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Abstract

Entailment in propositional G̈odel logics can be defined
in a natural way. While all infinite sets of truth values yield
the same sets of tautologies, the entailment relations differ.
It is shown that there is a rich structure of infinite-valued
Gödel logics, only one of which is compact. It is also shown
that the compact infinite-valued Gödel logic is the only one
which interpolates, and the only one with an r.e. entailment
relation.

1 Introduction

Traditionally, the study of many-valued logics has iden-
tified logics with their sets of tautologies and centered on
their study as such. With the notable exception of Kleene
logic, which lacks tautologies altogether, the study of the
entailment relations of many-valued logics has taken the
back seat. It has, however, become increasingly obvious
that such a study is called for, especially in cases where
many-valued logics are applied in computer science to rea-
soning about various domains. For instance, Avron [1] has
argued that G̈odel logics are suited to formalize properties
of concurrency and advocated a view of logics primarily as
entailment relations. The present paper aims to take a first
step in the investigation of the structure and properties of
entailment in propositional G̈odel logics. Unless otherwise
noted, we will consider a logic as given by an entailment
relation, not as a set of tautologies.

Gödel logics were introduced by Kurt G̈odel [5] and also
extensively studied, as sets of tautologies, by Dummett [4].
The set of truth values can always be taken to be a subset of
the real interval[0,1], containing 0 and 1 and closed under
greatest lower bound. 1 is the designated truth value. The
language we consider consist of a denumerably infinite set
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of variables var, the logical constants> and⊥, and connec-
tives∧, ∨,→.

A valuation v on a set of truth valuesV is a function
mapping var toV. The valuation is extended in the standard
way to formulas by:

v(>) = 1

v(⊥) = 0

v(φ∧ψ) = min(v(φ),v(ψ))
v(φ∨ψ) = max(v(φ),v(ψ))

v(φ→ ψ) =
{

1 if v(φ)≤ v(ψ)
v(ψ) otherwise.

Negation is defined by¬φ = φ→ ⊥; equivalence byφ ≡
ψ = (φ→ ψ)∧ (ψ→ φ).

An entailment pair is a pairΠ� φ, whereΠ is a set of for-
mulas. We extend the definition of valuations to entailment
pairs by

v(Π � φ) =
{

1 if inf{v(ψ) : ψ ∈Π} ≤ v(φ)
v(φ) otherwise

for Π any set of formulas. It is easily seen thatv(φ) = v( /0 �
φ) if we take the inf over the empty set to be 1. We may thus
define:�V φ andΠ�V φ iff v(φ) = 1 andv(Π� φ) = 1 for all
valuationsv over a given set of truth valuesV, respectively.
Furthermore, we define:

Taut(V) = {φ : �V φ}
Ent(V) = {〈Π,φ〉 : Π �V φ}

It is well known that Taut(V) only depends on the cardi-
nality ofV, and in particular that Taut(V) = Taut(V ′) when-
everV andV ′ are both infinite. However, in general Ent(V)
and Ent(V ′) will differ even if V andV ′ have the same infi-
nite cardinality but differ in order type.

1.1.DEFINITION Let

Vk = {1−1/n : 1≤ k−1}∪{0}
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V↑ = {1−1/n : n∈ ω−{0}}∪{1}
V↓ = {1/n : n∈ ω−{0}}∪{0}
V∞ = [0,1]

If V is a truth value set,GV is the G̈odel logic corresponding
to that set, i.e.,GV = Ent(V). In particular,Gn, G↓, G↑,
andG∞ stand for Ent(Vn), Ent(V↓), Ent(V↑), and Ent(V∞),
respectively.

Note that

v((X→ Z)→ Z) =
{

1 if v(X)> v(Z)
v(Z) otherwise.

It is then easily seen thatΠ1 �V↓ Y, Π2 �V↑ Y butΠ1 2V↑ Y,1

Π2 2V↓ Y and alsoΠ1 2V∞ Y andΠ2 2V∞ Y, where Let

Π1 = {(X2→ X1)→ X1,(X3→ X2)→ X2, . . .

X1→Y,X2→Y, . . .}
Π2 = {(X1→ X2)→ X2,(X2→ X3)→ X3, . . .

