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Preface to the 1st edition

Teachers tend to be picky with the material they use in teaching con-
texts. This may be for personality reasons, but the variety of contexts
and students also plays a role in this pickiness. Be it as it may, it of-
ten is the case that students end up with teaching material in many
formats and from many different sources, creating often a lack of unifor-
mity, both in notation and terminology. Because I am picky for all the
reasons above, I typically feel that my teaching task is substantially fa-
cilitated and optimized when I have gone to the great lengths of putting
all the material for a particular academic subject together in a single
manual or textbook. This guarantees not only conceptional and nota-
tional uniformity, but also a selection of approaches that I feel work well,
or better, for particular topics or problems.

This book is not about discovering the wheel; that is, possibly no novel
contents are to be found in it. The objective when writing it was that
of “putting together” a textbook on the classical theory of computing. If
there is any novel aspect in this textbook, it may well be the fact that
I insist on preceding the terms “(theory of) computation” and “(theory
of) computing” with the adjective “classical” to collect under the same
label the Chomsky hierarchy and the Turing-von Neumann paradigm of
computing. The former comprises three closely associated central topics,
to wit, formal grammars, formal languages, and models of computation
(a.k.a machines, or automata), and the latter gives to these, namely
via the Turing machine, measures of the spatial and temporal costs of
computation. Isay that this collection constitutes (the) classical (theory
of) computation, because many, often newer, other forms of computing
have emerged or become (more) popular since the Turing “revolution,”
many of which today may be said to constitute the non-classical (theory
of) computation. This is, for the initiated, more immediately the field of
quantum computing, but other forms of computation such as artificial
neural networks and evolutionary computing may be seen as also non-
classical versions of computing.

It is arguably possible to produce a textbook on formal languages,
grammars, and automata with no emphasis on computing, let alone
with any specific computational concerns. One such approach might be
with linguists in mind, though contemporary linguistics is not averse to

p.q%



Preface to the 1st edition

computation. On the extreme pole of this position, formal grammars,
languages, and automata are often reduced to the theory of computation,
namely as it serves the theoretical foundations of the digital computer.
Without taking a reductive view, I discuss formal languages and gram-
mars from the viewpoint of computation, and consider the associated
automata as models thereof. This said, readers with other foci will find
that the computational perspective taken here does not hinder—and may
even facilitate—their particular interests and concerns.

The backbone of this book is undoubtedly the Chomsky hierarchy.
Although much computing has run in the digital computer since N.
Chomsky first conceived it, it still works well for combining the mostly
linguistic approach with the computational one. In particular, it keeps
reminding us that we are linguistic beings to the point that one of
our most interesting creations—the digital computer—is language-based
through and through, a feature well-patent in the famous Turing Test,
a “test” conceived by the creator of the Turing machine to distinguish
a human computer from a non-human one. Indeed, it seems to have
been the rationale in Turing (1950) that language is sufficient to distin-
guish the human from the non-human computer or reasoner. More than
anything, it might have been this insistence on the verbal behavior of
computers that motivated the can-of-worms idea of Al (artificial intel-
ligence) as ultimately aiming at human-like machines, at least from the
viewpoint of intelligence, if not of emotion.

There is no way to go around this and it requires emphasis: (Clas-
sical) computing is a mathematical subject. Although the presence of
automata, of which the most famous is the Turing machine, lends it a fla-
vor of engineering, these are not physical machines nor can they be; they
are mathematical objects. To be sure, the digital computer is based on
the Turing machine, but this has a feature—an infinite tape—that makes
of the former a mere approximation of the latter. The mathematical
nature of this subject accounts for the clearly mathematical approach
in this book: I distinguish statements into definitions and propositions,
and provide proofs (or sketches thereof) to further distinguished—if not
distinct-statements, to wit, theorems and their companion lemmas and
corollaries. The numbering of such statements finds its utility in inter-
nal referencing, if it gives a more high-brow quality to the main text. I
reserve the status of theoremhood for statements of higher importance
than propositions, but the reader is free to consider (most) propositions
in this text as de-facto theorems; the fact that proofs are provided (or
left as exercises) for propositions supports this view.

This mathematical nature of the subject also justifies the large se-
lection of exercises here provided. Indeed, only few students are gifted

xXvi



with mathematical skills that free them from the arduous and time-
consuming practice of doing exercises. On the other hand, some may
find this a pleasant activity. Between these fall most mortals, one should
think. But the selection of exercises in this book was also guided by the
belief that one should be confronted with novel material and problems,
in order to develop research, as well as creative, skills.

Still with regard to the mathematical nature of this text, there are
throughout it a few algorithms for the computation of specific functions
(e.g., computing the Chomsky normal form of a given grammar). I chose
not to stick to a single pseudo-code or to a single algorithm format in
the belief that different algorithms can be better grasped in distinct
ways. Yet another advantage of this might be the familiarity with diverse
pseudo-codes and algorithm formats. Importantly, too, no programming
language or software plays any role whatsoever in this book. This is so
deliberately to keep the subject matter as general as possible, untied to
specific implementations or applications.

