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Abstract

The independence phenomenon in set theory, while perva-
sive, can be partially addressed through the use of large cardinal
axioms. A commonly assumed idea is that large cardinal axioms
are species of maximality principles. In this paper, I argue that
this claim is questionable. I point to two ways in which the term
‘maximality’ is used in the philosophy of set theory, namely max-
imality in interpretive power and maximality in set existence. I argue
that there is a conception of capturing set existence maximality
through absoluteness, on which large cardinal axioms come out as
restrictive relative to maximality in interpretive power. Despite
this, I argue that within this framework large cardinals are still
important axioms of set theory and can play many of their usual
foundational roles.

Introduction

Large cardinal axioms are widely viewed as some of the best candi-
dates for new axioms of set theory. They are (apparently) linearly
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ordered by consistency strength, have substantial mathematical con-
sequences for questions independent from ZFC (such as consistency
statements and Projective Determinacy1), and appear natural to the
working set theorist, providing fine-grained information about differ-
ent properties of transfinite sets. They are considered mathematically
interesting and central for the study of set theory and its philosophy.

In this paper, I do not deny any of the above points. I will, however,
argue that the status of large cardinal axioms as maximality principles
is questionable. In particular, I will argue that there is a way of trying
to capture maximality through absoluteness in set theory on which large
cardinal axioms can appear restrictive. Despite this, we’ll see that they
are nonetheless able to carry out many of their key foundational roles
in this context.

Here’s the plan: First (§1) I’ll provide some background, identify
the two notions of maximality we’ll consider (maximality in set-existence
and maximality in interpretive power), and introduce the idea that large
cardinals are maximality principles. In §2 I’ll explain the absoluteness
principle we will consider (the Class-Generic Inner Model Hypothesis
or CIMH). In §3 I argue that an appealing formulation of restrictive-
ness in interpretive power due to Maddy delivers the result that many
formulations of ZFC with large cardinals added are restrictive in in-
terpretive power when compared to theories utilising the CIMH. Next
(§4) I’ll compare the justification of the CIMH with that of bounded
forcing axioms, arguing that they rest on similar set-existence maxi-
mality motivations, though they calibrate them in very different ways.
I’ll then (§5) show that theories using the CIMH also Maddy-maximise
over some bounded forcing axioms. Next (§6) I argue that large cardi-
nals can still fulfil many of their required foundational roles. Finally
(§7) I’ll conclude with some possible ramifications for the study of the
philosophy of set theory and some open questions.

1 Large cardinals and notions of maximality

Let’s start with some background on large cardinals and how they
have been viewed philosophically. Given a set theory capable of ax-
iomatising a reasonable fragment of arithmetic (i.e. able to support
the coding of the relevant syntactic notions), we start our discussion
with the following celebrated theorem:

Theorem 1. [Gödel, 1931] (Second Incompleteness Theorem). No ω-
consistent recursive theory T capable of axiomatising primitive recur-

1See [Schindler, 2014] for a textbook treatment of large cardinals and determinacy.
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sive arithmetic can prove its own consistency sentence Con(T).

Given then some appropriately strong set theory T, we can then
obtain a strictly stronger theory by adding Con(T) to T. So, if we accept
‘ZFC’ then, ZFC + Con(ZFC) is a strictly stronger theory, and ZFC +
Con(ZFC + Con(ZFC)) is strictly stronger still. More generally:

Definition 2. A theory T has greater consistency strength than S if
we can prove Con(S) from Con(T), but cannot prove Con(T) from
Con(S). They are called equiconsistent iff we can both prove Con(T)
from Con(S) and Con(S) from Con(T).2

The interesting fact for current purposes is that in set theory we are
not limited to increasing consistency strength solely through adding
Gödel-style diagonal sentences. The axiom which asserts the existence
of a transitive model of ZFC is stronger still (such an axiom implies
the consistency of theories with transfinite iterations of the consistency
sentence for ZFC). As it turns out, by postulating the existence of cer-
tain kinds of models, embeddings, and varieties of sets, we discover
theories with greater consistency strength. For example:

Definition 3. (ZFC) A cardinal κ is strongly inaccessible iff it is uncount-
able, regular3, and a strong limit4.

Such an axiom provides a model for second-order ZFC2, namely
(Vκ,∈,Vκ+1). These cardinals represent the first steps on an enormous
hierarchy of logically and combinatorially characterised objects.5 More
generally, we have the following rough idea: A large cardinal axiom
is a principle that serves as a natural stepping stone in the indexing of
consistency strength.

In the case of inaccessibles, many of the logical properties attach-
ing to the cardinal appear to derive from its brute size. For exam-
ple, because such a κ cannot be reached ‘from below’ by either of the
axioms of Replacement or Powerset, we can show that (Vκ,∈,Vκ+1)

2A subtlety here concerns what base theory we should use to prove these equicon-
sistency claims. Number theory will do (since consistency statements are number-
theoretic facts), but we will keep discussion mostly at the level of a suitable set theory
(e.g. ZFC).