X1→Y,X2→Y, . . .}

ThusG↓ 6= G↑ 6= G∞ 6= G↓, even though all three truth value
sets are infinite and

∣∣V↓∣∣=
∣∣V↑∣∣.

Our aim shall thus be to establish the inclusion relation-
ships of the various G̈odel logics and in particular to charac-
terize those which have a compact entailment relation. En-
tailment is compact iff, as usual,Π� φ implies that for some
finite Π′ ⊆ Π, Π′ � φ. As corollaries, we will obtain char-
acterizations of the logics with r.e. entailment relations and
those with interpolating entailment.

2 Structure of entailment relations

The following proposition will be used frequently in
what follows.

2.1.PROPOSITION Let w ∈ V for V a set of truth values,
and v a valuation on V. Define

vw(X) =
{

v(X) if v(X)≤ w
1 otherwise.

Then
vw(ψ) =

{
v(ψ) if v(ψ)≤ w
1 otherwise

for all ψ.

Proof. By induction on the complexity ofψ. If ψ a vari-
able, the claim is true by definition ofvw. If ψ = ψ′ ∧ψ′′,
andv(ψ′)≤ v(ψ′′), thenvw(ψ) = v(ψ′) = v(ψ) if v(ψ′)≤w
or vw(ψ) = 1 = v(ψ) if v(ψ′) > w. Similarly if ψ is a dis-
junction.

If ψ = ψ′ → ψ′′, we distinguish three cases. Ifv(ψ) =
w = 1, thenv(ψ′) ≤ v(ψ′′) ≤ w. By induction hypothesis,
vw(ψ′) = v(ψ′) andvw(ψ′′) = v(ψ′′), sovw(ψ) = 1 = v(ψ).
Now suppose thatv(ψ)≤w< 1. Thenv(ψ′′)≤w and by in-
duction hypothesis,vw(ψ′′) = v(ψ′′). Sincev′(ψ′)≥ v(ψ′),
we havevw(ψ) = v(ψ). Finally, suppose thatv(ψ) > w.
Then eitherv(ψ′) > v(ψ′′) = v(ψ) > w, or v(ψ′) ≤ v(ψ′′).
In the former case,vw(ψ′) = vw(ψ′′) = 1, and sovw(ψ) = 1.
In the latter case, again, we have two cases: (1)v(ψ′) ≤ w.
Then vw(ψ′) = v(ψ′) ≤ vw(ψ′′). (2) v(ψ′) > w, and so
vw(ψ′) = vw(ψ′′) = 1. In either case,vw(ψ) = 1.2 �

One might wonder whether a different definition of the
entailment relation in G̈odel logic might give different re-
sults. Another standard way of defining entailment in many-
valued logics is:

Π 
 φ iff for all v, (∀ψ ∈Π)(v(ψ) = 1)⇒ v(φ) = 1

This definition yields the same results, as the following
proposition shows:

2.2.PROPOSITION Π �V φ iff Π 
V φ

Proof. Only if: Immediate. If: Supposev witnessesΠ 2
φ, i.e.,v(Π � φ) = w< 1. Then, by Lemma 2.1,vw(ψ) = 1
for all ψ ∈Π andvw(φ) = w< 1. �

This allows us to use the characterization of� or 
 as
proves convenient.

It is an easy but fundamental result that Taut(V) and
Ent(V) depend only on the order type ofV. This is made
precise in the following

2.3.PROPOSITION Let v and v′ be valuations, not necessar-
ily on the same sets of truth values, such that v(X) = 1 iff
v′(X) = 1, v(X)< v(Y) iff v′(X)< v′(Y), and v(X) = v(Y)
iff v′(X) = v′(Y) (for all X, Y). Then v(φ) = 1 iff v′(φ) = 1
and v(φ) = v(X) iff v′(φ) = v′(X).3

2.4.PROPOSITION (1) If |var(φ)| ≤ n and �Vn+2 φ, then �V

φ for all V with |V| ≥ n+2.

(2) Taut(V)⊆ Taut(V ′) for |V| ≤ |V ′|.4

Proof. This follows immediately from Proposition 2.3.
The bound in (1) is tight, as the example ofX∨¬X shows
for n = 1. �

2.5.COROLLARY Taut(V∞) =
⋂

n∈ω Taut(Vn)

2.6.PROPOSITION For every φ there is a normal form N(φ)
such that �V∞ φ≡ N(φ). Furthermore, if for every n, the set
{N(φ) : var(φ) = {X1, . . . ,Xn}} is finite and depends only
on n.

