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1. Introduction 

Names tell many things. In the case I am going to explore in this paper, for 
example, the name Kolmogorov-Sinai entropy (KSE) molds right away the 
character of my investigation. For it contains “entropy”, which immediately 
makes us think about thermodynamics, statistical mechanics, and gaseous 
disorder. But it also refers to Andrei N. Kolmogorov, a name tightly 
connected with the axiomatization of probability and with research on 
algorithms complexity. Finally, it alludes to Yakov G. Sinai, a 
mathematician lesser known to philosophers, who has worked extensively 
on dynamical systems theory and the notion of ergodicity. 

This composite name labels a concept that lies at the confluence of 
various research traditions. And it is precisely this historical feature that 
makes possible the feature I allude to in the title of this paper. It has been 
claimed that the KSE plays the role of a bridge-concept between dynamical 
system theory, statistical mechanics, and communication theory (Frigg 
2004). My goal in this paper is to show that the qualities of this 
polymorphic concept are rooted in its convolute history, i.e. it is because it 
has such a history that it has such characteristics. I will therefore unfold the 
several threads that make it up and I will tell, alas cursorily, a long-term 
story covering approximately the period 1750-1960. 

Obviously, I will be sketchy and I will focus only upon the turning 
points of this story. KSE emerges from two distinctive lines of research. On 
the one side the research on stability of the three-body system developed in 
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celestial mechanics. This line, from its origins to Poincare, is covered in the 
second section. On the other side, there is the problem of ergodic motion in 
statistical mechanics. This problem forms the subject of section 3. In the 
1930s, George D. Birkhoff showed surprising connections between these 
lines (section 4) and to his results Kolmogorov and Shannon added the 
dimension of information and algorithm complexity (section 5). Finally, 
before concluding I will show how these traditions come together to form 
the multifaceted KSE.  

2. Celestial Mechanics 

The introduction of the universal law of gravitation brought about new 
opportunities as well as new puzzles. In the pre-Newtonian world the 
perfection of the heavenly motions was, so to say, built in the system itself. 
Planetary motions depended on their pre-conceived trajectories only. 
Newton introduced the idea that the complicated motions of the heavenly 
bodies was the effect of mutual interactions of bodies themselves. As a 
consequence, these interactions could even originate catastrophic events. 
For the first time in history, the intrinsic stability of the universe was no 
longer a given. 

Newton was the first one to raise the problem of the stability of the 
solar system: Is it possible to show analytically that gravitational 
interactions between the planets will never produce a collision, an expulsion 
or anything of the kind? However, only with the development of advanced 
methods of differential calculus it became possible to define the issue in a 
mathematically tractable way. To fix ideas, mathematicians focused upon 
the somewhat artificial, but well-defined, three-body problem. In its most 
popular version, this problem consisted in calculating the behavior of two 
massive bodies in interaction with each other and with a third body of 
negligible mass. Physically, the situation corresponds roughly to systems 
such as sun, earth, and the moon. 

In the early 1770s, Joseph Louis Lagrange managed to write down the 
reduced equations of motion of three bodies by eliminating the degrees of 
freedom corresponding to the known mechanical integrals (conservation of 
energy, of linear and angular momentum). This result was further improved 
in mid-1800 by Carl Gustav Jacobi, who added the elimination of the nodes. 
In addition, between late 1770s and late 1780s, Pierre Simon Laplace 
proved a series of results, which suggested the stability, at least within some 
approximations, of the three bodies. In spite of a great display of ingenuity, 



	
   3 

mathematicians were not able to proceed any further. For the practical 
purposes of astronomy, approximate solutions in form of trigonometric 
series were developed, but the closed form solution of the three-body 
problem remained out of reach.1 

Arguably, this state of affairs spoke more for the intrinsic limitations of 
the analytical tools hitherto used (transformation of coordinates, 
trigonometric series, Hamilton-Jacobi theory to mention only a few) than 
for the definite insolubility of the question. Henri Poincare (1854-1912) 
explored at length the issue and introduced two crucial turning points in the 
history of the stability of the three-body systems. 

The first turning point concerned the use of new powerful mathematical 
techniques borrowed mainly from topology, geometry, and set theory. 
Poincare’s decisive intuition was that, to solve the stability problem, one 
does not need to provide a full-fledged, closed form solution of the 
equations of motion. We do not need to know the configuration of the 
system in each and any instant: we only want to know whether it will 
remain in the vicinity of a periodic motion. In other words, stability is 
largely a qualitative property of the system (or, put in mathematical jargon, 
a topological one) and can be better investigated by means of qualitative 
methods. Among the many new methods developed by Poincare, likely the 
most impressive and deployed is the so-called cross-section method, also 
known as Poincare’s map. 