3A cardinal κ is regular iff there is no function from a smaller cardinal unbounded
in κ.

4A strong limit cardinal is a cardinal κ such that |x| < κ then |P(x)| < κ.
5Often, combinatorial and logical characterisations go hand in hand, such as in

the case of measurable cardinals. However, sometimes it is not clear how to get one
characterisation from another. Recently, cardinals often thought of as having only
combinatorial characterisations have been found to have embedding characterisa-
tions. See [Holy et al., 2019] for details.
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satisfies ZFC2. Similar considerations apply to other kinds of cardi-
nal and other consistency implications. A Mahlo cardinal, for example,
is a strongly inaccessible cardinal κ beneath which there is a station-
ary set6 of inaccessible cardinals. The fact that such a cardinal has
higher consistency strength than that of strong inaccessibles (and mild
strengthenings thereof) is simply because it contains many models of
these axioms below it.

It is not the case, however, that consistency strength is inextricably
tied to size. For example, the notion of a strong7 cardinal has lower
consistency strength than that of superstrong8 cardinal, but the least
strong cardinal is larger than the least superstrong cardinal.9 The key
point is that despite the fact that the least superstrong is not as big as
the least strong cardinal, one can always build a model of a strong car-
dinal from the existence of a superstrong cardinal (but not vice versa).
Thus, despite the fact that a superstrong cardinal can be ‘smaller’, it
still witnesses the consistency of the existence of a strong cardinal.

Before we move on, we note some foundational uses for large car-
dinals that make them especially attractive objects of study. First:

(Linearity) The ‘natural’ large cardinal principles appear to be lin-
early ordered by consistency strength.

One can gerrymander principles (via metamathematical coding)
that would produce only a partial order of consistency strengths10,
however it is an empirical fact that the large cardinal axioms that set
theorists have naturally come up with and view as interesting are lin-
early ordered.11 This empirical fact has resulted in the following fea-
ture of mathematical practice:

(Indices) Large cardinals serve as the the natural indices of consis-
tency strength in mathematics.

In particular, if consistency concerns are raised about a new branch
of mathematics, the usual way to assess our confidence in the consis-
tency of the practice is to provide a model for the relevant theory with

6S ⊆ κ is stationary in κ iff S intersects every closed and unbounded subset of κ.
7A cardinal κ is strong iff for all ordinals λ, there is a non-trivial elementary em-

bedding (to be discussed later) j : V −→ M, with critical point κ, and in which
Vλ ⊆M.

8A cardinal κ is superstrong iff it is the critical point of a non-trivial elementary
embedding j : V −→M such that Vj(κ) ⊆M.

9See [Kanamori, 2009], p. 360.
10See [Koellner, 2011] for discussion.
11There are some open questions to be tied up, for example around strongly com-

pact cardinals and around Jónsson cardinals.
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sets, possibly using large cardinals.12 For example, worries of consis-
tency were raised during the emergence of category theory, and were
assuaged by providing a set-theoretic interpretation, which then freed
mathematicians to use the category-theoretic language with security.
Grothendieck postulated the existence of universes (equivalent to the
existence of inaccessible cardinals), and Mac Lane is very careful to use
universes in his expository textbook for the working mathematician.13

These later found application in interpreting some of the cohomolog-
ical notions used in the original Wiles-Taylor proof of Fermat’s Last
Theorem (see [McLarty, 2010]). Of course now category theory is a
well-established discipline in its own right, and quite possibly stands
free of set-theoretic foundations. Nonetheless, set theory was useful
providing an upper bound for the consistency strength of the emerg-
ing mathematical field. More recently, several category-theoretic prin-
ciples (even some studied in the 1960s) have been calibrated to have
substantial large cardinal strength.14

Related to indexing consistency strength is the use of large cardi-
nals in building inner models, which has become a focal point of study
in its own right. For many large cardinal axioms we can (using the rel-
evant large cardinal axioms) build a model that takes itself to contain
a cardinal of a particular kind. Many of these models are L-like and
satisfy properties such as condensation, revealing a good deal of in-
formation about the properties of the sets they contain (relative to the
model). Again, the details are rather technical, so we omit them.15 The
point is the following: Often in set theory we have very little infor-
mation about the properties of certain sets, as exhibited by the inde-
pendence phenomenon. This is not so for large cardinals with L-like
inner models, where (whilst there are open questions) there is a large
amount of highly tractable information concerning the objects. The

12See here, for example, Steel:

“The central role of the theories axiomatized by large cardinal hypothe-
ses argues for adding such hypotheses to our framework. The goal
of our framework theory is to maximize interpretive power, to pro-
vide a language and theory in which all mathematics, of today, and
of the future so far as we can anticipate it today, can be developed.”
([Steel, 2014], p. 11)

13See [Mac Lane, 1971], Ch.1, §6. Also interesting here is [McLarty, 1992], Ch. 12.
14See [Bagaria and Brooke-Taylor, 2013] for details. The consistency strength is

really quite high; many category-theoretic statements turn out to be equivalent to
Vopěnka’s Principle.

