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Abstract. We survey recent developments in the theory of class forcing for-

malized in the second-order set-theoretic setting.

1. Introduction

Set theorists started forcing with class partial orders to modify global properties
of the universe very soon after general forcing techniques were developed. Once
Cohen showed that CH could fail, and that indeed the continuum could assume
any reasonable value, it was natural to ask whether, for instance, the GCH can
fail unboundedly often, or more generally what global patterns were possible for
the continuum function. Since a set partial order can only affect a set-sized chunk
of the continuum function, a class partial order was required to modify the GCH
pattern unboundedly. Easton used a class product of set-forcing notions, with what
became known as Easton support, to show that the GCH can fail at every regular
cardinal, and that, in fact, any reasonable pattern on the continuum function was
consistent with ZFC [Eas70]. Since then class products and iterations, usually with
Easton support, have been used, for example, to globally kill large cardinals, to
make all supercompact cardinals indestructible, or to code the universe into the
continuum function.

There are two approaches to handling class forcing in first-order set theory. We
can use a generic filter G for a class forcing notion P to interpret the P-names and
obtain the forcing extension V [G], and then throw G away. We can also work in
the structure (V [G],∈, G) with a predicate for G. While both approaches were
used by set theorists to handle specific instances of class forcing, neither approach
could provide a robust framework for the study of general properties of class forcing
because it relegated properties of classes to the meta-theory.

Important early results on class forcing, due to Friedman and Stanley, showed
that class partial orders satisfying ‘niceness’ conditions, such as pretameness, be-
have like set partial orders. But despite the pervasive use of class forcing in set
theoretic constructions, a general theory of class forcing was not fully developed
until recently. These recent results demonstrated that properties of class forcing
depend on what other classes exist around them, establishing that the theory of
class forcing can only be properly investigated in a second-order set theoretic set-
ting. The mathematical framework of second-order set theory has objects for both
sets and classes, and allows us to move the study of classes out of the meta-theory.

Class forcing becomes even more important in the context of second-order set
theory, where it can be used to modify the structure of classes. Using class forcing,
we can, for instance, add a global well-order or shoot class clubs with desirable
properties. Both these forcing notions leave the first-order part of the model intact
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because they do not add sets. Such forcing constructions over models of second-
order set theory can actually be used to prove theorems about models of ZFC.
A fundamental result in the model theory of set theory is the Keisler-Morley ex-
tension theorem asserting that every countable model of ZFC has an elementary
top-extension (adding only sets of rank above the ordinals of the model) [KM68].
Given a countable model M of ZFC, the top-extension is built as an ultrapower
of M by a special ultrafilter, which we can construct provided that M can be ex-
panded to a model of GBC. If M doesn’t already have a definable global well-order,
we use class forcing to add it without altering M itself.1

In many ways class forcing does not behave as nicely as set forcing. Class forc-
ing can destroy ZFC; even the atomic forcing relation may fail to be definable for
a class forcing notion; densely embedded class forcing notions need not be forcing
equivalent; most class forcing notions don’t have Boolean completions; the interme-
diate model theorem fails badly for class forcing, etc. At the same time, conditions
on class forcing, such as pretameness, guarantee that these pathologies are avoided,
and these conditions hold for most familiar class forcing notions used by set theo-
rists, such as progressively closed Easton support products and iterations.

In this article, we survey most of the recent results developing a general theory
of class forcing in the second-order setting and establishing surprising connections
between properties of class forcing and the structure of second-order set theories.

2. Second-order set theories

The most natural setting for investigating class forcing is second-order set theory,
where classes are not restricted to definable collections. Second-order set theory
is formalized in a two-sorted logic with separate variables and quantifiers for sets
and classes.2 Following standard convention, we will use lower-case letters for set
variables and upper-case letters for class variables. Models of second-order set
theory are triples V = 〈V,∈, C〉, where V consists of the sets, C consists of the
classes, and ∈ is the membership relation between sets and between sets and classes.
Each element of C is viewed as a sub-collection of V consisting of those elements
which are ∈-related to it. The sets with their membership relation comprise the
first-order part of the model and the classes form the second-order part. We will
say that a formula is first-order, or Σ1

0, if it has only set quantifiers, and that a
formula is Σ1

n or Π1
n if it has n-alternations of second-order quantifiers.

Axiomatizations of second-order set theory have axioms for sets, axioms for
classes, and axioms for how the two types of objects interact. Let ZF− be the
theory ZF without the powerset axiom and with collection instead of replacement3,
and let ZFC− be ZF− together with the version of the axiom of choice asserting

1There are alternative purely model theoretic proofs of the Keisler-Morley extension theorem

using omitting types, but they do not allow as much flexibility for building additional properties
into the top-extensions.

2Indeed, second-order set theory can be formalized in first-order logic by taking classes as
the elements of the model and defining sets as classes which are elements of other classes. This

first-order formulation has not been used much in practice because, besides failing to capture
the essense of second-order models, it makes it much more difficult to work with most natural
second-order notions.

