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The paper demonstrates that falsifiability is fundamental to learning. We prove the following theorem for
statistical learning and sequential prediction: If a theory is falsifiable then it is learnable – i.e. admits a
strategy that predicts optimally. An analogous result is shown for universal induction.

A theory that explains everything, [predicts] nothing. – attributed to Karl Popper.

0. INTRODUCTION
To what extent are theory-based predictions justified by prior observations? The ques-
tion is known as the problem of induction and is fundamental to scientific inference.
We address the problem of induction from the perspective of learning theory. That
is, we consider which theories, and under what assumptions, can be applied to make
optimal predictions.

Our main result is that the more hypotheses a theory falsifies, suitably quantified,
the closer the predictive performance of the best strategy (based on the theory) will be
to the theory’s post hoc explanatory performance on observed data.

0.0. Non-technical overview (or, Learning theory for the working scientist)
Learning theorists have characterized the generalization performance of algorithms in
a wide range of scenarios. Although none of these scenarios adequately captures the
practice of scientific inference, they form a family of minimal models of prediction.

An intuitive understanding of the main results of learning theory therefore belongs
in every scientist’s conceptual toolkit. Unfortunately, the results are phrased in opaque
terminology that depends on specialized concepts such as Rademacher complexity,
shattering coefficients and VC-dimensions.

This paper presents basic results from learning theory in terminology that is mean-
ingful to the broader scientific community.

The results cover three scenarios. In each scenario, Forecaster uses a theory (or
theories) to predict Nature’s next move(s) based on Nature’s previous moves.

S2. Statistical learning (SLT). Forecaster aims to predict events sampled from an un-
known probability distribution based on a finite sample [Vapnik 1995; Boucheron
et al. 2000; Bousquet et al. 2004].

S3. Sequential prediction (SEQ). Forecaster aims to predict events generated by an
adversarial Nature that adapts to Forecaster’s previous moves [Cesa-Bianchi and
Lugosi 2006; Abernethy et al. 2009; Rakhlin et al. 2014].

S4. Universal induction (UNI). Forecaster aims to predict elements drawn from an ar-
bitrarily chosen computable sequence [Solomonoff 1964; Hutter 2011].

The paper develops the following account.

A. The risk.
— The risk of a theory is how accurately it explains a sequence of events.
A theory explains a sequence of events perfectly if it contains a predictor that cor-
rectly labels every element. In general, the accuracy of an explanation is the frac-
tion of the sequence that its best predictor explains correctly.
— The risk of a strategy is how accurately it predicts a sequence of events.
A strategy specifies picks a predictor based on previously observed events, which it
then applies to future events. The strategy’s predictive accuracy is the fraction of
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future events that it labels correctly.

B. Learnability.
— The predictive risk (or regret) on a sequence is the difference between a strat-

egy’s predictive accuracy and the theory’s explanatory accuracy:{
predictive risk

}
=
{

how well strategy predicts} −
{

how well theory explains
}

The predictive risk measures the strategy’s effectiveness. It is not an absolute mea-
sure. Effectiveness is relative to a baseline – how well the theory explains the se-
quence in hindsight. Thus, the predictive risk quantifies the cost from not knowing
what Nature will do next, independently of the cost of not having a good model of
Nature.
— A strategy is optimal if its predictive risk is asymptotically negligible on any

sequence: {
strategy optimal

}
if

[
lim
n→∞

{
predictive risk

}
= 0
]

The definition of optimal is subtle. An optimal strategy does not necessarily predict
accurately. Rather, it predicts about as accurately as the theory explains.
— A theory is learnable if it admits an optimal strategy:{

theory learnable
}

if ∃
{

optimal strategy
}

In other words, a theory is learnable if it admits a strategy that predicts future
events as well as the theory explains them after the fact.

C. Falsifiability.
— The falsifiability of a theory is the fraction of effective hypotheses about a

sequence that it cannot explain.
Effective hypotheses are hypotheses about finite sequences. The set of effective hy-
potheses is necessarily finite. We measure falsifiability in two ways, soft and hard:

F := 2
∑
ε∈I

(
fraction of effective hypotheses falsified

)
·
(

on fraction ε of data
)

G :=
log -# of effective hypotheses that theory falsifies

log # of effective hypotheses
The two notions are, respectively, the expectation of a risk-induced distribution on
errors and the risk’s Bayesian information gain, see section 2.3. They are closely re-
lated to the statistical and sequential Rademacher complexities and covering num-
bers, and Kolmogorov complexity.
— A theory is falsifiable if the fraction of effective hypotheses that it falsifies

tends to one asymptotically.{
theory falsifiable

}
if

[
lim
n→∞

{
falsifiability

}
= 1
]

The number of effective hypotheses grows exponentially with sequence length, so
the requirement is quite weak. For example, a theory is falsifiable if the number of
hypotheses it explains grows polynomially.

D. Falsifiable =⇒ Learnable (SLT,SEQ).
— Main theorem (qualitative). If a theory is falsifiable, then it is learnable:{

falsifiable} =⇒
{

learnable
}
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Alternatively, if a theory is falsifiable then it admits a strategy that predicts opti-
mally – that is, a strategy that predicts any sequence as well, asymptotically, as the
theory would have explained the sequence in hindsight.
— Main theorem (quantitative).{

predictive risk
}
≤ 1−

{
falsifiability

}
The quantitative version of the main theorem provides guarantees – across all
sequences of some finite length n – on the expected performance of a theory’s best
strategy in terms of the falsifiability of the theory. The qualitative version is a
corollary of the quantitative.

E. Falsifiable =⇒ Learnable (UNI).
Universal induction differs significantly from the other two scenarios. We reformu-
late Solomonoff induction to show that Forecaster constructs a nested sequence of
theories in response to observations; from which predictors are drawn uniformly at
random. Falsifiability is defined as above in this setting, but it admits a different
interpretation:{

falsifiability
}

=
{

log -# hypotheses Forecaster eliminates whilst adapting theory
}

Importantly, Forecaster eliminates hypotheses prior to – and separately from –
making predictions.
— Main theorem (quantitative).{

predictive risk
}
≤
{

falsifiability
}

In short, the number of hypotheses eliminated (or falsified) by Forecaster whilst
adapting its theory controls its predictive performance.

0.1. Outline of the paper and summary of the main contributions
The paper is organized as follows. Section 1 introduces two basic tools: the induced
distribution and the Bayesian information gain. When a function has a finite domain,
a natural prior on the domain is the uniform distribution, in which case the induced
distribution and information gain can be interpreted as different ways of counting
elements in pre-images.

The next three sections consider statistical learning, sequential prediction and uni-
versal induction in turn. The sections are variations on a basic template.

The risk is the fundamental object in all three cases, Definition A in sections x.1
for x = 2, 3, 4. The risk is a function from sequences of events to errors that can be
computed with respect to strategies or theories. In the first case, the risk quantifies
predictive performance of the strategy; in the second, it quantifies explanatory per-
formance of the theory in hindsight. The predictive risk is the (minimax) difference
between predictive and explanatory performance, Definition B in sections x.2.

An event is an ordered pair: a process acting on an input. The key step in the paper
is to reformulate the risk as a function from hypothetical processes to errors, by fixing
the input sequence. The risk is then a function with a finite domain.

We propose two notions of falsifiability,1 Definition C in sections x.3. The first, soft
falsifiability is the expected error under the risk-induced distribution on errors. In-
tuitively, it is a weighted sum of how many potential hypotheses are falsified over
different fractions of the data. The second, hard falsifiability, is the risk’s Bayesian
information gain. Intuitively, it is the “log-fraction” of falsified hypotheses.

1Only hard falsifiability is relevant to universal prediction.
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The main result is that soft and hard falsifiability control the predictive risk in all
three scenarios, Theorems D & E in sections x.4. Specifically, we show that falsifiabil-
ity is equivalent to, or upper or lower bounds, the relevant measures of capacity: the
statistical and sequential Rademacher complexities and covering numbers, and Kol-
mogorov complexity. The bounds on predictive risk then follow from standard results
in learning theory [Boucheron et al. 2000; Bousquet et al. 2004; Hutter 2011; Rakhlin
et al. 2014]. Proofs are collected in sections x.5.

The conclusion discusses the results’ implications for Popper’s account of scientific
inference and the problem of induction, section 5.

