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Abstract

The recent use of typicality in statistical mechanics for foundational purposes has
stirred an important debate involving both philosophers and physicists. While this
debate customarily focuses on technical issues, in this paper I try to approach the
problem from an epistemological angle. The discussion is driven by two questions:
(1) What does typicality add to the concept of measure? (2) What kind of expla-
nation, if any, does typicality yield? By distinguishing the notions of ‘typicality-
as-vast-majority’ and ‘typicality-as-best-exemplar’, I argue that the former goes
beyond the concept of measure. Furthermore, I also argue that typicality aims at
providing us with a form of causal explanation of equilibrium.

1 Introduction

Among the recent foundational approaches to equilibrium statistical mechanics, typi-

cality has stirred the most heated and interesting debate. While fiercely supported by

some prominent physicists (Dürr, Goldstein and Zanghì 1992, Lebowitz 1993b, Lebowitz

1999, Dürr 2001, Goldstein 2001, Zanghì 2005, Goldstein 2012), it has been repeat-

edly challenged by philosophers of science (Frigg 2007, Frigg 2009, Hemmo and Shenker
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2012, Pitowsky 2012). Roughly speaking, the typicality approach aims at explaining the

qualitative features of thermal equilibrium—its being unidirectional and exceptionless—

by showing that these features are ‘typical’ of usual statistico-mechanical systems. The

notion of typicality is notoriously mudded. It is related to probability and measure, but,

in the intention of the ‘typicalists’, to say that a property or a behavior is typical means

something more than ‘highly probable’.

Criticisms against this approach have focused especially on the physical, mathemat-

ical, and philosophical acceptability of its steps. Beneath its apparent intuitiveness,

typicality reveals problematic assumptions. In the attempt to unravel the technical in-

tricacies nested in the notion of typicality, philosophers have mostly—and wittingly—

left aside the epistemological issue of the explanatory value of this approach. Itamar

Pitowsky was possibly the first to adumbrate this issue when compared typicality and

Lebesgue measure and concluded that the latter seems to have all the virtues of the

former, without having its problems (Pitowsky 2012, 54-56). This raises the question:

What is the explanatory surplus attached to typicality? This question goes hand in

hand with a more general one: What kind of explanation is incapsulated in the use of

typicality made by philosophers and physicists? These questions help us see the debate

on typicality from a new, epistemological perspective.

My strategy to tackle them consists of three steps. First, I discuss the structure of

the typicality explanation used in statistical mechanics. This explanation relies on two

typicality-claims concerning the phase space and the Hamiltonian of the system. The

explanation is successful if one can characterize the latter in order to use the former

to conclude the qualitative features of equilibrium. Second, I analyze the semantics of

typicality-claims and I argue that they can be dually spelled out in terms of proper-

ties possessed by many individuals (typicality-as-vast-majority) or in terms of the fit-

ting with the process generating the kind of individuals having the relevant properties
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(typicality-as-best-exemplar). Third, I show that current positions on typicality can be

categorized according to their reading of the typicality-claims. My conclusions are that

(1) typicality does not differ from measure insofar as it is interpreted as typicality-as-

vast-majority and (2) typicality yields a kind of causal explanation of equilibrium.

2 Epistemic Stories and Typicality-Claims

My epistemological analysis relies on two resources. First, for reasons that will become

clear later, it is useful to think of typicality within the framework of a manipulative

view of explanation. Thus, I assume that to explain something, in this case our expe-

rience of equilibrium, means to provide information on difference-making factors that

enables us to potentially control the occurrence of the explanandum. To put it in other

terms, to explain means to answer a what-if-the-things-had-been-different type of ques-

tion.1 The answer to such a question is an epistemic story constituted by variables, as-

sumptions, and invariant relations arranged in a certain argumentative pattern. Some

of these variables and assumptions may serve the auxiliary purpose of setting the con-

text, while others are difference-making elements in the production of the explanan-

dum. These variables are the causal factors and their relation to the explanandum is

discussed in detail later on.

My second resource to evaluate the explanatory status of typicality is semantic anal-

ysis. There is a considerable amount of uncertainty about what logical or linguistic ob-

jects typicality refers to. A quick glimpse at the literature shows that it is generally

interpreted as a feature of a property or a behavior. In the attempt to capture both

uses at the same time, I will focus on sentences in which typicality is ascribed, i.e.,

1Here, I refer especially to James Woodward’s thorough treatment in (Woodward 2000, Woodward
2003).
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typicality-claims. Typicality-claims have the following forms:

(1) Typically, elements x of the set K have (the property or behavior) P.

A typicality-claim (1) is equivalent to saying that the property or behavior is typical

in K, but is easier to analyze. We will see below that discussing typicality-claim allows

us to draw interesting conclusions from the semantics of these particular statements.

Before proceeding, a word of caution is in order. In this paper, I am concerned first

and foremost with the debate on typicality in statistical mechanics. I expect some as-

pects of my analysis to have a bearing on typicality explanation at large—if there is

such a species. This is the case, I think, for the semantics of typicality-claims. How-

ever, in the following sections, I only treat the form that typicality assumes in statis-

tical mechanics and the conclusions on its explanatory value should not be generalized

too quickly to other cases.

3 The Structure of the Typicality Explanation

The first legitimate question to ask is: What typicality is actually supposed to explain?

A clarification of this aspects can be found in Joel Lebowitz’s lucid article (Lebowitz

1993b). In the opening section of his paper, Lebowitz distinguishes neatly between

qualitative and quantitative aspects of equilibrium. Firstly, he introduces the concepts

of macro- and microstate. A microstate is a complete description of the state of the sys-

tem in terms of the positions and momenta of each particle. If the system consists of

N particles, its microstate x is a point in a 6N -dimensional phase space. Microstates

can be grouped into macrostates, i.e., regions in the phase space comprising microstates

that look the same from a macroscopic point of view.

