Texts in Computing

Volume 22

Languages, Machines,
and Classical Computation

Volume 9
Logic for Artificial Intelligence & Information Technology
Dov M. Gabbay

Volume 10
Foundations of Logic and Theory of Computation
Amilcar Sernadas and Cristina Sernadas

Volume 11
Invariants: A Generative Approach to Programming
Daniel Zingaro

Volume 12
The Mathematics of the Models of Reference
Francesco Berto, Gabriele Rossi and Jacopo Tagliabue

Volume 13
Picturing Programs
Stephen Bloch

Volume 14
JAVA: Just in Time
John Latham

Volume 15
Design and Analysis of Purely Functional Programs
Christian Rinderknecht

Volume 16
Implementing Programming Languages. An Introduction to Compilers and Interpreters
Aarne Ranta, with an appendix coauthored by Markus Forsberg

Volume 17

Acts of the Programme Semantics and Syntax. Isaac Newton Institute for the Mathematical
Sciences, January to July 2012.

Arnold Beckmann and Benedikt Lowe, eds.

Volume 18

What Is a Computer and What Can It Do? An Algorithms-Oriented Introduction to the
Theory of Computation

Thomas C. O’'Connell

Volume 19
Computational Logic. Volume 1: Classical Deductive Computing with Classical Logic
Luis M. Augusto

Volume 20
An Introduction to Ontology Engineering
C. Maria Keet

Volume 21
A Mathematical Primer on Computability
Amilcar Sernadas, Cristina Sernadas, Jodo Rasga and Jaime Ramos

Volume 22
Languages, Machines, and Classical Computation
Luis M. Augusto

Texts in Computing Series Editor
lan Mackie mackie@lix.polytechnique.fr

Languages, Machines,

and Classical Computation
Third Edition

Luis M. Augusto

© Individual author and College Publications 2019. Second edition 2020, Third
edition 2021.

All rights reserved.

ISBN 978-1-84890-300-5

College Publications

Scientific Director: Dov Gabbay
Managing Director: Jane Spurr

http://www.collegepublications.co.uk

Cover produced by Laraine Welch

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise
without prior permission, in writing, from the publisher.

Contents

Preface to the 1st edition
Preface to the 2nd edition

Preface to the 3rd edition

| Introduction

XV

xix

xx1

1 Classical computation: Turing, von Neumann, and Chom-

sky

1.1 Computers, information, and computations
1.2 Computational problems, algorithms, and decisions
1.3 The Turing-von Neumann paradigm
1.4 Models of classical computation: Automata
1.5 The Chomsky hierarchy

Il Mathematical Preliminaries

2 Mathematical and computational notions

2.1 Basicnotions
2.1.1 Sets, relations, functions, and operations
2.1.2 Binary relations and ordered sets

2.2 Discrete structureso
2.2.1 Boolean structures
2.2.1.1 Algebras and morphisms

2.2.1.2 Boolean algebras and Boolean logic . . .

222 Graphsandtrees

2.3 Proof techniques
2.3.1 Mathematical and structural induction
2.3.2 Proof by contradiction

2.4 Algorithms and programs

17

19
20
20
28
38
38
38
39
45
50
51
92
95

Contents

Il Languages, Machines, and Classical Computation 61

3 Formal grammars and languages 63
3.1 Basicnotions 64
3.1.1 Strings and operations on strings 64
3.1.2 Formal languages and operations thereon 66
3.1.3 Formal grammars. 69
3.1.3.1 Central notions. 69
3.1.3.2 Rules, symbols, and grammar cleaning . 71
3.2 Regular languages 79
3.2.1 Regular expressions 79
3.2.2 Regular grammars 84
3.2.3 Properties of regular languages 89
3.2.3.1 The pumping lemma for regular languages
(D) oo 89
3.2.3.2 Algebra and linear equations for regular
languages 91
3.2.3.3 Closure properties of the regular languages 93
3.3 Context-free languages 98
3.3.1 Context-free grammars. 98
3.3.1.1 Context-free vs. context-sensitive gram-
MATS + « v o v e e e e e e e e 98
3.3.1.2 Normal forms for CFGs (I): Chomsky
normal form 100
3.3.1.3 Normal forms for CFGs (II): Greibach
normal form 104
3.3.1.4 Derivation, or parse, trees 109
3.3.1.5 Ambiguity and inherent ambiguity 110
3.3.2 Properties of the context-free languages 114
3.3.2.1 The pumping lemma for CFLs and Og-
den’s lemma 114
3.3.2.2 Further properties of CFLs 118
3.4 Recursively enumerable languages 126
3.5 The Chomsky hierarchy (I) 131
4 Models of computation 135
4.1 Finite-state machines 136
4.1.1 Finite automata 137
4.1.1.1 Basic aspects of finite automata 137
4.1.1.2 Characteristic equations 144
4.1.1.3 The pumping lemma for regular languages
(ID) . . 146