The main contributions are:

— Relating the formal models of prediction developed by learning theorists to how work-
ing scientists think about scientific inference.

— Deriving falsifiability, and so the fundamental measures of capacity and complexity,
as natural properties of the optimization problem at hand (the risk, Remark 2).

— Unifying basic notions from information theory, learning theory, and algorithmic
complexity under the rubric of falsifiability.

The simplicity of the definitions and resulting theorems – along with the fact that
they apply across diverse settings – suggest that falsifiability may be a more natural,
flexible concept than capacity.

0.2. Related work
Connections between falsifiability and statistical learning theory were pointed out in
[Vapnik 1995; Harman and Kulkarni 2007; Corfield et al. 2009]. However, these works
only considered VC dimension, which does not relate to falsifiability as directly as the
measures introduced here. Moreover, they only considered the setting of statistical
learning.

Preliminary versions of this work were presented in [Balduzzi 2011; 2013].

0.3. Notation
We have endeavored to use similar notation for the three settings. Consequently, we
have been forced to overload certain symbols. In particular, superscripts can refer to
both Cartesian products, e.g. Xn =

∏n
t=1X, and disjoint unions, e.g. Y • =

⋃∞
n=1 Y

n.

indicator function I unit interval [0,1] I
0/1 loss ` set of distributions on X ∆X

expectation E probability distribution P or Q
risk R Bayesian information gain Gain
predictive risk (regret) V Rademacher complexity Radem
soft falsifiability F covering number Cover
hard falsifiability G VC-dimension vc
set of hypotheses H Littlestone dimension ldim
theory O Turing machine T

We restrict to binary classification in this paper.

1. THE BAYESIAN INFORMATION GAIN AND THE INDUCED DISTRIBUTION
This section presents Bayesian information gain and the induced distribution. They
will be used to quantify falsifiability in sections x.3.

Suppose that X is a finite set, and that we are given a conditional distribution
Pm(y|x) and a prior PX on X. The conditional distribution models a noisy channel
m connecting X to Y .
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Definition 1 (Bayesian information gain; induced distribution). The Bayesian infor-
mation gain when m outputs y is

Gain
(
m, y,PX

)
:= D

[
Pm(X|y)

∥∥∥PX(X)
]
,

where D[P ‖Q] :=
∑
x∈X P(x) log P(x)

Q(x) is the Kullback-Leibler divergence. The posterior
Pm(x|y) is computed via Bayes’ rule

Pm(x|y) = Pm(y|x) · PX(x)

Pm(y)
,

where Pm(y) =
∑
x∈X PX(x)Pm(y|x) is the m-induced distribution on Y .

The Bayesian information gain quantifies how much observing y reduces uncer-
tainty about X. We remark that

Proposition 1. The mutual information communicated across m is the expected infor-
mation gain

Im(X,Y ) = E
y∼Pm(Y )

Gain
(
m, y,PX

)
,

where the expectation is with respect to the m-induced distribution on Y .

Remark 1 (uniform priors on finite sets). Unless otherwise specified, finite sets are
given the uniform prior: Punif(x) = 1

|X| . We write Gain(m, y) as a shorthand for
Gain(m, y,Punif).

Given a function f : X → Y , define the corresponding conditional distribution

Pf (y|x) =

{
1 if y = f(x)

0 else.

Lemma 2. Given a function f : X → Y , the f -induced distribution on Y is

Pf (y) =

{
|f−1(y)|
|X| if y ∈ im(f)

0 else.

The Bayesian information gain is

Gain(f, y) =

{
− logPf (y) if y ∈ im(f)

undefined else.

Lemma 3. The information gain is zero, Gain(f, y) = 0, if and only if f(x) = y for all
x ∈ X.

2. STATISTICAL LEARNING
Statistical learning is concerned with inductive inference under the assumption that
observations are drawn independently from an unknown, but fixed, probability distri-
bution.

This section introduces falsifiability in detail. The later sections on sequential pre-
diction and universal induction rely in part on the presentation developed here.

2.0. Setup
Let X be an arbitrary set and Y = {0, 1}. Let Z = X × Y . A datum z = (x, y) in Z
consists of an input x and an outcome or label y. A process is a map σ : X → Y from
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inputs to outcomes. The hypothesis space H := Y X = {σ : X → Y } is the set of all
processes. Finally, an event (x, σ) is an element of X ×H.

A theory is a set of hypotheses, O ⊂ H. Elements of the theory are referred to as
predictors. Of course, by definition a predictor is also a hypothesis.

Let ` : O ×X × Y → I denote the 0/1 loss:

`(f, x, y) = I[f(x) 6= y] =

{
0 if f(x) = y

1 else.

Predictor f explains2 datum (x, y) if `(f, x, y) = 0. If not, then (x, y) falsifies f .

2.1. The risk (SLT)
We assume throughout this section that the sample ~x contains n distinct points.

Let X• =
⋃∞
t=1X

t denote the set of finite sequences of elements of X. We typically
refer to sequences ~x = (x1, . . . , xn) rather than sets {x1, . . . , xn} to keep notation and
terminology consistent across sections.

Definition A (risk, SLT). The risk of theory O on sequences of events is

RSLT
O : H×X• → I : (σ, ~x) 7→ inf

f∈O

1

n

n∑
t=1

`
(
f, xt, σ(xt)

)
,

where n = len(~x). The risk on distributions on data is

RSLT
O : ∆Z → I : PZ 7→ inf

f∈O
E

z∼PZ

`
(
f, z
)
.

The risk quantifies the fraction of events that the best predictor in O labels incor-
rectly – that is, the fraction of events that the theory cannot explain:

RO :
{

sequence of events
}
7→
{

fraction of sequence that O cannot explain
}
.

The risk is zero if and only if there is a predictor in O that explains the entire sequence
of events perfectly.

The set of hypotheses is not finite in general. However, since datasets are always
finite, it turns out that the effective set of hypotheses is finite.

Definition 2 (effective hypotheses). Given a sequence ~x = (x1, . . . , xn) of inputs, we
say that two hypotheses σ1 and σ2 in H are equivalent

σ1 ∼ σ2 if and only if σ1(xt) = σ2(xt) for all t ∈ {1, . . . , n}.
We refer to an equivalence class [σ] = {τ ∈ H |σ ∼ τ} of hypotheses as an effective
hypothesis and let Hef = {[σ] |σ ∈ H} denote the set of effective hypotheses.

Since ~x contains n elements, it follows that there is a finite number (2n) of effective
hypotheses.

Two hypotheses in the same equivalence class are indistinguishable on the observed
data, and thus indistinguishable to the risk. Given a sequence of n inputs ~x, the risk
can be written as a function taking effective hypotheses about ~x to errors:

RSLT
O,~x : Hef → I : [σ] 7→ inf

f∈O

1

n

n∑
t=1

`
(
f, xt, σ(xt)

)
. (A)

Formulated in this way, the risk quantifies how well theory O explains the action of
an hypothetical process σ on input sequence ~x. More precisely, the risk ε = RO,~x(σ) is

2Clearly, we are using ‘explain’ in a very weak, technical sense.
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the fraction of the inputs that the best predictor f in O misclassifies when labels are
generated by σ.

2.2. Learnability (SLT)
A theory is learnable if it admits a strategy whose predictions match the theory’s best
post hoc explanation.

A strategy specifies the predictor that Forecaster will deploy in future as a func-
tion of previous events. Formally, a strategy is a function taking a finite dataset
~z = (z1, . . . , zn) ∈ Zn to a predictor in O. Let Ψn = {Zn → O} denote the set of
strategies on datasets of size n.

Example 1 (empirical risk minimization). A basic strategy is empirical risk minimiza-
tion (ERM), which outputs the predictor that minimizes the training error:

ψERM : Zn → O : (z1, . . . , zn) 7→ arginf
f∈O

1

n

n∑
t=1

`(f, zt).

Following [Abernethy et al. 2009], we formulate learnability via a game played be-
tween Forecaster and Nature. Forecaster picks a strategy ψ ∈ Ψn. Nature observes
Forecaster’s strategy and responds by choosing a distribution PZ ∈ ∆Z on events.