Ludwig Boltzmann showed that one can attach a quantity, called Boltzmann entropy
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SB, to a macrostate M and consequently to each of its microstates. Lebowitz’s claim

is that “SB typically increases in a way which explains and describes qualitatively the

evolution towards equilibrium of such systems” (Lebowitz 1993b, 2). What the typi-

cal behavior of entropy is supposed to explain is precisely our day-to-day experience of

equilibrium. He clarifies further this point in the following section. Let us assume to

have a container divided into two chambers by a partition and assume that all parti-

cles are contained in one of the two chambers. Let us remove the partition so that the

particles move freely from one chamber to the other until they fill up the container uni-

formly. Let also assume that we have taken a series of snapshots of this process, from

the initial state to the final, uniform distribution. If asked to order the snapshots, “the

‘obvious order’, based on experience” is that the system moves from a non-uniform

to a uniform state. This is what our experience of equilibrium amounts to and this is

what typicality is supposed to explain. There are also quantitative aspects of equilib-

rium, but they require different sorts of resources: “the quantitative description of the

macroscopic evolution is given by hydrodynamical-type equations which can be de-

rived (explicitly, in some cases) from the microscopic dynamics by utilizing the collec-

tive aspect of macrobehavior, i.e., as a law of large numbers arising from the very large

macro/micro-ratio.” The quantitative aspects are related to typicality, but are not di-

rectly explained by it. Hence, typicality explains the thermodynamic-like behavior, i.e.,

the time increase of the Boltzmann entropy: SB(t) ≤ SB(t+ 1).

Let us now analyze the epistemic story of typicality. First, the story comprises a set

of concepts and assumptions of standard statistical mechanics. Let Σ be the accessible

phase space of a physical system S, xi the phase points of this space corresponding to

the possible microstates of S. Let us assume that the space can be partitioned into a

series of disjoint sets M1,M2, . . . ,ME. To each microstate xi ∈ Mi one can assign a

Boltzmann entropy SB(Mi). The Boltzmann entropy SB(ME) for equilibrium is a max-

imum. Let the dynamics be given by an Hamiltonian flow H(x), i.e., H(xt−1) = xt. A
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trajectory of the system is a sequence of microstates xi of S generated by H(x). These

ingredients are then arranged in the following argumentative pattern of typicality:2

(T1) Typically, a microstate xi belongs to ME, therefore, typically, SB(xi) =
SB(ME).

(T2) Typically, the Hamiltonian flow H(xt) originates a trajectory that has
a certain property Γ.

(C) The property Γ together with (T1) entails that S exhibits a thermodynamic-
like behavior.

The claim (T1) expresses a well-defined and undisputed fact of the phase space, i.e.,

that an enormous amount of microstates belong to the equilibrium region. Although

well-founded, (T1) concerns the structure of the phase space, but it does not tell us

anything specific about the behavior of the physical trajectory of the system over time,

which is determined by the initial conditions and the Hamiltonian. The typicality-claim

(T2) deals precisely with these elements. The crux of the argument is the characteriza-

tion of the property Γ, which leads to the thermodynamic-like behavior on the basis of

what asserted in (T1). It is because of Γ that the overall structure of the phase space—

in itself a geometrical fact—matters for the behavior of physical systems in time. Thus,

the essence of the typicality approach and its explanatory value depend precisely on

this mysterious property Γ. A semantic analysis of typicality-claims can help us under-

stand the attempts done by philosophers and physicists to characterize Γ and, conse-

quently, to evaluate the explanatory value of typicality. First of all, I argue that, in gen-

eral, there are two dual ways to spell out a typicality-claim. Next, I discuss which read-

ing has been associated to (T1) and (T2). We will see that, while in statistical mechan-

ics there is a unanimous consensus about how (T1) should be spelled out, the status of

2This argumentative pattern tries to capture the variegated uses of typicality in physical and philo-
sophical literature. For some writers, the essence of the argument consists in (T1) only, but, as Ro-
man Frigg has argued, some dynamical step of the sort of (T2) is also required (Frigg 2009, Frigg and
Werndl 2012).
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(T2) is much less clear.

4 Typicality-1 and Typicality-2

A typicality-claim is a proposition that would elicit a reaction such as: “well, how typi-

cal!”. Here I am concerned with the kind of situations in which we utter the how-typical

reaction. One situation in which this can happen is when we deal with a property or

behavior represented by the vast majority of the individuals under examination. I buy a

ticket of the National Lottery and it turns out that I don’t win any prize: how typical.

This situation is described by the following statement:

(2) Typically, a ticket of the National Lottery is a non-winning.

One obvious way to interpret (2) is that the vast majority of lottery tickets do not

win any prize, because there are very many tickets and very few prizes. In this case,

(2) is taken to mean typicality-as-vast-majority or ‘typicality-1’ for short. Typicality-1

commits us to define:

(C1) a set of individuals K (lottery tickets),

(C2) a property P (being a non-winning ticket),

(C3) a procedure µ to count how many individuals of K have P.

(C1)-(C3), in turn, allows us to define the truth-condition of the typicality-claim (2)

interpreted as typicality-1:

(TC1) A typicality-claim is true if and only if the vast majority of the mem-

bers of K have P when counted according to the procedure µ.
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Let me highlight two points about (2) and its truth-condition. First, (TC1) is vague

because there is no threshold separating a simple majority from a vast majority. As it is

often the case with vague concepts, we may have clear examples and counterexamples of

vast majority, but we are unable to fix a discriminating value. Thus, typicality-1 always

involves a certain amount of conventionality. Second, (TC1) depends on a counting pro-

cedure and not on probability, at least directly. In other words, what makes (2) true is

not the low probability of attaining a winning ticket, but rather the fact that, accord-

ing to a certain counting procedure, there are very many non-winning ticket. Granted,

in some circumstances there is a straightforward relation between counting and proba-

bility or, better, between measure function and probability function. However the two

concepts must be kept distinct for a number of reasons. For one, there are several defi-

nitions of probability and it is unclear which one should be attached to a certain count-

ing procedure. More importantly, probability involves assumptions on the process. For

instance, while the counting of black balls in a box is a fairly unproblematic procedure,

the calculation of the probability of extracting a black ball, albeit related with their

number, calls for assumptions on the drawing process. I will return to this important

difference and its consequences for statistical mechanics in Section 5.1.

