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Abstract of variables var, the logical constantsand_L, and connec-
tivesA, Vv, —.
Entailment in propositional @del logics can be defined A valuation v on a set of truth value¥ is a function

in a natural way. While all infinite sets of truth values yield mapping var t&/. The valuation is extended in the standard
the same sets of tautologies, the entailment relations differ.way to formulas by:
It is shown that there is a rich structure of infinite-valued

Godel logics, only one of which is compact. Itis also shown vm =1
that the compact infinite-valuedd@el logic is the only one V(L) = 0
which interpolates, and the only one with an r.e. entailment VieAY) = min(v(g),v(Y))
relation. ViEVE) = maxv(e),v(y))
_ 1 v <v(y)
vie—w) = {v(qJ) otherwise.

1 Introduction
Negation is defined by-@ = @ — _L; equivalence byp=
Y= (90— W) A (Y — ).

An entailment pairis a pairl1 E @, wherell is a set of for-
mulas. We extend the definition of valuations to entailment
pairs by

Traditionally, the study of many-valued logics has iden-
tified logics with their sets of tautologies and centered on
their study as such. With the notable exception of Kleene
logic, which lacks tautologies altogether, the study of the
entailment relations of many-valued logics has taken the 1 if inf{v(Y) : @ € N} < v(g)
back seat. It has, however, become increasingly obvious v(nFg) = {V((p) otherwise
that such a study is called for, especially in cases where . )
many-valued logics are applied in computer science to rea-for [ any set of formulas. Itis easily seen thég) = v(0 =
soning about various domains. For instance, Avron [1] has @) if we take the inf over the empty set to be 1. We may thus
argued that @del logics are suited to formalize properties define:Fv andr Fv @iff v(g) = 1 andv(M = @) = 1 forall
of concurrency and advocated a view of logics primarily as Valuationsv over a given set of truth valuas respectively.
entailment relations. The present paper aims to take a first-Urthermore, we define:

step in the investigation of the structure and properties of TautV) = {@: Fv @}

entailment in propositional @lel logics. Unless otherwise

noted, we will consider a logic as given by an entailment En(v) = {(M@:MNkve}

relation, not as a set of tautologies. It is well known that Tautv') only depends on the cardi-

Godel logics were introduced by Kurtd@el [S]and also  nality of , and in particular that Ta(¥ ) = TautV’) when-

extensively studied, as sets of tautologies, by Dummett [4]. everv andV’ are both infinite. However, in general Ei
The set of truth values can always be taken to be a subset 0fng EntVv’) will differ even if V andV’ have the same infi-

the real interval0, 1], containing 0 and 1 and closed under njte cardinality but differ in order type.
greatest lower bound. 1 is the designated truth value. The
language we consider consist of a denumerably infinite setl.1. DEFINITION Let

*Research supported by FWF Grant P-10282 MAT Vk = {1-1/n:1<k-1}uU{0}
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Vi = {1-1/n:new—-{0}}uU{1} If ¢ =y’ — ", we distinguish three cases. Ufy) =
{1/n:new-{0}}Ui{o} w =1, thenv(y/) < v(y”) <w. By induction hypothesis,
Vo — (0.1 Y (W) = V(W) andwy(") = V(Y"), o (W) = 1=V(y).
® ’ Now suppose thai() <w< 1. Thenv(y”) < wand by in-
duction hypothesisgy(W”) = v(y”). Sincev' (') > v('),
we havevy () = v(J). Finally, suppose thai(y) > w.
Then eitherv(y') > v(P”) = v(P) > w, or v(y') < v(y”).
In the former caseq (V') = v (W) = 1, and soiy(P) = 1.
In the latter case, again, we have two casesv(()) < w.
Then vy (W) = v(P') < viu(P”). (2) v(y') > w, and so
Vi (W) = vy (V") = 1. In either casey,(P) =12 O

<
I

If V is a truth value seGy is the Gdel logic corresponding
to that set, i.e.Gv = Ent(V). In particular,Gn, G|, Gy,
andG,, stand for Entvy), EntV|), EntV;), and EnfV.),
respectively.