vi

Contents

4.1.1.4 Deterministic and non-deterministic FAs 147
4.1.1.5 The Myhill-Nerode theorem and FA min-

imization 156
4.1.1.6 Kleene’s theorem and the properties of
REGL 161
4.1.2 Finite transducers 167
4.1.2.1 Moore and Mealy machines 167
4.1.2.2 Equivalence of finite transducers 173
4.1.2.3 Minimizing finite transducers 175
4.1.2.4 Conversion of finite transducers into ac-
ceptors 181
4.2 Pushdown automata 191
4.2.1 Basicaspectsof PDAs 191
4.2.2 Acceptance modes by PDAs 195
4.2.3 Equivalence between CFLs and PDAs 198
4.2.4 CFLs accepted by deterministic PDAs 204
4.2.4.1 Deterministic PDAs 204
4242 LR(k) grammars 207
4.3 Turing machines 223
4.3.1 Basic aspects of Turing machines 223
4.3.2 Turing machines computing functions 227
4.3.3 Turing machines accepting languages 229
4.3.3.1 Turing machines and unrestricted gram-
MATS .« .+ v v v e e e e e e e 229
4.3.3.2 Linear-bounded automata: Special Tur-
ing machines for CSGs 233
4.3.4 The universal Turing machine 234
4.4 The Chomsky hierarchy (IT) 246
Computability and complexity 251
5.1 The decision problem and Turing-decidability 251
5.2 Undecidable problems and Turing-reducibility 254
5.3 The Chomsky hierarchy (III) 261
5.4 Computational complexity 262
5.4.1 Computational problems. 262
5.4.2 The Blum axioms and complexity measures 264
5.4.3 Complexity classes 268
5.4.4 The Cook-Levin theorem and polynomial-time re-
ducibility 272
5.5 The Chomsky hierarchy (IV) 284

Contents

References 289

Index 297

viii

List of Figures

1.5.1
1.5.2

211
2.1.2
221

3.2.1
3.2.2

3.2.3
3.3.1

3.3.2
3.3.3
3.3.4
3.3.5
3.4.1

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8
4.1.9
4.1.10

4.1.11

4.1.12
4.1.13
4.1.14
4.1.15

The basic postulate of the Chomsky hierarchy. 12
Two derivation trees. 14
A partially ordered set. L. 32
Hasse diagram of a poset. 37
A simple graph. 47
A labeled digraph & (r) for a regular expression r. 85
A labeled digraph & (G) corresponding to a left-linear

grammar G. 88
The digraph &' (G) obtained from & (G). 90
Derivation tree of the string w = acbabc € L (G) with the

corresponding partial derivation trees.. 111
Two leftmost derivations of the string a +axa. 112
Parse tree of an unambiguously derived string. 114
Parse trees for productions (1) S — a and (2) S — AB.. . 115
Parse tree for z = wvlwzly., 117

A derivation graph of the string bab generated by a UG. . 129

Computer modelof a FA. 138
State diagrams of FAs. L. 140
A FA with two accepting states and one rejecting state. . . 141
A FA for the regular language L = {c, ba}* {ac,aab*}. . . 142
A finite automaton M for the pumping lemma. 147
A NDFA for the language L = {001} {0,010}*. 148
Equivalent NDFAs with and without e-transitions. 152
Equivalent NDFA (1) and DFA (2). 155
A FA (1) and its minimal equivalent FA (2). 160
Schematic diagrams for FAs accepting (1) L; U Lo, (2)

LlLQ, and (3) (Ll)* 163
A FA accepting L = L1 U Ls by applying the Thompson

construction. Lo 166
Moore (1) and Mealy (2) machines. 170
A Mealy machine (1) and its equivalent Moore machine (2).176
A Mealy machine (1) and its minimal equivalent (2). . . . 182
A Moore machine converted intoa FA. 183

X

List of Figures

4.1.16
4.1.17
4.1.18
4.1.19
4.2.1
4.2.2
4.2.3
4.24
4.2.5

4.2.6

4.2.7
4.2.8
4.2.9
4.3.1
4.3.2

4.3.3

4.3.4

4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10
4.3.11
4.3.12

0.2.1
5.3.1
0.4.1

0.4.2
5.4.3

Deterministic finite automata. 185
Two DFAs. 188
Mealy machines. 189
Abarcode. 191
Computer model for a PDA. 193
A PDA M accepting L (M) = {a™b™|m >0}. 195
Proving L(M)=N(M). 197
Top-down (1) and bottom-up (2) PDAs. 202
LR partial trees (1-14) and final parse tree of the string

acbabe.o 209
NDFA recognizing the viable prefixes for the CFG of Bal-

anced Parentheses. 213
A PDA accepting L (M) = {u € S*u=wwf}. 217
Pushdown automata. 218
A PDA for L = {on (12)2" ¥ |n > 0,m > 0} 992
Computer model for a Turing machine. 224
A Turing machine that computes the function f (m,n) =

m+nformneZbt. 228
Turing machine My that computes the function f (m,n) =

2m+3nform,n€Zt. 230
Program for Turing machine M that computes the func-

tion f(m,n)=2m+3n form,neZ". 231
The encodings (Mp) and (Mp,z). 236
A combination of Turing machines. 238
Function-computing Turing machines. 239
Turing machine accepting L = {OQn\n > O}. 241
Turing machine accepting L = {w#w|w € {0,1}"}. 242
Turing machine accepting L = {aibaj 0 <i< j}. 243