Typicality-1 is not the only way to read a typicality-claim. To appreciate this point,

let us look again at the conditions (C1)-(C3). The truth-condition (TC1) demands that

we count the members of the set K by means of the procedure µ and establishes that

the vast majority have P. But to count the members of a certain set, one needs an inde-

pendent way to define the set. For us to ascertain that the vast majority of elements x

of K have P, we need to know what is for an individual x to be an element of K. I call

the conditions that make an individual x a member of K the “process” producing x’s of

K. Thus, one can replace (C3) above with:

(C4) A process Π to define members of K.
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For instance, for an object to be a lottery ticket, a series of conditions must be re-

alized: it must be printed by a certain agency, it must have a number assigned, there

must be a drawing and prizing procedure and so on. Now (C1), (C2), and (C4) lead to

the following truth-condition:

(TC2) A typicality-claim is true if and only if the best exemplars of K have

the property P.

Let me clarify (TC2) with an example. I meet a professional piano player and I note

that her hands are quick and agile: how typical. In fact:

(3) Typically, a professional piano player has agile hands.

Claim (3) can be spelled out in terms of typicality-as-vast-majority: we can ideally

check the hands of all professional piano players and find out the most of them have

agile hands. However, we can also read (3) as meaning that the specific training piano

players go through enhances the agility of their hands. It is a typical feature of their

profession. This alternative reading suggests that the typicality-claim refers to the best

exemplar of a process through which an individual becomes member of a certain set, in

this case, the set of professional piano players. The typical member of the set is an indi-

vidual that embodies certain features that “best fit” the process; and if it does, it is the

best exemplar of that set. I call this way of interpreting a typicality-claim ‘typicality-

as-best-exemplar’ or ‘typicality-as-best-fit’ or typicality-2 for short. The vagueness of

“vast majority” is here replaced by the also vague concept of “best exemplar”. Consider

the process of flipping a fair coin 10,000 times. A “best exemplar” sequence is not a se-

quence with precisely 5,000 heads, but any sequence in which heads and tails show up

9



roughly half of the time.3 Again, there is no clear-cut discrimination value to define

what “roughly” means. The determination of the conditions for a sequence or an indi-

vidual to be a best exemplar is an open question. Some attempts in this direction have

been carried out in the discussion of a Humean approach to lawhood and counterfactu-

als. Let me briefly summarize this analysis.

From the perspective of Humean supervenience, a law of nature is a regularity that

fits the spatio-temporal facts of the world. One of the most popular approaches within

this framework is David Lewis’ best system analysis (Lewis 1994). According to Lewis,

contrary to an accidental generalization, a law of nature is part of a deductive system,

which describes the observed regularities and strikes the best balance between simplic-

ity, strength, and fit. Of these three virtues, the third one is the most difficult to for-

mulate. Intuitively, the best system is the one assigning the highest probability to the

actual course of observed events. But if the world is intrinsically chancy, this proposal

runs into the so-called zero-fit problem. Let us assume a world in which the one and

only regularity is a sequence of heads and tails. Ideally, our criterion should lead us to

select as best system the one assigning a probability distribution equal to the observed

ratio of heads and tails. But, independently of the system, the number of possible se-

quences grows as 2n and the probability given by any system to the only actual se-

quence decreases accordingly. As a consequence, any system would give zero-probability

to the observed facts of the world.

Chancy worlds cause troubles also to Lewis’ semantics of counterfactuals. It is well

known that, for Lewis, a counterfactual statement such as “if it were the case that F ,

it would be the case that G” is true if and only if it is the case that G in all possible

F -worlds closest to the actual world (Lewis 1973). Among the conditions that define

3We also have to add other properties. A sequence in which the first 5,000 flips come out head and
the second 5,000 tail is obviously not typical. More on this point below.
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the similarity between possible worlds, the most important are the respect of the laws

of nature and the maximization of the spatio-temporal regions in which there is a per-

fect match with experience. But if the sequence of events is intrinsically probabilistic,

one can satisfy both conditions and still create embarrassing counterfactuals. In par-

ticular, we can select a world that is completely identical to ours except for a localized

event and construct therefore a true counterfactual. For instance, let assume that in

this world I spend a whole week in Rio de Janeiro and, on Wednesday, I buy a parrot.

We can imagine a world identical to the actual one in which, on Tuesday, instead of

roaming around in Rio, I drop a plate in Beijing. In a chancy world, the counterfactual

“If I dropped a plate in Beijing on Tuesday, I would buy a parrot in Rio on Wednesday”

comes out true. The gist of the trouble is that, according to this procedure, a counter-

factual is true if the consequent is true in the actual world, independently of the an-

tecedent.

The two problems are obviously related. Lewis’ conception of lawhood cannot come

to the rescue of counterfactuals because, as we have seen, in a chancy world any best

system gives zero probability to any sequence, even the one in which I drop a plate in

Beijing on Tuesday and buy a parrot in Rio on Wednesday. Another way to see the

connection is the following. The reason of the foregoing problem with counterfactuals

is that, in a chancy world, even the best system cannot rule out highly improbable seg-

ments of events. For instance, even if it is true that the probability of head is 1/2, it re-

mains possible—albeit hugely improbable—to observe a sequence of 10,000 consecutive

tails. But this is also what the zero-fit problem boils down to: the possible systems are

compatible with so many sequences that eventually they will all assign zero probability

to each.