Note that

One might wonder whether a different definition of the
entailment relation in &del logic might give different re-
sults. Another standard way of defining entailment in many-
valued logics is:

1 if v(X) > v(Z)
X =2)=2)= {V(Z) otherwise.
Itis then easily seen that v, Y, Mz Fy, Y butMy Fy, '

I'Iz}vf\/l Y and alsd1y ¥y, Y andll;, ¥y, Y, where Let Mk iff forall v, (Vg e MV(W) = 1) = v(g) = 1

M1 = {(X—X) =X, (%= X) =X, This definition yields the same results, as the following
Xt =Y, X% —Y,...} proposition shows:
M, = {(Xg—X2) = Xo,(Xo—X3) — Xg,...
Xt =Y, X —Y,...} 2.2.PROPOSITION M Ey @iff M Iky @
ThusG, # G; # Ge # G|, even though all three truth value Prc_)of. Only if: Immediate. If: Suppose witnessed1 ¥
sets are infinite an{V; | = [V;|. o i.e,v(ME @ =w< 1. Then, by Lemma 2.3, (Y) =1
Our aim shall thus be to establish the inclusion relation- for all @ € I andwy(¢) =w<1. [
ships of the various &del logics and in particular to charac- This allows us to use the characterization=obr I- as
terize thqse which have a compact'ente}ilment relation. En-proves convenient.
tailment is compact iff, as usudll, = @implies that for some It is an easy but fundamental result that Tatand

finite _I'I’ - n,nee A_s cor_ollaries, we will obtain_char- Ent(V) depend only on the order type Wt This is made
acterizations of the logics with r.e. entailment relations and precise in the following

those with interpolating entailment.
2.3.PROPOSITION Let Vv and V' be valuations, not necessar-
2 Structure of entailment relations ily on the same sets of truth values, such that v(X) = 1 iff
V(X) = 1, v(X) < V(Y) ifFV(X) < V(Y), and v(X) = V(Y)
The following proposition will be used frequently in iff V(X) =V/(Y) (for all X,Y). Then v(¢) = 1 iff V'(¢) = 1

what follows. and V(@) = V(X) iff V(¢) = V(X).2
2.1.PROPOSITION Let W € V for V a set of truth values, 2.4.PROPOSITION (1) If|var(@)| <nandy, , @ theny
and v a valuation on V. Define @ forallV with [V| = n+2.
Vio(X) = {v(x) ifv(X) <w (2) TautV) C TautV’) for |V| < [V/|.4
1 otherwise.
- Proof.  This follows immediately from Proposition 2.3.
en ; i ti
V(W) = {V(lIJ) ifv(y) <w ;I;)f;enb_mind lg (1) is tight, as the exampleXf/ =X shows
1 otherwise -
for all .

2.5.COROLLARY Taul(Ve) = hew TAULVh)
Proof. By induction on the complexity af. If Y a vari-
able, the claim is true by definition @f,. If =y AY”, 2.6. PROPOSITION For every @ there is a normal form N(@)
andv(y') < v(W"), thenvy(B) = v(W') = v(W) if v(') <w such that Fy,, @= N(¢@). Furthermore, if for every n, the set
or iw(Y) = 1= v(y) if v(§') > w. Similarly if g is a dis- {N(o) : var(@) = {Xq,...,Xn}} is finite and depends only
junction. onn.
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Proof.  The idea of the proof is easy: By Theorem 2.3, 2.9.LEMMA Suppose V(I E @) =w. Then vy (M E @) =

only the order of the variables induced by a given valua-

tion is relevant to determine the truth value of a formula. Proof.  Suppose, first, thai(IT) > w. Thenw, () = 1 for

Such an ordering can be expressed by a formula of the lan2all W € M, andvy(¢) = v(¢) = w. Otherwisew = 1 and

guage, usingX — Y) A ((Y — X) — X) for: v(X) <v(Y) V() < wfor somey € M and sovy (M) < w. In this case,

orv(X) =v(Y)=1,andX =Y forv(X) =Vv(Y). Everysuch ~ V(MF @) =w(MFg@=1. O

formula implies thatp is equivalent to a variable in v@g),

1, or 0. Form the disjunction over all such implications. For 2.10.PROPOSITION Gt =NnewGn-