The value of the game is the generalization error of Forecaster’s strategy on Nature’s
probability distribution: the difference between the predictive errors Forecaster’s strat-
egy accumulates and the explanatory errors of the theory’s best predictor, judged after
observing the distribution. Formally, the value of the game is the difference between
the risk R{ψ(~z)}(PZ) of the strategy ψ(~z) and the risk RO(PZ) of the entire theory O.

Forecaster aims to minimize the value; Nature aims for the opposite. The minimax
value is thus

VSLT
n (O) := inf

ψ∈Ψn
sup

PZ∈∆Z

[
E

~z∼PZ

E
z′∼PZ

`
(
ψ(~z), z′

)
− inf
f∈O

E
z′∼PZ

`(f, z′)
]

︸ ︷︷ ︸
expected worst-case generalization error of Forecaster’s best strategy

More concisely,

Definition B (predictive risk, learnability; SLT). The minimax value of the game, or
the predictive risk of theory O on datasets of size n is

VSLT
n (O) = inf

ψ∈Ψn︸ ︷︷ ︸
Forecaster’s best strategy

Nature’s worst distribution︷ ︸︸ ︷
sup

PZ∈∆Z

[
E

~z∼PZ

RSLT
ψ(~z)(PZ)−RSLT

O (PZ)
]

︸ ︷︷ ︸
strategy’s generalization error on PZ

. (B)

the generalization error of Forecaster’s best strategy when exposed to Nature’s worst (for
Forecaster) sequence of events.

Theory O is learnable if limn→∞Vn(O) = 0.

The predictive risk is the cost to Forecaster of not knowing what Nature will do next.
It is measured against a baseline: Forecaster’s best explanation of the entire sequence.
The predictive risk thus separates the costs incurred due to predicting from the costs
incurred due to having a theory that does not fit reality perfectly.

If theory O is learnable then, for large n, the cumulative cost to Forecaster of not
knowing what Nature will do next is negligible.

Importantly, the predictive risk says nothing about the absolute performance of Fore-
caster’s strategy. A theory may have low predictive risk and still predict a particular
sequence of events badly since the baseline – the cost of using a theory that does not
fit reality – is subtracted.
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2.3. Falsifiability (SLT)
A theory is falsifiable to the extent that there are hypotheses that it cannot explain.
We quantify falsifiability in two ways.

Definition C (falsifiability, SLT). Let QO,~x denote the RSLT
O,~x-induced distribution on I.

The soft falsifiability of O on ~x is the expected error

FSLT
n (O|~x) := 2 E

ε∼QO,~x

[ε] and FSLT
n (O) := inf

~x∈Xn
FSLT
n (O|~x). (C-s)

The hard falsifiability of O on ~x is

GSLT
n (O|~x) :=

1

n
Gain

(
RSLT
O,~x, 0

)
and GSLT

n (O) := inf
~x∈Xn

GSLT
n (O|~x). (C-h)

A theory is falsifiable if limn→∞Fn(O) = 1 or limn→∞Gn(O) = 1.

Remark 2 (falsifiability depends on the risk). Falsifiability is a property of the risk
RO,~x : Hef → I. It depends directly on the optimization problem underlying the learning
scenario.

In contrast, capacity measures are typically presented as properties of the theory O
in such a way that their relation to the optimization problem (specifically, finding the
predictor in O that minimizes the error) is indirect.

Taking the infimum over all possible datasets implies that FSLT
n (O) and GSLT

n (O)
measure worst-case falsifiability: the falsifiability of O on the least falsifiable input
sequence.

Soft falsifiability is closely related to Rademacher complexity, see Section 2.5. Simi-
larly, hard falsifiability is closely related to the covering number, and so to the shatter-
ing coefficient and VC-dimension.

The coefficients 2 and 1
n in Definition C are chosen so that

Lemma 4. Soft and hard falsifiability take values in the interval I = [0, 1].

(1) Theory O shatters {x1, . . . , xn} if and only if FSLT
n (O|~x) = GSLT

n (O|~x) = 0.

(2) Theory O contains a single predictor if and only if FSLT
n (O) = GSLT

n (O) = 1 for all n.

Proof. Straightforward.

To interpret soft falsifiability, recall that the risk, (A), is function that takes an ef-
fective hypothesis σ about ~x to the fraction V of the sequence that theory O cannot
explain (i.e. falsifies)

RSLT
O,~x : Hef → I : σ 7→ ε

The pre-image R−1
O,~x(ε) ⊂ H is the subset of hypotheses that, when applied to input

sequence ~x, cannot be explain by theory O on fraction ε of ~x. Thus, the risk-induced
probability of ε ∈ I is the fraction of potential hypotheses that, if true, cause O to
falsify ε of the data:

Q(ε) =
|R−1
O,~x(ε)|
|Hef |

. (1)

Finally, soft falsifiability is the weighted sum:

FSLT(O|~x) = 2
∑
ε∈I

( |R−1
O,~x

(ε)|
|Hef | · ε

)
= 2

∑
ε∈I

{
fraction of effective hypotheses falsified

}
·
{

on fraction ε of data
}
.
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To interpret hard falsifiability, apply Lemma 2 to obtain

Gain(RO,~x, 0) = − logQ(0) =

total # effective hypotheses︷ ︸︸ ︷
log |Hef | −

# hypotheses O explains perfectly︷ ︸︸ ︷
log
∣∣R−1
O,~x(0)

∣∣
=
{

log -# of effective hypotheses that O falsifies
}
.

If the inputs in ~x are distinct, then the number of effective hypotheses is 2n, so

GSLT
n (O|~x) =

{
log -# of effective hypotheses that O falsifies

}
log
{

# of effective hypotheses
}

can be interpreted as the “logarithmic fraction” of effective hypotheses that O falsifies.

2.4. Falsifiable =⇒ Learnable (SLT)
The main result is that falsifiability controls predictive risk:

Theorem D (main theorem, SLT).

VSLT
n (O) ≤ 1− FSLT

n (O) ≤ d
√

1−GSLT
n (O), (D)

where d =
√

8.

Surprisingly, the assumption that Nature is i.i.d. is not essential to the result – an
almost identical theorem holds for sequential prediction, see section 3.

Proof. By Proposition 6, soft falsifiability of a theory is essentially equivalent to its
Rademacher complexity

FSLT(O|~x) = 1− 2RademSLT
(
`(O)|~x

)
.

Similarly, by Proposition 7, hard falsifiability recovers the covering number

GSLT(O|~x) = 1− logCoverSLT(O|~x)

n
.

The result then follows by Theorem 8, which recalls two standard generalization
bounds taken from [Rakhlin et al. 2014].

Remark 3 (vacuous bounds). Two ways in which Theorem D can be vacuous are

(1) If a theory is completely unfalsifiable, Fn(O) = 0, then Theorem D provides no guar-
antees on its predictive performance no matter how well it explains empirical data.

(2) If a theory is maximally falsifiable, Fn(O) = 1, then it has zero predictive risk, no
matter how badly it explains empirical data.

Corollary D’ (falsifiability implies learnability, SLT). A theory is learnable if it is fal-
sifiable:

lim
n→∞

Vn(O) = 0 if lim
n→∞

Fn(O) = 1 or lim
n→∞

Gn(O) = 1.

A much stronger version Theorem D can also be shown.

Theorem D” (data-dependent bounds, SLT). Let

VSLT
n (O|~z,P) :=

expected generalization error︷ ︸︸ ︷
RSLT
ψERM(~z)(P)︸ ︷︷ ︸

expected test error

−RSLT
ψERM(~z)(~z)︸ ︷︷ ︸

training error
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be the expected generalization error of a predictor chosen using ERM.
Suppose that ~z is a sequence of n events drawn from probability distribution P on

Z. Let ~x refer to the same sequence, with labels stripped out. Then, for all δ > 0, with
probability at least 1− δ,

(1) the expected generalization error is upper bounded by

VSLT
n (O|~z,P) ≤ 1− FSLT(O|~x) + c

√
1− log δ

n
(D”-s)

where c =
√

2
log e .

(2) Furthermore,

VSLT
n (O|~z,P) ≤ d1

√
1−GSLT(O|~x) + d2

√
1− log δ

n
(D”-h)

where d1 =
√

6
log e and d2 =

√
1

log e .

Proof. Propositions 6 and 7 connect soft and hard falsifiability to the Rademacher com-
plexity and covering number.

