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Abstract

Thirty years ago, I elaborated on a position that could be seen as a com-
promise between an “extreme,” symbol-based AI, and a “neurochemical reduc-
tionism” in AI. The present article recalls aspects of the espoused framework
of schema theory that, it suggested, could provide a better bridge from human
psychology to brain theory than that offered by the symbol systems of Newell
and Simon.
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1 Introduction

I had the pleasure of meeting Allen Newell and Herbert Simon several times from 1963
to the early 1990s, and much of our conversation was addressed to comparing their
symbolic approach to AI with my approach (blending neural networks and schema
theory) to modeling brains. These conversations were the basis for my extended
review (Arbib, 1993) of Allen Newell’s book Unified Theories of Cognition (Newell,
1990). In lieu of a Commentary based directly on the text of Luis Augusto’s “From
symbols to knowledge systems: A. Newell and H. A. Simon’s contribution to symbolic
AI”(Augusto, 2021), I instead offer lightly edited portions of the 1993 review (too long
to reproduce here) that invite the reader to consider the brain-theoretic alternative
to symbolic AI.
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2 Three Positions in AI

Newell’s approach to cognitive science was close to the following“extreme AI”position:

Position (a). Cognitive tasks rest on a set of basic processes, such as
pattern recognition, search, memory, and inference, whose properties and
interactions can be characterized in an abstract way independent of imple-
mentation. In particular, properties and interactions that we understand
by implementing them on serial symbol processors are equally valid for
the human mind.

Many AI workers (at least from the 1960s to the 1990s)1 used the slogan “airplanes
don’t flap their wings”to justify the claim that AI may be developed without reference
to the study of biological systems. But if we reject Position (a) above–even for an AI
informed by data on human performance (Newell & Simon, 1972) but not on human
neurology–must we go to the other extreme of what might be called “neurochemical
reductionism”?:

Position (b). Any human cognitive architecture must take account of the
way in which mood, emotion, and motivation affect human performance.
We know that drugs can alter mood, and we know that the action of many
of these drugs involves the way in which they bind to receptors in the
cell membranes of neurons. Thus, no human cognitive architecture can be
complete unless it incorporates the relevant specificities of neurochemistry.

Rather than discuss Position (b), my review developed an intermediate position which
encourages an interchange between distributed AI (DAI) and cognitive neuroscience.
To continue with the airplanes versus birds analogy, the bridging science of aerody-
namics develops key concepts like lift, and then explains the different strategies of
planes and birds in terms of the surface properties of the two kinds of wings and the
way air is moved across them. In the same way, it is my hope (it is a research strategy
which is yielding results but is by no means universally established) that the following
approach may provide the right intermediate between Positions (a) and (b) above:

Position (c). Cognitive science is to be conducted in terms of a vocabu-
lary of interacting functional units called schemas. This version of schema
theory originated as an approach to knowledge representation explicitly
shaped by the need to understand how cognitive and instinctive functions
can be implemented in a distributed fashion such as that involving the
interaction of a multitude of brain regions or even biologically plausible
neural networks. However, the functional definition of the schemas will
in many cases be constrained only by the data of “brain-free” cognitive
science.

1Minsky and Papert (1969) had published a book, Perceptrons: An Introduction to Computa-
tional Geometry, that many accepted as proof that artificial neural networks must fail even on tasks
that were simple compared to those of then-current symbolic AI. However, the book showed only
that simple Perceptrons (feedforward connections from inputs to one layer with adaptive synapses)
suffered from this limitation (Arbib, 1969). It is thus ironic that the immense success of AI in the
21st century rests on the combination of adaptive artificial neural networks and massive and fast
computing resources (LeCun et al., 2015).
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The version of schema theory espoused here was an outgrowth of that offered by Arbib
(1981).

(i) Schemas are ultimately defined by the execution of tasks within a physical en-
vironment. A set of basic motor schemas is hypothesized to provide simple,
prototypical patterns of movement. These combine with perceptual schemas to
form assemblages or coordinated control programs which interweave their activa-
tions in accordance with the current task and sensory environment to mediate
more complex behaviors. Many schemas, however, may be abstracted from
the perceptual-motor interface. Schema activations can be both data-driven
(bottom-up processing in response to current stimuli) and task-driven (top-down
processing reflecting the goals of the organism and the physical and functional
requirements of the task).

(ii) A schema is both a store of knowledge and the description of a process for applying
that knowledge. As such, a schema may be instantiated to form multiple schema
instances as active copies of the process to apply that knowledge. E.g., given
a schema that represents generic knowledge about some object, we may need
several active instances of the schema, each suitably tuned, to subserve our
perception of a different instance of the object. Schemas can become instantiated
in response to certain patterns of input from sensory stimuli or other schema
instances that are already active.

(iii) Each instance of a schema has an associated activity level. That of a percep-
tual schema represents a “confidence level” that the object represented by the
schema is indeed present; while that of a motor schema may signal its “degree
of readiness” to control some course of action. The activity level of a schema
instance may be but one of many parameters that characterize it. Thus the
perceptual schema for “ball” might include parameters to represent size, color,
and velocity.

(iv) The use, representation, and recall of knowledge is mediated through the activ-
ity of a network of interacting computing agents, the schema instances, which
between them provide processes for going from a particular situation and a par-
ticular structure of goals and tasks to a suitable course of action (which may be
overt or covert, as when learning occurs without action, or the animal changes
its state of readiness). This activity may involve passing of messages, changes
of state (including activity level), instantiation to add new schema instances to
the network, and deinstantiation to remove instances. Moreover, such activity
may involve self-modification and self-organization.