The cross-section method is a nice illustration of the idea behind 
topological techniques. Since the very beginning, celestial mechanics 
focused upon closed periodic trajectories. Periodicity was not only  
mathematically simple, it was also an observable feature of the planetary 
motion. Now, in general a mechanical trajectory is studied in a 3-
dimensional space. This space may be the usual geometrical one (in which 
case we know where the body is at each instant) or the more abstract phase 
space (in which case we know what momentum the body has at each point). 
To give an answer to the issue of stability, one has to perturb a periodic 
trajectory by a small quantity and see whether the ensuing motions stay 
indefinitely close to original one or they diverge. Poincare realized that this 
investigation could be simplified. If a surface is put transversally to the 
periodic trajectory, this trajectory will intersect the surface in one and only 
one point because of its periodicity. In this way any problem concerning the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Despite the old age, one of the best introductions to the history of the three-body problems 
is still Marcolongo (1919). On the notion of stability and its bearings on chaos see Diacu 
and Holmes (1996).	
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stability of trajectories in a 3-dimensional space can be reduced to problems 
of equilibrium point (EP) on a 2-dimensional surface. For, the neighbor 
trajectories will draw on the surface curves that can approach the EP or 
diverge from it and their behavior can be investigated with the techniques 
used for the equilibrium around a point. 

Important and consequential though they were, the topological 
techniques were only one of Poincare’s crucial innovations. Another one 
was an entirely new notion of stability. The founding fathers of celestial 
mechanics had been working with an intuitive notion of stability and then 
had tried to cast it in proper mathematical language. The intuitive notion is 
that the solar system is stable because it “stays together”, the relative 
configurations of the planets always repeat themselves and no catastrophic 
event takes place. True, there are anomalies (delays or anticipations in the 
passage of planets), but they are all periodic in the sense that they depend 
on the mutual positions of the planets and they are to present themselves 
again after a certain number of years. Central to this intuitive notion of 
stability is the priority of the periodic motion. Everything happening in the 
sky must eventually be reduced to some sort of–possibly very complicate–
form of periodicity. 

Mathematically, this idea was implemented by the technique of solving 
differential equations by means of trigonometric series. As said, it was 
impossible to find a complete solution of the equations of motion for three 
bodies, i.e. an explicit function of the orbit parameters. Alternatively, 
mathematicians tried (1) to cast the problem in terms of small perturbations 
of a already solved question (e.g. the restricted three-body problem 
mentioned above, which is a perturbation of a solvable Keplerian two-body 
problem) and (2) to express the solving function in a (rapidly convergent) 
series of trigonometric functions. Now, time must obviously appear in the 
solution, because one is looking for orbits, that is sequence of places passed 
through over time. As long as time appears as the argument of trigonometric 
functions, stability is assured. These functions are bounded (they never 
assume too large, positive or negative, values), so the three bodies will stay 
close to one another. But if time appears as a factor of a trigonometric 
function, then one is in trouble. Such a configuration is called a secular term 
and, being the product between a bounded quantity and an ever growing 
one, it is doomed to diverge. Thus, the mathematical expression of stability 
regularly used in celestial mechanics was the following: no secular terms 
appear in the trigonometric series approximating the solution of the 
equations of motion. 
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Poincare extended importantly this conception. In his studies on the 
solution of differential equations, he introduced a fully new notion of 
stability with the following words: 

It happens then that the trajectory cannot be a closed curve; but, nevertheless, it 
keeps a certain stability: one can even say that it is a periodicity of a particular 
nature. In fact, let M be a point in the trajectory that the moving point occupies in 
an instant t. We trace a circle around the point M with an arbitrarily small radius 
r. The moving point starting at M will obviously go beyond the circle, but it will 
cross again this small circle an infinite number of times, no matter how small r 
can be.2 

In other words, the trajectory is stable according to this definition if 
(and only if) it returns arbitrarily close to the initial condition M no matter 
how complicate and long is the in-between path. This notion of stability–
which Poincare ascribes to Poisson with a considerable amount of historical 
inaccuracy–is lengthily discussed in the third volume of the Methodes 
Nouvelles (Poincare, 1899) and expresses the property of recurrence of 
some trajectories. This is the first case in which stability is not studied in the 
context of strictly periodic motion only. Recurrent motion will become 
extremely important later in our story. 

But the most spectacular of Poincare’s discovery is still to come. Since 
the early 1880s, Poincare devoted his best efforts to the three-body problem. 
In 1889 a prize was offered in celebration of King Oscar II of Sweden’s 
birthday to a mathematician able to show whether further integrals could be 
found to reduce the number of degrees of freedom of the equations of 
motion. Poincare won the prize although his original memoir contained a 
serious mistake that was discovered only during the proof reading. 
However, the details of this story interest us here less than the results of his 
work.3 

Poincare indeed showed that is was impossible to find analytical 
integrals other than those already known. This amounted to a mathematical 
proof that a closed form solution of the equations of motion could not be 
discovered. But the most intriguing result came out of the application of the 
cross section method to the behavior of trajectories in the neighborhood of a 
periodic orbit. To understand the full extent of Poincare’s finding, we have 
to introduce some more technical notions. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Poincare (1885, 92).	
  