a detailed proof, see [3], Theorem 5.1

Proof. Every V, valuation is also a/; valuation, so

Ent(V) C Ent(V;). On the other hand, i¥(M F @) =
—1/n=w, thenvy as defined in Lemma 2.1 is\41-

valuation withvy,(M F @) = w, and sdl #y,,, @5 O

Godel logics were invented as a tool to study proposi-
tional intuitionistic logic. Consequently it is not surprising
that there is a tight connection between Kripke semantics
and @del logics. It is well known that Ta(M.) equals the
set of formulas valid in all linearly ordered Kripke struc-
tures. The connection extends to entailment; the truth value2 11.PROPOSITION Let V be any truth value set. Then
set corresponding to such structures with respect to entail-l1 ¥v.. @ifTT Ay @

mentisV,. 2.12.COROLLARY
2.7.DEFINITION A linear Kripke structure K is a function B
from var to {0}® U {0}<® ~ {1}* (i.e., 0-1 sequences Ent(Ven) = N Ent(v)
which, once 1, remain 1). We extekdo formulas by: vciol
V countable
k(Ti = 1
k(L) = 0 2.13.DEFINITION We define the following families of truth
oA = {1 if k(@); - k(W) =1 value sets:
8 F]:tEefW'Sek . Ue = {i/(k+1)+1/j(k+1):0<i<k—1;j>0}®
i i = i = . : . .
k(pvp)i = {1 oth(eq;z/lvise W) Dk = {i/(k+1)—-1/j(k+1):i=1,... ,kj>0}U
1 if, forall j >, u{i/(k+1);i=0,...,k+1}
k(p— W) = k(p)j =0ork(p)j=1
( ) {0 o(t(rg)elrwise. (Wi Correspondingly, we define sets of formulas
The logic of linear intuitionistic Kripke structures LI is e = {(G1—G)—C,
given by G —>Ce:i=0,... k—1}
Mk @iff for all k, (Vg € M)(k(p)o=1) = k(p)o =1 Yo = {(Xi1—XH) - xLc - X,
2.8.PROPOSITION G| = LI X\ —Cppticw}

A= {(X =X ) = X0.C = X,

Proof.  Letk be a Kripke structure andaV,-valuation.

Then Xf —Cprii €W}
k—1
=y O if k(X) ={0}® Yo — rul Iy
k(X) = {1/(n+ 1) if nisleasts.tk(X),=1 k K zL:Jo
is aV,-valuation, and k—1
: N = Moo
sy SO ifv(X) <1/(i+1) /=0
V(X)i = )
1 otherwise

Uk has the order type % ku) while D has order type
defines a Kripke structure. Itis easily shown, by induction ., 2 |n particular; = I

on formulas, thaf = vandk = k. Consequentlyk(@)o =1

1 2 k
iff k(@) = 1 andv(q) = 1 iff ¥(¢g)o = 1. Using the charac- Ue 0 H,O—z k+1 H/l—’ k+1 1o 1
terization oft in terms ofl- of Proposition 2.2, the result S G X C Ci
follows. O D 0 v @ T B 1
An analogous result holds for first-ordeb@el and lin-
ear intuitionistic logic [2]. 2.14.PROPOSITION (1) A Fp, C; forallr.
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(2) & Fy, G forr <k

3) A Fy, G forallr > k.

4) Yy Fy, G forallr.

(5) Yy #p, C forr <k

(6) Y; Fp, C; forallr > k.

(7) IfT Fp, @thenT Fp, @forallr > k.
(8) IfT Fy, @thenT Fy, @ forallr > k3B

We thus have the following picture:

G22G32...2NGi =

2EntUp) = GlQEnt(Uz)_'D,_ .
2& 2&

2 EntD;) 2EntD2)2...

=G BYCH

The hierarchy result just described shows that there are atProof.

leastlo many different Gdel logics betwee; andG...
This suggests the question:

2.15.PROBLEM Are there even 20 or 2°° |ogics below
Gw?

We will show in the next section that an infinite-valued
Godel logic is compact iff its set of truth values contains a

in T’ terminate at nodeg whereV ({Y1,...,Wk}) < Wo.
Now if T’ is finite, there is & such thaty, ..., Uk Fv Wo.
Otherwise, sinc@” is finitary, it contains an infinite branch.
Let v be the limit of the partial valuations in that branch.
Obviously, sincé/ is finite, v(I) > v(o) and sl Fy Yo.