109



Proof. The idea of the proof is easy: By Theorem 2.3,
only the order of the variables induced by a given valua-
tion is relevant to determine the truth value of a formula.
Such an ordering can be expressed by a formula of the lan-
guage, using(X→Y)∧ ((Y→ X)→ X) for: v(X) < v(Y)
or v(X) = v(Y) = 1, andX≡Y for v(X) = v(Y). Every such
formula implies thatφ is equivalent to a variable in var(φ),
1, or 0. Form the disjunction over all such implications. For
a detailed proof, see [3], Theorem 5.�

Gödel logics were invented as a tool to study proposi-
tional intuitionistic logic. Consequently it is not surprising
that there is a tight connection between Kripke semantics
and G̈odel logics. It is well known that Taut(V∞) equals the
set of formulas valid in all linearly ordered Kripke struc-
tures. The connection extends to entailment; the truth value
set corresponding to such structures with respect to entail-
ment isV↓.

2.7.DEFINITION A linear Kripke structure k is a function
from var to {0}ω ∪ {0}<ω _ {1}ω (i.e., 0–1 sequences
which, once 1, remain 1). We extendk to formulas by:

k(>)i = 1

k(⊥)i = 0

k(φ∧ψ)i =
{

1 if k(φ)i = k(ψ)i = 1
0 otherwise

k(φ∨ψ)i =
{

0 if k(φ)i = k(ψ)i = 0
1 otherwise

k(φ→ ψ)i =

{
1 if, for all j ≥ i,

k(φ) j = 0 ork(ψ) j = 1
0 otherwise.

The logic of linear intuitionistic Kripke structures LI is
given by

Π� φ iff for all k, (∀ψ ∈Π)(k(ψ)0 = 1)⇒ k(φ)0 = 1

2.8.PROPOSITION G↓ = LI

Proof. Let k be a Kripke structure andv a V↓-valuation.
Then

k̄(X) =
{

0 if k(X) = {0}ω

1/(n+1) if n is least s.t.k(X)n = 1

is aV↓-valuation, and

v̂(X)i =
{

0 if v(X)< 1/(i +1)
1 otherwise

defines a Kripke structure. It is easily shown, by induction
on formulas, that̄̂v = v andˆ̄k = k. Consequently,k(φ)0 = 1
iff k̄(φ) = 1 andv(φ) = 1 iff v̂(φ)0 = 1. Using the charac-
terization of� in terms of
 of Proposition 2.2, the result
follows. �

An analogous result holds for first-order Gödel and lin-
ear intuitionistic logic [2].

2.9.LEMMA Suppose v(Π � φ) = w. Then vw(Π � φ) = w.

Proof. Suppose, first, thatv(Π)>w. Thenvw(ψ) = 1 for
all ψ ∈ Π, andvw(φ) = v(φ) = w. Otherwise,w = 1 and
v(ψ) ≤ w for someψ ∈ Π and sovw(Π) ≤ w. In this case,
v(Π � φ) = vw(Π � φ) = 1. �

2.10.PROPOSITION G↑ =
⋂

n∈ω Gn.

Proof. Every Vn valuation is also aV↑ valuation, so
Ent(Vn) ⊆ Ent(V↑). On the other hand, ifv(Π � φ) =
1− 1/n = w, thenvw as defined in Lemma 2.1 is aVn+1-
valuation withvw(Π � φ) = w, and soΠ 2Vn+1 φ.5 �

2.11.PROPOSITION Let V be any truth value set. Then
Π 2V∞ φ if Π 2V φ.