3 This of course does not mean that they are unimportant. A lively account of this 
interesting story can be found in Barrow-Green (1997).	
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The equations of motion can be studied just as a system of differential 
equations, each solution of which corresponds to a possible trajectory. 
(Poincare was actually the first to call “trajectory” the solution of a system 
of differential equations). On a Poincare’s map, a periodic solution is a 
point. This EP is surrounded by trajectories that start from far away and tend 
to it and trajectories initially close that tend to go away from it. We call 
these trajectories “asymptotic” because they can be both considered as 
approaching the EP in the two temporal directions. (Mathematicians have a 
very cavalier attitude toward time). For intuitive reasons, the set of 
trajectories approaching the EP in the positive direction of time is called 
“stable manifold”, whereas those approaching the EP in the negative 
direction belong to the “unstable manifold”. In Hamiltonian integrable 
systems these manifolds coincide, that is the distinction is reduced to the 
temporal direction. Poincare’s initial mistake was to suppose that this 
situation holds without exceptions. Later he discovered that the manifolds 
can intersect transversally and their intersection is called a “homoclinic 
point” (HP). Around a HP a lot of weird things happen. A subsequent 
application of a Poincare’s map to a HP generates trajectories that tend to 
equilibrium in both directions of time. In other words, the trajectory is 
recurrent along an extremely complicate path. Furthermore, the manifolds 
intersect infinitely many times, thus originating infinitely many HP and an 
intricate entanglement of trajectories. Poincare’s description of the 
“homoclinic tangle” gives us a sense of the awe he was in: 

When we try to represent the figure formed by these two curves and their 
infinitely many intersections, each corresponding to a doubly asymptotic 
solution, these intersections form a type of trellis, tissue or grid with infinitely 
fine mesh. Neither of the two curves must ever cut across itself again, but it must 
bend back upon itself in a very complex manner in order to cut across all of the 
meshes in the grid in an infinite number of times. The complexity of this figure 
is striking, and I shall not even try to draw it. Nothing is more suitable for 
providing us with an idea of the complex nature of the three-body problem, and 
of all the problems of dynamics in general.4 

The homoclinic tangle is the first example of what in the 20th century 
will come to be called “deterministic chaos”. Very diverse trajectories are so 
closed packed that the slightest change in the initial conditions will lead to a 
different trajectory and, potentially, to a completely different behavior of the 
system. Thus, the evolution is virtually unpredictable, because the requested 
precision in the description of the initial conditions is impossibly high.  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 Poincare (1899, 1059).	
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3. Statistical Mechanics 

As celestial mechanics was reaching its dramatic climax with Poincare’s 
work, another newly born branch of mechanics was taking physicists and 
mathematicians through a terra incognita. The origins of this development 
lie in the attempts, about mid-19th century, to explain thermodynamic 
phenomena by means of kinetic models. Roughly, the idea behind these 
models is that heat is due–and it is reducible–to the mechanical motion of 
the microscopic constituents of matter. To substantiate this idea it was 
necessary to derive thermodynamic laws from the analysis of the motion 
and collisions of the particles and, being the number of particles enormously 
large, to resort to statistical techniques. 

The Scottish physicist James Clerk Maxwell (1831-1879) was one of 
the first and most successful to explore this line of inquire. He found, for 
instance, that the stability of the state of thermal equilibrium could be 
mimicked by a distribution of velocities among the particles, which did not 
change by mechanical collisions. However, there was a problem that 
Maxwell was not able to solve. It is a common experience that thermal 
systems go straight to their equilibrium state and there they stay until some 
external perturbation force them out of equilibrium. This state of affair is 
customarily referred to as the second law of thermodynamics. Now, it is 
difficult to represent the one-directionality of this behavior through 
mechanical motion, because the latter does not recognize any privileged 
temporal direction. In other words, if the reaching of thermal equilibrium 
boils down to a mechanical process, then it is unclear how it can also be 
irreversible, since mechanical processes in general are not. A possible 
solution to this puzzle was offered by Ludwig Boltzmann (1844-1906) in 
1872. Boltzmann derived an integro-differential equation able to represent 
the time evolution of the distribution function f. Further, he showed that a 
functional ! = !!! log !  (integration is extended over all possible 
velocities v) can be defined, which decreases monotonically as time passes 
by and it reaches the minimum when f is precisely Maxwell’s distribution of 
equilibrium. Keep in mind the form of H, it will crop up again later. 

Boltzmann’s miraculous result is not a purely mechanical one. He 
added a great deal of probabilistic assumptions and statistical arguments. 
How did he manage to combine mechanics and probability? Well, he 
understood that this task demanded a step beyond the usual periodic motion 
and towards a new kind of mechanical trajectory. The first trace of this line 
of thought can be found in Boltzmann’s very first paper. Let me summarize 
briefly his argument. 
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Boltzmann is trying to show that the second law of thermodynamics can 
be formally reduced to the principle of the least action. The details of this 
procedure do not interest us here. What is important is that Boltzmann has 
to calculate the action integral over the particles trajectory. In general, this 
integral depends on the initial and final conditions of the gas, conditions that 
we cannot know because of the huge number of particles. Before 
Boltzmann, the usual technique was to assume that the particles motion is 
periodic and close, to integrate over the whole period so that initial and final 
conditions are equal and cancel each other out. But Boltzmann moves a step 
forward. He realizes that only closure is essential for this argument, while 
we do not need to assume a fixed period. He states his assumption in the 
following way:5 