15For the state of the art concerning inner model theory and the challenges faced,
see [Sargsyan, 2013] and [Woodin, 2017]. For an overview of what makes a model
L-like, see [Steel, 2010], especially §5 and Theorems 5.1 and 5.4.
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building of inner models for large cardinals thus represents an impor-
tant and technically sophisticated area of study, and many of the major
open questions in set theory concern their construction.

This observation concerning the role of large cardinals in contem-
porary mathematics point to a central desideratum for their use:

(Maximality in Interpretive Power) Large cardinals are required to
maximise interpretive power: We want our theory of sets to facilitate a
unified foundational theory in which all mathematics can be ‘appro-
priately’ interpreted.

This idea is strongly emphasised in [Steel, 2014]. Of course, work
has to be done in saying what we mean by an ‘appropriate’ interpre-
tation. We will discuss this in detail in §3, when we consider Penelope
Maddy’s notion of restrictiveness. For now we can simply note that
such inner models provide ‘nice’ interpretations; they are transitive,
well-founded, and contain all the ordinals.

Maximising interpretive power entails maximising consistency
strength; we want a theory that is able to incorporate as much consis-
tent mathematics as is possible whilst preserving a sense of intended
interpretation, and hence (assuming the actual consistency of the rele-
vant cardinals) require the consistency strength of our framework the-
ory to be very high. However, maximality in interpretive power is
not the only kind of maximality in play. Often large cardinals seen
as species of set maximality principles. For example, Gödel famously
wrote (concerning small large cardinals like inaccessibles, Mahlos etc.):

“...the axioms of set theory by no means form a system
closed in itself, but, quite on the contrary, the very concept
of set on which they are based suggests their extension by
new axioms which assert the existence of still further iter-
ations of the operation “set of”. These axioms can also be
formulated as propositions asserting the existence of very
great cardinal numbers or (which is the same) of sets hav-
ing these cardinal numbers.” ([Gödel, 1947], p. 181)

Here, we see Gödel argue that the postulation of small large cardi-
nals serves as a good way of asserting that the universe contains many
different kinds of large sets.

This is indicative of a second kind of maximality:

(Maximality in Set-Existence) The more sets the axiom asserts to ex-
ist, the better.
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Several authors discuss this idea, and are sensitive to its pitfalls.16

In particular, this formulation is taken directly from [Bagaria, 2005],
and we shall discuss it in detail in §4, examining how Bagaria makes it
precise and how it relates to discussion of large cardinals.

Of course, one might think that the two notions are related. If we
maximise the number and variety of sets available, one might think
we thereby maximise the possibilities for interpreting mathematical
theories. Part of this paper will provide an example to show that this
link is perhaps not as clear as one might think.

One final point that we shall make about large cardinals is their use
in proving axioms of definable determinacy. The full details will be fa-
miliar to specialists and obscure to non-specialists, so we omit them
here.17 Nonetheless, a coarse description will be helpful in stating our
arguments. Roughly put, axioms of definable determinacy assert the
existence of winning strategies for games played with natural num-
bers.18 Importantly, some authors have argued that these axioms have
various pleasant consequences we would like to capture.19 One salient
fact is that Projective Determinacy yields high degree of completeness
for the hereditarily countable sets (i.e. there are no known statements
apart from Gödel style diagonal sentences independent from the the-
ory ZFC - Powerset + V = H(ω1) + PD).20 Moreover, whilst it is a
theorem of ZFC that not all games are determined, certain restricted
forms can be proved from large cardinals. For example:

Fact 4. Borel Determinacy is provable in ZFC, but any proof requires
ω1-many applications of the Powerset Axiom.

Fact 5. Analytic Determinacy is provable in ZFC + “There exists a mea-
surable cardinal”, but is independent from ZFC.

Fact 6. Projective Determinacy is provable in ZFC + “There are ω-many
Woodin cardinals”, but is independent from ZFC + “There exists a
measurable cardinal”.

16See, for example, [Hauser, 2001], (p. 257) [Incurvati, 2017] (p. 162),
[Maddy, 2011] (pp. 125–126), [Drake, 1974] (p. 186).

17The interested reader is directed to [Schindler, 2014] for a recent presentation of
the technical details, and [Koellner, 2006], [Maddy, 2011], and [Koellner, 2014] for a
philosophical discussion.