Turing machine M; accepting a language over ¥ = {a, b, c}.244
Turing machine M; accepting a language over ¥ = {a, b, c}.245

A combination of Turing machines. 260
The Chomsky hierarchy and beyond. 261
The hierarchy of complexity classes with corresponding
tractability status. L L L 271
A tableau for the Turing machine M. 277
Typical structure of NP-completeness proofs by polynomial-
time reductions. L 280

List of Tables

3.5.1

4.4.1

5.3.1

0.4.1

The Chomsky hierarchy. 133

The extended Chomsky hierarchy: Grammars, languages,
and associated computer models. 248

Decidability (“Yes”) and undecidability (“No”) of some prop-
erties of interest for the Chomsky hierarchy. 262
Rates of growth of some standard functions. 268

X1

List of Algorithms

3.1 Grammar cleaning 74
3.2 Left-/Right-linear grammar to right-/left-linear grammar 89
3.3 Chomsky-normal-form transformation 101
3.4 Greibach-normal-form transformation 105
3.5 Language class by grammar type 134
4.1 Subset construction. 153
4.2 DFA minimization 159
4.3 Thompson construction 164
4.4 Product-automaton construction for L (My) = L; U Ly . . 168
4.5 Partition refinement for the states of a Mealy machine . . 179
4.6 Mealy-machine minimization 180
4.7 Conversion of a CFG G intoa PDA M 200

xiii

Preface to the 1st edition

Teachers tend to be picky with the material they use in teaching con-
texts. This may be for personality reasons, but the variety of contexts
and students also plays a role in this pickiness. Be it as it may, it of-
ten is the case that students end up with teaching material in many
formats and from many different sources, creating often a lack of unifor-
mity, both in notation and terminology. Because I am picky for all the
reasons above, I typically feel that my teaching task is substantially fa-
cilitated and optimized when I have gone to the great lengths of putting
all the material for a particular academic subject together in a single
manual or textbook. This guarantees not only conceptional and nota-
tional uniformity, but also a selection of approaches that I feel work well,
or better, for particular topics or problems.

This book is not about discovering the wheel; that is, possibly no novel
contents are to be found in it. The objective when writing it was that
of “putting together” a textbook on the classical theory of computing. If
there is any novel aspect in this textbook, it may well be the fact that
I insist on preceding the terms “(theory of) computation” and “(theory
of) computing” with the adjective “classical” to collect under the same
label the Chomsky hierarchy and the Turing-von Neumann paradigm of
computing. The former comprises three closely associated central topics,
to wit, formal grammars, formal languages, and models of computation
(a.k.a machines, or automata), and the latter gives to these, namely
via the Turing machine, measures of the spatial and temporal costs of
computation. Isay that this collection constitutes (the) classical (theory
of) computation, because many, often newer, other forms of computing
have emerged or become (more) popular since the Turing “revolution,”
many of which today may be said to constitute the non-classical (theory
of) computation. This is, for the initiated, more immediately the field of
quantum computing, but other forms of computation such as artificial
neural networks and evolutionary computing may be seen as also non-
classical versions of computing.

It is arguably possible to produce a textbook on formal languages,
grammars, and automata with no emphasis on computing, let alone
with any specific computational concerns. One such approach might be
with linguists in mind, though contemporary linguistics is not averse to

p.q%

Preface to the 1st edition

computation. On the extreme pole of this position, formal grammars,
languages, and automata are often reduced to the theory of computation,
namely as it serves the theoretical foundations of the digital computer.
Without taking a reductive view, I discuss formal languages and gram-
mars from the viewpoint of computation, and consider the associated
automata as models thereof. This said, readers with other foci will find
that the computational perspective taken here does not hinder—and may
even facilitate—their particular interests and concerns.

The backbone of this book is undoubtedly the Chomsky hierarchy.
Although much computing has run in the digital computer since N.
Chomsky first conceived it, it still works well for combining the mostly
linguistic approach with the computational one. In particular, it keeps
reminding us that we are linguistic beings to the point that one of
our most interesting creations—the digital computer—is language-based
through and through, a feature well-patent in the famous Turing Test,
a “test” conceived by the creator of the Turing machine to distinguish
a human computer from a non-human one. Indeed, it seems to have
been the rationale in Turing (1950) that language is sufficient to distin-
guish the human from the non-human computer or reasoner. More than
anything, it might have been this insistence on the verbal behavior of
computers that motivated the can-of-worms idea of Al (artificial intel-
ligence) as ultimately aiming at human-like machines, at least from the
viewpoint of intelligence, if not of emotion.

There is no way to go around this and it requires emphasis: (Clas-
sical) computing is a mathematical subject. Although the presence of
automata, of which the most famous is the Turing machine, lends it a fla-
vor of engineering, these are not physical machines nor can they be; they
are mathematical objects. To be sure, the digital computer is based on
the Turing machine, but this has a feature—an infinite tape—that makes
of the former a mere approximation of the latter. The mathematical
nature of this subject accounts for the clearly mathematical approach
in this book: I distinguish statements into definitions and propositions,
and provide proofs (or sketches thereof) to further distinguished—if not
distinct-statements, to wit, theorems and their companion lemmas and
corollaries. The numbering of such statements finds its utility in inter-
nal referencing, if it gives a more high-brow quality to the main text. I
reserve the status of theoremhood for statements of higher importance
than propositions, but the reader is free to consider (most) propositions
in this text as de-facto theorems; the fact that proofs are provided (or
left as exercises) for propositions supports this view.