Recent attempts at solving these two interconnected problems replace the inadequate

notion of probabilistic fit with typicality. Within the framework of best system analysis,
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Adam Elga has adopted a concept of typicality derived from the work of Haim Gaif-

man and Marc Snir (Gaifman and Snir 1980, Elga 2004). Details are complicated, but

the basic idea is very familiar to practitioners of statistical mechanics. Elga suggests

that the fitting of a deductive system with the observed regularities should not be mea-

sured in terms of probability yielded by the system to the regularity, but in terms of

certain properties instantiated by the regularity and which have high probability ac-

cording to the system. Put in other terms, given a deductive system, the typical reg-

ularity according to that system is the regularity that instantiates a series of proper-

ties that, if one adopts that system, have high probability. For instance, if the deduc-

tive system ascribes probability 1/2 to head, a high-probability property is “to have

the same number of heads and tails” and a sequence is typical if it instantiates this

property. According to Elga, if we define the best system as the system for which the

observed regularities are typical, we do not incur in the zero-fit problem (Elga 2004,

71-72). This idea has been applied to the semantics of counterfactuals by J. Robert

Williams (Williams 2008, Dodd 2011). William’s proposal consists in adding to Lewis’

conditions of similarity between possible words the requirement that close worlds do not

present even localized atypical events, i.e., events that do not fit the existing laws of na-

ture according to a certain set of high-probability properties.

The concept of typicality-2 takes the inverse path as typicality-1. In the case of typicality-

1, one starts with a clear definition of what is the typical property that a behavior should

instantiate. In statistical mechanics, this is the property of belonging to the equilib-

rium phase region. According to typicality-2, instead, one begins with an actual typical

behavior, which is such relatively to “test properties” that must be instantiated by it.

The open question is how to characterize the test properties. Elga, for instance, sug-

gests that one should use simple properties formulated by means of a selected number

of predicates in a particularly simple language. This requirement is meant to rule out

the trivial ‘exact distribution’ property which has the highest probability for the actual
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world, but is obviously very complicate to describe.

These proposals aim at making logical and epistemological sense of the concept of

typicality-as-best-fit. This concept tries to capture the intuition that, if a behavior is

typical, then it is a feature of the best fitting exemplar of the underlying process. Ac-

cordingly, a professional piano player with agile hands is the perfect exemplar of pi-

ano training process. It is important to realize that typicality-1 and typicality-2 are

not simply alternative ways to read typicality-claims, but they are dual. Typicality-

1 is typicality of properties, while typicality-2 is typicality of behavior. Typical prop-

erties are instantiated by a certain behavior and a typical behavior is such respect to

certain properties. Ideally, (C1)-(C4) are all relevant to a complete claim of typicality.

As a matter of fact, however, one reads a typicality-claim either as typicality-1 or as

typicality-2. To chose one of the other reading depends largely on the conditions of the

problem. Typicality-1 is certainly easier to realize, but it is also less informative from

a causal and explanatory standpoint. Take again the typicality-claim (3). It is easy to

count over the set of piano players, but this counting would give us only a sort of sta-

tistical correlation. By contrast, typicality-2 is more difficult to realize, but it furnishes

more substantial explanatory information. It might be more complicated to relate the

piano training process and the property of having agile hands, but if we manage to do

it convincingly, the result would be much more rewarding in terms of explanation.

These considerations are very general and based on the semantics of typicality-claims.

The actual circumstances in which these claims are held can be further complicated and

make the evaluation of the explanatory information more nuanced, as we will see in the

case of statistical mechanics. But the crucial point concerns the duality. Although dif-

ferent, these two interpretations are intertwined. In many circumstances, the two as-

pects are fairly separated, because one only needs minimal information to define K. In

the case of (3), for instance, K is easily defined as the set of individuals who play pi-
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ano as their profession. This establishes unambiguously the set over which we have to

count. But consider the following example:

(4) A typical athlete is a well-trained person.

This typicality-claim is more problematic than (3). In terms of typicality-1, (4) means

that if we examine the set of athletes and count over them, it turns out that the vast

majority of the members of the set is well-trained. But how are we to define the set of

athletes? Athletes are persons who conduct a certain life, who undergo a certain pro-

cess whose result is, typically, to produce a well-trained body. Thus, if (4) is taken to

mean that the vast majority of athletes are well-trained (typicality-1), this immedi-

ately refers to the definition of an athlete as a person, who undergoes a certain process,

which produces a well-trained physique as best exemplar (typicality-2); while if (4) is

taken to mean that the typical athlete fits a style of life whose result is to produce a

well-trained physique (typicality-2), this immediately leads to the conclusion that the

vast majority of the individuals following that style of life have a well-trained physique

(typicality-1). Typicality-1 and typicality-2 are inextricably blended. In the remainder

of the paper, I explore the consequences of this duality for statistical mechanics.

5 The Explanatory Value of Typicality

5.1 (T1) as typicality-1

There is a general consensus that (T1) should be spelled out as typicality-1. In fact,

typicality-1 seems to be the favorite interpretation for typicality-claims among physi-

cists and philosophers of science. Most of the definitions of the concept of typicality

make reference to a counting procedure and to the resulting overwhelming majority of
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typical results. For instance, Roman Frigg defines typicality in the following way:

Intuitively, something is typical if it happens in the ‘vast majority’ of
cases: typical lottery tickets are blanks, typical Olympic athletes are well
trained, and in a typical series of 1,000 coin tosses the ratio of the number of
heads and the number of tails is approximately one. (Frigg 2009, 997-998)

Although this quote mixes typicality-claims that can be legitimately spelled out dif-

ferently, there can be no doubt that philosophers and physicists typically read typicality-

claims in this way. Another notable example, even more straightforwardly related to the

case of statistical mechanics, is the following:

Generally speaking, a set is typical if it contains an ‘overwhelming ma-
jority’ of points in some specified sense. In classical statistical mechanics
there is a ‘natural’ sense: namely sets of full phase-space volume. (Volchan
2007, 803)

Lebowitz also endorses this reading:

Typical, as used here, means that the set of microstates corresponding
to a given macrostate M for which the evolution leads to a macroscopic de-
crease in the Boltzmann entropy during some fixed time period τ , occupies
a subset of [the accessible phase space] whose Liouville volume is a fraction
of [the volume of the phase space] which goes very rapidly (exponentially) to
zero as the number of atoms in the system increases. (Lebowitz 1999, S348)