The result then follows from Theorem 9, which collects two theorems from
[Boucheron et al. 2000] and [Bousquet et al. 2004].

Theorem D” is a true inductive bound, which requires the i.i.d. assumption. It im-
plies that the difference between the observed training error and expected test error
depends on how many hypotheses about the training sequence ~x are falsified by theory
O.

In short, if strategy ψERM performs well on the training data, and theory O falsi-
fies many hypotheses about the training data, then the predictor chosen by ψERM will
perform well in future, with high probability.

2.5. Proofs (SLT)
Our first two results relate soft falsifiability to Rademacher complexity [Koltchinskii
2001].

Definition 3 (Rademacher complexity). Define a Rademacher variable ζ to be a ran-
dom variable taking values in Ω = {±1} with equal probability.

Let ~ζ = (ζ1, . . . , ζn) be Rademacher variables. The Rademacher complexity of the-
ory O on unlabeled inputs ~x = (x1, . . . , xn) is

RademSLT(O|~x) := E
~ζ

[
sup
f∈O

1

n

n∑
t=1

ζt · f(xt)

]
.

The Rademacher complexity of a theory with respect to a loss function is

RademSLT
(
`(O)|~z

)
:= E

~ζ

[
sup
f∈O

1

n

n∑
t=1

ζt · `
(
f, (xt, yt)

)]
.

Lemma 5.

E
~ζ
RO
(
~x, ζ · ~y

)
=

1

2
− RademSLT

(
`(O)

∣∣~z) =
1

2
− 1

2
RademSLT

(
O
∣∣~z).
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Proof. For the first equality, observe that

ζ · (1− 2`(f, z)) =

{
+1 if f(x) = ζ · y
−1 else,

which implies

1

2
− ζ ·

(
1

2
− `(f, z)

)
= `(f, (x, ζ · y)).

It follows from inff∈O[−ψ(f)] = − supf∈O ψ(f) that

E
~ζ
RO
(
~x, ~ζ · ~y

)
= E

~ζ
inf
f∈O

n∑
t=1

`(f, (~x, ~ζ · ~y)

= E
~ζ

inf
f∈O

n∑
t=1

[
1

2
− ζt

(
1

2
− `(f, zt)

)]

=
1

2
−E

~ζ
sup
f∈O

n∑
t=1

ζt · `(f, zt)

=
1

2
− RademSLT(`(O) |~z).

The second equality follows similarly.

A corollary of Lemma 5 is that Rademacher complexity is independent of the la-
bels ~y. We therefore drop the labels from the notation and write RademSLT(O|~x) and
RademSLT(`(O)|~x) below.

Proposition 6 (Rademacher complexity from soft falsifiability, SLT).
1

2
FSLT(O | ~x) =

1

2
− RademSLT(`(O) | ~x) =

1

2
− 1

2
RademSLT(O | ~x).

Proof. Recall that FSLT(O|~x) := 2Eε∼Q
[
ε
]

where Q is the RSLT
O,~x-induced distribution

on I. The induced distribution is

Q(ε) =

{
|R−1
O,~x

(ε)|
|Hef | if ε ∈ RO,~x(Y X)

0 else.

By Lemma 5 it suffices to show that E~ζ RO
(
~x, ~ζ · ~y

)
= Eε∼Q

[
ε
]
. Observe that

E
~ζ
RO
(
~x, ~ζ · ~y

)
=

∑
[σ]∈Hef

RO(~x, σ ◦ ~x)

|Hef |
=

∑
ε∈im(RO,~x)

ε ·
|R−1
O,~x(ε)|
|Hef |

= E
ε∼Q

[
ε
]
.

as required.

Next, we relate hard falsifiability to the covering number.

Definition 4 (covering number, SLT). Given unlabeled data ~x = (x1, . . . , xn) ∈ Xn and
a theory O ⊂ Y X , let q denote the map

q~x : O → Rn : f 7→
(
f(x1) . . . f(xn)

)
taking predictors to labels. The covering number of O on ~x is

CoverSLT(O|~x) := |q~x(O)|,
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the number of distinct labellings produced by the predictors in O applied to x1, . . . , xn.

The shattering coefficient and VC-dimension are discussed in Section 3.6, see Defi-
nition 8.

The covering number coincides with hard falsifiability:

Proposition 7 (covering number from hard falsifiability, SLT). The hard falsifiability
of theory O on ~x is

GSLT(O|~x) = 1− 1

n
logCoverSLT(O|~x).

Proof. By definition,

Gain(RO,~x, 0) = − log
|R−1
O,~x(0)|
|Hef |

.

Since the sample contains n distinct points and |Y | = 2, it follows that log |Hef | = n. It
is easy to check that |qx(O)| = |R−1

O,~x(0)|.

Theorem 8 (Data-independent bounds in expectation). Let

RademSLT
n

(
`(O)

)
:= sup

P∈∆Z

E
~z∼P

RademSLT
(
`(O)

∣∣~z),
where len(~z) = n. Then

VSLT
n (O) ≤ 2RademSLT

n

(
`(O)

)
≤ 2

√
2CoverSLTn (O)

n
.

Proof. [Rakhlin and Sridharan 2014].

Theorem 9 (Data-dependent bounds with high probability). For all δ > 0, the follow-
ing bounds hold with probability at least 1− δ,

(1) The predictive risk is upper bounded by

VSLT
n (O|~z) ≤ 2RademSLT

(
`(O)

∣∣~x)+ c

√
1− log δ

n
,

where c =
√

2
log e .

(2) Furthermore,

VSLT
n (O|~z) ≤ d1

√
CoverSLT(O|~x)

n
+ d2

√
1− log δ

n
,

where d1 =
√

6
log e and d2 =

√
1

log e .

Proof. [Bousquet et al. 2004] and [Boucheron et al. 2000].

3. SEQUENTIAL PREDICTION
Sequential prediction is concerned with predicting a finite sequence of binary observa-
tions – without any assumptions on how the observations are generated. The i.i.d. as-
sumption of statistical learning is replaced by an adversary that observes Forecaster’s
previous moves and responds maliciously.
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We build on the presentation in section 2. The key technical difference between sta-
tistical learning and sequential prediction is the introduction of trees, which requires
us to distinguish between two notions of risk: soft and hard.

Remarkably, the main theorem has an almost identical form in both sequential pre-
diction and statistical learning. However, the stronger data-dependent form, Theo-
rem D”, no longer holds, see discussion in section 5.

3.0. Setup
We introduce some useful notation from [Rakhlin et al. 2014].

Definition 5 (trees; paths). Let Ω = {−1,+1}. A Z-valued tree of depth n is an n-tuple
~z = (z1, . . . , zn) of functions zt : Ωt−1 → Z. Trees are denoted with boldface. A path is
an element ~ω = (ω1, . . . , ωn) ∈ Ωn. Combining a path ~ω with a tree ~z, obtains a sequence
~z(~ω) = (z1, z2(ω1), . . . , zn(ω1:n−1)) of elements in Z.

It will be convenient to use the shorthand Xt := XΩt

= {xt : Ωt → X}. Let X• =⋃∞
t=1 X

t denote the set of all X-valued trees.

3.1. The risk (SEQ)
We assume throughout this section that ~x contains a path with n distinct points.

Definition A (risk, SEQ). Let H = Y X = {σ : X → Y } denote the set of hypotheses on
X. The risk for sequential prediction is

RSEQ
O : H× (Ω×X)• → I : (σ, ~ω, ~x) 7→ inf

f∈O

1

n

n∑
t=1

`
(
f,xt(ω1:t−1), σ

(
xt(ω1:t−1)

))
,

where n = len(~ω) = len(~x).

The risk for sequential prediction differs from statistical learning in that the inputs
are trees, not elements, and the choice of path in Ωn is an additional degree of freedom.
There are two obvious ways to deal with paths:

(1) Incorporate paths into the input by defining X̃n := Ωn×Xn. Given an X-valued tree
~x = (x1, . . . ,xn) and a path ~ω ∈ Ωn, we say that two hypotheses σ and τ in H are
equivalent

σ ∼ τ iff σ
(
xt(ω1:t−1)

)
= τ

(
xt(ω1:t−1)

)
∀t ∈ {1, . . . , n}.