3It is shown in [Zar96] that replacement does not imply collection in the absence of the powerset
axiom, and it is shown in [GHJ16] that models of replacement in which collection fails can have
various undesirable properties.
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that every set can be well-ordered.4 Let GB− be the second-order theory whose set
axioms consist of ZF− and class axioms consist of: (1) extensionality for classes, (2)
the class replacement axiom asserting that every class function restricted to a set is
a set, and (3) a weak comprehension scheme asserting that every definable collection
is a class. More precisely, the weak comprehension scheme consists of assertions for
every first-order formula ϕ(x,A), with a class parameter A, that there is a class
C = {x | ϕ(x,A)}. We will call GBc− the theory we get when we replace the
set axioms in GB− by ZFC−, we will call GB the theory we get when we replace
the set axioms in GB− by ZF, and finally if we replace the set axioms by ZFC,
we will call the resulting theory GBc. Clearly, a model of each of the first-order
theories ZF−, ZFC−, ZF, or ZFC together with all its definable (with parameters)
collections is a model of the corresponding second-order theory. If together with
GBc, we additionally require that (4) there is a global well-order - a class well-order
of the sets - then we get the familiar Gödel-Bernays set theory GBC. Since (if ZFC
is consistent) there are models of ZFC without a definable global well-order, not
every model of ZFC together with just its definable collections is a model of GBC.
However, we can force with the partial order Add(Ord, 1) over any model of GBc
to add a global well-order class without adding sets and while preserving GBc (see
Section 3 for details of this argument which is originally due to Easton). This
means, in particular, that GBC is conservative over ZFC: anything we can prove
about sets in GBC, can already be proven in ZFC. It is also worth mentioning that
a model of ZFC without a definable global well-order is obtained by a class forcing
that is a product of forcing notions Add(κ, 1) for regular κ with Easton support.
This was first shown by Easton and later published in [Fel71].

We can get stronger theories by increasing the amount of available comprehen-
sion. Let Σ1

n-CA denote the comprehension scheme for all Σ1
n-formulas (this also

gives comprehension for all Π1
n-formulas). The theory GBC + Σ1

1-CA is already
much stronger than GBC. To explain where some of this strength comes from
and its relationship to class forcing, we need the important second-order theoretic
notion of meta-ordinals.

A meta-ordinal is simply a class well-order such as Ord, Ord + Ord, Ord×ω, etc.
In sufficiently strong second-order set theories such as GBC+Σ1

1-CA, meta-ordinals
behave very much like ordinals: any two meta-ordinals are comparable, we can
perform transfinite recursions along meta-ordinals, pretame forcing (see Section 3
for the definition) does not add meta-ordinals (the last is a result of [HW18]). The
form of transfinite recursion implied by GBC+Σ1

1-CA is the principle elementary
transfinite recursion, ETR, which asserts that every first-order definable recursion
on classes along a meta-ordinal has a solution. A solution to such a recursion would
have to be a class function from sets to classes, but it is easy to formalize this in
the second-order setting. Given a class C, for every set a, C naturally codes a class
associated to a, namely the a-th slice Ca = {x | 〈a, x〉 ∈ C}. The formal statement
of ETR is that given a first-order formula ϕ(x, Y,A), with a class parameter A,
and a meta-ordinal (R,<), there is a class S (the solution to the recursion along
ϕ) such that for every r ∈ R,

Sr = {x | ϕ(x, S � r,A)},

4It is shown in [Zar82] that different forms of the axiom of choice are not equivalent over ZF−.
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where S � r is our shorthand for the class {〈s, x〉 ∈ S | s < r}. We can stratify ETR
by permissible recursion length, so that for example, ETRω allows only recursions of
length ω and ETROrd allows recursions of length at most Ord. Allowing recursions
of longer length gives a properly stronger principle [Wil18]. Over GBC, many
consequences of Σ1

1-CA are already consequences of ETR or its fragments. It is
not difficult to see that in GBC + ETR any two meta-ordinals are comparable (it
is not known whether meta-ordinal comparability holds in the absence of ETR).
GBC + ETRω implies that there is a truth predicate for the first-order part of the
model (V,∈) because we can define the truth predicate using the Tarskian recursive
definition of truth, which is a recursion on classes of length ω. Thus, in particular,
GBC + ETR implies Con(ZFC), Con(Con(ZFC)), and much more. Remarkably,
over GBC, the principle ETROrd is equivalent to the class forcing theorem, the
assertion that every class forcing notion has definable forcing relations (see Section
4) [GHH+]. On the other hand, it is not known whether GBC + ETR implies that
pretame forcing, or, in fact, even set forcing, does not add meta-ordinals.

The theories GBC + Σ1
n-CA, for n < ω, form a proper hierarchy by strength,

culminating in Kelley-Morse set theory KM, which consists of GBC together with
comprehension for all second-order assertions. Natural models of Kelley-Morse are
rank initial segments V = (Vκ,∈, Vκ+1) of a model of ZFC with an inaccessible
cardinal κ.