As said above, the aim for this book is not (re)inventing the wheel.
Although classical computing and its theory are in a current state of
development, with many a problem as focus of research-notably so the
P=7"NP problem—, the subject of the theory of classical computing has
attained a certain fixed form that is historically justified. In the second
half of last century, when this subject emerged, an abundance of text-
books and monographs were published, and a few of these established
themselves as standard references in the field. As such, it is only natural
that in pedagogical pursuits one should resort to them as sources. This I
do with two such classics in particular, to wit, Davis & Weyuker (1983)
and Hopcroft & Ullman (1979), the latter of which has evolved into the
more undergraduate-friendly Hopcroft, Motwani, & Ullman (2013). A
further source is Du & Ko (2001), a thoroughly mathematical approach.
Readers can greatly benefit from a direct use of all these referenced
works. Texts and manuals on this subject matter directed at under-
graduate audiences abound, with many a good one to further assist
readers in their academic pursuits. Referencing them all is of course
impossible, but interested readers know where to find them. More spe-
cific, often more advanced, literature is cited throughout this text in the
appropriate places; in particular, I cite the works in which important
results (e.g., theorems) were first published.

Lastly, this textbook is a further elaboration on what was originally
a chapter in a book of mine first published by College Publications, to
wit, Augusto (2018).! In this book, a chapter on the theory of comput-

'Now Augusto (2020a).
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Preface to the 1st edition

ing appeared to be relevant, because issues such as Turing-completeness
of logic programming and the complexity of the satisfiability problem
(a.k.a SAT) required a minimal grasp of, among other topics, the Tur-
ing machine. Having resorted to this chapter to teach topics in au-
tomata, formal languages, and the classical theory of computation, and
having obtained satisfactory results, I decided to expand it to what
is now the present textbook. The main guideline for this expansion
was the inclusion of topics that were left out in the mentioned chap-
ter for spatial and temporal reasons, but which are essential for a fuller
treatment of this subject. Some of these new topics—e.g., characteristic
equations of finite automata, grammar cleaning algorithm-may appear
quite inessential from an Anglo-Saxon perspective, but my individual
work with Spanish students preparing themselves to take exams on the
above-mentioned topics made me realize the need to be as encompass-
ing and comprehensive as possible, namely with the large diversity of
readers of this subject in mind.

I wish to thank Dov M. Gabbay, the scientific director of College
Publications, and Tan Mackie, the editor for the Texts in Computing
series, for publishing this book. My thanks go also to Jane Spurr, the
managing director, for a smooth publication process.

Madrid, February 2019

Luis M. S. Augusto
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Preface to the 2nd edition

The present edition corrects identified addenda and errata, and has both
improved and new figures. It also includes the odd minor change in the
main text of the first edition. The major changes are as follows:

e Figures 4.1.11 and 4.3.7 were replaced by more adequate ones:
In the case of Figure 4.1.11, the union of languages was rather
opaque, and the original finite automaton was replaced by a clearer
illustration; as for Figure 4.3.7, the original Turing machine, which
was too simple, was replaced by a more complex one.

e Exercise 4.1.9 (originally 4.1.14) has now five items, an increase
aiming at providing more practice of a complex algorithm.

e An additional algorithm for the conversion of a context-free gram-
mar into a pushdown automaton (Algorithm 4.5) is now included
and, based on it, Example 4.2.3 was greatly revised and extended.
This change entailed a new Figure (4.2.7),! to be found in Exercise
4.2.8, which was completely redesigned.

These changes are now made available thanks to the readiness of Col-
lege Publications to publish a second edition so shortly after the first.
Renewed thanks are in order.

Madrid, May 2020

Luis M. S. Augusto

'Figure 4.2.4 in this 3rd edition.
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Preface to the 3rd edition

The present edition improves on the previous ones in many ways, of
which a few can be specified:

e Many exercises were introduced and others were rewritten, in par-
ticular in Chapter 2. In this Chapter, the emphasis fell on functions
and algorithms, two topics that were not satisfactorily—in any case
not sufficiently—discussed in the previous editions. Many of the
functions and algorithms involve recursion, a fundamental notion
in classical computation that was also not sufficiently discussed
before. In the belief that research is an essential task in the un-
derstanding of mathematical topics, a belief that had already been
present in the writing of the two previous editions, many of the
exercises introduced require that the student research integrally in
specific topics (e.g., Ackermann functions).

e A wholly new Section on algorithms and programs (Section 2.4)
was introduced.

e Further topics in regular languages and finite automata were in-
troduced, namely the Thompson construction, product automata,
and the direct sum of automata. This, in turn, motivated the
introduction of two new algorithms, to wit, Algorithms 4.3 and
4.4.

e More exercises with Turing machines were added, both for function-
computing and language-accepting machines.

Thanks are due to College Publications for their readiness to publish the
present 3rd edition.

Madrid, October 2021

Luis M. S. Augusto
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