Define the soft risk,

RSEQ
O,(~ω,~x) : Hef → I : σ 7→ inf

f∈O

[
1

n

n∑
t=1

`
(
f,xt(ω1:t−1), σ

(
xt(ω1:t−1)

))]
. (A-s)

(2) Incorporate paths into the hypotheses by defining H̃ := H × Ωn. Similarly, two hy-
potheses (σ, ~ω) and (τ, ~ρ) in H̃ = H× Ωn are equivalent

(σ, ~ω) ∼ (τ, ~ρ) iff σ
(
xt(ω1:t−1)

)
= τ

(
xt(ρ1:t−1)

)
∀t ∈ {1, . . . , n}.

Let Õ = O × Ωn and define the hard risk,

RSEQ

Õ,~x : H̃ef → I : (σ, ~ρ) 7→ inf
(f,~ω)∈Õ

[
1

n

n∑
t=1

`
(
f,xt(ω1:t−1), σ

(
xt(ρ1:t−1)

))]
. (A-h)
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3.2. Learnability (SEQ)
Consider the following game played between Forecaster and Nature over n rounds
[Abernethy et al. 2009; Rakhlin et al. 2014].

In the first round, Forecaster chooses a probability distribution P1 ∈ ∆O on the set
of predictors. Nature observes Forecaster’s choice, and picks z1 ∈ Z. A predictor f1 is
then sampled at random from P1, applied to z1 and the loss `(f1, z1) is computed. The
game continues for n rounds, where both Forecaster and Nature observe the moves
played in previous rounds.

The value of the game is Forecaster’s regret: the difference between Forecaster’s cu-
mulative loss and the loss Forecaster would have accumulated, had it played the best
move in hindsight. Forecaster’s goal is to minimize its regret; Nature’s aims for the
opposite:

VSEQ
n (O) = inf

P1∈∆O
sup
z1∈Z

E
f1∼P1

· · · inf
Pn∈∆O

sup
zn∈Z

E
fn∼Pn

1

n

[
n∑
t=1

`(ft, zt)− inf
f∈O

n∑
t=1

`(f, zt)

]
︸ ︷︷ ︸

Forecaster’s regret

Forecaster’s move at time t depends on the prior moves by Forecaster and Nature.
Forecaster’s strategy at time t can be expressed as a function ψt : Zt−1 → O. Let
Ψt = {ψt : Zt−1 → O} denote the strategies available to Forecaster at time t, and let
Ψ =

∏n
t=1 Ψt denote the strategies available to Forecaster over an n-round game.

Similarly, Nature’s strategy at time t is an element of Ξt = Ot−1 ×∆O → Z. Let Ξ =∏n
t=1 Ξt denote the n-round strategies available to Nature. We can write the minimax

value more compactly as

VSEQ
n (O) = inf

P∈∆Ψ

sup
~ξ∈Ξ

E
~ψ∼P

1

n

[
n∑
t=1

`
(
ψt(ξ1:t−1), ξt(ψ1:t−1,Pt)

)
− inf
f∈O

n∑
t=1

`
(
f, ξt(ψ1:t−1),Pt

)]
,

where the sup and inf are understood to unravel recursively as above.
Finally, substituting in the risk obtains

Definition B (predictive risk, SEQ). The minimax value of an n-round game, or pre-
dictive risk of theory O, is

VSEQ
n (O) = inf

P∈∆Ψ

sup
~ξ∈Ξ

E
~ψ∼P

[
RSEQ
~ψ

(
~ξ
)
−RSEQ

O (~ξ)
]
. (B)

Theory O is learnable if limn→∞VSEQ
n (O) = 0.

The first term, R~ψ(~ξ) is the cumulative loss incurred by the best O-based strategy
played out on Nature’s sequence of moves ~ξ. The comparator term, RO(~ξ) is the perfor-
mance of the best predictor in O, taken in hindsight.

3.3. Falsifiability (SEQ)
We use the soft and hard risk to define soft and hard falsifiability:

Definition C (falsifiability, SEQ). Let QO,(~ω,~x) be the RSEQ
O,(~ω,~x)-induced distribution on

I. The soft falsifiability of theory O on ~x is the expected error of the soft risk

FSEQ
n (O|~x) := 2 E

~ω∼Punif(Ωn)
E

ε∼QO,(~ω,~x)

[ε] and FSEQ
n (O) := inf

~x∈X
FSEQ
n (O|~x). (C-s)
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The hard falsifiability of theory O on ~x is the information gain from the hard risk

GSEQ
n (O|~x) :=

1

n
Gain(RSEQ

O×Ωn,~x, 0) and GSEQ
n (O) := inf

~x∈X
GSEQ
n (O|~x). (C-h)

A theory is falsifiable if limn→∞Fn(O) = 1 or limn→∞Gn(O) = 1.

Hard falsifiability is closely related to the sequential covering number introduced
in [Rakhlin et al. 2014]. However, the definition is more intuitive and, importantly, it
also leads to combinatorial bounds such as the Littlestone dimension, see Section 3.5
for details.

3.4. Falsifiable =⇒ Learnable (SEQ)
Finally, we obtain the main theorem for sequential prediction, which is an exact analog
of the corresponding theorem for statistical learning:

Theorem D (main theorem, SEQ).

VSEQ
n (O) ≤ 1− FSEQ

n (O) ≤ c
√

1−GSEQ
n (O) (D)

where c =
√

8.

An important point is that hard falsifiability provides a non-vacuous upper-bound
for the zero-covering number, see Section 3.6.

Proof. By Proposition 10, soft falsifiability is equivalent to the sequential Rademacher
complexity

FSEQ(O|~x) = 1− 2RademSEQ
(
`(O)|~x)

)
.

The first inequality then follows from Theorem 11, taken from [Rakhlin et al. 2014].
By Lemma 12 and Proposition 13, hard falsifiability can be used to upper bound the

sequential zero-covering number:

CoverSEQ(O|~x)

n
≤ 1−GSEQ(O|~x).

The second inequality then follows from Theorem 14, also taken from [Rakhlin et al.
2014].

Corollary D’ (falsifiability implies learnability, SEQ). A theory is learnable if it is
falsifiable:

lim
n→∞

Vn(O) = 0 if lim
n→∞

Fn(O) = 1 or lim
n→∞

Gn(O) = 1.

3.5. Proofs (SEQ)
This section proves the falsification bounds in Theorem D for sequential prediction.

Definition 6 (Sequential Rademacher complexity).

RademSEQ(O|~x) := E
~ζ

[
sup
f∈O

1

n

n∑
t=1

ζtf(xt(ζ1:t−1))

]
Proposition 10 (Rademacher complexity from induced distribution, SEQ). Let Q~ω :=
PRSEQ
O,(~ω,~x)

be the distribution on errors in I induced by the soft risk RSEQ
O,(~ω,~x) : H → I.

Then,

RademSEQ(`(O), ~x) =
1

2
− E
~ω∼Punif (Ωn)

E
ε∼Q~ω

[
ε
]
.
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Proof. As for Proposition 6.

Theorem 11. The predictive risk of sequential prediction is bounded by

VSEQ
n (O) ≤ 2 sup

~x∈X
RademSEQ

(
`(O), ~x

)
,

where the sup is over trees of length n.

Proof. [Rakhlin et al. 2014].

Next, we upper bound the covering number of a tree-process. The following definition
is given in [Rakhlin et al. 2014]

Definition 7 (covering number, SEQ). A zero-cover of O on an X-valued tree ~x is a set
V of Y -valued trees such that

∀f ∈ O, ∀(ω1, . . . , ωn) ∈ Ωn, ∃v ∈ V s.t. f(xt(ω1:t−1)) = vt(ω1:t−1) ∀t ∈ {1, . . . , n}.

The covering number of O on x is

CoverSEQ(O, ~x) = min{|V | : V is a zero-cover}.

The sequential covering number is awkward for our purposes since, unlike the sta-
tistical covering number in Definition 4, it is not defined as the cardinality of the image
of a function. We therefore need the following

Lemma 12 (upper bound for sequential covering number). Let

q~x : Õ → Rn : (f, ~ω) 7→
(
f(x1), f(x2(ω1), . . . , f(xn(ω1:n−1)

)
The covering number is upper bounded by

CoverSEQ(O, ~x) ≤ |q~x(Õ)|.

Proof. We prove the lemma by constructing a zero-cover Vq of O on ~x with |q~x(Õ)|
elements.