We can strengthen Kelley-Morse further by adding a certain very useful choice
principle for classes. Let the class choice principle CC consist of assertions for
every second-order formula ϕ(x,X,A), with class parameter A, that if for every set
x, there is a class X witnessing ϕ(x,X,A), then there is a single class Z choosing
a class witness for every set x on its x-th slice so that ϕ(x, Zx, A) holds. The
principle CC can be stratified by complexity of the formula ϕ, yielding principles
Σ1
n-CC for n < ω. The principle Σ1

0-CC is already independent of KM [GH], but
the two theories KM and KM + CC are equiconsistent because the appropriately
defined constructible universe of a model of KM satisfies KM + CC [MM75]. Also,
the natural models V = (Vκ,∈, Vκ+1) for an inaccessible κ satisfy CC. Finally, it
is not difficult to see that GBC+CC is equivalent to KM+CC because Σ1

n+1-CC
implies Σ1

n-CA over GBC.
The theory KM + CC is bi-interpretable with a familiar first-order theory, which

we call here ZFC−I [Mar73]. The theory ZFC−I consists of ZFC− together with
the assertion that there is a largest cardinal κ which is inaccessible, meaning that
P (α) exists for every α < κ and has size less than κ (this implies, in partic-
ular, that Vα exists for every α ≤ κ). Natural models of ZFC−I are Hκ+ , the
collection of all sets with transitive closure of size ≤κ, for an inaccessible cardinal
κ. A model V = (V,∈, C) |= KM + CC can build a model of ZFC−I , which we
will call its companion model MV , by defining the obvious equivalence relation
and membership relation on all its extensional well-founded class relations. The
largest cardinal of the companion model MV is κ = OrdV , we have VMV

κ = V
and {A ∈MV | A ⊆ VMV

κ } = C (all this obviously modulo isomorphism). In the
other direction, given a model M |= ZFC−I with largest cardinal κ, the structure
V = (VMκ ,∈, C), where C = {A ∈M | A ⊆ VMκ } satisfies KM + CC, and its com-
panion model MV is (isomorphic to) M . The bi-interpretability of the two theories
allows us to investigate second-order properties in a familiar first-order setting.
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In second-order set theory, class choice CC is used to prove, among other prin-
ciples, Fodor’s Lemma for class clubs [GHK] and the  Loś Theorem for ultrapowers
[GH]. In the theory of class forcing, class choice is used to prove a version of
the intermediate model theorem [AFG] (see Section 5) and to provide a theory of
hyperclass forcing [AF17] (see Section 7).

We will say that a hyperclass in a model V = (V,∈, C) of second-order set theory
is a definable (with class parameters) collection of classes. Hyperclasses constitute
the third-order part of a model and play the role which classes play in first-order set
theory. Observe finally that every hyperclass of a model of KM + CC is a definable
class over its companion model.

3. Class forcing preliminaries

First, we will explain how to form a forcing extension of a second-order model.
For the discussion in this section, we fix a model V = (V,∈, C) |= GBC in which
we will work.

Let P ∈ C be a class partial order. Since a forcing extension by P also has
to be a model of second-order set theory, we need a notion of class P-names that
will turn into classes of the forcing extension. We define that a class Γ is a class
P-name if it consists of pairs 〈τ, p〉, where τ is a P-name and p ∈ P. The second-
order forcing language of P consists of all second-order assertions with P-names
and class P-names. A filter G on P is said to be V -generic if it meets every
dense sub-class of P in C. Given a V -generic filter G, we can form the forcing
extension V [G] = (V [G],∈, C[G]) consisting of interpretations of P-names for the
first-order part and interpretations of class P-names for the second-order part. An
interpretation ΓG of a class P-name Γ is the collection {τG | 〈τ, p〉 ∈ Γ and p ∈ G}.

Set forcings preserve KM [Ant18] and KM+CC [AFG]. Arguments of [Ant18] for
preserving KM are easily generalized to show that set forcings preserve GBC + Σ1

n-
CA+Σ1

n-CC for n < ω. The Σ1
n-fragment of class choice seems to be used crucially

to show that the forcing relation for Σ1
n-formulas is Σ1

n-definable. It is still open
whether set forcings preserve GBC+Σ1

n-CA (without class choice) or whether they
preserve ETR. Class partial orders in general can easily destroy (even just the
definable) replacement. Consider, for instance, the class partial order Coll(ω,Ord)
whose conditions are finite partial functions from ω into Ord ordered by extension.
Forcing with Coll(ω,Ord) clearly destroys class replacement but, in fact, the forcing
adds a bijection between ω and every ordinal, and so also destroys the replacement
scheme (for details, see Lemma 2.2 in [HKL+16]).

Friedman [Fri00] isolated properties of class partial orders which are precisely
equivalent to preserving GB− and GB to the forcing extension.

Definition 3.1. A class partial order P ∈ C is pretame if for every class sequence
〈Dx | x ∈ a〉 ∈ C of dense classes of P, indexed by elements of a set a, and condition
p ∈ P, there is a condition q ≤ p and a sequence 〈dx | x ∈ a〉 of subsets of P such
that each dx ⊆ Dx is pre-dense below q in P.