This mathematical nature of the subject also justifies the large se-
lection of exercises here provided. Indeed, only few students are gifted

xXvi

with mathematical skills that free them from the arduous and time-
consuming practice of doing exercises. On the other hand, some may
find this a pleasant activity. Between these fall most mortals, one should
think. But the selection of exercises in this book was also guided by the
belief that one should be confronted with novel material and problems,
in order to develop research, as well as creative, skills.

Still with regard to the mathematical nature of this text, there are
throughout it a few algorithms for the computation of specific functions
(e.g., computing the Chomsky normal form of a given grammar). I chose
not to stick to a single pseudo-code or to a single algorithm format in
the belief that different algorithms can be better grasped in distinct
ways. Yet another advantage of this might be the familiarity with diverse
pseudo-codes and algorithm formats. Importantly, too, no programming
language or software plays any role whatsoever in this book. This is so
deliberately to keep the subject matter as general as possible, untied to
specific implementations or applications.

As said above, the aim for this book is not (re)inventing the wheel.
Although classical computing and its theory are in a current state of
development, with many a problem as focus of research-notably so the
P=7"NP problem—, the subject of the theory of classical computing has
attained a certain fixed form that is historically justified. In the second
half of last century, when this subject emerged, an abundance of text-
books and monographs were published, and a few of these established
themselves as standard references in the field. As such, it is only natural
that in pedagogical pursuits one should resort to them as sources. This I
do with two such classics in particular, to wit, Davis & Weyuker (1983)
and Hopcroft & Ullman (1979), the latter of which has evolved into the
more undergraduate-friendly Hopcroft, Motwani, & Ullman (2013). A
further source is Du & Ko (2001), a thoroughly mathematical approach.
Readers can greatly benefit from a direct use of all these referenced
works. Texts and manuals on this subject matter directed at under-
graduate audiences abound, with many a good one to further assist
readers in their academic pursuits. Referencing them all is of course
impossible, but interested readers know where to find them. More spe-
cific, often more advanced, literature is cited throughout this text in the
appropriate places; in particular, I cite the works in which important
results (e.g., theorems) were first published.

Lastly, this textbook is a further elaboration on what was originally
a chapter in a book of mine first published by College Publications, to
wit, Augusto (2018).! In this book, a chapter on the theory of comput-

'Now Augusto (2020a).

xvil

Preface to the 1st edition

ing appeared to be relevant, because issues such as Turing-completeness
of logic programming and the complexity of the satisfiability problem
(a.k.a SAT) required a minimal grasp of, among other topics, the Tur-
ing machine. Having resorted to this chapter to teach topics in au-
tomata, formal languages, and the classical theory of computation, and
having obtained satisfactory results, I decided to expand it to what
is now the present textbook. The main guideline for this expansion
was the inclusion of topics that were left out in the mentioned chap-
ter for spatial and temporal reasons, but which are essential for a fuller
treatment of this subject. Some of these new topics—e.g., characteristic
equations of finite automata, grammar cleaning algorithm-may appear
quite inessential from an Anglo-Saxon perspective, but my individual
work with Spanish students preparing themselves to take exams on the
above-mentioned topics made me realize the need to be as encompass-
ing and comprehensive as possible, namely with the large diversity of
readers of this subject in mind.

I wish to thank Dov M. Gabbay, the scientific director of College
Publications, and Tan Mackie, the editor for the Texts in Computing
series, for publishing this book. My thanks go also to Jane Spurr, the
managing director, for a smooth publication process.

Madrid, February 2019

Luis M. S. Augusto

xviii

Preface to the 2nd edition

The present edition corrects identified addenda and errata, and has both
improved and new figures. It also includes the odd minor change in the
main text of the first edition. The major changes are as follows:

e Figures 4.1.11 and 4.3.7 were replaced by more adequate ones:
In the case of Figure 4.1.11, the union of languages was rather
opaque, and the original finite automaton was replaced by a clearer
illustration; as for Figure 4.3.7, the original Turing machine, which
was too simple, was replaced by a more complex one.

e Exercise 4.1.9 (originally 4.1.14) has now five items, an increase
aiming at providing more practice of a complex algorithm.

e An additional algorithm for the conversion of a context-free gram-
mar into a pushdown automaton (Algorithm 4.5) is now included
and, based on it, Example 4.2.3 was greatly revised and extended.
This change entailed a new Figure (4.2.7),! to be found in Exercise
4.2.8, which was completely redesigned.

These changes are now made available thanks to the readiness of Col-
lege Publications to publish a second edition so shortly after the first.
Renewed thanks are in order.

Madrid, May 2020

Luis M. S. Augusto

'Figure 4.2.4 in this 3rd edition.