18ADL(R) is one axiom of definable determinacy that goes beyond second-order
arithmetic. There are also versions of determinacy for real-valued games, or games
of longer length. We put aside these issues here.

19See, for example, [Maddy, 2011] and [Welch, 2017].
20[Koellner, 2014] provides a detailed survey of the literature here, and is quick to

point out that axioms of definable determinacy seem to be the consequence of any
strong ‘natural’ theory extending ZFC (e.g. ZFC + PFA). Given the focus of this paper,
we shall concern ourselves only with the argument from large cardinals.
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Again, we will not go through the definitions of Borel, Analytic,
or Projective here. Suffice to say, each admits progressively more sets
of reals with a more permissive notion of definability, and each is re-
solved by strictly stronger large cardinal axioms. Some authors have
pointed out that it may well be that our ‘best’ theory of sets uses ax-
ioms of definable determinacy.21

We can now summarise the following points from our discussion
of large cardinals:

(1.) Large cardinals appear to be linearly ordered by consistency
strength and are the standard indicies of consistency strength.

(2.) They are used in various technical model-building constructions
in inner model theory.

(3.) They can be used to prove axioms of definable determinacy.

(4.) They are often regarded as species of ‘maximality’ axiom, in par-
ticular with respect to maximality in interpretive power and maximal-
ity in set-existence.

In the rest of the paper, I will argue that large cardinals can ap-
pear restrictive from a maximality in interpretive power perspective.
The issue, we shall see, depends upon how we calibrate maximality
in set existence. I thus conclude that the status of large cardinal ax-
ioms as maximality principles is questionable. We will, however, see
that their important foundational roles as outlined by (1.) and (2.) are
unaffected, and that the question of their role in (3.) is still open.

2 The Class-Generic Inner Model Hypothesis

The principle we will consider (the Class-Generic Inner Model Hy-
pothesis) stems from absoluteness considerations; if something is satis-
fied in an extension of the universe then it is already satisfied in the
universe (subject to terms and conditions, and in certain contexts). We
will discuss this absoluteness idea in detail in §4, for now we focus on
defining the principle in order to move forward with our restrictive-
ness arguments. Before we get going, however, it is useful to provide
some set up. We will work under von Neumann-Bernays-Gödel class the-
ory (NBG) which has a second sort of variables X,Y ,Z,X0, ...,Xn, ...
(intended to range over classes), and has as axioms all first-order ax-
ioms of ZFC, with the axiom schemas of Replacement and Separation

21See, for example, [Woodin, 2001].
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replaced by single second-order axioms, and an axiom of predicative
comprehension for classes.22 We will work with the version that does
not include the axiom of Global Choice, but not much hangs on this
for our proofs. We start with a couple of definition we’ll need for the
set up. For now we’ll characterise them as claims about models, the
syntactic formulation will be made clear in due course:

Definition 7. (NBG) An inner model in a universe V = (V ,∈, CV) |= NBG
(where V is the domain of sets of V , and CV is a domain of classes) is a
V-transitive proper class X ∈ CV satisfying ZF. Further:

(i) We say that an inner model X is proper when X ( V .

(ii) We say that an inner model X is first-order definable in the parame-
ters ~a when there is some first-order formula φ(~a,x) with one free
variable in the language of ZFC (with ~a added) such that φ(~a,x)
iff x ∈ X .

(iii) We say that an inner model X is first-order definable when there
is some first-order formula φ(x) with one free variable in the lan-
guage of ZFC such that φ(x) iff x ∈ X .

Definition 8. (NBG) A width extension of a universe V is a universe V ′
such that V is an inner model of V ′. A width extension V ′ is proper
when V is a proper inner model of V ′.

We can then consider what inner models V (our universe) must
contain relative to its extensions. In particular we can formulate:

Definition 9. [Friedman, 2006] Let φ be a parameter-free first-order
sentence. The Inner Model Hypothesis (or IMH) states that if φ is true
in an inner model of a width extension of V , then φ is already true in
an inner model of V .

A core feature of the IMH is that it depends upon quantifying over
arbitrary extensions of a universe. Initially, it is thus unclear what the-
ory we should use to formalise it. It can be formulated as about count-
able transitive models23 or (using well-founded top-extensions of V )

22A brief note on nomenclature: In set theory is usual to refer to theories that
do not have class variables as first-order, and those that do as second-order. This
is despite the fact that, strictly speaking, NBG and its cousins are two-sorted first-
order theories, even if they could be given a second-order formulation in which we
quantify into predicate position.

23See here [Arrigoni and Friedman, 2013].