We now assume that, after a certain time, each atom will come back […] in the 
same position, with the same velocity and direction of motion, that is to say it 
describes a closed curve and after that time it repeats its motion albeit not exactly 
in the same way, at least in a way such that the average kinetic energy [on the 
given temporal interval] might be considered as the average kinetic energy on an 
arbitrarily long interval.6 

The key passage has been italicized. Here Boltzmann is fathoming a 
trajectory that is not strictly periodic, but nevertheless closes at some point. 
In other words, a trajectory that does not pass through a fixed and 
immutable sequence of points, but can be very complicate provided that, 
sooner or later, it will pass again through the initial conditions. He is clearly 
groping for something new in mechanics, something that he will try to make 
clearer in his following papers. 

In the early 1870s, Boltzmann drew on this novel concept of trajectory 
and introduced what is now known as the ergodic hypothesis: If a gas 
evolves freely with no other constrain than the conservation of energy (and 
possibly momentum), then it will sooner or later pass through all the 
physical states compatible with the constrains. The ergodic hypothesis 
became the key to merge mechanics and probability: it is a dynamical 
assumption because it concerns the trajectory, but it can also be used to 
support a probabilistic analysis of the long-term behavior of the system.7  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 Quotations and references to Boltzmann’s papers are taken from the Wissenschaftliche 
Abandhlungen.	
  
6 Boltzmann (1866, 24). 
7  On these issues see especially Badino (2009) and Badino (2011). On the ergodic 
hypothesis see also Von Plato (1991) and Von Plato (1994).	
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4. Dynamical Systems 

The two traditions I have been discussing so far proceeded almost 
independently for the whole second part of the 19th century. From the 
physical viewpoint this is unsurprising. Celestial mechanics deals with 
macroscopic deterministic systems consisting of few degrees of freedom (a 
handful of planets, a little more satellites). By contrast, statistical mechanics 
tackles microscopic systems with a huge number of constituents. The two 
contexts could not be more different. However, from a purely mathematical 
point of view, and with a grain of hindsight, this mutual indifference is 
bewildering. For a close analysis of these two fields of research shows that 
there was a great deal of common mathematics. Both fields were 
characterized by the impossibility of finding a complete solution to a 
mechanical question, so techniques to circumvent this hurdle popped up in 
both camps, more often than not without stimulating any further curiosity. 

A striking and somewhat extreme example is the concept of integral 
invariant. The integral invariant is a function of the phase coordinates whose 
integral does not change during the motion. Boltzmann introduced it in his–
rather spurious–attempt to prove Liouville’s theorem,8 and made it one of 
the ingredients of his first probabilistic argument for irreversibility. 
Subsequently, Poincare rediscovered, formalized, and deployed it to prove 
the recurrence theorem, which states that, provided some very general 
constrains, a Hamiltonian isolated system will come back, sooner or later, 
infinitely close to the initial conditions.9 Now, in 1896 Ernst Zermelo used 
the recurrence theorem to argue against Boltzmann’s probabilistic view of 
irreversibility.10 Thus, Zermelo used a result derived from the integral 
invariant in celestial mechanics to argue against a result derived from the 
same integral invariant in statistical mechanics! Boltzmann saw how 
hopelessly paradoxical the situation was when he replied bitterly: 

Although Herr Zermelo’s paper shows that my works have not been 
understood at all, I have to rejoice in it anyway, for that is the proof that, in 
Germany, they have been paid any attention to, at least.11 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 In effect, Boltzmann proves only a particular case of Liouville’s theorem. The phase 
volume is famously an example of integral invariant; cf. Boltzmann (1868) and Badino 
(2009).	
  
9 In other words, the recurrence theorem formalizes the condition for the Poisson stability 
discussed above.	
  
10 See Zermelo (1896).	
  
11 Boltzmann (1896, 773). 
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Even the most prominent scientists, Poincare and Boltzmann, did not 
consider this commonality as worth further inquiring. But George D. 
Birkhoff (1884-1944) thought differently. Birkhoff’s first research paper 
was published in 1912, the year of Poincare’s death. And indeed, 
Birkhoffs’s entire research program was inspired by the work of the French 
mathematician. His paper contains, in the first few lines, the two keywords 
of his grand project.12 First, he wanted to establish a new and more general 
branch of mathematics concerned with the deep formal structure underlying 
the analysis of mechanical systems. The theory of dynamical systems was 
born. Second, drawing on Poincare’s intuition, he generalized the notion of 
periodicity into the idea of recurrent motion, that is a motion that, sooner or 
later, comes back to the initial conditions.13 Some years later, he would 
explain the essence of this idea as follows: 

In a very deep sense the periodic motions bear the same kind of relation to 
the totality of motions that repeating doubly infinite sequences of integers 1 to 9 
such as … 2323… do to the totality of such sequences. […] The recurrent 
motions correspond to those double sequences specified above in which every 
finite sequence, which is present at all occurs at least once in every set of N 
successive integers of the sequence.14 