Xix

Preface to the 3rd edition

The present edition improves on the previous ones in many ways, of
which a few can be specified:

e Many exercises were introduced and others were rewritten, in par-
ticular in Chapter 2. In this Chapter, the emphasis fell on functions
and algorithms, two topics that were not satisfactorily—in any case
not sufficiently—discussed in the previous editions. Many of the
functions and algorithms involve recursion, a fundamental notion
in classical computation that was also not sufficiently discussed
before. In the belief that research is an essential task in the un-
derstanding of mathematical topics, a belief that had already been
present in the writing of the two previous editions, many of the
exercises introduced require that the student research integrally in
specific topics (e.g., Ackermann functions).

e A wholly new Section on algorithms and programs (Section 2.4)
was introduced.

e Further topics in regular languages and finite automata were in-
troduced, namely the Thompson construction, product automata,
and the direct sum of automata. This, in turn, motivated the
introduction of two new algorithms, to wit, Algorithms 4.3 and
4.4.

e More exercises with Turing machines were added, both for function-
computing and language-accepting machines.

Thanks are due to College Publications for their readiness to publish the
present 3rd edition.

Madrid, October 2021

Luis M. S. Augusto

xx1

References

289

Anderson, J. A. (2006). Automata theory with modern applications.
Cambridge, etc.: Cambridge University Press.

Arden, D. N. (1961). Delayed-logic and finite-state machines. Proceed-
ings of the 2nd Annual Symposium on Switching Circuit Theory
and Logical Design (SWCT 1961), 133-151.

Augusto, L. M. (2018). Computational logic. Vol. 1: Classical deductive
computing with classical logic. London: College Publications.

Augusto, L. M. (2019). Formal logic: Classical problems and proofs.
London: College Publications.

Augusto, L. M. (2020a). Computational logic. Vol. 1: Classical de-
ductive computing with classical logic. 2nd ed. London: College
Publications.

Augusto, L. M. (2020b). Many-valued logics. A mathematical and com-
putational introduction. 2nd ed. London: College Publications.

Augusto, L. M. (2020c). Logical consequences. Theory and applications:
An introduction. 2nd ed. London: College Publications.

Augusto, L. M. (2020d). Toward a general theory of knowledge. Journal
of Knowledge Structures € Systems, 1(1), 63-97.

Bar-Hillel, Y., Perles, M., & Shamir, E. (1961). On formal properties
of simple phrase structure grammars. Zeitschrift fir Phonetik,
Sprachwissenschaft und Kommunikationsforschung, 14(2), 143-172.

Bloch, E.D. (2011). Proofs and fundamentals: A first course in abstract
mathematics. 2nd ed. New York, etc.: Springer.

Blum, M. (1967). A machine-independent theory of the complexity of
recursive functions. Journal of the Association for Computing Ma-
chinery, 14(2), 322-336.

Bridges, D. S. (1994). Computability. A mathematical sketchbook. New
York, etc.: Springer.

Chomsky, N. (1956). Three models for the description of language. IRE
Transactions on Information Theory, 2(3), 113-124.

Chomsky, N. (1957). Syntactic structures. The Hague & Paris: Muton.

Chomsky, N. (1959). On certain formal properties of grammars. Infor-
mation and Control, 2(2), 113-124.

291

Chomsky, N. (1962). Context-free grammars and pushdown storage.
MIT Quarterly Progress Reports, 65, 187-194.

Church, A. (1936a). A note on the Entscheidungsproblem. Journal of
Symbolic Logic, 1(1), 40-41.

Church, A. (1936b). An unsolvable problem of elementary number the-
ory. American Journal of Mathematics, 58(2), 345-363.

Cook, S. A. (1971). The complexity of theorem proving procedures.
Proceedings of the 3rd Annual ACM Symposium of Theory of Com-
puting, 151-158.

Cooper, S. B. (2003). Computability theory. Boca Raton, etc.: CRC
Press.

Cooper, K. D. & Torczon, L. (2012). Engineering a compiler. 2nd ed.
Amsterdam, etc.: Morgan Kaufmann.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009).
Introduction to algorithms. 3rd ed. Cambridge, MA & London,
UK: MIT Press.

Crama, Y. & Hammer, P. L. (2011). Boolean functions: Theory, algo-
rithms and applications. Cambridge, etc.: Cambridge University
Press.

Crochemore, M., Hancart, C., & Lecroq, T. (2007). Algorithms on
strings. Cambridge, etc.: Cambridge University Press.

Davis, M. D. & Weyuker, E. J. (1983). Computability, complezity, and
languages. Fundamentals of theoretical computer science. Or-
lando, etc.: Academic Press.

Du, D.-Z. & Ko, K.-1. (2001). Problem solving in automata, languages,
and complexity. New York, etc.: John Wiley & Sons.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intelligence
through simulated evolution. New York, NY: John Wiley & Sons.

Gallier, J. (2011). Discrete mathematics. New York, etc.: Springer.

Garey, M. R. & Johnson, D. S. (1979). Computers and intractability: A
guide to the theory of NP-completeness. New York: W. H. Freeman
and Company.

292

Godel, K. (1964). Postscriptum to Godel (1934). In Collected works I
(pp. 369-371). Oxford: Oxford University Press, 1986.

Gopalakrishnan, G. (2006). Computation engineering. Applied automata
theory and logic. New York: Springer.