9



as about infinitary logics24, or can be coded using a variant of Morse-
Kelley class theory25. Since we want to consider an axiom that is easily
formalisable across a range of possible perspectives, we shall consider
a modified version of the IMH that is formalisable in NBG:

Definition 10. (NBG) Let (V ,∈, C) be a NBG structure. The Class-
Generic Inner Model Hypothesis (or CIMH) is the claim that if a (first-
order, parameter-free) sentence φ holds in an inner model of a tame
class forcing extension (V [G],∈, C[G]) (where where V [G] consists of
the interpretations of set-names in V using G, and C[G] consists of the
interpretations of class-names in C using G), then φ holds in an inner
model of V .

In other words, if there is a (V [G],∈, C[G]) and an inner model
X ∈ C[G] such that X |= ZF and X |= φ, then there is an inner model
Y ∈ C such that Y |= ZF and Y |= φ.

The requirement of tameness is somewhat technical to state, but
is equivalent to the forcing preserving NBG.26 This is needed in the
present context, since there are non-tame-forcings that are not NBG-
preserving, and if such forcings are allowed we would easily obtain a
contradiction (without some other further modification). For example,
if we allow a Powerset-violating non-tame forcing, we would obtain a
quick contradiction by finding an inner model violating the Powerset
Axiom (whilst also—per impossibile—satisfying ZF).

The restriction to tame forcings also aids with formalisation. Since
forcing relations are definable for tame class forcings, the following
way of expressing the CIMH is equivalent:

Definition 11. (NBG) (V ,∈, C) satisfies the Absolute Class-Generic Inner
Model Hypothesis (or CIMH) iff whenever P ⊂ V is a tame class forcing,
and φ is a parameter-free first-order sentence, then if there is a p ∈ P
such that p P “φ is true in an inner model” then φ is true in an inner
model of V .

In this way, the Class-Generic Inner Model Hypothesis can be for-
malised in NBG without quantifying directly over extensions. Even
a believer in just one maximal universe of sets, for example, could
consider the CIMH as a possible axiom candidate, since presumably
they accept the use of NBG class theory. After all, for any model

24See here [Antos et al., 2015], [Barton and Friedman, 2017].
25Morse-Kelley class theory (or MK) has an impredicative comprehension scheme in-

stead of NBG’s predicative axiom. In fact, a variant of NBG + Σ1
1-Comprehension is

enough to formalise the IMH, see [Antos et al., 2021].
26For the details of tameness (and pretameness) see [Friedman, 2000].
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M = (M ,∈) |= ZFC, NBG is satisfied by (M ,∈,Def(M)), where
Def(M) are the definable classes of M (at least the version of NBG
formulated without Global Choice). A believer in one universe of sets
would thus have to reject the use of definable classes in rejecting NBG,
and would thereby give up on a large amount of standard set the-
ory. The question then of whether the CIMH is truth-evaluable is thus
not dependent upon ontological perspective.27 Since they are formally
equivalent, we will drop the distinction between the CIMH and CIMH

from here on out.

3 Interpretive maximality and large cardinals

As we will now see, the CIMH can be used to obtain theories that sug-
gest that some large cardinal axioms are restrictive with respect to in-
terpretive maximality (we will discuss set-existence maximality in §4).
The core points we’ll see are:

(1.) The CIMH implies the negation of large cardinal axioms, even
some of the weakest such principles.

(2.) The CIMH nonetheless validates the consistency in inner models of
large cardinals up to the level of many measurable cardinals.

(3.) ZFC-based set theories obtained from the CIMH can only be in-
terpreted in ‘impoverished’ contexts using theories incorporating
large cardinals.

We deal with these points in turn. (1.) Anti-large cardinal prop-
erties of the IMH were noticed early on. Many results using the full
IMH can be incorporated to the current context, since they only require
tame class forcings. For instance, we can immediately identify:

Theorem 12. [Friedman, 2006] (NBG) If the Class-Generic Inner Model
Hypothesis holds, there are no inaccessible cardinals in V .28

Given acceptance of the CIMH, this would mean that there could be
no (significant) large cardinals in V . However, the existence of large
cardinals in inner models is positively implied:

27Of course, one might worry that the natural reading of the CIMH is in terms of
quantifying over extensions, whatever the coding possibilities. See [Barton, 2020] for
discussion of this point.

28See here [Friedman, 2006], Theorem 15. The proof is formulated for the full IMH,
but since it uses only tame class forcings, we can import it directly to the current
context.
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Theorem 13. [Friedman et al., 2008] (NBG) The Class-Generic Inner
Model Hypothesis implies that there is an inner model with measur-
able cardinals of arbitrarily large Mitchell order.29

Thus, while the Inner Model Hypothesis does not permit the exis-
tence of large cardinals in V , it does vindicate their existence in inner
models. By contrast, we can prove the consistency of the IMH (and
hence the CIMH) from large cardinals:

Theorem 14. [Friedman et al., 2008] (ZFC) Assuming the consistency
of the existence of a Woodin cardinal with an inaccessible above, the
Inner Model Hypothesis is consistent.