In this quote, Lebowitz also mentions the role of the number of degrees of freedom

on which I will come back soon. Thus, there is a virtually unanimous agreement that

(T1) should be taken to mean that the vast majority of microstates xi belong to the

macrostate ME. Two main consequences have followed from this agreement. First, most

of the criticisms against typicality have concentrated on the concept of measure. One

matter of concern, for instance, is that although measure and probability are closely

connected, they still convey different kinds of information. Measure deals with the struc-

ture of the ideal phase space, while probability has to do with the relative frequency of
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physical properties. The leap from one to the other can be problematic. For instance,

it is well known that zero-measure does not necessarily mean zero-probability, i.e., im-

possibility, because even an infinite set can have zero-measure according to a suitable

measure. A related difficulty is the justification of the measure function. In statisti-

cal mechanics, it is customary to use the Lebesgue measure, but what argument can

be offered for this choice? Meir Hemmo and Orly Shenker have argued that it is ille-

gitimate to conclude something about probability—solidly rooted into observed rela-

tive frequencies—on the basis of the a priori choice of the Lebesgue measure and have

suggested that the “epistemological arrow” should be inverted: one should determine

the measure function on the basis of the observed physical probability (Hemmo and

Shenker 2012, 182-191).

The second consequence concerns the explanatory information conveyed by (T1)

read as typicality-1. Clearly, the message of the typicality-claim (T1) is that equilib-

rium happens because the equilibrium macrostate is dominant respect to other states.

Typicality is not just a matter of how big the phase space volume is, but rather how

‘much bigger’ is respect to the alternative: “insofar as typicality is concerned [. . . ] all

that matters is which sets have very large measure and which very small” (Goldstein

2012, 66). It must be noted that the dominance of the equilibrium state depends cru-

cially on a physical feature of the systems, i.e., the high number of degrees of freedom.

It is precisely the astronomically large number of degrees of freedom that marks the

difference in size and therefore the huge extension of the equilibrium region. Lebowitz

explicitly stresses this point when he states:

[T]he central role in time asymmetric behavior is played by the very
large number of degrees of freedom involved in the evolution of macroscopic
systems. It is only this which permits statistical predictions to become “cer-
tain” ones for typical individual realizations, where, after all, we actually
observe irreversible behavior. Thus typicality is very robust—the essen-
tial features of macroscopic behavior are not dependent on any precise as-
sumptions, such as ergodicity, mixing or “equal a priori probabilities”, being
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strictly satisfied by the statistical distributions. (Lebowitz 1993b, 3)

From this quote it is clear that the high number of degrees of freedom affects the oc-

currence of equilibrium, but how are we to express this in explanatory terms? I submit

that, if we adopt a manipulative view of causality, we can conceptualize the number of

degrees of freedom as playing the role of causal variable. Woodward’s account of “C

causes E” demands that: (i) C and E can be represented by variables; (ii) only an in-

tervention on the value of the variable C results in a certain change in the value of the

variable E, and (iii) the relation between variables C and E remains the same, i.e., it is

invariant. Briefly said, “an explanation ought to be such that it can be used to answer

what I call a what-if-things-had-been-different question” (Woodward 2003, 11). Let us

discuss how the number of degrees of freedom fits Woodward’s requisites.

First of all, the number of degrees of freedom acts as causal factor for equilibrium

because the increase or decrease of that number makes the ratio of the equilibrium vol-

ume to the other volumes larger or smaller. Both the number of degrees of freedom and

the equilibrium can therefore be quantified and variables can be attached to both. Sec-

ondly, Woodward defines an intervention on some variable X with respect to some sec-

ond variable Y as ”a causal process that changes X in an appropriately exogenous way,

so that if a change in Y occurs, it occurs only in virtue of the change in X and not as

a result of some other set of causal factors” (Woodward 2000, 199-200). An interven-

tion does not need to be actually carried out by a human agent. It suffices to specify,

possibly in a counterfactual way, that a certain causal process can change the value of a

variable in order to examine the consequence on the other variable. In the present case,

one can imagine to ‘freeze’ progressively the degrees of freedom, for example by con-

straining or selecting the particles.4 As more and more particles are frozen, the ratio

4This is precisely the kind of intervention that only a Maxwell’s Demon can carry out. However, as
said above, it is not required that the intervention be physically possible. The possibility of acting in
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of the equilibrium region to the other volumes shrinks. Finally, the relation governing

this behavior depends only on the total energy of the system, therefore, “it would con-

tinue to hold—would remain stable or unchanged—as various other conditions change”

(Woodward 2000, 205), which is Woodward’s definition of invariant relationship. Thus,

the number of degrees of freedom satisfies the conditions for being a causal factor in the

manipulative sense: it allows us to control in an invariant way those qualitative charac-

teristics that feature in our experience of equilibrium.5

Thus, (T1) conveys a sort of causal information that can be used for explanatory

purpose. However, although the high number of degrees of freedom acts somewhat causally,

it still does not look like ‘the cause’ of equilibrium. I will try to cope with this intuition

with the following consideration. The huge difference in size between the equilibrium

macrostate and the others yields very good reasons to believe that our actual experi-

ence will always be one in which systems converge toward equilibrium. The difference

is so astronomically large that no reasonable agent could even expect anything differ-

ent from equilibrium. The high number of degrees of freedom produces and influences

the structure that realizes this expectation. However, the concrete realization in space

and time of equilibrium also depends on the features of the system trajectory. The sit-

uation is similar to the case of a fair coin. A bit of combinatorics is sufficient to con-

vince us that it is high unreasonable to expect 1,000,000 consecutive tails. However, we

feel that the complete explanation of this fact has to do also with the way in which the

coin is flipped. For this reason, in the typicality argument (T1) should be connected

with the typicality-claim (T2). From this point of view, the explanatory information

incapsulated in (T1) seems to be a species of Elliot Sober’s equilibrium explanation

a “demonic” fashion is warranted by the laws of mechanics.
5Let me add a word of caution. The high number of degrees of freedom plays a causal role in the

Boltzmannian approach subscribed by most typicalists. This approach considers only closed systems
and therefore excludes external interventions. The situation is different with open systems.
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(Sober 1983). This is, I suspect, the deep reason behind some of the above-mentioned

criticisms leveled against the use of measure by typicalists. Statements about measure

and about the structure of the phase space, such as (T1), still fall short of telling us

a full causal story of the actual behavior of the system. To capture the difference be-

tween the causal explanatory information contained in (T1) and (T2) respectively, I

introduce the difference between causal structure and causal scenarios. The number of

degrees of freedom endows the phase space with a causal structure, i.e., the partition

of macrostates. This structure has a causal status because it yields difference-making

information that allows us to potentially control the occurrence of the explanandum.