Grune, D. & Jacobs, C. J. H. (2010). Parsing techniques: A practical
guide. 2nd ed. New York, NY: Springer.

Hausser, R. (2014). Foundations of computational linguistics. Human-
computer communication in natural language. 3rd ed. Heidelberg,
etc.: Springer.

Hilbert, D. & Ackermann, W. (1928). Grundziige der theoretischen
Logik. Berlin: Springer.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann
Arbor, MI: University of Michigan Press.

Hopcroft, J. E & Ullman, J. (1979). Introduction to automata theory,
languages, and computation. 1st ed. Reading, MA, etc.: Addison-
Wesley.

Hopcroft, J. E., Motwani, R., & Ullman, J. (2013). Introduction to
automata theory, languages, and computation. 3rd ed. Boston,
etc.: Pearson.

Khoussainov, B. & Nerode, N. (2001). Automata theory and its appli-
cations. New York: Springer.

Kleene, S. C. (1938). On notation for ordinal numbers. Journal of
Symbolic Logic, 3(4), 150-155.

Kleene, S. C. (1956). Representation of events in nerve nets and finite
automata. In C. E. Shannon & J. McCarthy (eds.), Automata
studies (pp. 3-42). Princeton: Princeton University Press.

Kohavi, Z. & Jha, N. (2010). Switching and finite automata theory. 3rd
ed. Cambridge, etc.: Cambridge University Press.

Leary, C. C. & Kristiansen, L. (2015). A friendly introduction to math-
ematical logic. 2nd ed. Geneseo, NY: Milne Library.

Lovelace, A. (1843). Notes on L. Menabrea’s “Sketch of the Analytical
Engine invented by Charles Babbage, Esq.” Taylor’s Scientific
Memoirs, vol. 3. London: J. E. & R. Taylor.

293

Makinson, D. (2008). Sets, logic, and maths for computing. London:
Springer.

Matiyasevich, Y. V. (1993). Hilbert’s Tenth Problem. Cambridge, MA:
MIT Press.

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas im-
manent in nervous activity. Bulletin of Mathematical Biophysics,
5, 115-133.

Mealy, G. H. (1955). A method for synthesizing sequential circuits. Bell
System Technical Journal, 34 (5), 1045-1079.

Moore, E. F. (1956). Gedanken-experiments on sequential machines.
Automata Studies, Annals of Mathematical Studies, 34, 129-153.

Nerode, A. (1958). Linear automaton transformations. Proceedings of
the AMS, 9(4), 541-544.

Oettinger, A. G. (1961). Automatic syntactic analysis and the push-
down store. In R. Jakobson (ed.), Structure of language and its
mathematical aspects (pp. 104-139). Proceedings of Smposia in
Applied Mathematics, 12. Providence, RI: American Mathemati-
cal Society.

Ogden, W. (1968). A helpful result for proving inherent ambiguity.
Mathematical Systems Theory, 2, 191-194.

Rabin, M. O. & Scott, D. (1959). Finite automata and their decision
problems. IBM Journal, 3(2), 115-125.

Reghizzi, S. C., Breveglieri, L., & Morzenti, A. (2019). Formal lan-
guages and compilation. 3rd ed. London: Springer.

Révész, G. E. (1991). Introduction to formal languages. Minneola, NY:
Dover.

Rumelhart, D. E., McClelland, J. L., & the PDP Research Group (1988).
Parallel distributed processing. Fxplorations in the microstructure
of cognition. Vol. 1: Foundations. Cambridge, MA & London,
UK: The MIT Press.

Sakarovitch, J. (2009). Elements of automata theory. Cambridge: Cam-
bridge University Press.

Scott, M. L. (2009). Programming language pragmatics. 3rd ed. Ams-
terdam, etc.: Morgan Kaufmann.

294

Sebesta, R. W. (2012). Concepts of programming languages. 10th ed.
Boston, etc.: Pearson.

Sippu, S. & Soisalon-Soininen, E. (1990). Parsing theory. Vol. II:
LR(k) and LL(k) parsing. Berlin, Heidelberg: Springer.

Turing, A. M. (1937). On computable numbers, with an application to
the Entscheidungsproblem. Proceedings of the London Mathemat-
ical Society, Series 2, 42(1), 230-265.

Turing, A. M. (1950). Computing machinery and intelligence. Mind,
59(236), 433-460.

von Neumann, J. (1945). First draft of a report on the EVDAC. Tech-
nical report. University of Pennsylvania. (Reprinted in B. Randell
(ed.), The origins of digital computers. Selected papers (pp. 383-
392). 3rd ed. Berlin, etc.: Springer. 1982.)

Younger, D. H. (1967). Recognition and parsing of context-free lan-
guages in time n3. Information and Control, 10(2), 189-208.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-
353.