Intuitively, a notion of forcing is pretame, if we can reduce dense classes to pre-
dense sets. In particular, every Ord-cc (having set-sized antichains) partial order
is obviously pretame.

We will say, following Friedman, that a pair of sub-classes 〈D0, D1〉 of a class
partial order P is a pre-dense partition below q ∈ P if D0 ∪D1 is pre-dense below q
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and every condition in D0 is incompatible with every condition in D1. Given two
sequences {〈Dx

0 , D
x
1 〉 | x ∈ a} and {〈Ex0 , Ex1 〉 | x ∈ a} of pre-dense partitions below

q, we will say that they are equivalent below q if for each x ∈ a, the class

{p ∈ P | ∃r ∈ Dx
0 p ≤ r ←→ ∃s ∈ Ex0 p ≤ s}

is dense below q in P.

Definition 3.2. A class partial order P is tame if it is pretame and for every p ∈ P,

there is q ≤ p and ordinal α such that whenever ~D = {〈Dx
0 , D

x
1 〉 | x ∈ a} ∈ C, for a

set a, is a sequence of pre-dense partitions below q, then the class

{r ∈ P | ~D is equivalent below r to some partition ~E ∈ Vα}
is dense below q.

Intuitively, the significance of pre-dense partitions indexed by elements of a set
a is that each such partition gives rise to a function f : a → 2 in the forcing
extension defined by f(x) = 0 whenever the generic filter G meets the 0-th side of
the partition at x, and conversely a function f : a→ 2 in a forcing extension has a
natural partition associated with it determined by conditions deciding its values.

Friedman showed that pretame forcing notions are precisely those which preserve
GB− to the forcing extension and tame forcings are precisely those which preserve
GB [Fri00] (namely the powerset axiom).

Theorem 3.3 (Friedman). A class forcing notion in a model of GB− preserves
GB− if and only if it is pretame. A class forcing notion in a model of GB preserves
GB if and only if it is tame.

Since forcing in general preserves both the axiom of choice and the existence of
a global well-order class, pretame forcings preserve GBc−, and tame forcings pre-
serve GBc, and GBC. Tame forcings also preserve the stronger theories GBC+Σ1

n-
CA+Σ1

n-CC for n < ω, KM, and KM + CC ([Ant18], [AFG]).
We will say that an Ord-length forcing product Πα∈OrdPα is progressively closed

if for every ordinal β, Pα is <β-closed for a tail of α’s. We will also say that an
Ord-length forcing iteration {Pα, Q̇β | α, β ∈ Ord} is progressively closed if for

every ordinal β, on a tail of α’s, Pα forces that Q̇α is <β-closed. Progressively
closed products and iterations which use Easton support are tame (see [Rei06] for
details), and such class forcing notions are amongst the most commonly used by
set-theorists.

Common class forcing notions used to add classes without adding sets are also
usually tame. Friedman showed that every <Ord-distributive forcing (for any or-
dinal α, the intersection of α-many open dense classes is open dense) is pretame
[Fri00]. We will see in Section 4 that such forcing notions have definable forc-
ing relations, so that standard distributivity arguments can then be used to show
that they don’t add sets. Thus, <Ord-distributive forcing notions trivially preserve
powerset, and are therefore also tame.

We end this section with a discussion of the class partial order Add(Ord, 1),
whose conditions are partial functions from the ordinals into 2 ordered by extension.
The forcing Add(Ord, 1) is clearly <Ord-distributive, and thus, the arguments given
above show that forcing over a model of GBc with Add(Ord, 1) does not add sets
and preserves GBc. Finally, it is not difficult to see that the generic for Add(Ord, 1)
adds a global well-order. We can code every set in V by a subset of an ordinal and
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this subset must appear somewhere on the generic class function by density. We can
then well-order the sets in the forcing extension by comparing the least locations
where codes for them occur on the generic function.

4. The Class Forcing Theorem

In the context of set forcing, the forcing theorem is best understood as a theorem
about countable models of ZFC. Given a countable model M |= ZFC and a partial
order P ∈ M , we define that a condition p forces a statement ϕ(τ) in the forcing
language if whenever G is M -generic for P with p ∈ G, then the forcing extension
M [G] |= ϕ(τG). The forcing theorem then says that for each fixed formula ϕ(x), the
relation p  ϕ(τ) is definable. The forcing relation for atomic formulas is defined
by a transfinite recursion on name rank, and the definition is then extended to
all formulas by induction on complexity. More precisely, the forcing relation for
formulas σ ∈ τ , σ = τ , and σ ⊆ τ is given simultaneously by a solution to the
recursion satisfying the rules:

(1) p  σ ∈ τ if and only if there are densely many conditions q ≤ p for which
there is 〈ρ, r〉 ∈ τ with q ≤ r and q  τ = ρ.

(2) p  σ = τ if and only if p  σ ⊆ τ and p  τ ⊆ σ.
(3) p  σ ⊆ τ if and only if whenever 〈ρ, p〉 ∈ σ and q′ ≤ p, r, there is q ≤ q′

with q  ρ ∈ τ .