2.12.COROLLARY

Ent(V∞) =
⋂

V ⊆ [0,1]
V countable

Ent(V)

2.13.DEFINITION We define the following families of truth
value sets:

Uk = {i/(k+1)+1/ j(k+1) : 0≤ i ≤ k−1; j > 0}6

Dk = {i/(k+1)−1/ j(k+1) : i = 1, . . . ,k; j > 0}∪
∪{i/(k+1); i = 0, . . . ,k+1}

Correspondingly, we define sets of formulas

Γk = {(Ci+1→Ci)→Ci ,

Ci →Ck : i = 0, . . . ,k−1}
ϒ` = {(X`

i+1→ X`
i )→ X`

i ,C`→ X`
i ,

X`
i →C`+1 : i ∈ ω}

∆` = {(X`
i → X`

i+1)→ X`
i+1,C`→ X`

i ,

X`
i →C`+1 : i ∈ ω}

ϒk = Γk∪
k−1⋃
`=0

ϒ`

∆k = Γk∪
k−1⋃
`=0

∆`

Uk has the order type 1+ kω∗, while Dk has order type
kω +2. In particular,U1 = V↓.7

Uk 0 ·· · · · ·︸ ︷︷ ︸ 1
k+1 ·· · · · ·︸ ︷︷ ︸ 2

k+1 · · · k
k+1 1

C0 X0
i C1 X1

i C2 . . . Ck

Dk 0
︷ ︸︸ ︷
· · · · ·· 1

k+1

︷ ︸︸ ︷
· · · · ·· 2

k+1 · · · k
k+1 1

2.14.PROPOSITION (1) ∆r �Dk Cr for all r .
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(2) ∆r 2Uk Cr for r ≤ k.

(3) ∆r �Uk Cr for all r > k.

(4) ϒr �Uk Cr for all r .

(5) ϒr 2Dk Cr for r ≤ k.

(6) ϒr �Dk Cr for all r > k.

(7) If Γ 2Dk φ then Γ 2Dr φ for all r ≥ k.

(8) If Γ 2Uk φ then Γ 2Ur φ for all r ≥ k.8

We thus have the following picture:

G2)G3) . . .)
⋂

Gi =

)Ent(U1) = G↓)Ent(U2)) . . .
= G↑ )( )( )G∞

) Ent(D1) )Ent(D2)) . . .

The hierarchy result just described shows that there are at
leastℵ0 many different G̈odel logics betweenG↑ andG∞.
This suggests the question:

2.15.PROBLEM Are there even 2ℵ0 or 22ℵ0 logics below
G∞?

We will show in the next section that an infinite-valued
Gödel logic is compact iff its set of truth values contains a
densely ordered subset. It should be pointed out right here
that almost all infinite-valued logics are not compact. In
fact, there is only one compact infinite-valued Gödel logic,
namelyG∞, as Proposition 3.7 will show.

3 Classification of compact G̈odel logics

We now turn to the characterization of those Gödel logics
whose entailment relations are compact, as defined by the
following

3.1.DEFINITION GV is compact if, wheneverΠ �V φ there
is a finiteΠ′ ⊆Π so thatΠ′ �V φ.

3.2.PROPOSITION GV is compact if V is finite.

Proof. Let Π = {ψ1,ψ2, . . .}, and letX = {X0, X1, . . .},
be an enumeration of variables occuring inΠ, ψ0 such that
all variables inψi occur before the variables inψi+1. We
show that either{ψ1, . . . ,ψk} � ψ0 or Ψ 2 ψ0.

Let T be the complete semantic tree onX, i.e.,T = V<ω.
An element ofT of lengthk is a valuation ofX0, . . . ,Xk−1.
SinceV is finite,T is finitary. LetT ′ be the subtree ofT de-
fined by:v∈ T ′ if for every initial segmentv′ of v and every
k such that all the variables inψ0, . . . ,ψk are amongX0, . . . ,
X`(v′), v′({ψ1, . . . ,ψk}) > v′(ψ0). In other words, branches

in T ′ terminate at nodesv′ wherev′({ψ1, . . . ,ψk}) ≤ ψ0.
Now if T ′ is finite, there is ak such thatψ1, . . . ,ψk �V ψ0.
Otherwise, sinceT ′ is finitary, it contains an infinite branch.
Let v be the limit of the partial valuations in that branch.
Obviously, sinceV is finite,v(Π)> v(ψ0) and soΠ 2V ψ0.
�

3.3.PROPOSITION Suppose Π contains only finitely many
variables. Then Π′ �V φ, for some finite Π′ ⊆ Π, provided
Π �V φ.

Proof. By Proposition 2.6, there are only finitely many
non-equivalent formulas onk variables. Choose a represen-
tative from each equivalence class to obtainΠ′. �

3.4.THEOREM Suppose V ⊇W with W densely ordered
and |W| ≥ 2. Then GV is compact.