295

Index

297

Index

A

Ackermann function, 34

Adequateness, Structural, 113

Algorithm, 55

Algorithm, Classical, 56

Algorithm, Computational, 55

Algorithm, CYK, 285

Algorithm, Divide-and-conquer,
60

Algorithm, Greedy, 60

Algorithm, Search, 60

Algorithm, Sort, 60

Algorithm, String matching and
parsing, 60

Alphabet, 64

Arden’s lemma, 92

Artificial neural network, 4

Automaton, Cellular, 4

Automaton, Cross-product, 165

Automaton, Deterministic finite
(DFA), 147

Automaton, Finite (FA), 137

Automaton, Linear-bounded (LBA),
233

Automaton, Non-deterministic Fi-
nite (NDFA), 147

Automaton, Product, 165

Automaton, Pushdown (PDA),
192

Automaton, Two- stack pushdown,
247

Automaton, Two-way finite (2FA),
188

B

Backus-Naur form, 70

Blum axioms, 264

Boolean algebra, 39

Boolean expression, 42

Boolean formula, Quantified
(QBF), 43

Boolean function, 41

Boolean logic, 43

Boolean logic, Propositional, 43

Boolean variable, 41

C

ChNF (Chomsky normal form),
100

Chomsky hierarchy, 131

Chomsky hierarchy, Extended, 247

Church-Turing thesis, 252

Class, Language, 69

Classifier, 136

Closure, €-, 149

Closure, Positive, 68

Closure, Transitive, 32

CNF (Conjunctive normal form),
43

Compiler, 57

Complement (of a language), 68

Complexity classes, 268

Complexity, Computational, 267

Complexity, Space, 265

Complexity, Time, 265

Computation, 3

Computation, Classical, 5

299

Index

Computation, Evolutionary, 4
Computation, Fuzzy, 4
Computation, Non-classical, 5
Computation, Quantum, 4
Computational intelligence, 4
Computer, 3

Computer, Digital, 3
Computing, Hard, 4
Computing, Soft, 4
Concatenation, Language, 68
Concatenation, String, 65
Cook-Karp thesis, 272
Cook-Levin theorem, 275

D

De Morgan’s laws, 40

Decidability, 252

Decider, 247

Derivation, 69

Derivation graph, 127

Derivation, Direct, 69

Derivation, Leftmost, 69

Derivation, Rightmost, 70

DFA (Deterministic finite automa-
ton), 147

Diagonalization method, 24

Direct sum of automata, 188

DNF (Disjunctive normal form),
43

DPDA (Deterministic pushdown
automaton), 205

DTM (Deterministic Turing ma-
chine), 232

Dynamic programming, 60

E

Entscheidungsproblem, 6
Equivalence, Strong, 113
Equivalence, Structural, 113
Equivalence, Weak, 113

F
FA, Computation for a, 138

300

FA, Computer model for a, 137
FA, Configuration for a, 138
FA, State diagram of a, 139
FA, Transition function of a, 137
FA, Transition table of a, 139
Fibonacci sequence, 34
Finiteness, 23

Finite-state machine, 136
Finite-state recognizer, 137
Finite-state transducer (FT), 167
Frequency (of a letter), 64

FT (Finite-state transducer), 167
FT, Computation for a, 170
FT, Computer model for a, 169
FT, Configuration for a, 169
Function, Ceiling, 33

Function, Exponential, 33
Function, Factorial, 33
Function, Floor, 33

Function, Idempotent, 23
Function, Identity, 23

Function, Iterative, 23
Function, Logarithmic, 33
Function, u-recursive, 34
Function, Partial, 23

Function, Primitive recursive, 34
Function, Recursive, 34
Function, Remainder, 33
Function, Step, 33