This recursion has length Ord, but for a class partial order P, it is a recursion on
classes. Therefore it might be expected that in the absence of ETR, the solution
to such a recursion may sometimes fail to exist.

Definition 4.1. The class forcing theorem for a class partial order P is the assertion
that the solution to the above recursion exists for P.

Clearly the statement of the class forcing theorem is expressible in the language
of second-order set theory. It internalizes the notion of the definability of forcing
relations, moving it out of the meta-theory and into the theory of the model. If
the class forcing theorem holds for a class partial order P, we take the solution of
the recursion to be the definition of the forcing relation for atomic formulas. We
can then definably extend the forcing relation to all formulas of the second-order
forcing language by induction on complexity of formulas as follows.

Suppose Γ is a class P-name and suppose ϕ and ψ are assertions in the second-
order forcing language.

(1) p  σ ∈ Γ if and only if there are densely many q ≤ p for which there is
〈τ, r〉 ∈ Γ with q ≤ r and q  σ = τ .

(2) p  ϕ ∧ ψ if and only if p  ϕ and p  ψ.
(3) p  ¬ϕ if and only if there is no q ≤ p with q  ϕ.
(4) p  ∀xϕ(x) if and only if p  ϕ(τ) for every P-name τ .
(5) p  ∀X ϕ(X) if and only if p  ϕ(∆) for every class P-name ∆.

The class forcing theorem is a statement internal to a model of second-order set
theory and makes no reference to the existence of generic filters. However, in the
case that the model in question is countable, we can interpret it to say that the
forcing relations, defined externally to the model via generic filters, are indeed
internally definable.
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It was shown by Stanley that in GB−, the class forcing theorem holds for all
pretame forcing notions, so that, in particular, all ZFC-preserving forcing notions
have definable forcing relations (see [HKS18]).

Theorem 4.2 (Stanley). In GB−, the class forcing theorem holds for all pretame
forcing notions.

It was shown in [HKL+16] that GBC alone cannot prove the class forcing theo-
rem, namely, there is a definable forcing notion for which the recursion to define the
forcing relation for atomic formulas fails to have a solution in any model of GBC
having no truth predicate for the first-order part of the model.

Theorem 4.3 ([HKL+16]). There is a definable class forcing notion P for which
the class forcing theorem fails in any model of GBC without a truth predicate for
its first-order part. In particular, the class forcing theorem fails in any model of
GBC arising from a model of ZFC with its definable collections.

The ‘in particular’ assertion is true because truth predicates can never be definable
by Tarski’s theorem on the undefinability of truth. The forcing notion P of Theo-
rem 4.3 was introduced by Friedman and codes the ∈-relation on V as a subset of
ω of a forcing extension by P. So given the atomic forcing relation for P, we can
use it to define a truth predicate for (V,∈). It follows first that the forcing P must
always destroy replacement, and second, that the class giving the forcing relation
for atomic formulas for P, whenever it exists, can never be definable because the
truth predicate never is.

Since the recursion for obtaining the atomic forcing relation has length Ord,
in GBC + ETROrd, the class forcing theorem holds for all class partial orders. In
particular, it already holds in models of GBC+Σ1

1-CA. Indeed, ETROrd is precisely
equivalent to the class forcing theorem over GBC.

Theorem 4.4 ([GHH+]). Over GBC, the class forcing theorem is equivalent to
ETROrd.

5. Class forcing pathologies

Class forcing fails to have many nice properties of set forcing. We already saw
that class forcing can destroy replacement, and in weaker second-order set theo-
ries, such as GBC, class forcing notions may fail to have definable forcing relations.
Many other pathologies can occur with class forcing even in strong second-order
theories. Class forcing notions which densely embed may not have the same forcing
extensions. A class forcing notion may fail to have nice names for sets of ordinals.
Only Ord-cc class partial orders have (weak) Boolean completions. The interme-
diate model theorem, asserting that every intermediate model between a universe
and its forcing extension is itself a forcing extension, can fail badly for class partial
orders. Ground model definability can also fail in various ways.

5.1. Dense embeddings. Recall that Coll(ω,Ord) is the forcing notion whose
conditions are finite partial functions from ω into Ord, ordered by extension. Now
consider the slightly altered partial order Coll∗(ω,Ord) whose conditions are func-
tions f : n → Ord, ordered by extension. Thus, the difference between the two
partial orders is that in Coll(ω,Ord) the domain of a condition can be any finite
subset of ω, but in Coll∗(ω,Ord), the domain of a condition must be an initial
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segment. Clearly Coll∗(ω,Ord) is a dense sub-partial order of Coll(ω,Ord). How-
ever, the two forcing notions have very different forcing extensions. Both forcing
notions clearly add a class bijection between ω and Ord, and hence destroy class
replacement. But while forcing with Coll(ω,Ord) adds a bijection between every
ordinal and ω, destroying ZFC, forcing with Coll∗(ω,Ord) does not add sets, and
hence preserves ZFC [HKL+16]. These pathologies can occur however only with
non-pretame forcing notions.