This research program led, in the early 1930s, to a surprising result. To 
understand its importance, we have to come some years back. We said that 
Boltzmann introduced the ergodic hypothesis in statistical mechanics. 
Albeit problematic, this hypothesis was particular useful because it 
consented to prove, among other things, the uniqueness of the equilibrium 
distribution function. More generally, from the ergodic hypothesis a 
remarkable property followed: the average value of a quantity (e.g. the 
energy) calculated over the trajectory of the system during a very long time 
(the time average of that quantity) is equal to the instantaneous average 
calculated over a large number of copies of the system in the most different 
initial conditions (the phase average of that quantity). Unfortunately, the 
hypothesis turned out to be false. In 1913, Arthur Rosenthal and Michel 
Plancherel proved, independently, that no mechanic trajectory could be 
ergodic in the original, Boltzmannian sense. This result did not discourage 
physicists, who continued to assume an intuitive notion of ergodicity and to 
believe in its consequences, such as the uniqueness of equilibrium. But it 
certainly opened a breach in the formal structure of statistical mechanics. 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12 Cf. Birkhoff (1912).	
  
13 On the thread that leads from Poincare to Birkhoff see Roque (2011).	
  
14 Birkhoff (1920, 54-55). 
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Birkhoff was not interested in statistical mechanics, but his research, 
eventually, repaired serendipitously that breach. In 1928 he introduced a 
new concept, that of metric transitivity. Birkhoff was studying the properties 
of recurrent mechanical transformations (i.e. transformations from the phase 
space onto itself with the properties of mechanical trajectories) and he 
defined metrically transitive a transformation that cannot be contained in 
any subset of the phase space with positive measure. By definition, a 
transformation takes place on its phase space, constructed from the general 
constrains. Many transformations, however, occupy only a small portion of 
this space. For instance, the motion of a planet passes through a sequence of 
points that make up a subset of its phase space: given its energy and 
momentum, the planet could theoretically perform many other motions. 
Now, if it is not possible to find out a subset of the phase space with 
positive volume containing completely the trajectory–or, said alternatively, 
if this set is only the phase space itself–then the transformation is metrically 
transitive. 

In 1931, Birkhoff was able to prove that, if a transformation is 
metrically transitive, then the time average of a quantity calculated on that 
transformation is equal to its phase average. In other words, this result, 
commonly known as the ergodic theorem, showed that–at least some of–the 
consequences of the ergodic hypothesis were obtainable by a new 
assumption, metric transitivity, not provably false. This feat of Birkhoff 
followed as a largely unintended outcome of its extension of Poincare’s line 
of thought and originated a new branch of mathematics nowadays known as 
ergodic theory.15 This is where the part of our story related to mechanics 
stops. A complex tradition of studies on the abstract properties of 
mechanical systems climaxed in a result that unified two apparently 
unrelated fields of research. Now the reader might wonder what happened to 
the “probabilistic” component of statistical mechanics. Probability is about 
to appear again in the next section. 

5. Probability, Information, Computability 

Nearly contemporarily to Birkhoff’s ergodic theorem, one ocean and almost 
a continent far away, Andrei N. Kolmogorov (1903-1987) proposed what is 
still today the accepted axiomatization of probability theory. Although in 
use since many years, probabilistic concepts had often been ill-understood 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15 On the ergodic theory see Sklar (1993), Badino (2006).	
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at best, badly misunderstood at worst. As a consequence, both in 
mathematics and in physics, probability was used following more the 
intuition than a rigorous mathematical procedure. Boltzmann, to cite just an 
example, deployed different implicit definitions of probability and 
committed to none. 

At the beginning of the 20th century Emile Borel and David Hilbert 
surmised that measure theory, a new and powerful mathematical resource 
introduced by Henri Lebesgue, could be particularly apt to illuminate the 
field. In 1928, these ideas were taken up by Kolmogorov, who at that time 
was groping for a logically clearer systematization of probability theory able 
«to distinguish those elements of probability (theory) that will determine its 
internal logical structure» (Kendall 1989, 884). The results of these efforts 
were published in 1933. Kolmogorov’s axiomatic structure of probability 
theory considers events from a set-theoretical point of view and probability 
from a measure-theoretical one. Let’s assume that E is the set of elementary 
events and F a subset in it, whose members are said random events. The 
following axioms are laid down: 

1. F is a field (that is, it is closed with regard to union, intersection, and 
complement). 

2. F ⊂ E. 
3. To each set A of F, a number P(A) is associated said the probability 

of A. 
4. P(E) = 1. 
5. If A and B are disjoint sets, then P(A ∪ B) = P(A) + P(B). 