Proof. Let X be a set of variables. Achain on X is an
arrangement ofX in a linear order. Formally, a chainC on
X is a sequence of pairs〈Xi ,oi〉whereoi ∈ {<,=,>}where
Xi appears exactly once. A valuationv respectsC if v(Xi) =
v(Xi+1) if oi is =, v(Xi) > v(Xi+1) if oi is >, andv(Xi) <
v(Xi+1) if oi is<. If X is finite, there are only finitely many
chains onX.

We construct a tree in stages as follows: The initial node
is labeled by 0< 1 and an empty valuation. Stagen+ 1:
A nodeN constructed in stagen is labeled by a chain on
the variablesX1, . . . , Xn and a valuationvN of X1, . . . , Xn

respecting the chain.N receives successor nodes, one for
each possibility of extending the chain by insertingXn+1.
The labels of each successor nodeN′ are the corresponding
extended chain and an extension ofvN which respects the
extended chain. The valuevN′(Xn+1) is chosen insideW,
i.e., the endpoints ofW may not be chosen as values. Since
W is densely ordered, this ensures that such a choice can be
made at every stage.

We call a branch ofT closed at node N (constructed
at stagen) if for some finiteΠ′ ⊆ Π such that var(Π′)∪
var(φ) ⊆ {X1, . . . ,Xn} it holds thatvN(Π′) ≤ vN(φ). T is
closed if it is closed on every branch. In that case, for some
finite Π′ ⊆Π, we haveΠ′ � φ.

If T is not closed, it contains an infinite branch. Letv be
the limit of thevN of nodesN on the infinite branch. It holds
that v(ψ) > v(φ) for all ψ ∈ Π, for otherwise the branch
would be closed at the first stage where all the variables in
ψ were assigned values. Letw = v(φ). By Proposition 2.1,
vw(φ) = v(φ) andvw(Π) = 1, and soΠ 2 φ, a contradiction.
�

3.5.THEOREM Suppose V does not contain a densely or-
dered subset. Then GV is not compact.
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Proof. We define a sequence of sets of variablesXk and
formulasΓk as follows:

Xk = {Xr : r = i/2k,0≤ i ≤ 2k}
Γ′k = {(Xr → Xs)→ Xs,(Xs→ Xt)→ Xt :

t = (i−1)/2k,s= i/2k, r = (i +1)/2k,

1≤ i ≤ 2k−1,2(k−1)|i}
Γ′′k = {Xr → Z : r = i/2k,0≤ i ≤ 2k}
Γk = Γ′k∪Γ′′k
Γ =

⋃
k∈ω

Γk

Intuitively, Γ′k expresses that theXi/2k for 0 ≤ i ≤ 2k are
linearly ordered so thatXi/2k < X(i+1)/2k.

⋃
k∈ω Γ′k ex-

presses that the variablesXr are densely ordered:v(Xi/2k)<
v(X(2i+1)/2k+1) < v(X(i+1)/2k). Now if V has at least 2k + 2
truth valuesv0 < · · ·< v2k+1 < 1, the valuationv

v(Xi/2k) = vi

v(Z) = v2k+1

will havev(Γk) = 1 andv(Z)< 1, soΓk 2V Z. On the other
hand, ifV does not contain a densely ordered subset, then
Γ �V Z. In fact the onlyv such thatv(Γ) = 1 is v(Xr) = 1
for all r, andv(Z) = 1. �

We have thus succeeded in characterizing the compact
propositional G̈odel logics. They are all those where the
set of truth valuesV is either finite or contains a nontrivial
densely ordered subset.

3.6.THEOREM The compact Gödel logics are exactly those
given by the truth-value sets Gn (n≥ 2) and G∞.

This follows from the next proposition, together with the
fact that all infinite-valued G̈odel logics have the same tau-
tologies.

3.7.PROPOSITION Let �1 and �2 be the entailment rela-
tions of two compact logics, each satisfying modus ponens,
the deduction theorem, and having the same tautologies.
Then �1 = �2.

Proof. SupposeΠ �1 φ. Then for some{ψ1, . . . ,ψn} �1

φ. By the deduction theorem for�1, we have�1 ψ1→···→
ψn→ φ. Since�1 φ iff �2 φ, �2 ψ1→ ··· → ψn→ φ, and
by modus ponens,Π �2 φ. �

3.8.DEFINITION A logic GV is model compact if, for any
Π, Π has a model provided all finite subsetsΠ′ ⊆ Π have
models.