Suppose the image q~x(O × Ωn) has N elements, q1, . . . ,qN . Define

vj(ω1:t−1) := qjt .

That is, vj(ω1:t−1) is the tth element of qj for all paths in Ωn. Then, by construction
Vq = {v1, . . . ,vN } is a zero-cover of ~x containing N elements, and we are done.

Proposition 13.

Gain(RSEQ

Õ,~x , 0) = n− log |q~x(Õ)|.

Proof. As for Proposition 7.

Theorem 14. Let ~x be an X-valued tree of length n. Then,

RademSEQ(O, ~x) ≤

√
2 logCoverSEQ(O, ~x)

n

Proof. [Rakhlin et al. 2014].

It follows from Lemma 12, Proposition 13 and Theorem 14 that hard falsifiability
can be used to upper bound the predictive risk for sequential prediction.



Falsifiable =⇒ Learnable 17

3.6. A sequential-to-statistical reduction
Definition 7, of the sequential covering number, is fairly intricate and fragile. For ex-
ample, slightly changing the definition by reordering the quantifiers gives a quantity
that grows much too fast and yields vacuous generalization bounds [Rakhlin and Srid-
haran 2014].

A natural concern is therefore that the upper bound in Lemma 12 is too loose. In the
remainder of this section, we show that |q~x(Õ)|, and so hard falsifiability, is a useful,
non-vacuous upper bound.

Definition 8 (shattering, VC and Littlestone dimensions). We have the following anal-
ogous definitions:

(1) Statistical.
Theory O shatters input sequence ~x of length n if

∀~ω ∈ Ωn ∃f ∈ O s.t. f(xt) =
ωt + 1

2
∀t ∈ {1, . . . , n}.

Alternatively, O shatters ~x if CoverSLT(O|~x) = 2n. The VC-dimension is

vc(O) := sup
{
n
∣∣ ∃ input sequence ~x of length n s.t. O shatters ~x

}
(2) Sequential.

Theory O SEQ-shatters tree ~x of length n if

∀~ω ∈ Ωn ∃f ∈ O s.t. f
(
xt(ω1:t−1)

)
=
ωt + 1

2
∀t ∈ {1, . . . , n}.

The Littlestone dimension is

ldim(O) = sup
~x

{
n
∣∣∃X-valued tree ~x of length n s.t. O SEQ-shatters ~x

}
.

Let Y X• := {σ : X• → Y } denote the set of hypotheses on the set X• of X-valued
trees. Given theory O ⊂ Y X , define the new theory

Õ := O × Ω• ⊂ Y X• : (f, ~ω)(xt) = f
(
xt(ω1:t−1)

)
.

The lifted theory Õ acts on trees, which from our point of view are just another set. The
statistical covering number for Õ is given, following Definition 4m using the function,

q~x : Õ → Rn : (f, ~ω) 7→
(

(f, ~ω)(x1), . . . , (f, ~ω)(xn)
)

with CoverSLT(Õ|~x) = |q~x(Õ)|. The VC-dimension of Õ is then computed straightfor-
wardly.

Proposition 15 (VC-dimension lower bounds Littlestone dimension). The Littlestone
dimension of O is lower-bounded by the VC-dimension of the lifted theory Õ = O × Ω•:

vc(Õ) ≤ ldim(O).

The proposition shows that the Littlestone dimension can be recovered from hard
falsifiability. Thus, hard falsifiability can play the same role as the sequential covering
number in reducing learning problems into combinatorial problems.

Proof. Suppose there is a tree ~x of length n shattered by Õ. We construct a new tree ~z
of length n that is SEQ-shattered by O.
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Thus, we assume that

∀(ω1, . . . , ωn) ∈ Ωn, ∃(f,~b) ∈ Õ s.t. f
(
xt(b1:t−1)

)
=
ωt + 1

2
∀t ∈ {1, . . . , n}. (2)

Let α denote the function specified by α(ω1:t−1) = b1:t−1, as in (2). Construct the new
tree ~z by ~z = ~x ◦ α. It follows, by the construction of α and by (2), that ∀(ω1, . . . , ωn) ∈
Ωn, ∃f ∈ O such that

f
(
~z(ω1:t−1)

)
= f

(
xt ◦ α(ω1:t−1)

)
= f

(
xt(b1:t−1)

)
=
ωt + 1

2
∀t ∈ {1, . . . , n}

as required.

The following instructive example, taken from [Rakhlin and Sridharan 2014], was
designed to exhibit the intricacy of the sequential covering number’s definition. We
conclude by computing the statistical covering number of Õ on the example, and show-
ing that it yields the correct result.

Example 2. Consider the function class

O = {fa | a ∈ I, fa(x) = 0 ∀x 6= a, fa(a) = 1} ⊂ Y I.

Assuming that the tree ~x takes on 2n−1 distinct values (the “worst case”), then for any
ordered pair (f, ~ω) we have that

q~x(fa, ~ω) =
(
fa(x1), fa(x2(ω1), . . . , fa(xn(ω1:n−1)

)
is either equal to all zeros, or all zeros with a single coordinate that equals one. The
image of q~x therefore contains at most n+ 1 points and in fact |q~x(Õ)| = n+ 1.

4. UNIVERSAL INDUCTION
The third setting is universal induction, which is concerned with predicting com-
putable sequences of binary observations. The setting differs significantly from sta-
tistical learning and sequential prediction. For example, universal induction cannot
be modeled adversarially since both Nature and Forecaster have too many degrees of
freedom.

There are at least two interpretations of universal induction:

U1. Universal. Forecaster has a single, universal theory.
U2. Adaptive. Forecaster constructs a series of theories in response to successive ob-

servations.

The first interpretation is standard. The second, which we advocate here, is new. Both
are legitimate.

Under the first interpretation, it does not make sense to evaluate the falsifiability of
theories – since there is only one theory and it is universal. The only choice that mat-
ters is Nature’s choice of sequence ~y. It then turns out that the number of hypotheses
Nature falsifies (eliminates) whilst choosing ~y controls Forecaster’s predictive risk, see
section 4.6.

Under the second interpretation, developed in detail below, Forecaster’s predictive
risk is controlled by the number of hypotheses that Forecaster falsifies whilst adapting
its theories.

4.0. Setup
Let X denote the set of valid programs, where valid programs X ⊂

⋃∞
t=1{0, 1}t form

a prefix-free set. A prefix-free universal Turing machine T takes valid programs to
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outputs. Let Y∞ = {0, 1, 00, 01, 10, 11, 000, . . .} denote the set of all binary sequences, of
finite or infinite length. A Turing machine is a function

T : X → Y∞.

Let Y = T (X ) ⊂ Y∞ denote the set of computable sequences.
Prefix free strings formalize the notion of a computer program. For example, the

set of valid C++ programs is a prefix free set since C++’s syntax ensure one program
cannot be the prefix of another. The set of valid programs has a complicated structure,
since it includes strings of varying length.

It is mathematically convenient to force programs to have a fixed length. First, let

Xn = {~x ∈ X | len(~x) = t for some t ≤ n}.
Second, pad out short programs: given a program ~x of length t < n, construct 2n−t

programs of length n by adding arbitrary suffixes to ~x. For example, if len(~x) = n − 2,
then the four padded programs are {~x00, ~x01, ~x10, ~x11}. The Turing machine ignores
the padding. Concretely, a C++ compiler would also ignore the padding, so the padded-
out programs are all functionally equivalent.

Let Hn denote the set of binary strings of length ≤ n and let On ⊂ Hn denote the set
of valid, padded programs of length n. Denote the function that strips out the padding
by

Sn : Hn → X ∪ {∅} : ~h 7→

{
~x if On 3 ~h = ~x~s for ~x a valid program with padding ~s
∅ else.

In other words, if the string contains a valid program as prefix, then Sn strips out
the padding. If the string does not contain a valid program, then Sn outputs a null
character.

The reason for introducing padded strings is that it allows the following simple de-
scription of the Solomonoff prior as a limit distribution, induced by the uniform distri-
bution on padded strings:

Definition-Proposition 16 (Solomonoff prior). Equip Hn with the uniform distribu-
tion for all n. Let Pn denote the Sn-induced distribution on X ∪ {∅}. Then

PS(~x) := lim
n→∞

Pn(~x) = 2− len(~x)

for all ~x ∈ X .
Let Qn denote the (Sn ◦ T )-induced distributed on Y∞. The Solomonoff prior is

QSOL(~y) := lim
n→∞

Qn(~y) =
∑

{~x|T (~x)=~y•}

2− len(~x).