However, this causal structure only constrains the possibilities by making the explanan-

dum highly expectable. For this structure to be wholly explanatory, it is necessary that

the specific causal scenarios, i.e., the Hamiltonian of the system, be consistent with it.

The notion of “consistency” between causal structure and causal scenarios is suppos-

edly made more explicit by the property Γ, but, as we will see in a minute, this is still a

mudded notion.

5.2 (T2) as typicality-1

As I stated in Section 3, the crucial question of the typicality approach is to determine

the property Γ that allows one to conclude the thermodynamic-like behavior on the ba-

sis of the well-established phase space fact (T1). It is possible to find isolated state-

ments that seem to suggest that there is no real question after all: the conclusion fol-

lows straightforwardly from (T1) regardless of any characterization of the Hamiltonian.

Consider, for instance, this quote of Nino Zanghí:

The convergence to equilibrium of natural phenomena is neither a con-
sequence of a new physical law, nor the effect of an attractor in the micro-
scopic dynamics. The equilibrium macrostate does not attract anything,
systems, typically, “fall in it” because, in the phase space, the equilibrium
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macrostate occupies a region enormously bigger than the others. (Zanghì
2005, 170)

A similar thought can be found in this passage by Detlef Dürr:

What is typicality? It is a notion for defining the smallness of sets of
(mathematically inevitable) exceptions and thus permitting the formula-
tion of law of large numbers type statements. Smallness is usually defined in
terms of a measure. What determines the measure? In physics, the physical
theory. Typicality is defined by a measure on the set of “initial conditions”
(eventually by the initial conditions of the universe), determined, or at least
strongly suggested by the physical law. Are typical events most likely to
happen? No, they happen because they are typical. But are there also atyp-
ical events? Yes. They do not happen, because they are unlikely? No, be-
cause they are atypical. But in principle they could happen? Yes. So why
don’t they happen then? Because they are not typical. (Dürr 2001, 131)

These quotes do not represent the whole of the position of Zanghí and Dürr, but

rather prove Frigg’s point that typicalists have made only sporadic and sometimes con-

tradictory remarks on how to interpret the dynamical part of the typicality argument

(Frigg 2009). Be that as it may, the idea at times surfaced that one can conclude the

argument from (T1) without introducing any specification of the Hamiltonian. I think

that this strategy is epistemologically questionable for two reasons. First, it amounts to

eluding the problem of typicality and reduces it to mere hand-waiving. Second, it leaves

us with an incomplete explanation of equilibrium. As said, (T1) can at best picture a

causal structure, but it does not produce more specific causal scenarios.

In the literature, one can find interpretations of (T2) as either typicality-1 or typicality-

2. Let us begin with the former. A typicality-1 reading requires the introduction of a

way of counting Hamiltonians that produce dynamical trajectories with a certain prop-

erty. Recently, Roman Frigg and Charlotte Werndl have put forward an interesting at-

tempt in this direction (Frigg and Werndl 2012, Werndl 2013). They begin with out-

lining the typicality argument presented in Section 3. With regards to this argument,
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they set two questions. The first is “the conceptual question of whether we can explain

the behavior of a particular system by appeal to what systems typically do” (Frigg

and Werndl 2012, 920). This is essentially the epistemological issue of this paper. The

other question concerns ”what notions of typicality are at work in the two [typicality-

claims].” By this, Frigg and Werndl mean something different from the semantic anal-

ysis carried out in this paper. They investigate what it means for an Hamiltonian to

be typical-as-vast-majority. The obvious difficulty with this approach is that ”function

spaces, unlike phase spaces, do not come equipped with normalized measures” (Frigg

and Werndl 2012, 921), hence their proposal amounts to replacing the measure-based

notion of typicality-1 adopted for microstates, with a new topological notion. Frigg and

Werndl introduce the concept of comeagre set as the topological equivalent of measure-1

set and define typicality as a relational property that an element of a set with a certain

property P possesses if the set is comeagre respect to a suitable topology. The bulk of

their paper is dedicated to show that the property Γ that Hamiltonian must have to

produce thermodynamic-like behavior is epsilon-ergodicity, that the topology to use is

the Whitney topology and that perturbed Lennard-Jones Hamiltonians fall into this

category. The connection between (T1) and (T2) is ensured by epsilon-ergodicity. Basi-

cally, the trajectory will roam the phase space, therefore it will spend much more time

in the equilibrium region and will tend to come back to it. The property of epsilon-

ergodicity shows how the difference in size of the phase regions matters for the trajec-

tory.6

This brilliant example of how to read (T2) in terms of typicality-1 suggests some im-

portant points on the explanatory value of typicality. While (T1) describes a causal

structure compatible with multiple causal scenarios, (T2) aims at determining these

6To put it differently, Frigg and Werndl show that the vast majority of the Hamiltonians produce a
trajectory in which the ratio between microstates of the different regions is very close to the ratio of
their phase volumes. These trajectories have thermodynamic-like behavior.
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causal scenarios.7 By interpreting (T2) in terms of typicality-1, Frigg and Werndl pro-

posed a deeper characterization of the family of causal scenarios underlying equilibrium.

By establishing epsilon-ergodic Hamiltonian, they determine a what-if-things-had-been-

different relation between microscopic variables and the causal structure of the phase

space. In particular, their proposal communicates information about the general fea-

tures of the causal scenarios.