According to these axioms, the probability function is just a normalized 
measure function of the set size. Kolmogorov’s axioms allowed a consistent 
systematization of the known results of probability theory and were 
therefore broadly accepted by the mathematical community. Furthermore, 
the connection between probability and measure opened up an important 
network of relations with other branches of mathematics relying heavily on 
measure theory such as the theory of dynamical systems and information 
theory. It’s a feature of Kolmogorov’s genius that he was able to see crucial 
and deep conceptual similarities between seemingly unrelated fields. Like 
Birkhoff, who managed to unify a research tradition on celestial mechanics 
with the ergodic problem by unfolding the deep-seated common 
mathematical structure, Kolmogorov perceived that a rigorously 
axiomatized probability theory could provide a universal language to handle 
a whole spectrum of questions. 
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However, to understand Kolmogorov’s treatment of these questions, 
and the way in which they wound up in the KSE, we have to make a small 
detour and come back to the United States. Famously, World War II 
stimulated an awful lot of cutting-edge mathematical work. One example 
was the work carried out by Claude Shannon (1916-2001) at the Bell 
Laboratories. Driven by military purposes, Shannon elaborated a 
mathematical infrastructure to represent the general process of transmit data 
and to derive information from them. This work was classified during the 
war and published only in 1948.16 Shannon’s stroke of genius was to define 
the information attached to a message as “removed uncertainty”. This idea 
is at once deep and easy to understand.17 Let us assume that I pick up the 
newspaper to find out which horse won the race. The information conveyed 
by this piece of news depends on how uncertain I am about the result. If I 
think that there’s a very high probability that a given horse won, I will give 
to the newspaper a somewhat casual glance. But if I think that the chances 
were more or less even among the participants, I will be very eager to know 
the outcome. The uncertainty removed by the information is higher and so it 
is its value. 

Shannon’s second step was to translate this idea into a mathematically 
treatable quantity. To fix ideas, let’s assume that our language consists of N 
symbols x1, …, xN, which may occur with different probabilities P(x1), …, 
P(xN). By imposing some general and reasonable constrains, Shannon 
concluded that the amount of information related to receive one of those 
symbols is ! = − P(!!) logP(!!)!

!!! . The similarity between this 
expression and Boltzmann’s H-function is patent. Consequently, Shannon 
called the amount of information, i.e. of removed uncertainty, entropy. 

We start now to see the path that leads to the KSE. In statistical 
mechanics, entropy is the measure of the disorder of a system. From a 
kinetic point of view, the system is at thermal equilibrium when it is spread 
over the allowed phase space and its energy is as equally divided among the 
particles as possible. That is the case in which we are more uncertain about 
where to find the particle and the corresponding information is more 
valuable. Thus, there’s an intuitive relation between being in a disordered 
state and the amount of information concerning the specificities of this state. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
16 Shannon’s work is today available both in its original form, Shannon (1948), and in a 
more introductive arrangement, Shannon and Weaver (1949).	
  
17 On information theory see the classical Cover and Thomas (1991). For a discussion of the 
philosophical meaning of information see Badino (2004).	
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Shannon’s surprising result was to show that this intuition could be push to 
the extent of being captured by the same mathematical function. 

The notion of information entropy can be easily generalized from 
individual symbols to messages considered as arbitrarily long sequences of 
symbols. Shannon realized that sometimes the messages so generated are 
redundant, i.e. the same amount of information can be conveyed by means 
of fewer symbols. For example, it is often the case that a sentence in English 
is understandable even though the vowels are taken out. This process of 
reducing the length of the message is called “coding”. When a message is 
encoded its original appearance gets modified according to an algorithm. 
The encoded message transports the same amount of information that can be 
retrieved fully by decoding the outcome. However, it might happen that the 
transmission through a communication channel can alter the message. The 
problem that Shannon tackled in his first paper was: is there a way to code 
the message such that it is always possible to retrieve its original amount of 
information despite the channel noise? The answer was given by the 
Shannon theorem: if the entropy of the message does not exceed another 
quantity called the capacity of the channel, a coding can always be found 
that gets the error probability of decoding down to zero. Of course, the 
higher the noise, the most complex the coding and, moreover, the longer the 
time required for coding and decoding. 

Shannon’s information theory has brought to us a new concept: 
algorithm. And with this new concept we get back to Kolmogorov. Since his 
early papers, Kolmogorov was concerned with the notion of complexity. For 
instance, when he was 19 years old, he investigated the structure of Fourier 
series to understand to what extend they could approach a random behavior. 
From 1950 onwards, following the publication of Shannon’s work, he 
increasingly focused upon the relation between complexity and information. 
Later, in 1987, he went as far as claiming that the usual order that sees 
probability theory as a fundamental starting point, should be turned upside 
down: 

Information theory must precede probability theory, and not be based on it. 
By the very essence of this discipline, the foundations of information theory 
have a finite combinatorial character. The applications of probability theory can 
be put on a uniform basis. It is always a matter of consequences of hypothesis 
about the impossibility of reducing in one way or another the complexity of the 
description of the objects in question. Naturally, this approach to the matter does 
not prevent the development of probability theory as a branch of mathematics 
being a special case of general measure theory. The concepts of information 
theory as applied to infinite sequences give rise to very interesting investigations, 
which, without being indispensable as a basis of probability theory, can acquire a 
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certain value in the investigation of the algorithmic side of mathematics as a 
whole.18 