Theorem 5.1 ([HKS18]). Suppose V = (V,∈, C) |= GBC−. If P ∈ C is a pretame
class forcing notion and P densely embeds into another class forcing notion Q ∈ C,
then P and Q have the same forcing extensions.

5.2. Nice names. We can use the partial order Coll(ω,Ord) to demonstrate an-
other pathology of class forcing. With a set forcing P, we always have nice P-names
for sets of ordinals in the forcing extension. Recall that a nice P-name for a set
of ordinals has the form

⋃
ξ<α{ξ̌} × Aξ, where α is an ordinal and each Aξ is an

antichain of P. One may not expect nice names to necessarily exist for class par-
tial orders because the required antichains Aξ may not be sets. In the case of the
partial order Coll(ω,Ord), the subset of ω in the forcing extension consisting of
those natural numbers mapped to 0 by the generic function does not have a nice
name [HKS18]. Nice names do exist for all Ord-cc partial orders in GBC−, and
over GBC + ETROrd, a partial order has nice names if and only if it is pretame.

Theorem 5.2 ([HKS18]). In GBC−, if a class partial order P has the Ord-cc,
then every set of ordinals in the forcing extension has a nice P-name. Over GBC +
ETROrd, a class partial order P has nice P-names for every set of ordinals if and
only if it is pretame.

In [HKS18], the second part of the theorem used the stronger assumption KM,
but since the proof only needs the class forcing theorem, the assumption can be
reduced to ETROrd.

5.3. Boolean completions. There are two ways in which we can define what a
Boolean completion means for a class partial order P. We can require that all set-
sized suprema exist or that all class-sized suprema exist. Let us say that a Boolean
algebra is set-complete if it has suprema for all its subsets and that it is class-
complete if it has suprema for all its sub-classes. Correspondingly, we will say that
a class partial order P has a Boolean set-completion if it densely embeds into a set-
complete Boolean algebra and that P has a Boolean class-completion if it densely
embeds into a class-complete Boolean algebra. It turns out that a Boolean algebra
is class-complete only if it has the Ord-cc. The intuition here is that once there is a
proper class antichain, the collection of all suprema is too large to be a class. Thus,
a class partial order has a Boolean class-completion if and only if it has the Ord-cc.
A class partial order has a Boolean set-completion if and only if the class forcing
theorem holds for it, but the completion is only unique if it is also class-complete.
Thus, only Ord-cc partial orders have unique Boolean set-completions.

Theorem 5.3 ([HKL+16]). Assume GBC holds.

(1) A class partial order has a Boolean set-completion if and only if the class
forcing theorem holds for it.

(2) A class partial order has a Boolean class-completion if and only if it has
the Ord-cc.
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(3) A class partial order has a unique Boolean set-completion if and only if it
has the Ord-cc.

It follows that in GBC + ETROrd every class partial order has a Boolean set-
completion, which will be unique only in the case that the partial order has the
Ord-cc. But no matter how strong the theory, no Boolean algebra with a proper
class antichain can be class-complete. We will discuss in Section 6 that in sufficiently
strong second-order set theories, every class partial order has a hyperclass Boolean
completion with desired properties. Existence of hyperclass Boolean completions
can be used to show a version of the intermediate model theorem for class partial
orders.

5.4. Intermediate model theorem. The intermediate model theorem in first-
order set theory asserts that every intermediate model W |= ZFC between a model
V |= ZFC and its set-forcing extension V [G], V ⊆ W ⊆ V [G], is also a set-
forcing extension of V [Gri75]. The assertion of the intermediate model theorem
fails in various ways in the absence of the axiom of choice, so it is crucial that
we specify which theory the models satisfy. Given a second-order set theory T ,
let the intermediate model theorem for T be the assertion that every intermediate
model W = (W,∈, C∗) |= T between a model V = (V,∈, C) |= T and its class-
forcing extension V [G] = (V [G],∈, C[G]) |= T is itself a class-forcing extension of
V . To be intermediate here means that V ⊆ W ⊆ V [G] and C ⊆ C∗ ⊆ C[G]. The
intermediate model theorem fails for every second-order theory discussed in this
article, including the strongest theory KM+CC, but a natural weaker version of it
holds for KM+CC.

Given a model V = (V,∈, C), we will say that a model W = (W,∈, C∗) is a simple
extension of V if V ⊆W , C ⊆ C∗, and the classes of C∗ are generated by C together
with a single class A in the sense that every element of C∗ is definable over W with
parameters some C1, . . . , Cn ∈ C and A. Clearly every forcing extension is a simple
extension, and so in particular, the failure of the intermediate model theorem follows
from the existence of intermediate models that are not simple extensions. We will
say that the simple intermediate model theorem holds for a theory T if whenever
V |= T and V [G] |= T is a forcing extension of V , then every intermediate model
W |= T between V and V [G] that is a simple extension of V is a class-forcing
extension of V . Hamkins and Reitz showed that the simple intermediate model
theorem can fail for GBC even with an Ord-cc partial order [HR17], but we showed
in [AFG], using the existence of hyperclass Boolean completions, that it holds for
KM+CC.