Function, Tail-recursive, 34
Function, Total, 23

Function, Wrapper, 34

G

GNF (Greibach normal form), 104

Grammar equivalence, 70

Grammar, Ambiguous, 110

Grammar, Clean, 72

Grammar, Context-free (CFG);
Type-2, 98

Grammar, Context-sensitive
(CSG); Type-1, 100

Grammar, Formal, 69

Grammar, Left-linear, 84

Grammar, Linear, 84

Grammar, LL(k), 222

Grammar, LR(k), 207

Grammar, Phrase-structure, 131

Grammar, Regular; Type-3, 84

Grammar, Right-linear, 84

Grammar, S-restricted left-/right-
linear, 88

Grammar, Transformational-gene-
rative, 12

Grammar, Unrestricted (UG); Type-
0, 126

H

Hardware, 8

Hashing, 60

Hasse diagram, 31

Hilbert’s Tenth Problem, 260
Homomorphism, 39

I

Induction, Mathematical, 51
Induction, Structural, 51
Information, 3

Intersection, Language, 68

J
JFLAP [free software], 136

K

Kleene closure, 68
Kleene star, 68
Kleene’s theorem, 161

L

Language, Context-free (CFL),
98

Language, Context-sensitive (CSL),
100

Language, Decidable, 254

Language, Formal, 66

Index

Language, High-level, 57

Language, Leftmost, 70

Language, Low-level, 57

Language, Machine, 57

Language, Recursive, 246

Language, Recursively enumer-
able (REL), 126

Language, Regular, 80

Language, Rightmost, 70

Language, String, 125

Language, Tree, 125

LBA (Linear-bounded automa-
ton), 233

LBA, Configuration of a, 233

Length (of a string), 64

Letter, 64

Linear programming, 60

Logic, Classical propositional, 43

Logic, First-order predicate, 43

Logical equivalence, 44

M

Mealy machine, 167

Mirror image (of a language), 68
Mirror image (of a string), 65
Monoid, 39

Monoid, Free, 67

Moore machine, 169
Myhill-Nerode theorem, 157

N

Name of a rule, 127

NDFA (Non-deterministic finite
automaton), 147

NDFA, Computer model of a, 148

NDTM (Non-deterministic Tur-
ing machine), 232

Non-terminal (symbol), 69

Normal form, Chomsky (ChNF),
100

Normal form, Conjunctive (CNF),
43

301

Index

Normal form, Disjunctive (DNF),
43

Normal form, Greibach (GNF),
104

Notation, Backus-Naur, 70

Notation, Big-O, 266

Notation, Binary, 8

Notation, Unary, 227

(0)
Ogden’s lemma, 118

P

P =? NP, 270

Palindrome, 65

Parser, LL(*), 222

PDA (Pushdown automaton), 192

PDA, Bottom-up, 201

PDA, Computation for a, 192

PDA, Computer model of a, 192

PDA, Configuration for a, 192

PDA, State diagram of a, 194

PDA, Top-down, 201

PDA, Transition table of a, 194

PDA, Two-way (2PDA), 221

Poset diagram, 31

Post’s Correspondence Problem,
260

Power, i-th (of a language), 68

Power, i-th (of a string), 65

Precedence properties, 81

Prefix, 65

Problem for Horn formulas, The

satisfiability (HORN-SAT),

284
Problem for quantified Boolean
formulas, The satisfiabil-
ity (QBF-SAT), 284
Problem, Computational, 263
Problem, Decision, 251
Problem, Function, 263
Problem, The 2-SAT, 272

302

Problem, The Acceptance (ACPT),
255

Problem, The Busy Beaver, 260

Problem, The Circuit Satisfiabil-
ity (CIRCUIT-SAT), 273

Problem, The Clique (CLIQUE),
274

Problem, The Graph Colorabil-
ity, 274

Problem, The Graph Isomorphism,
274

Problem, The Halting (HALT),
255

Problem, The Hamiltonian Cy-
cle (HAM-CYCLE), 274

Problem, The Hamiltonian Path
(HAMPATH), 263

Problem, The k-SAT, 273

Problem, The Maximum Satisfi-
ability (MAX-SAT), 284

Problem, The Relative Primes,
272

Problem, The Satisfiability (SAT),
274

Problem, The Shortest Path, 272

Problem, The State-Entry (STEN-
TRY), 257

Problem, The Subgraph Isomor-
phism, 273

Problem, The Subset-Sum
(SUBSET-SUM), 274

Problem, The Traveling Salesman
(TSP), 274

Problem, The Vertex Cover
(VERTEX-COVER), 274

Procedure, 55

Procedure, Effective, 55

Production rule, 69

Production, Copying, 72

Production, Empty, 72

Production, Recursive, 72

Production, Renaming, 72

Production, Right-recursive, 78

Production, Unit, 72

Proof by contradiction, 52

Proof, Constructive, 125

Pumping lemma for CFLs, 116

Pumping lemma for regular lan-
guages, 90, 146

Pushdown automaton (PDA), 192

R

Recursion, 34, 78

Recursion, Left, 107
Reducibility, 256

Reducibility, Polynomial-time, 272
Reductio ad absurdum, 52
Reduction, LR(k)-grammar, 207
Regular expression, 79
Relation, Connectivity, 32
Reverse (of a language), 68
Reverse (of a string), 65

Rice’s theorem, 260

S

Savitch’s theorem, 269
Semi-decidability, 254
Semigroup, 39
Semigroup, Free, 67
Sentential form, 70

Set, Computable, 251
Set, Decidable, 251

Set, Diophantine, 255
Set, Recursive, 251

Set, Recursively enumerable, 254
Set, Semi-decidable, 254
Shuffle, Language, 68
Shuffle, String, 65
Software, 8

State, Trapping, 141
String, 64

String, Empty, 64
Substitution, 119
Substring, 65

Index

Suffix, 65

Symbol, Accessible, 71
Symbol, Non-generating, 71
Symbol, Reachable, 71
Symbol, Well-defined, 71
Syntax, 66

T

Terminal (symbol), 69

Thompson construction, 162

Thompson conversion, 162

Towers of Hanoi, 34

Tractability, 270

Transducer, Finite (FT), 167

Transducer, Pushdown, 221

Transition function, Extended, 142

Transition relation, 147

Tree, Derivation, 109

Tree, Parse, 109

Truth-value assignment, 41

Turing machine, 223

Turing machine, Computation for
a, 225

Turing machine, Computer model
for a, 223

Turing machine, Configuration of
a, 224

Turing machine, Deterministic
(DTM), 232

Turing machine, Non-determinis-
tic (NDTM), 232

Turing machine, State diagram
of a, 226

Turing machine, Total, 247

Turing machine, Transition ta-
ble for a, 226

Turing machine, Universal, 235

Turing-completeness, 7

Turing-decidability, 252

Turing-recognizability, 261

Turing-reducibility, 256

Turing’s theorem, 7

303

Index

Turing-von Neumann paradigm,
8

U
Union, Language, 68

A%

Variable, 69

Variable, Start, 69

von Neumann architecture, 8

w
Word, 64

Y
Yield, 69

304