A remark about the proof will be useful for motivating our discus-
sion. For a real x, letMx be the least transitive model of ZFC containing
x. By collapsing the Woodin cardinal to ω, and using Σ1

2-Determinacy
and the (preserved) inaccessible in the forcing extension, one has that
for every real x in a Turing cone (Mx,∈,Def(Mx)) satisfies the IMH.
The core point to retain is the following: The IMH-satisfying structure
we find in the proof is small (in that it is countable).

We thus have a rough guide as to the consistency strength of the
Class-Generic Inner Model Hypothesis (somewhere between many
measurables and a Woodin with an inaccessible above). But now there
is something of a stand off between the friend of large cardinals and
the supporter of the CIMH. The friend of large cardinals looks at the
supporter of the CIMH and thinks that her theory is true in small count-
able transitive models, and certainly does not hold in the universe. The
supporter of the CIMH, on the other hand, looks at the friend of large
cardinals and thinks that his theory can only be true when we leave out
some subsets that destroy the inaccessibility of particular cardinals in
V . Is there any way to resolve this stand off?

There is at least one technically precise sense in which we can say
that the CIMH-theorist is in better shape with respect to interpretive
maximality. We will use [Maddy, 1998]’s notion of theories maximizing
over one another and (and some being restrictive on these grounds).
Her idea is that one set theory T1 maximises over another T2 (and
hence shows it to be restrictive) when one can use T1 to provably find

29The Mitchell ordering is a way of ordering the normal measures on a measurable
cardinal. Roughly, it corresponds to the strength of the measure, where a measure
U1 is below another U2 in the Mitchell order if U1 belongs to the ultrapower ob-
tained through U2. See [Jech, 2002] Ch. 19. Again, only tame class forcings are used
in proving the existence of an inner model with measurable cardinals of arbitrarily
large Mitchell order from the full IMH.
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an interpretation of T2 in an ‘appropriate’30 context, but not vice versa,
and the two theories are jointly inconsistent with one another. More
precisely, Maddy begins with the following definition:

Definition 15. [Maddy, 1998] A theory T extending ZFC shows φ is an
internal model iff φ is a formula in one free variable such that:

(i) For all σ in ZFC, T ` σφ (i.e. σ holds relative to the φ-satisfiers).

(ii) T ` ∀αφ(α) or T ` ∃κ((“κ is inaccessible”) ∧ ∀α(α < κ → φ(α)))
(i.e. the φ-satisfiers either contain all ordinals, or all ordinals up
to some inaccessible), and

(iii) T ` ∀x∀y((x ∈ y ∧ φ(y)) → φ(x)) (i.e. φ defines a transitive
interpretation).

This definition serves to specify the ‘appropriate’ interpretations
we are interested in; proper class inner models and truncations thereof
at inaccessibles. Maddy uses the term ‘inner model’ instead of ‘inter-
nal model’, but we opt for the latter in order to avoid confusion with
the notion of ‘inner model’ being employed in versions of the CIMH.
We can then define:

Definition 16. [Maddy, 1998] φ is a fair interpretation of T1 in T2 iff:

(i) T2 shows φ is an internal model, and

(ii) For all σ in T1, T2 ` σφ.

i.e. a fair interpretation of one theory T1 in another T2 is provided by
finding some φ defining an inner model (or truncation thereof) in T2

that satisfies T1.
Maddy then goes on to define what it means for a theory to max-

imise over another. First, she thinks that there should be new iso-
morphism types outside the interpretation, which, in the presence of
Foundation, amounts to the existence of sets not satisfying φ (i.e. the
internal model defined by φ is proper):

Definition 17. [Maddy, 1998] T2 maximizes over T1 iff there is a φ such
that:

(i) φ is a fair interpretation of T1 in T2, and

30[Maddy, 1998] uses the terminology ‘preservation’ and ‘fair interpretation’, in-
stead of ‘appropriate’. We use ‘appropriate’ in order to keep the technically-loaded
notions of ‘fair interpretation’ and ‘preservation’ separate from the informal notion.
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(ii) T2 ` ∃x¬φ(x).

With this idea of maximisation in play, she next sets up some ad-
ditional definitions to make sure that weak but unrestrictive theories,
whilst not maximising, do not count as restrictive. This is dealt with
by the following definitions.

Definition 18. [Maddy, 1998] T2 properly maximizes over T1 iff T2 max-
imizes over T1 but not vice versa.

Definition 19. [Maddy, 1998] T2 inconsistently maximizes over T1 iff T2

properly maximises over T1 and T2 is inconsistent with T1.