Theorem 5.4 ([HR17]). The simple intermediate model theorem can fail for GBC
with an Ord-cc partial order.

Theorem 5.5 ([AFG]). Every model V |= KM + CC has a forcing extension
V [G] |= KM + CC with an intermediate model of KM + CC that is not a simple
extension of V . Therefore the intermediate model theorem can fail for KM + CC.

Theorem 5.6 ([AFG]). There is a model V |= KM + CC with a forcing extension
V [G] by an Ord-cc partial order that has an intermediate model of KM that is not
a simple extension of V . Therefore the intermediate model theorem can fail for KM
with an Ord-cc partial order.

Theorem 5.7 ([AFG]). The simple intermediate model theorem holds for KM+CC.
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5.5. Ground model definability. Laver, and independently Woodin, showed
that a ground model is always definable (with a ground model parameter) in its
set-forcing extensions [Lav07], [Woo04]. Both first-order and second-order versions
of ground model definability can fail for class forcing.

Working in the first-order setting, one can ask whether the first-order part (V,∈)
of the ground model is definable over the first-order part (V [G],∈) of the forcing
extension. Consider the class product P = Πκ∈Reg Add(κ, 1) with Easton support,
adding a Cohen subset to every regular cardinal. Clearly, P is isomorphic to the
product Πκ∈Reg Add(κ, 1) × Add(κ, 1), which adds two Cohen subsets to every
regular cardinal. By using an automorphism of the latter forcing, which switches
the two copies of Add(κ, 1), it is not difficult to show that V is not definable in V [G],
a forcing extension by P. The forcing P is a progressively closed Easton-support
product and therefore, in particular, tame.

Theorem 5.8 ([Ant18]). Suppose V = (V,∈, C) |= GBC and V [G] = (V [G],∈, C[G])
is a forcing extension by P (defined as above). Then (V,∈) is not definable (even
with parameters from V [G]) in (V [G],∈).

In the second-order setting, it does not make sense to ask whether the first-order
part (V,∈) is definable in the forcing extension V [G] because (V,∈) is a class of
V , and hence also a class of any forcing extension V [G]. The appropriate analogue
of first-order ground model definability here is to have the ground model classes C
be a hyperclass of the forcing extension V [G]. Results in [GJ14] show that there
are models of ZFC−I , namely models of the form Hκ+ for an inaccessible cardinal
κ, which are not definable in their forcing extensions by Add(κ, 1), even with a
parameter from the extension. Translating this via the bi-interpretability of ZFC−I
and KM + CC as in Section 2 , we get a counter-example to second-order ground
model definability for models of KM + CC.

Theorem 5.9. There is a model V = (V,∈, C) of KM + CC such that C is not
a hyperclass of its forcing extensions V [G] = (V [G],∈, C[G]) by Add(Ord, 1), even
with a parameter from C[G].

Thus, ground model definability can fail for a relatively well-behaved class forc-
ing, but indeed, assuming very large cardinals, ground model definability can fail
in the second-order setting even for set forcing. Again, this follows from a counter-
example to ground model definability for ZFC−I . A construction of Woodin (see
[GJ14] for details) can be used to show that assuming I0 (the axiom that there is
a nontrivial elementary embedding j : L(Vκ+1) → L(Vκ+1)), there is a model of
ZFC−I , again of the form Hκ+ for an inaccessible κ, which is not definable in its
forcing extensions by Add(ω, 1), even with a parameter from the extension. It fol-
lows, via the bi-interpretability, that assuming I0, there is a model V = (V,∈, C) of
KM+CC such that C is not a hyperclass of its forcing extension V [G] by Add(ω, 1).

6. Hyperclass Boolean completions

Given a set partial order P, the complete Boolean algebra into which it densely
embeds consists of the regular open subsets of P with the natural Boolean oper-
ations. For a class partial order P, the Boolean algebra resulting from this con-
struction is a definable collection of classes with definable Boolean operations on
it, in other words, a hyperclass Boolean algebra. We will call this hyperclass object
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BP. There are three levels of completeness which we can consider for a hyperclass
Boolean algebra: it can be set-complete, having suprema for sub-collections indexed
by sets, class-complete, having suprema for sub-collections indexed by classes, or
hyperclass-complete, having suprema for definable sub-collections. In GBC, for any
class partial order P, the hyperclass Boolean algebra BP is class-complete, but we
would like more to be true. The purpose of having Boolean completions is to be able
to force with them, and for this a Boolean algebra needs to be fully complete, which
in the case of hyperclass Boolean algebras means being hyperclass-complete. In KM,
for every class partial order P, the Boolean algebra BP is hyperclass-complete, and
surprisingly the statement reverses. Any model V = (V,∈, C) |= GBC in which
there is a non-Ord-cc class partial order P ∈ C for which its hyperclass completion
BP is hyperclass-complete must already be a model of KM. Given a class partial
order with a proper class antichain, we can code all instances of comprehension into
instances of existence of suprema for its hyperclass Boolean completion.