O

3.3.PROPOSITION Suppose I1 contains only finitely many
variables. Then N’ =y @, for some finite M’ C MM, provided
MEy Q.

Proof. By Proposition 2.6, there are only finitely many
non-equivalent formulas davariables. Choose a represen-
tative from each equivalence class to obtdin [

3.4.THEOREM Suppose V 2 W with W densely ordered
and |W| > 2. Then Gy is compact.

Let X be a set of variables. &hain on X is an
arrangement oK in a linear order. Formally, a chai{d on

X is a sequence of pai(X;, 0;) whereo, € {<,=,>} where

X; appears exactly once. A valuatiosmespect€ if v(X;) =
V(Xi+1) if 0 is =, v(X) > v(Xiy1) if o is >, andv(X) <
v(Xiy1) if o is <. If X is finite, there are only finitely many
chains onX.

We construct a tree in stages as follows: The initial node

is labeled by 0< 1 and an empty valuation. Stager 1:

densely ordered subset. It should be pointed out right herey oqe N constructed in stage is labeled by a chain on

that almost all infinite-valued logics are not compact. In

fact, there is only one compact infinite-valuedde| logic,
namelyG, as Proposition 3.7 will show.

3 Classification of compact Gdel logics

We now turn to the characterization of thos&dal logics

the variablesXy, ..., X, and a valuatiorvy of Xy, ..., X,
respecting the chainN receives successor nodes, one for
each possibility of extending the chain by insertdg, 1.
The labels of each successor nddleare the corresponding
extended chain and an extensionvQfwhich respects the
extended chain. The valugy(Xn+1) is chosen insid&V,
i.e., the endpoints aV may not be chosen as values. Since

whose entailment relations are compact, as defined by thé/V is densely ordered, this ensures that such a choice can be

following

3.1.DEFINITION Gy is compact if, whenever1 Fy @there
is a finiteN’ C M so thatl’ ky .

3.2.PROPOSITION Gy is compact if V is finite.

Proof. Letll= {LIJl,LlJz,...}, and letX = {Xo, X, .. .},
be an enumeration of variables occurindinyyg such that
all variables inyj; occur before the variables ipj ;. We
show that eithefWs, ..., Wk} E W or W E Wo.

LetT be the complete semantic treeXni.e., T =V <%,
An element ofT of lengthk is a valuation ofXp, ..., Xx_1.
SinceV is finite, T is finitary. LetT’ be the subtree dF de-
fined by:v € T' if for every initial segment’ of v and every
k such that all the variables if, . ..,y are amongy, . . .,
Xorys V({W1, .-, Wk}) > V(Yo). In other words, branches
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made at every stage.

We call a branch ofl closed at node N (constructed
at stagen) if for some finite’ C M such that va{f1’) U
var(@Q) C {Xi,..., %} it holds thatun(M") < wn(@). T is
closed if it is closed on every branch. In that case, for some
finite MM’ C N, we havdl’ E @.

If T is not closed, it contains an infinite branch. ldie
the limit of thevy of nodesN on the infinite branch. It holds
that v(y) > v(¢) for all ¢ € M, for otherwise the branch
would be closed at the first stage where all the variables in
Y were assigned values. Let=v(@). By Proposition 2.1,
V(@) = V() andwy, (M) = 1, and sd1 ¥ @, a contradiction.

(Il

3.5. THEOREM Suppose V does not contain a densely or-
dered subset. Then Gy is not compact.



Proof. We define a sequence of sets of variabfgsand
formulasrl k as follows:

Xk {X:r=i/2X0<i<2¢

ri( = {X = X) = X5, (Xs = %) — X
t=(i—1)/2s=i/2r=(i+1)/2

1<i<2k—120Dji)

= X —Z:ir=i/20<i<29

MNe = |/(Ul_/kl

r = UYrk
kew

Intuitively, [, expresses that th¥  for 0 <i < 2€ are
linearly ordered so thaki x < X 1)/ Ukeolk €X-
presses that the variabl¥sare densely ordered(X ) <
V(Xzi41)/211) < V(X 12)/2¢)- Now if V has at least'2+-2
truth valuesyp < --- < vy < 1, the valuatiorv

