration strategies. Kuby (forth-
coming) supplements this by outlining a possible program that is multiversist in nature and yet
provides a consistency-preservation strategy, which he calls the algebraic multiverse. Such a
multiverse program rejects the very notion that there is an open problem regarding CH in the
first place, therefore no need arises to provide an answer. Such a view is reminiscent of the way
in which algebraic fields like group theory handle questions of the kind ‘Does the commutative
property hold?’ This is not regarded as an open question in group theory. In fact, it is not
even a well-formulated question, as it can only be answered with respect to a certain domain,
e.g. along the lines of ‘Is the relation of a certain group commutative or not?’ In the same way,
this multiversist position argues that there is no open question regarding CH, i.e. there is no
fact of the matter about the truth simpliciter of CH. Instead, we just work with some models
where CH holds and some where it does not hold. So here, the Open Problem Clause does
not get answered as is the case in Hamkins’ multiverse, it simply gets rejected outright. This,
in turn, can be seen as analogous to a compartmentalization strategy to secure consistency in
the sense of Bueno (2017, 240). Such a consistency-preservation strategy is not possible for a
formal theory that is logically inconsistent in the usual sense, as such a theory has no mod-
els with which compartmentalization can be achieved. Therefore, not only does MIST allow
formulation of this multiverse program in precise terms; the resolution strategy it employs is
unique to the setting of inter-model inconsistency.

After having seen various applications the notion of MIST can have, we can ask how to
generalize it. The notion of inter-model inconsistency was developed to account for an actual
case in the mathematical field of set theory, thereby making sure that there is at least one
actual instance of this kind of inconsistency in mathematical practice. A natural further step
is to ask where else we can find an inconsistency in the spirit of MIST in mathematics. As the
notion of MIST specifically targets set theory, we have to consider how one could patch this
definition to be applicable to other areas in mathematics.

A likely case of a similar type of inter-model inconsistency might be found in the specific
development stage of geometry when non-Euclidean geometries began to appear. To make
a full transfer of inter-model inconsistency to geometry, the details of (the history of) non-
Euclidean geometries would have to investigated, which is outside the scope of this paper. But
let me outline the underlying idea: with non-Euclidean geometries, statements like the Parallel
Postulate are decided differently in theories arising from different axiom systems (satisfying an
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analogy to the Incompatibility Clause of MIST). The discovery of these geometries posed both
philosophical and mathematical quandaries and, for some time, it was an open question how
to deal with the problem of relating this discovery to the concept of physical space (a variant
of the Open Problem Clause). The massive and fruitful mathematical work by Gauss, Bolyai,
Lobachevskii, Riemann and others contributed significantly to the view that these systems
should be counted as part of geometry (creating a similar situation to the one described by the
Models of Set Theory Clause) (for more details on this development, see the overview in Gray,
2019, Ch.4, Ch.5).

Supposing that the underlying inconsistency here is similar to inter-model inconsistency, the
case of non-Euclidean geometry is also interesting because the putative de facto inconsistency
toleration was resolved very quickly:

[The] acceptance of non-Euclidean and Riemannian geometries went beyond the
presentation of a consistent formalism. It marks the acceptance of the abstract view
that geometry is whatever can be described in the Riemannian formalism: one has
a very general framework, allowing for a dizzying number of concrete specifications.
Thus the door was opened to the view that there are many geometries, each of which
must be consistent, and none of which need to refer to Euclidean space, however
intuitive this may be. (Gray, 2019, Ch.5.2)

With this reaction, the community rejected the Open Problem Clause of (a geometry-related
version of) inter-model inconsistency, therefore defusing the underlying inconsistency.57 If we
transfer this resolution to the de facto inconsistency witnessed in the historical development
of geometry back to the case of set theory, it strengthens the viability of the algebraic multi-
verse approach that Kuby (forthcoming) discusses as a multiverse program with a consistency-
preservation strategy. This approach offers a solution to inter-model inconsistency by rejecting
that any of the models of set theory refer to an intended model (or other forms of realism). It
can be argued that this is a likely future for set theory as we have seen that something similar
took place in other areas of mathematics (i.e. geometry).58

5 Conclusion and outlook

The main aim of my paper was to introduce the new concept of inter-model inconsistency. If
successful, this introduction broadens the notion of inconsistency in mathematics to encom-
pass (at least) two different kinds, one based on the existence of a contradiction in a formal

57There are several works in the philosophy of set theory that compare the contemporary situation in set
theory with the situation in geometry addressed here (see, for example, Hamkins, 2012). To be sure, I suggest
that this analogy might only work at a very abstract level in that both situations are occurrences of a MIST-style
inconsistency, but the historical details are quite different and we can expect the practices to be very different
as well. See also the related discussion in Kuby (forthcoming).

58Note that—pace Hamkins—this is a different solution than the one proposed by Hamkins (2012). He ties a
very strong ontological claim to his multiverse, according to which the set theories represented by the models
all refer to genuine universes of set theory.
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theory and the other by contradictory directions in the practice that can be made exact via
models. I also argued that this notion should be considered to be a proper form of inconsis-
tency by detailing the situation of modern set-theoretic practice and arguing that MIST grasps
the inconsistency in this practice correctly. Lastly, I presented three avenues in which MIST
can contribute to existing debates. First, MIST connects the debate about inconsistency in
mathematics more closely to the philosophy of science by providing a more varied picture of
inconsistency in mathematics and showing that there actually are inter-model inconsistency-
tolerating strategies in set theory, a point that has been contested for logical inconsistency.
Second, these points also contribute to the inconsistency debate in mathematics. In particular,
MIST shows that inconsistency toleration does not always have to necessitate the introduction
of para-consistent logics. Third, I have sketched how the debate in the philosophy of set theory
can be reinterpreted in the framework of MIST and developed further. I therefore conclude
that the introduction of MIST (and its possible generalizations) can have a fruitful impact on
several debates by contributing new directions of research and a unique point of view in already
existing discussions.

Summarizing, the main motivation for introducing this new notion of inconsistency is to
provide a framework for describing a state of de facto inter-model inconsistency in a mathe-
matical field and a foundation for ways in which inconsistency toleration-like strategies can be
diagnosed in mathematics. This paper presents the theoretical foundations for the latter as
it introduces a type of inconsistency that will not necessarily trigger consistency-preservation
strategies usually found in response to logical inconsistency. Whether and how inter-model
inconsistency does give rise to toleration is discussed in Kuby (forthcoming), which is the sec-
ond part in the series of papers dedicated to the topic of inter-model inconsistency. Kuby
(forthcoming) goes back to the roots of inter-model inconsistency, the situation of undecidable
statements in set theory, showing how programs in the philosophy of set theory can be framed
as reactions to MIST and be categorized on the range leading from consistency-preservation to
inconsistency-toleration strategies.
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