The notion of model compactness coincides with com-
pactness in the case of classical logic, but not in the general
case of infinite-valued G̈odel logics. The following theorem
is due to Petr H́ajek:

3.9.THEOREM All Gödel logics are model compact.

Proof. Observe that for any valuationv and any formula
φ, if v(φ) = 1 then alsov0(φ) = 1 (see Proposition 2.1).
Hence, ifv is a model forΠ in any logic, v0 is a model
for Π in G2. Hence,Π has a model inGV iff it has a model
in G2. SinceG2 is model compact, so isGV for anyV. �

4 Interpolation in G ödel logics

Interpolation is a property usually defined for logics as
considered as a set of sentences. A logicL weakly interpo-
lates if, wheneverL � φ→ ψ, there is a sentenceσ so that
var(σ) ⊆ var(φ)∩ var(ψ) andL � φ→ σ andL � σ→ ψ.
The sentenceσ is called sninterpolant of φ andψ. We may
extend this defnition to entailment relations as follows:

4.1.DEFINITION Gödel logicGV interpolates if, for all Π1,
Π2 andφ, such thatΠ1∪Π2 �V φ, there isσ with var(σ)⊆
var(Π1)∩var(Π2∪{φ}) andΠ1 �V σ andΠ2∪{σ} �V φ.

Sinceψ1, . . . ,ψn �V φ iff �V ψ1→ ·· · → ψn→ φ, GV

interpolates weakly iff it interpolates with respect to finite
sets.

The following observation is immediate:

4.2.PROPOSITION If GV is compact, then GV interpolates
iff it weakly interpolates.

Our aim in this section is to show that weak interpolation
and interpolation fall apart whenV is infinite: GV weakly
interpolates ifV is infinite, but only interpolates whenGV

is compact as well.

4.3.THEOREM GV weakly interpolates iff |V|= 2 or |V|=
3 or V is infinite.

Proof. See [6, 3] �

4.4.PROPOSITION Let V be infinite but not contain a non-
trivial densely ordered subset. Then GV does not interpo-
late.

Proof. Consider the setΓ from the proof of Theorem 3.5.
We know thatΓ �V Z. Suppose there was an interpolantσ
so thatΓ′ �V σ andΓ′′∪{σ} �V Z. Let

Γ̃′ = {ψ ∈ Γ′ : var(ψ)⊆ var(σ)}
Γ̃′′ = {ψ ∈ Γ′′ : var(ψ)⊆ var(σ)∪{Z}}
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Then Γ̃′ �V σ and Γ̃′′ ∪ {σ} �V Z. To see this, suppose
v(Γ̃′) = 1 andv(σ)< 1. Thenv′ defined by

v′(X) =
{

v(X) if X ∈ var(σ)
1 otherwise

would evaluate all formulas inΓ′− Γ̃′ to 1, contradicting
Γ′ �V σ. A similar contradiction follows for the second part
of the claim by considering

v′′(X) =
{

v(X) if X ∈ var(σ)∪{Z}
0 otherwise.

Of course,Γ̃′ andΓ̃′′ are both finite. By the cut rule for�V

it follows that Γ̃′ ∪ Γ̃′′ �V Z. This contradicts the proof of
Theorem 3.5. �

Note that the proof actually establishes a stronger result:
The definition of an interpolant requires the variables inσ
to be contained in the intersection of var(Γ′) and var(Γ′ ∪
{Z}). We have shown that no formula whatsoever, i.e., not
even one that does not satisfy that condition, can serve as an
interpolating formula.

4.5.THEOREM GV interpolates iff |V| = 2 or |V| = 3 or V
contains a densely ordered subset. That is, the only interpo-
lating Gödel logics are G2, G3, and G∞.

Proof. By Theorem 4.3 and Propositions 4.2 and 4.4.
�

It is not necessary for a logic to be compact in order to
interpolate. For instance, consider the many-valued logic
onV↓ with constants>,⊥ for 1 and 0, respectively, and the
operator♣ given by: ♣(1/n) = 1/(n+ 1) and♣(0) = 0.
Π � φ iff one of the following hold:

(1) ♣k(X) ∈Π with k unbounded,

(2) ⊥ ∈Π,

(3) φ =♣`(X) and♣k(X) ∈Π for somek≥ `,

(4) φ = ♣`(>) and♣k(X) ∈ Π or ♣k(>) ∈ Π for some
k≥ `.