V(X )
v(Z)

Vi

Vokiq

will havev(ly) = 1 andv(Z) < 1, soly ¥y Z. On the other

The notion of model compactness coincides with com-
pactness in the case of classical logic, but not in the general
case of infinite-valued &del logics. The following theorem
is due to Petr Hjek:

3.9. THEOREM All Godel logics are model compact.

Proof.  Observe that for any valuationand any formula
@, if v(@) =1 then alsovp(@) = 1 (see Proposition 2.1).
Hence, ifv is a model forl1 in any logic, vp is a model
for N in G,. Hence [l has a model iGy iff it has a model
in G2. SinceG; is model compact, so Sy foranyV. O

4 Interpolation in G ddel logics

Interpolation is a property usually defined for logics as
considered as a set of sentences. A ldgiweakly interpo-
lates if, wheneverl F @ — , there is a sentenae so that
var(o) C var(@) Nvar(y) andL F ¢ — o andL F o — .
The sentence is called sninterpolant of @ andy. We may
extend this defnition to entailment relations as follows:

4.1.DEFINITION Gbdel logicGy interpolates if, for all M1,
M, and@, such thafl; UM, Ey @, there iso with var(o) C

hand, ifV does not contain a densely ordered subset, thenvar(l‘ll) nvar(N,U{g}) andr Fy o andM,U{c} Fy .

I Fv Z. In fact the onlyv such thatv(lF) = 1isv(X) =1
forallr,andv(z)=1. O

We have thus succeeded in characterizing the compac

propositional @del logics. They are all those where the
set of truth value¥ is either finite or contains a nontrivial
densely ordered subset.

3.6. THEOREM The compact Godel logics are exactly those
given by the truth-value sets Gp (N > 2) and G.

This follows from the next proposition, together with the
fact that all infinite-valued @del logics have the same tau-
tologies.

3.7.PROPOSITION Let F1 and E» be the entailment rela-
tions of two compact logics, each satistfying modus ponens,

the deduction theorem, and having the same tautologies.
Then F1 = F».

Proof.  Supposdl k1 @. Then for some Wy, ..., Un} F1
. By the deduction theorem fér, we have=; P — -+ - —
Yn — @ SincekFy @iff Fo @ Fo Py — -+ — Y — @, and
by modus poneng] F> . O

3.8.DEFINITION A logic Gy is model compact if, for any
MM, M has a model provided all finite subsé&tsC M have
models.
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SinCelle,...,lIJn Ev (plff Fv Y1 — - — Uy— @ Gy

{'nterpolates weakly iff it interpolates with respect to finite

sets.
The following observation is immediate:

4.2.PROPOSITION If Gy is compact, then Gy interpolates
iff it weakly interpolates.

Our aim in this section is to show that weak interpolation
and interpolation fall apart whevi is infinite: Gy weakly
interpolates ifV is infinite, but only interpolates whe@y,
is compact as well.

4.3. THEOREM Gy weakly interpolates iff V| =2 or |V| =
3orV is infinite.

Proof. See[6,3] O

4.4.PROPOSITION LetV be infinite but not contain a non-
trivial densely ordered subset. Then Gy does not interpo-
late.

Proof.  Consider the sdt from the proof of Theorem 3.5.
We know thatl” Fy Z. Suppose there was an interpolant
so that™ Fy o andlM" u{c} Fy Z. Let

{werl :var(y)
{wer”:var(y)

F/
I'l//

var(o)}

C
Cvar(o)U{Z}}



Thenf’ &y 0 and ™ U {c} v Z. To see this, suppose

v(I'") = 1 andv(o) < 1. ThenV defined by
vx)={
would evaluate all formulas i’ — '’ to 1, contradicting

I =y 0. A similar contradiction follows for the second part
of the claim by considering

v'(x)={

vV(X)
1

if X € var(o)
otherwise

v(X)
0

if X e var(o)u{Z}
otherwise.

Of course[” andl” are both finite. By the cut rule fory
it follows thatl" UT'” &y Z. This contradicts the proof of
Theorem 3.5. O

Note that the proof actually establishes a stronger result:
The definition of an interpolant requires the variablegin
to be contained in the intersection of yaf) and vatr’ u
{Z}). We have shown that no formula whatsoever, i.e., not
even one that does not satisfy that condition, can serve as a
interpolating formula.