Definition 20. [Maddy, 1998] T2 strongly maximizes over T1 iff T2 in-
consistently maximizes over T1, and there is no consistent T3 extend-
ing T1 that properly maximizes over T2.

Thus we have a picture on which one theory T2 (strongly) max-
imises over T1 when we can prove in T2 that a certain formula φ de-
fines a proper inner model (or truncation thereof), satisfying T1, and
such that we cannot extend T1 to a theory capable of finding such an
interpretation for T2. If there is a theory T2 strongly maximising over
T1, then we say that T1 is Maddy-restrictive31. A natural example here
is contrasting the theories ZFC + V = L and ZFC + “There exists a mea-
surable cardinal”. The latter strongly maximises over the former, since
we can always build L to find a model of ZFC + V = L, but there are
no fair interpretations with measurable cardinals under V = L (though
they can exist in other kinds of model, e.g. countable).

One difficult issue in this context concerns the use of parameters.
Let U0 be an ultrafilter on the least measurable cardinal κ0. We would
like our definition of L[U0] to provide a fair interpretation of ZFC +
“V = L[U0]” using the theory ZFC + “There are two measurable car-
dinals”, and on this basis show that the axiom V = L[U0] is also a
restrictive axiom much like V = L (in particular, V = L[U0] implies
that there is exactly one measurable cardinal). This situation is in fact
considered by Maddy:

V = L, as we know, is the claim that the universe... is iden-
tical with the smallest proper class inner model, L. Given
the development of ‘wider’ proper class inner models that
include various large cardinals, beginning with measur-
ables, the next test case would be to ask what the criterion

31We use the term ‘Maddy-restrictive’ as it is a substantial open question whether
or not Maddy-restrictiveness and restrictiveness are coextensive.
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has to say about various theories of the form ZFC + ‘V =
the canonical inner model with such-and-such large cardi-
nals’. A theory like this seems restrictive because it rules
out the existence of additional large cardinals; the expecta-
tion is that it would be strongly maximized over by a the-
ory of the form ZFC + ‘the next larger large cardinal exists’.
In fact, this pattern is satisfied for a considerable distance.
So, for example, ZFC + ‘there are two measurable cardinals’
(ZFC + 2MC) provides a fair interpretation of ZFC + ‘V = the
canonical inner model with one measurable cardinal’ (ZFC
+ V = L[U ]). Furthermore, ZFC + V = L[U ] implies that
there is no inner model of ZFC + 2MC, so neither it nor any
extension of it can fairly interpret ZFC + 2MC. Thus, ZFC
+ 2MC strongly maximizes over ZFC + V = L[U ], and the
latter is restrictive, as seems right. [Maddy, 1997, p. 225]

The use of parameters, however, poses an additional complication.
The issue is that a parameter is normally taken to be the ‘name’ for a
particular set; an essentially model-theoretic notion. Maddy’s defini-
tion of restrictiveness is meant to be purely ‘syntactic’ in character—it
concerns theory-to-theory interpretation within the same language. Es-
pecially in the context where we are meant to be adjudicating between
foundational theory, it’s thus unclear how to handle parameters.

In the specific case Maddy considers, however, we can do away
with the parameters. By a theorem of [Kunen, 1971]32 one can show
that if U1 and U2 are normal ultrafilters witnessing the measurabil-
ity of κ, then L[U1] = L[U2]. It’s thus possible to quantify away their
use abbreviating ”x ∈ L[U0]” (where U0 is a normal ultrafilter on the
least measurable cardinal κ0) with the following formula (that I’ll in-
formally paraphrase for readability):

x ∈ L[U0] iff ”there exists a normal measure U on the least measurable
cardinal κ such that there is an α with x ∈ Lα[U ]”

Similar remarks apply to any case where we have a parameter that
is definable if it exists and whose existence is implied by a theory. For
example, if T implies that ”0] exists”, we will not need 0] as a param-
eter in order to define L[0]] using T. This kind of strategy will be used
repeatedly to eliminate parameters in what follows.33

32See [Kanamori, 2009, p. 267], Theorem 20.10.
33I thank an anonymous referee for pushing me to be more precise on the use of

parameters, and Sandra Müller and Kameryn J. Williams for additional discussion
here.
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Maddy’s definitions are not without their problems (notably some
false negatives and positives), a fact which Maddy herself is admirably
transparent about.34 Subsequent developments of the notion have
been considered by Löwe and Incurvati.35 Our point here is not that
Maddy’s definitions provide the definitive word on restrictiveness rel-
ative to maximality in interpretive power, but rather that they provide
an interesting perspective on which the rough ideas sketched earlier
(concerning the stand-off) could be made precise, if one so desired.