5.3 (T2) as typicality-2

Although typicality-1 remains the most popular way to look at typicality, physicists

have also alluded, albeit sometimes unwittingly, to an interpretation of (T2) in terms

of typicality-2. The main thought of this approach is that the sought-after property Γ is

a feature of the best exemplar of the trajectory produced by the underlying dynamics.

The previous discussion of typicality-2 in Lewis’ theory of counterfactuals will help us

clarify this line of argument. In the literature, we can find two main ways to pursue this

option. The first way consists in arguing that, given (T1), a dynamics that would not

lead to thermodynamic-like behavior would be a sort of monstrosity. This is the claim

expressed, for instance, by Sheldon Goldstein:

[The phase space] consists almost entirely of phase points in the equi-
librium microstate [. . . ] with ridiculously few exceptions whose totality has
volume of the order of 10−1020 relative to that of the [phase space]. For a
nonequilibrium phase point [x] of energy E, the Hamiltonian dynamics gov-
erning the motion [xt] arising from [x] would have to be ridiculously spe-
cial to avoid reasonably quickly carrying [xt] into [the equilibrium state and
keeping it there for an extremely long time—unless, of course, [x] itself were

7The concept of causal scenario is close to the concept of “causal pattern” recently introduced by
Angela Potochnik to extend equilibrium explanations (Potochnik 2015). A causal pattern is less spe-
cific than a causal process as introduced by Wesley Salmon and Phil Dowe, but it is more precise than
Sober’s causal structure. The explanatory value of causal patterns hinges on two factors: “(1) they
feature one of more of the property of a system upon which the phenomenon to be explained depends
and (2) they communicate information about the scope of that dependence” (Potochnik 2015, 1169).
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ridiculously special. (Goldstein 2001, 43-44)

The grounding intuition of this argument is that a trajectory that stubbornly re-

mains confined to a sequence of non-equilibrium states would be an extremely remark-

able event, a fantastically unlikely concours of circumstances. A more handy way to

express the same idea is phrased by the metaphor of the “conspiracy”:

For the macroscopic systems we are considering, the disparity between
relative sizes of the comparable regions in the phase space is unimaginably
larger. The behavior of such systems will therefore be as observed in the
absence of any ‘grand conspiracy’. (Lebowitz 1993b, 9)

The point of this argument is that, given the dominance of the equilibrium state,

the only way to avoid the system to reach equilibrium is to intervene specifically on the

microscopic trajectory in order to confine it purportedly within the non-equilibrium re-

gions. The idea that an external intervention is necessary to make the system behave

‘anti-thermodynamically’ pervades the Boltzmannian tradition and, more interestingly,

also Lewis’ approach. Boltzmann uses this idea to argue that a regular behavior can-

not emerge spontaneously, but requires an active intervention, such as in the case of a

perfect reversal of positions and velocities of the molecules:

If we choose the initial configuration on the basis of a previous calcu-
lation of the path of each molecule so as to violate intentionally the laws of
probability, then of course we can construct a persistent regularity. (Boltzmann
1896, I, 22)

A strikingly similar language appears in Lewis’ treatment of counterfactuals. As we

have seen, if nature is indeterministic, we can construe counterfactuals with an actual

consequent and a made-up antecedent, which however are true in a possible world close

to ours. To block this possibility, Lewis introduces the notion of “quasi-miracle”, i.e.

events which do not blatantly violate the laws of physics, but still do not belong to a

world close to ours. Lewis’ comments on this concept are particularly interesting:
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The quasi-miracle would be such a remarkable coincidence that it would
be quite unlike the goings-on we take to be typical of our world. Like a big
genuine miracle, it makes a tremendous difference from our world. [. . . ] My
point is not that quasi-miracles detract from similarity because they are
so very improbable. They are; but ever so many unremarkable things that
actually happen, and ever so many other things that might happen under
various counterfactual suppositions, are likewise very improbable. What
makes a quasi-miracle is not improbability per se, but rather the remarkable
way in which the chance outcomes seem to conspire to produce a pattern.
(Lewis 1979, 60)

The similarity between Lewis’s language and the thoughts expressed by Boltzmann,

Goldstein, and Lebowitz is striking. In particular, they all insist on the notion of “non-

conspiracy” and Goldstein’s property of “ridiculously special Hamiltonian” seems to

mean the same as Lewis’ “remarkable coincidence”.8 According to this way of arguing,

Γ is the property of being ‘nonconspiratorial’ or ‘unremarkable’. Thus, one could read

(T2) as saying that the Hamiltonian produces, as best exemplar, nonconspiratorial or

unremarkable trajectories. By this, one means that these trajectories do not remain

confined into the tiny non-equilibrium region for an unreasonably long time—where the

unreasonability depends on the ratio of these regions to the much bigger equilibrium re-

gion. From (T1) and this interpretation of (T2), the conclusion of the argument follows.

Is this reading of (T2) epistemologically feasible? Does it supplement the explanatory

contribution provided by the fact that the vast majority of microstates belong to equi-

librium, i.e., (T1)? This is Pitowsky’s challenge: what does typicality offer us beyond

measure? I argue that neither unremarkableness, nor non-conspiracy provide us with

illuminating explanatory information.

To show that, let us begin with recalling that neither concept is grounded on low

probability, but rather in some other circumstances: typical events happen often be-

8Note that the starting point of Frigg and Werndl is precisely the interpretation of “ridiculously
special Hamiltonian” in terms of typicality-1.
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cause they are typical, not the other way round, as Dürr put it. In the quote above,

Lewis makes precisely the same point: it’s the fact that events are unremarkable and

non-conspiratorial that makes them occur frequently. Now, the concept of “non-conspiracy”

seemingly refers to some objective feature of the Hamiltonian. However, the concept is

uninformative because is circular. The non-conspiratorial dynamics is defined in no bet-

ter way than a dynamics that allows us to use the dominance of the equilibrium (T1)

to explain our experience. This concept makes (T2) parasitic on (T1) and does not add

further explanatory information. Another way to see the same point is the following.