4.5. THEOREM Gy interpolates iff V| =2 or V| =3 orV
contains a densely ordered subset. That is, the only interpo-
lating Godel logics are Gy, Gz, and Ge.

Proof.
O

By Theorem 4.3 and Propositions 4.2 and 4.4.

It is not necessary for a logic to be compact in order to
interpolate. For instance, consider the many-valued logic
onV, with constantsT, L for 1 and 0, respectively, and the
operatord given by: &(1/n) =1/(n+ 1) and&(0) = 0.

M E @iff one of the following hold:

(1) &X(X) € N with k unbounded,
() Len,
(3) = &‘(X) and&X(X) e I for somek > ,

(4) o= &'(T) and&X(X) € N or &(T) € N for some
k> /.

In each case, an interpolant can easily be found for any par-

tition of I'. However, the logic is not compact, as the exam-
ple {#X(T) : k€ w} F L illustrates.

5 R.e. entailment relations

We conclude with a somewhat curious result. Proposi-

recursive set of formulas entails another formula is highly
undecidable for non-compact@el logics. This potentially

has serious consequences for the implementation and appli-
cation of Gddel logics in inference mechanisms.

5.1.PROPOSITION The set

E={(e"@"): {w:{e}("Y") =0} Fy @}

is r.e. iff Gy is compact. Hence, the only r.e. Godel logics
are Gy, and Go,.

Proof. If: We can enumerat& by enumerating finite
subsets ofl = {W: {e}("W™) = 0} and testing for implica-
tion. If I Ey @, this search terminates eventually siri&g
is compact.

Only if: SupposeGy is not compact. Leff(e) be the
index of the predicate defined by

{f(e)}("w") =0iff Y M and(Vj <i)({e}(j) =0)
n
where I'; is as in the proof of Theorem 3.5. Then
(f(e),"Z7) € Eiff {e} is total and constant equal to 0. That
problem, however, ig19-complete [7, Theorem IV.3.2].
(I
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Errata

We would like to thank Petr Cintula for pointing out a num-
ber of misprints and possible improvements in the text.
These reached us only after the proceedings volume went
to print; they are added in this version as notes.

1. This should readl, Fv, Y, notMiFy, Y.

2. Petr Cintula has communicated the following simpler
argument for the induction step:Wf= 1 the claim is trivial.
So supposev < 1. (1) v(¢) < v(P). Thenvy (@) < viw(P)
and sovy(@ — W) =1, whilevip— @) =1>w. (2)

w < V() < V(). Thenvy(p — ) =1, whereas/(¢p —

W) =v() >w. (3)v(p) <wandv(y) < v(g). In this
caseMy(P) = V(P) < V(@) < Vw(@), SOVw(@— ) = vw (W),
while v(@— @) = v(P) < w.

3. Petr Cintula points out that Bim) C Ent(V’) if there

is an injectionf:V/ — V which preserves strict order, i.e.,
f(v) < f(V) iff v<V. This follows quite easily from
Proposition 2.3: Ifvis a valuation oV’ andv(M E @) < 1,
then fv is a valuation orV (in fact, on f(V') C V), and
fv(N E @) < 1. As an immediate corollary we obtain the
fact stated just before Proposition 2.3, i.e., that(Eht=
Ent(V’) if V andV’ are order-isomorphic.

4. This should rea@/| > |V'|, not|V| < [V/|.

5. Note that welefined Vi, = {1-1/k: k<n-1}U{1}.
However, using the consideration of note 3, the result holds
for any sequenc®;’ with |V = n. In particular, ifv(M E

@ =1-1/n=w, then there is an order isomorphistm
between{v c V; : v<w} U {1} andVy, , and sofv(M

@ = f(w) <1

6. The definition olJ, should read

U« = {i/(k+1)+1/j(k+1):0<i<k-1;j>0}U
W{i/(k+1);0<i<k+1}
7. This is not strictly true, howevel; andV, are order

isomorphic and thus Efit;) = Ent(V,) by note 3.
8. (7) and (8) follow from note 3.
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