Information theory provided Kolmogorov with a concrete display of the 
potentialities of probability and the generality of the concept of entropy, but 
it was Alan Turing’s work that led him to a manageable definition of 
complexity. That was formulated in 1965.19 Let’s assume a message as a 
sequence of symbols. Now, a Turing machine can “compute” it, i.e. the 
machine can reproduce it fully when given a suitable program, called an 
algorithm. Intuitively, the more uniform the sequence, the shorter the 
algorithm to be provided to the Turing machine for computation. For 
example, a sequence like “11111…” is computable by means of the simple 
instruction “write a 1”. A slightly more complicated sequence like 
“121212…” is reproduced by means of “write a 1 and then write a 2”. You 
got the idea: as the sequence approaches a genuinely random one, the 
complexity of the algorithm increases. In this vein, Kolmogorov defines the 
intrinsic complexity of a sequence as the length of the shortest program that 
would allow a Turing machine to compute the sequence. Consequently, a 
sequence is truly random when the algorithm is as long as the sequence 
itself. In other words, the only way to have a Turing machine to do the job is 
to feed it with the sequence itself. 

This idea reminds us Shannon’s notion of coding. The coding procedure 
enables us to encapsulate the information of a message into a shorter list of 
symbols in a way that the initial message can always been unequivocally 
retrieved. If the message is just a random bunch of symbols, no rule can be 
discerned and no coding is possible, other than the trivial one that codes the 
message into itself. Kolmogorov was therefore able to single out the essence 
of Shannon’s idea and to translate it into a new field, theory of complexity. 
In addition, the common language of probability in terms of measure theory 
pointed to other territories. In the same years Kolmogorov worked 
extensively on dynamical systems and laid down the foundations of what is 
today known as the KAM theorem (after Komolgorov, who first formulated 
the idea, the Soviet mathematician Vladimir Arnold and the German one 
Jürgen Moser, who provided a proof and a generalization). The KAM 
theorem challenges the intuition that if we have a stable trajectory and we 
perturb it, the result will tend to ergodicity. Kolmogorov, Arnold and Moser 
showed that there is indeed an entire class of trajectories (called “invariant 
tori”), which remain substantially unchanged by (small enough) 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
18 Cover, Gacs and Gray (1989, 840-841). 
19 See Kolmogorov (1965).	
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perturbations. Thus, in Kolmogorov’s flexible mind, notions of information, 
complexity, and dynamical system formed a conceptual cluster in which he 
saw more the formal similarities than the differences. It is this appreciation 
for the mathematical structures that made the KSE possible. 

6. Kolmogorov-Sinai Entropy 

Looking back at the story I have been telling you so far, we can pinpoint 
three distinct notions of randomness. Celestial mechanics focused on 
periodic motion and led progressively to chaos theory. Chaotic trajectories 
are ultimately deterministic, but they appear random in the sense that they 
are unstable, very sensitive to the initial conditions (small initial 
perturbations originate hugely different final states), and unpredictable. 
Statistical mechanics, on the other hand, introduced a new kind of motion, 
the ergodic one, which was contort and “random” from the start. In addition, 
statistical mechanics uses probability and statistical tools to supplement 
mechanics. Again, although deterministic in its essence, this branch of 
physics uses randomness in the sense of disorder (of the particles) and 
equiprobability of the microscopic states. Finally, information theory and 
algorithmic theory also assume deterministic messages, but recognize that 
they can be random when it becomes impossible to find a set of rules to 
compute them. 

The common assumption of an ultimately deterministic world 
notwithstanding, it would be too quick to cash these notions in terms of 
epistemic randomness. For instance, several authors have highlighted that 
coding and computation have an energy as well as a time cost: to compute a 
“random” chaotic trajectory or the exact motion of billions of particles 
would exceed the resources of the universe.20 From this point of view, the 
impossibility of predicting chaotic behavior is more a physical than an 
epistemic hindrance. Put in other words: it’s not that our intelligence is too 
weak to comply with the epistemic standards of computability, it’s that the 
latter are too high for the universe we live in. 

Moreover, from the story told in the previous sections, these different 
notions of randomness appear to be several sides of a multifaceted idea or, if 
you like a less essentialistic metaphor, components of a conceptual cluster, 
tied together by deep mathematical relations. The KSE is a way to capture 
these relations and turn them into a workable mathematical tool. Introduced 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
20 See for instance Ruelle (1991) and Kellert (1993).	
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by Kolmogorov in 1958 and, independently, by Sinai in 1959, the KSE has 
been defined in very close analogy with Shannon’s entropy.21 Let’s consider 
a point in the phase space. This point represents the state of the system at a 
certain instant. The system evolves according to mechanical laws, which 
can be represented by a transformation of the phase space onto itself. We 
can use this fact to refine progressively our knowledge of the trajectory in 
the following way. 