The concept of non-conspiracy does not specify the dynamics in a way that can be used

for control or for answering a what-if-things-had-be-different question. It commits us to

the following description of dynamics:

(5) The Hamiltonian is such that it is not constrained to remain confined

into a specific region of the phase space.

But, as Woodward has argued, statements like (5), even when they are laws of na-

ture, does not causally illuminate their objects. His example is the statement ‘No mate-

rial object can be accelerated from a velocity less than that of light to a velocity greater

than that of light’ (Woodward 2000, 206). Such a statement tells us something about

the way the universe is constituted, but it does not give us any direct way to manip-

ulate or control relations between variables. The status of (5) is totally analogous: it

informs us that weird patterns do not appear in nature, but does not instruct us how to

control them. Hence, the concept of non-conspiracy is objective, but circular, therefore

uninformative.

By contrast, the concept of “remarkableness” is non-circular, but is informative only

of our epistemic status vis-a-vis the system. As Williams has noted, claims about re-

markableness seem to refer to the fact that quasi-miracles are remarkable events for
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any well-informed rational agent. A trajectory stubbornly confined within the tiny non-

equilibrium region would be analogous to 1,000 consecutive heads of a fair coin, a series

of uninterrupted green lights when driving along Park Avenue, or water and wind form-

ing footsteps on the sand: simply too good to be true. However, this does not give us

information about the structure of the universe, but rather on our epistemic status. Put

in other terms, remarkableness is related to inference, for example the design inference.

It is the epistemic symptom of some causal scenario—and we can ground on it some

inferences—but does not provide us with any specific information about this scenario.

However, in the literature one can find another way to read (T2) as a typicality-2

claim. This reading relies on the notion of chaoticity of the microscopic trajectories.

As it is often the case, some hints to this interpretation can be already found in Boltz-

mann’s work. As early as 1868, Boltzmann characterized ‘atypical’ behavior as unstable

(Boltzmann 1868). He noticed that it is possible to construe special situations in which

a gas will remain indefinitely in a state of non-equilibrium (e.g., by perfectly aligning

the particles on a straight line), but these situations are easy to disrupt. The basic idea

is that the underlying dynamics produces as best exemplars chaotic trajectories. The

sense of remarkableness and contrivance attached to atypical trajectories is due to their

intrinsic instability.

This idea featured in the debate on the irreversibility in 1894-95,9 and it is still promi-

nent among the ‘typicalists’. Any external intervention that makes the dynamics “con-

spiratorial”, such as the reversal of molecular velocities, results in very unstable trajec-

tories. In practice, conspiratorial intervention requires a “perfect aiming” to drive the

trajectory of the system into special regions and this trajectory is easily destroyed by

the smallest perturbation. Lebowitz expresses this point by means of a vivid metaphor:

9For the details see (Badino 2015, 65-71).
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The situation is analogous to pinball-machine-type puzzles where one is
supposed to get a small metal ball into a particular small region. You have
to do things just right to get it in, but almost anything you do gets it out
into larger regions. For the macroscopic systems we are considering, the
disparity between the sizes of the comparable regions of the phase space is
unimaginably larger. (Lebowitz 1993a, 37)

The perfect aiming of atypical trajectory is analogous to riding a bicycle backward:

it is mechanically possible, but it is very difficult in practice, because the motion is un-

stable. Hence, the argument is that the Hamiltonian produces chaotic trajectories very

sensitive to the smallest perturbation. To constrain a trajectory within a special behav-

ior requires a very unstable perfect aiming because any perturbation would move the

trajectory away from that region and back into the enormous equilibrium region. The

property of chaoticity characterizes the idea of non-conspiracy in a much more substan-

tial way. It provides information on the relevant Hamiltonians and therefore contributes

to determine the family of causal scenarios responsible for equilibrium. Thus, the idea

of chaoticity is certainly more epistemologically promising, although it still needs to be

developed from a physical point of view.

6 Conclusion

Let me briefly summarize the main points of my discussion of the debate on typical-

ity. The argumentative pattern relies on two typicality-claims (T1) and (T2). To make

the argument conclusive, one has to characterize the property Γ so as to use the solidly

grounded (T1) to obtain the conclusion. There are two ways to spell out a typicality-

claim: typicality-as-vast-majority, or typicality-1, and typicality-as-best-exemplar, or

typicality-2. In statistical mechanics, (T1) has been undisputedly interpreted as typicality-

1. From an explanatory point of view, it provides the phase space with a causal struc-

ture in which the high number of degrees of freedom plays the role of causal factor.
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The second typicality-claim has been interpreted either way. Frigg and Werndl have

shown that it is possible to count the Hamiltonians for which the property Γ is epsilon-

ergodicity. I have argued that this strategy informs us about the features of possible

causal patterns responsible of equilibrium. One can also find passages in which Γ is

taken to be non-conspiratorial/unremarkable or chaotic. While the former way of in-

terpreting (T2) is circular or epistemic, the latter has the potentialities to convey infor-

mation on the causal scenarios.

How does this discussion respond to our initial questions? As the reader may recall,

the first question concerned the explanatory surplus of typicality with regard to mea-

sure. From my discussion, it follows that the impression that typicality does not add

anything to measure stems from the common attitude to adopt a typicality-1 reading.

As this is the usual way in which (T1) is interpreted and as (T1) plays a crucial role

in the argument, the suspicion can raise that typicality means just measure-close-to-

1. However, a typicality-claim can also be interpreted as typicality-2 and this mean-

ing is not directly reducible to measure. This answer brings us to the second question

concerning the kind of explanation offered by typicality. In the case of statistical me-

chanics, the argument requires the cooperation of two typicality-claims, which, I have

argued, communicate two different types of causal information. While (T1) refers to the

causal structure induced on the phase space by the high number of degrees of freedom,

(T2) aims at specifying the causal scenarios determining the actual spacetime behavior.

However, the determination of the proper causal scenarios requires the precise charac-

terization of the property Γ, a goal that looks still out of our reach.
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