(v) The key question is to understand how local schema interactions can integrate
themselves to yield some overall result without explicit executive control, but
rather through cooperative computation, a shorthand for “computation based on
the competition and cooperation of concurrently active agents.” For example, in
VISIONS, a schema-based system for interpretation of visual scenes (Draper
et al., 1989), schema instances represent hypotheses that particular objects oc-
cur at particular positions in a scene, so that instances may either represent
conflicting hypotheses or offer mutual support. Cooperation yields a pattern
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of “strengthened alliances” between mutually consistent schema instances that
allows them to achieve high activity levels to constitute the overall solution of
a problem; competition ensures that instances which do not meet the evolv-
ing consensus lose activity, and thus are not part of this solution (though their
continuing subthreshold activity may well affect later behavior). In this way, a
schema network does not, in general, need a top-level executor, since schema
instances can combine their effects by distributed processes of competition and
cooperation, rather than the operation of an inference engine on a passive store
of knowledge. This may lead to apparently emergent behavior, due to the ab-
sence of global control.

(vi) Learning is necessary because schemas are fallible. Schemas, and their connec-
tions within the schema network, must change so that over time they may well
be able to handle a certain range of situations in a more adaptive way. In a gen-
eral setting, there is no fixed repertoire of basic schemas. New schemas may be
formed as assemblages of old schemas; but once formed a schema may be tuned
by some adaptive mechanism. This tunability of schema assemblages allows
them to become “primitive,” much as a skill is honed into a unified whole from
constituent pieces. Such tuning may be expressed at the level of schema theory
itself, or may be driven by the dynamics of modification of unit interactions in
some specific implementation of the schemas.

The words “brain” and “neural” do not appear in criteria (i)-(vi). I next spell out just
what makes a schema-theoretical model part of brain theory:

(BTi) In brain theory, a given schema, defined functionally, may be distributed across
more than one brain region; conversely, a given brain region may be involved
in many schemas. Specific hypotheses about the localization of (sub)schemas in
the brain may be tested by lesion experiments, with possible modification of the
model (e.g., replacing one schema by several interacting schemas with different
localizations) and further testing.

(BTii) Once a schema-theoretic model of some animal behavior has been refined to the
point of hypotheses about the localization of schemas in various brain regions,
we may further model (some of these) brain regions by seeing if its known neural
circuitry can indeed be shown to implement the posited schemas. In some cases
the model will involve properties of the circuitry that have not yet been tested,
thus laying the ground for new experiments. In DAI, individual schemas may
be implemented by artificial neural networks, or in some programming language
on a “standard” (possibly distributed) computer.

Schema theory is far removed from serial symbol-based computation. However, even
when this review was written (long before deep learning led to the explosion of appli-
cations in our everyday lives), work in AI had begun to contribute to schema theory,
even when it did not use this term. For example, Minsky (1975) espoused a Soci-
ety of Mind analogy in which “members of society,” the agents, were analogous to
schemas. Brooks (1986) developed a control scheme for robots with layers of asyn-
chronous modules that could be considered as a version of schemas (but see Lyons
& Arbib, 1989, for an explicitly schema-theoretic model of computation for sensory-
based robotics). Their work shares with schema theory, with its mediation of action

J. Knowl. Struct. Syst., 2:1 71



Commentary Schemas vs. Symbols M. A. ARBIB

through a network of schemas, the point that no single, central, logical representation
of the world need link perception and action–the representation of the world is the
pattern of relationships between all its partial representations.

We may now return to the claim of Position (c) that cognitive science is to be
conducted in terms of a vocabulary of interacting schemas (or schema instances), and
that neuroscience may then in certain cases accept the task of explaining the properties
of these schemas in terms of neural networks. Even though cognitive science itself
(as distinct from AI) may be relieved of responsibility for explaining how schemas are
implemented, it must still (just as a flexible feathered wing is different from a rigid
metallic wing) be based, at least in part, on schemas which represent the functioning
of hundreds of simultaneously active regions of the human brain. But there is nothing
in the General Problem Solver (GPS) tradition initiated by Newell, Shaw, and Simon
(1959), or in Newell’s book, that looks at distributed processing in any detail, let
alone neurological data that constrains how the different parts of the computation
might be located in the different parts of the brain. The point is not that all good
cognitive science (let alone all AI) must be cognitive neuroscience. It is rather that
a general framework for cognitive science must include cognitive neuroscience. In
fact, given the current state of scientific knowledge, any current schema-level model
of a cognitive system must be heterogeneous in that some schemas can be modeled
in terms of detailed neural circuitry, some can be related to brain regions for which
few details of circuitry are known, while others represent hypotheses about functional
components for which little or no constraining neural data are available.

3 A Final Word

The original review continued for another eight pages beyond the extracts adapted
above, but I will not reproduce them here–the original review is still accessible. Of
course, much has happened in the 30 years since that review was first written. The
chapter “From neuron to cognition: An opening perspective” (Arbib, 2016a) provides
one relatively recent perspective on these developments in relation to (cognitive) neu-
roscience, and includes an overview of the edited volume From Neuron to Cognition
via Computational Neuroscience (Arbib & Bonaiuto, 2016). It includes answers to
“how do we get from neurons or schemas to symbols if symbols are not the building
blocks of processing?” by including material on modeling brain mechanisms of lan-
guage, and on pathways of biocultural evolution that endowed humans with languages
(see also Arbib, 2016b).
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