If we apply the transformation back in time, the result will be a partition 
of the space into subsets, one of which containing the phase point. We apply 
the transformation another time and we get a partition of the partition and 
the phase point at that time will be contained in one of those sub-subsets. As 
the procedure goes on, one can construct finer and finer subdivisions of the 
phase space, which allow for a more and more specific description of the 
state of the system at that time. The intersection between all partitions 
containing the images of the phase point gives a representation of the 
trajectory. The important aspect to grasp is that the removed uncertainty in 
determining where the point is placed changes at each step. Let’s assume 
that the transformation divides the space in two subsets at each step. At the 
first step the point is in one of two subsets, in the second in one of four, in 
the third in one of eight and so on. A trajectory is the sequence of subsets in 
which, step by step, we can find the point. 

This sequence works as a message associated to a mechanical 
trajectory. Thus, we can ascribe to it an amount of information. If Wi is a 
sequence, then ! !! = − !(!!) log !(!!)! , where µ is a suitable 
measure function. Since the procedure is discontinuous and goes through 
several steps, we can define the amount of information acquired at each step 
in the following way ℎ = lim!→!!!(!!)/!. Finally, the KSE is defined as 
the supremum 22 of this information for all possible sequences gained: 
ℎ!! = !!!!ℎ. 

The KSE is defined in a very curious and composite fashion. It deploys 
techniques of statistical mechanics such as the partition of the phase space 
and measure function. At the same time, it parallels a trajectory and a 
message, thus it also concerns the algorithm complexity. This connection 
has been rigorously proved by Brudno in 1978 with a theorem stating that 
for almost all possible trajectories, KSE gives the algorithmic complexity of 
the corresponding sequence. On the other hand, it also relates to the theory 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
21 There are many ways to introduce the KSE. Here I follow closely Dorfman (1999).	
  
22 The supremum of a set is the least element of the set that is greater than (or equal to) any 
other element of the same set. 	
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of dynamical systems and specifically to the problem of instability. One of 
the many techniques to establish the instability of a trajectory is called 
Lyapunov exponents. This method was already known to Laplace, but it 
was systematized and generalized by Alexander Lyapunov at the end of the 
19th century. One introduces small variations in the initial conditions of a 
periodic solution of the equations of motion and calculated the equations for 
these variations. The solutions, in general, have the form of exponential 
functions. Depending on the fact that these exponents are real or imaginary, 
the perturbed trajectory will tend to get away from the periodic one or to 
stay close to it. In other words, the Lyapunov exponents are a measure of 
the instability of the trajectory. In 1977 Pesin proved that the KSE could be 
interpreted as the sum of the Lyapunov exponents of the trajectory. This 
result does not only spell out the connection with instability, but it also 
reconfigures the KSE as a measure of chaos. In effect, the increase of the 
KSE represents a transition of the trajectory to a chaotic behavior. 

Lastly, a close relation between this concept and information theory can 
also be defined. In 2004 Roman Frigg has argued along this direction. He 
claimed that, by partitioning the phase space into cell, we could represent a 
trajectory on the phase space as the sequence of cell passed through. Now, 
the cells are tantamount to symbols of a previously defined language and 
therefore a trajectory is isomorphic to a message. Of this message we can 
calculate the Shannon entropy. In this way, the KSE can be applied to 
messages as well and to give a measure of the “chaoticity” of the message. 
Thus, several notion of randomness get captured and put into a conceptual 
network by the same formal tool. 

7. Conclusions 

Now, you see how the several strands that compose our story come together 
in a new mathematical concept. As a conclusion of this survey, I would like 
to stress some points. First, it should be clear that to appreciate the 
conceptual content of the KSE it is essential to look at the intricate story to 
which, albeit implicitly, the KSE refers. Mind, it is not merely a matter of 
contextualization. Instead, the unfolding of the historical threads packed in 
the concept allows for a qualification and even a reconfiguration of its 
epistemological status. On the one side, the connections implicit in the KSE 
appear less surprising. On the other, when seen through its genealogy, the 
concept looks still in flux. True, the formal relations and the methods 
required are robust enough, but it would be too quick to claim that we 
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understand the concept. There is a tendency in philosophy of science to see 
scientific concepts as being born in a historical vacuum and being anchored 
to nature only by mathematics. Their intrinsic motion, their potentiality, 
their internal life, so to speak, gets lost more often than not. The historical 
perspective adds, I think, this epistemological dimension, that it shows how 
a scientific concept is a knot, a crossroads in a complex network of 
traditions and, consequently, it has built-in several, sometimes even 
mutually contradictory, potentialities. This partially explains why we are 
still far from understanding the connections between different notions of 
randomness and different branches of mathematics related to them. 

A second point I wish to emphasize concerns concept construction. As 
we have seen, the concepts of randomness had all an intuitive appealing. 
Random are things that change abruptly, without rules, with all results 
equally possible. The strategy pursued by physicists and mathematicians to 
understand these notions was essentially to encapsulate the intuition into a 
web of mathematical techniques–in turn coming with specific traditions–in 
order to convert a vague intuition into a set of methods that can be 
communicated, taught, disseminated, worked on, and expanded. This 
composite origin of scientific concepts is also historically situated and must 
be historically comprehended. Not for exhaustiveness’, but for 
epistemology’s sake. 
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