Proof. The standard definition of the Solomonoff prior, and a demonstration that our
definition coincides with the standard, are provided in section 4.5.

Proposition 16 allows us to consider how Solomonoff induction acts on inputs to the
Turing machine, instead of its outputs.

4.1. The risk (UNI)
For universal induction, the loss compares the sequences generated by Nature and
Forecaster element-wise:

` : Y × Y → R : (y, y′) 7→ I[y 6= y′],

where as above Y = {0, 1}.
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Definition A (risk, UNI). The risk for universal induction is

Rn : Hn ×Hn → R≥0 : (~x, ~f) 7→
∞∑
t=1

`
(
T (~x)t, T (~f)t

)
The risk of theory On := Xn is

RUNI
On : H → R≥0 : ~x 7→ inf

~f∈On

∞∑
t=1

`
(
T (~f)t, T (~x)t

)
.

As for statistical learning and sequential prediction, we reinterpret the risk as a
function from hypotheses – that is, programs with length at most n – to nonnegative
reals

Rn
~y : Hn → R≥0 : ~x 7→

∞∑
t=1

`
(
T (~x)t, yt

)
. (A)

In the limit we obtain RUNI
~y := limn→∞Rn

~y as a function RUNI
~y : H → R≥0.

4.2. Learnability (UNI)
Suppose that Nature chooses a sequence ~y ∈ Y and reveals ~y1:t−1 = (y1, . . . , yt−1) at
time t. Let ψt = {ψt : Y t−1 → ∆Y } denote the set of strategies available to Forecaster
in round t, and Ψ =

∏∞
t=1 ψt the set of all strategies available to Forecaster.

The risk of strategy ψ is

RUNI
ψ : H → R≥0 : ~x 7→

∞∑
t=1

E `
(
ψt
(
T (~x)1:t−1

)
, T (~x)t

)
,

where the expectation is over the outputs of the (probabilistic) strategy.
A particularly important strategy is Solomonoff induction [Solomonoff 1964]:

Definition-Proposition 17 (Solomonoff induction). Let

Ont := (Rn
y1:t−1

)−1(0) =
{

hypotheses of length ≤ n that explain y1:t−1

}
.

Theory Ont is a finite set; equip it with the uniform distribution. Let Pn,t(~x) denote the
Sn-induced distribution on X and Qn,t(~y) denote the (Sn ◦ T )-induced distribution on
Y∞.

Solomonoff induction is the strategy:

(ψSOL)t : Y t−1 → ∆Y : y1:t−1 7→ lim
n→∞

Qn,t(yt) = QSOL(yt|y1:t−1).

Solomonoff induction depends on the choice of Turing machine, although this depen-
dence is typically not explicit in our notation.

Proof. We show that limn→∞Qn,t(yt) = QSOL(yt|y1:t−1) in section 4.5.

Solomonoff induction can be interpreted as follows. Forecaster’s theory at time step
t is Ot := limn→∞Ont , a limit of finite sets. All hypotheses consistent with the previous
observations y1:t−1 are weighted equally (recalling that padding entails redundancies).
Forecaster predicts the next observation by drawing from Ot uniformly at random.
After observing yt, and regardless of whether or not Forecaster’s prediction at time t
was correct, Forecaster constructs new theory Ot+1 in the light of yt.

In short, Solomonoff induction learns by constructing a nested set of progressively
smaller theories and predicts by sampling from them uniformly at random.
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Definition B (predictive risk, UNI). The predictive risk of strategy ψ and theory On
is

VUNI(ψ −On|~y) := RUNI
ψ

(
~y
)
−RUNI

On

(
~y
)

The predictive risk of strategy ψ is

VUNI(ψ|~y) := lim
n→∞

VUNI
ψ (On|~y). (B)

4.3. Falsifiability (UNI)
This subsection and the next relate the error accumulated using Solomonoff induction
to the falsifiability of the string chosen by Nature.

Definition C (falsifiability, UNI).

GUNI
T (~y) := lim

n→∞
Gain(Rn

~y , 0). (C-h)

Remark 4. The definition for universal induction differs from statistical learning and
sequential prediction, in that the coefficient 1

n is not present, and so GUNI does not nec-
essarily take values in [0, 1].

To interpret hard falsifiability, first fix an ambient hypothesis spaceHn, and consider
the hypotheses falsified when observing the substring y1:t:

Gn
T (~y1:t) = log 2n − log |Ont |

=
{

log -# strings of length n
}
−
{

log -# strings that output y1:t

}
=
{

log -# strings of length n falsified by y1:t

}
.

Second, consider the hypotheses eliminated when transitioning between theories:

log |Ont | − log |Ont−1| =
{

log -# strings outputting y1:t−1

}
−
{

log -# strings outputting y1:t

}
=
{

log -# strings falsified when modifying Ot−1 7→ Ot
}
.

Finally, combining the above obtains

GUNI
T (~y) =

∞∑
t=1

lim
n→∞

(
Gn
T (~y1:t)−Gn

T (~y1:t−1)
)

where y1:0 := ∅

=

∞∑
t=1

lim
n→∞

(
log |Ont | − log |Ont−1|

)
=

∞∑
t=1

{
log -# strings falsified when modifying Ot−1 7→ Ot

}
.

Thus, the hard falsifiability of ~y is the number of hypotheses Forecaster eliminates in
the process of adapting its theory to the data. Note that theories are falsified prior to
predicting: at time t, Forecaster first eliminates hypotheses based on y1:t and then uses
the new theory Ot+1 to predict yt+1.

4.4. Falsifiable =⇒ Learnable (UNI)
The main theorem for universal induction differs from statistical learning and sequen-
tial prediction, in that Forecaster’s theory is not fixed. Falsifiability quantifies the hy-
potheses that Forecaster eliminates whilst adapting its theory. The more Forecaster
is required to adapt – prior to predicting – the weaker the guarantee on its predictive
performance.
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Theorem E (main theorem, UNI). The predictive risk under Solomonoff induction (1)
coincides with the expected error and (2) is bounded by the number of hypotheses Nature
falsifies when choosing the string ~y:

V(ψSOL|~y) = RUNI
ψSOL

(
~y
)
≤ GUNI

T (~y). (E)

Proof. By Lemma 19, the predictive risk and risk coincide for universal induction:
VUNI(ψ|~y) = RUNI

ψ

(
~y
)
.

By Proposition 20, the hard falsifiability of ~y coincides with (the negative logarithm
of) the Solomonoff prior

GUNI
T (~y) = − logQSOL(~y).

Finally, the result follows by Solomonoff ’s Theorem 21.

More generally, Theorem E suggests that Bayesian updating is a way of modifying
theories, whose cost (measured in errors) can be bounded using falsifiability.

We conclude by relating falsifiability to Kolmogorov complexity. Intuitively, a string
is simple if it is the output of a short computer program. More formally,

Definition 9 (Kolmogorov complexity). The Kolmogorov complexity of a string, with
respect to Turing machine T , is the length of the shortest program that outputs the
string as a prefix [Kolmogorov 1965]:

KT (~y) := min
~x∈X

{
len(~x)

∣∣ T (~x) = ~y •
}

The Kolmogorov complexity KT depends on the choice of Turing machine up to an
additive constant that does not depend on ~y [Li and Vitányi 2008].

Proposition 18 (relation between falsifiability and Kolmogorov complexity). Falsifi-
ability lower bounds Kolmogorov complexity:

GUNI
T (~y) ≤ KT (~y).

Further, GUNI
T (~y) = KT (~y) up to an additive constant that does not depend on ~y.

Proof. The inequality follows from the definitions of the Solomonoff prior and Kol-
mogorov complexity.

By Levin’s coding theorem [Li and Vitányi 2008], the Kolmogorov complexity of
a string coincides with the negative log probability of the string according to the
Solomonoff prior up to an additive constant.