In each case, an interpolant can easily be found for any par-
tition of Π. However, the logic is not compact, as the exam-
ple{♣k(>) : k∈ ω} �⊥ illustrates.

5 R.e. entailment relations

We conclude with a somewhat curious result. Proposi-
tional logics are considered “easy” in the sense that the va-
lidity problem of most is decidable, usually within reason-
able bounds, in contrast to first-order logic. This situation
changes drastically if entailment is considered instead. The
following proposition shows that the question of whether a

recursive set of formulas entails another formula is highly
undecidable for non-compact Gödel logics. This potentially
has serious consequences for the implementation and appli-
cation of G̈odel logics in inference mechanisms.

5.1.PROPOSITION The set

E = {〈e,pφq〉 : {ψ : {e}(pψq) = 0} �V φ}

is r.e. iff GV is compact. Hence, the only r.e. Gödel logics
are Gn and G∞.

Proof. If: We can enumerateE by enumerating finite
subsets ofΠ = {ψ : {e}(pψq) = 0} and testing for implica-
tion. If Π �V φ, this search terminates eventually sinceGV

is compact.
Only if: SupposeGV is not compact. Letf (e) be the

index of the predicate defined by

{ f (e)}(pψq) = 0 iff ψ ∈ Γi and(∀ j ≤ i)({e}( j) = 0)

where Γi is as in the proof of Theorem 3.5. Then
〈 f (e),pZq〉 ∈E iff {e} is total and constant equal to 0. That
problem, however, isΠ0

2-complete [7, Theorem IV.3.2].
�
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Errata

We would like to thank Petr Cintula for pointing out a num-
ber of misprints and possible improvements in the text.
These reached us only after the proceedings volume went
to print; they are added in this version as notes.

1. This should readΠ1 �V↑ Y, notΠ1 2V↑ Y.
2. Petr Cintula has communicated the following simpler
argument for the induction step: Ifw= 1 the claim is trivial.
So supposew< 1. (1) v(φ) ≤ v(ψ). Thenvw(φ) ≤ vw(ψ)
and sovw(φ → ψ) = 1, while v(φ → ψ) = 1 > w. (2)
w < v(ψ) < v(φ). Thenvw(φ→ ψ) = 1, whereasv(φ→
ψ) = v(ψ) > w. (3) v(ψ) ≤ w and v(ψ) < v(φ). In this
case,vw(ψ) = v(ψ)< v(φ)≤ vw(φ), sovw(φ→ψ) = vw(ψ),
while v(φ→ ψ) = v(ψ)≤ w.
3. Petr Cintula points out that Ent(V) ⊆ Ent(V ′) if there
is an injectionf :V ′ → V which preserves strict order, i.e.,
f (v) < f (v′) iff v < v′. This follows quite easily from
Proposition 2.3: Ifv is a valuation onV ′ andv(Π � φ)< 1,
then f v is a valuation onV (in fact, on f (V ′) ⊆ V), and
f v(Π � φ) < 1. As an immediate corollary we obtain the
fact stated just before Proposition 2.3, i.e., that Ent(V) =
Ent(V ′) if V andV ′ are order-isomorphic.
4. This should read|V| ≥ |V ′|, not |V| ≤ |V ′|.
5. Note that wedefined Vn = {1−1/k : k≤ n−1}∪{1}.
However, using the consideration of note 3, the result holds
for any sequenceV∗n with |V∗n | = n. In particular, ifv(Π �
φ) = 1− 1/n = w, then there is an order isomorphismf
between{v ∈ V↑ : v≤ w} ∪ {1} andV∗n+1 and so f v(Π �
φ) = f (w)< 1.
6. The definition ofUk should read

Uk = {i/(k+1)+1/ j(k+1) : 0≤ i ≤ k−1; j > 0}∪
∪{i/(k+1);0≤ i ≤ k+1}

7. This is not strictly true, however,U1 andV↓ are order
isomorphic and thus Ent(U1) = Ent(V↓) by note 3.
8. (7) and (8) follow from note 3.
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