Theorem 6.1 ([AFG]). Suppose V = (V,∈, C) |= GBC and P ∈ C is a class
partial order with a proper class antichain. If the hyperclass Boolean algebra BP is
hyperclass-complete, then V |= KM.

We have the intuition that although BP is a hyperclass, since a class P densely
embeds into it, its antichains must all be small, namely class-sized. More precisely,
we would like it to be the case that every hyperclass antichain of BP can be indexed
by a class, and this holds true in KM.

Theorem 6.2 ([AFG]). In KM, for every class partial order P, every antichain of
the hyperclass completion BP is indexed by a class.

Even with all these desired properties, it is still not clear how one would force
with BP or more generally with a hyperclass partial order. In order to develop a
theory of forcing with hyperclass partial orders, we need to move to the theory
KM + CC.

7. Hyperclass forcing

The first author and Friedman developed the theory of hyperclass forcing over
models of KM + CC in [AF17]. Suppose V = (V,∈, C) |= KM + CC and P is a
hyperclass partial order defined over V . We will say that G ⊆ P is V -generic if it
meets every dense sub-hyperclass of P. To make sense of forcing with P, we move to
the companion modelMV |= ZFC−I of V in which P is a definable class partial order,
and so all the class forcing machinery applies. We will say that V has a hyperclass
forcing extension by P only in the special case that forcing with P over MV preserves
ZFC−I to the forcing extension with κ = OrdV remaining the largest cardinal. So

suppose that P preserves ZFC−I over MV in the above sense and G ⊆ P is V -generic,

and hence also MV -generic. Let C∗ = {A ∈MV [G] | A ⊆ VMV [G]
κ }. Then we define

that the forcing extension as V [G] = (V
MV [G]
κ ,∈, C∗). Note that the companion

model of the forcing extension V [G] is MV [G]. By Theorem 3.3, all pretame forcing
notions preserve ZFC− to the forcing extension, but even set forcing can collapse
the largest cardinal κ of MV . Thus, a hyperclass forcing extension exists precisely
in the case that the forcing P is pretame and κ-preserving over MV .

Suppose that P is a tame class partial order and BP is the hyperclass Boolean
completion of P. By Theorem 6.2, BP has the OrdMV -cc in MV . Since P densely
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embeds into BP, which is pretame, the two partial orders have the same forcing
extensions by Theorem 5.1. This together with the tameness of P implies, in par-
ticular, that BP cannot collapse κ, and hence the hyperclass BP satisfies the con-
ditions under which we have defined hyperclass forcing extensions. It now follows
that the hyperclass forcing extension of V obtained by forcing with BP is precisely
the forcing extension by P, so that, just as in the set forcing case, we can choose to
force either with the class partial order or its hyperclass Boolean algebra.

Surprisingly, hyperclass forcing arises even in connection with properties of mod-
els of first-order set theory. In [Wel19], models of the form L[C] for a proper class
club of uncountable cardinals are characterized as hyperclass forcing extensions of

a truncated iterate of a mouse with large cardinals [Wel19]. More precisely, if m#
1

is a mouse which is a sharp for a proper class of measurable cardinals, then there

is an Ord-length iterate of m#
1 such that if M is the truncation of the iterate at

Ord, then L[C] is a hyperclass forcing extension of M by a Prikry-type forcing
singularizing all its measurable cardinals. This theorem was generalized in [FGM]
to characterize models L[C1, . . . , Cn] for specially nested clubs Ci of uncountable
cardinals as hyperclass forcing extensions of a truncated iterate of a mouse with
stronger large cardinals.

8. Open questions

While GBC + ETR easily implies that any two meta-ordinals are comparable, it
is not known whether this holds in weaker second-order set theories. The assertion
may indeed turn out to be equivalent to ETR.

Question 8.1. Does GBC imply that any two meta-ordinals are comparable?

Question 8.2. Does GBC together with the principle that any two meta-ordinals
are comparable imply ETR?

Pretame forcing preserves the second-order set theories GBC, KM, and KM+CC.
It also preserves the fragments of comprehension together with a corresponding
fragment of class choice GBC + Σ1

n-CA+Σ1
n-CC for any n < ω, KM, and KM+CC.

It is still not known whether even set forcing preserves ETR or GBC + Σ1
n-CA (in

the absence of some class choice).

Question 8.3. Does pretame forcing preserve ETR?

Question 8.4. Does pretame forcing preserve GBC + Σ1
n-CA for n < ω?

Over GBC + Σ1
1-CA and stronger theories, pretame forcing does not add meta-

ordinals [HW18], but it is not known whether this result holds for weaker theories,
in particular, ETR.

Question 8.5. Can pretame forcing add meta-ordinals over a model of GBC or a
model of GBC + ETR?

The intermediate model theorem can fail for GBC and KM even for Ord-cc
partial orders, but while it is known that the intermediate model theorem can fail
for KM + CC, it is not known whether there is an Ord-cc instance of failure.

Question 8.6. Can the intermediate model theorem fail for KM + CC with an
Ord-cc partial order?
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We also do not know whether the simple intermediate model theorem holds for
KM.

Question 8.7. Does the simple intermediate model theorem hold for KM?
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