4.5. Proofs (UNI)
EquipHn with the uniform distribution and let PSn(X ) denote the Sn-induced distribu-
tion on X . Recall that we defined the Solomonoff prior as the limit of the T ◦Sn-induced
distribution on Y

QSOL(~y) := lim
n→∞

PT ◦Sn(~y),

where T ◦ Sn : Hn S
n

−−→ X ∪ {∅} T−→ Y ∪ {∅}.

Definition-Proposition 16. The following hold:

(1) The limit PS(X ) := limn→∞ Pn(X ) is well-defined with

PS(~x) = 2− len(~x).
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(2) The limit QSOL(Y) := PT ◦S(Y) = limn→∞ PT ◦Sn(Y) is well-defined and coincides with
the Solomonoff prior. That is,

QSOL(~y) =
∑

{~x∈X|T (~x)=~y•}

2− len(~x).

Proof. Claim 1. By Lemma 2, the induced probability of a valid program is

PSn(~x) =

{∑
~x~s

1
2n = 2n−len(~x)

2n = 2− len(~x) if len(~x) ≤ n
0 else.

Thus, limn→∞ PSn(~x) = 2− len(~x) for all valid programs.
Claim 2. Also by Lemma 2.

Recall that the standard definition of Solomonoff induction is as the strategy:

(ψSOL)t : Y t−1 → ∆Y : y1:t−1 7→ QSOL(yt|y1:t−1) :=
QSOL(y1:t)

QSOL(y1:t−1)
.

Definition-Proposition 17. The two definitions of Solomonoff induction coincide:

lim
n→∞

Qn,t(yt) =
QSOL(y1:t)

QSOL(y1:t−1)
.

Proof. The theory Ont is the set of all strings of length ≤ n consistent with the obser-
vation y1:t−1. Pushing the uniform distribution on Hn forward onto Y∞ yields, asymp-
totically, the conditional Solomonoff distribution.

Lemma 19 (predictive risk reduces to risk). If ~y is computable then

VUNI(ψ|~y) := lim
n→∞

VUNI
ψ (On|~y) = RUNI

ψ

(
~y
)
.

Proof. As n → ∞, the theory incorporates all valid programs, and so can match any
computable sequence. Thus,

lim
n→∞

RUNI
On (~y) = 0

and the result follows.

Proposition 20 (hard falsifiability and Solomonoff prior). The hard falsifiability of
string ~y for Turing machine T is

GUNI
T (~y) = − logQSOL(~y).

Proof. Observe that the risk factorizes as

RUNI
~y : X T−→ Y

∑
`−−→ R

~x 7→ T (~x) 7→
∑∞
t=1 `

(
T (~x)t, yt

)
.

The proposition follows from the following two claims.
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Claim 1. Gain(T , ~y) = − logQSOL(~y) for all ~y ∈ Y.
Consider the function T : X → Y , where X is equipped with the distribu-
tion PS(X ) from Proposition 16. Since Turing machines are deterministic,
we have that PT (~y|~x) = 1, and so

PT (~x|~y) = PT (~y|~x) · PS(~x)

PT (~y)
=

PS(~x)

PT (~y)

It follows that

Gain(T , ~y) = D
[
PT (X|~y)

∥∥∥PS(X )
]

=
∑
~x∈X

PT (~x|~y) log
PT (~x|~y)

PS(~x)

=
∑
~x∈X

PT (~x|~y) log
PT (~y|~x) · PS(~x)

PT (~y) · PS(~x)
=
∑
~x∈X

PT (~x|~y) log
1

PT (~y)

= − logPT (~y)

= − logQSOL(~y).

where the last equality follows from Proposition 16.
Claim 2. GUNI(~y) = Gain(T , ~y).

Follows from GUNI(~y) = Gain(R~y, 0) and R−1
~y (0) = T −1(~y).

Concatenating the claims yields the desired result.

Theorem 21 (generalization bound for Solomonoff induction).
∞∑
t=1

E `
(
ψSOL(y1:t−1), yt

)
≤ − logQSOL(~y).

Proof. The following proof is taken from [Hutter 2011]:
∞∑
t=1

E `
(
ψSOL(y1:t−1), yt

)
=

∞∑
t=1

∣∣1−QSOL(yt|y1:t−1)
∣∣

≤ −
∞∑
t=1

logQSOL(yt|y1:t−1)

= − logQSOL(~y),

where the inequality holds because 1− x ≤ − log x.

4.6. Interpreting Solomonoff induction as a universal theory
Under the standard interpretation, Forecaster’s theory is O and GUNI

T (~y) counts the
hypotheses falsified by Nature whilst choosing ~y:

GUNI
T (~y) = lim

n→∞

[
log
{

# strings of length n
}
− log

{
# that output y

}]
= lim
n→∞

{
log-# strings of length n that Nature falsifies

}
.

5. DISCUSSION
[A] theory of induction is superfluous. It has no function in a logic of science. The best we can
say of a hypothesis3 is that up to now it has been able to show its worth, and that it has been
more successful than other hypotheses although, in principle, it can never be justified, verified,

3This paper uses ‘theory’ in the sense that Popper uses ‘hypothesis’.
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or even shown to be probable. This appraisal of the hypothesis relies solely upon deductive conse-
quences (predictions) which may be drawn from the hypothesis: There is no need even to mention
‘induction’.

– from [Popper 1959].

We conclude by discussing the paper’s implications for scientific inference, focusing
on the ideas of Karl Popper. According to Popper, inductive inference is meaningless. As
an alternative, he advocated hypothetico-deductive inference, which proceeds as follows
[Gelman and Shalizi 2013].

Forecaster makes observations, proposes a theory, and deduces consequences. A the-
ory is scientific if it is falsifiable. That is, if it is possible to deduce empirically testable
consequences. The scientific method, according to Popper, is: to propose falsifiable the-
ories that are in line with past observations; to subject them to severe empirical tests;
and to discard and replace them if and when they are falsified.

Popper’s ideas are extremely influential in the scientific community. Indeed, he is
essentially the only philosopher that scientists draw on as a resource to evaluate and
compare theories. Philosophers, however, consider Popper’s approach to be fundamen-
tally flawed [Godfrey-Smith 2011]. The three main problems that have been identified
are:

P1. Infinite alternatives. The set of imaginable hypotheses is infinite, so that it is triv-
ial to find a collection of specific hypotheses that a specific theory falsifies.

P2. Stochasticity. It is unclear how to apply Popper’s ideas to stochastic theories, which
cannot be definitely falsified.

P3. No confirmation. Popper rejected the notion that positive evidence should increase
our confidence in a scientific theory. Rejecting confirmation eliminates any ratio-
nale, aside from habit, for using a well-tested theory over a brand new theory,
assuming both are falsifiable.

Our formulation of falsifiability does not exactly line up with what Popper had in
mind. We proceed regardless.

Problem P1 is solved by restricting attention to the finite set of effective hypotheses.
Problem P2 is also solved as a corollary of our results. Soft and hard falsifiability are
defined with respect to deterministic hypotheses, whereas the predictive risk allows
probabilistic hypotheses.

Problem P3 is more interesting. If Nature is i.i.d. then Theorem D” provides a guar-
antee on a predictor’s future accuracy that depend on the theory’s falsifiability and the
predictor’s past performance. Thus, with the addition of the i.i.d. assumption, there is
quantifiable confirmation.

If no assumptions are made about Nature’s behavior, then the setting is sequential
prediction. The most that can be said is that, if a theory is falsifiable, then its predic-
tive performance can be as good as its explanatory performance in hindsight. Nothing
absolute can be said about predictive performance a priori.

Finally, Solomonoff induction is purported to be a (non-computable) theory that op-
timally explains and predicts every computable string. However, observe that The-
orem E says nothing about Solomonoff induction’s predictive performance unless
GUNI
T (~y) or the Kolmogorov complexity KT (~y) are known a priori – which is never the

case. For example, suppose Nature picks a string that contains 109 zeros followed by
109 coin flips, followed by only zeros. Solomonoff induction’s error rate on the first bil-
lion instances will not be indicative of its performance on the next billion. Assuming
that Nature chooses strings with low Kolmogorov complexity is analogous to, albeit
weaker than, assuming Nature is i.i.d.

The current state-of-the-art in learning theory therefore supports Popper’s intuitions
about falsifiability – including his rejection of confirmation. In a more positive vein,
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learning theory suggests that inductive inference requires additional assumptions and
provides tools for analyzing their implications.
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