First, the CIMH. The CIMH is formulated in NBG, and since Maddy’s
formulation is intended to apply only to first-order set theories, we re-
quire a further modification. One option would be to change her def-
inition to apply to second-order theories. However, the presence of
second-order quantification would perhaps suggest different notions
of fair interpretation (since we could directly quantify over inner mod-
els), and so we will not pursue this strategy here (despite its interest).
Rather, we will look at the first-order fragment of NBG + CIMH. We can
then prove:

Proposition 21. (NBG) Let ZFCCIMH be the parameter-free first-order
part of NBG + CIMH (i.e. take NBG + CIMH and remove all sentences
and formulas containing at least one set parameter, class variable, or
class parameter). Let µ(α) be a parameter-free ZFC-sentence defining
some ordinal α > 0, such that ∃αµ(α) is provable in ZFC alone. Then
ZFCCIMH strongly maximises over ZFC + “There exist α-many measur-
ables”.

Proof. Note that by assumption, ZFC + “There exist α-many measur-
ables” can be expressed in a parameter-free way by using the for-
mula µ(α). We first need to show that ZFCCIMH shows that some
φ is an internal model with α-many measurables. Theorem 2 of
[Friedman et al., 2008] establishes that NBG+CIMH proves that there is
a definable inner model with measurable cardinals of arbitrarily large
Mitchell order.36 The model in question is Mitchell’s core model K
for sequences of measures, and this version of K is definable using a
parameter-free formula.37 Thus, by going high enough in the Mitchell

34In the original [Maddy, 1998] and [Maddy, 1997].
35See here [Löwe, 2001], [Löwe, 2003], and [Incurvati and Löwe, 2016] (which re-

sponds to some criticisms of [Hamkins, 2014]).
36Note: Friedman, Welch, and Woodin are explicit about the fact that whilst their

theorems are formulated about the IMH, none of their theorems depend on arbi-
trary outer models, but rather could be formulated in terms of the CIMH. See
[Friedman et al., 2008] pp. 391–392.

37See [Mitchell, 2010] for details. Thanks to Sy-David Friedman for some discus-
sion of the definition of K.
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order, ZFCCIMH provides a fair interpretation of ZFC + “There exist α-
many measurables”.

Moreover ZFCCIMH also maximises over ZFC + “There exist α-many
measurables”, since there are always sets outside this interpretation.
In particular, since ZFCCIMH implies that there are no inaccessible car-
dinals, for any particular β that is measurable in K, K misses out the
sets witnessing the accessibility of β. Clearly, the two theories are also
inconsistent with one another.

It just remains to show that ZFC + “There exist α-many mea-
surables” does not maximise over ZFCCIMH (for inconsistent maximi-
sation), nor can any consistent extension (for strong maximisation).
These are established by the following claim:

Claim 22. No consistent extension of ZFC + “There exist α-many mea-
surables” can provide a fair interpretation of ZFCCIMH.

To show this, we need to show that under any extension of ZFC +
“There exist α-many measurables”, none of (i) there is an inner model
of ZFCCIMH, (ii) there is a truncation at an inaccessible with ZFCCIMH,
or (iii) there is a truncation at an inaccessible of an inner model with
ZFCCIMH, are possible. For (i) it suffices to note that being accessible is
upwards absolute. Since all cardinals are accessible under ZFCCIMH (a
parameter-free claim) if ZFCCIMH holds in an inner model, then all car-
dinals are accessible, ruling out (i). For (ii) and (iii) we first note that no
truncation Vκ for κ above the least inaccessible β can satisfy ZFCCIMH,
since then Vκ would see the inaccessibility of β. Nor can such a Vκ have
an inner model satisfying ZFCCIMH since inaccessibility is downwards
absolute and so the inner model would still see the inaccessibility of
β. The only possible case is thus when κ is the least inaccessible cardi-
nal. If this holds, then (Vκ,∈,P(Vκ)) contains a proper class of worldly
cardinals.38 However, the CIMH implies that there is a definable inner
model of the form L[r], where r is a real, with no worldly cardinals
(see Theorem 15 of [Friedman, 2006]). This implies that ”There is a
real r such that for every β, Lβ[r] 6|= ZFC” is in ZFCCIMH (we have effec-
tively quantified away the parameter r). We argue for a contradiction
by showing (via an argument due to Joel-David Hamkins) that world-
liness is downwards absolute to models of the form L[r], for r a real.
Let β < κ be a worldly cardinal in Vκ. Since r ∈ Vβ and Vβ |= ZFC,
it is a standard theorem of relative constructibility39 that for any r,

38β is worldly iff Vβ |= ZFC. We have such a proper class in Vκ since (Vκ,∈,P(Vκ))
satisfies MK (where MK is Morse-Kelley class theory—NBG augmented with the im-
predicative comprehension scheme), which in turn allows us to prove the existence of
such a class.

39See Theorem 13.22 on p. 192 of [Jech, 2002].
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(Lβ[r])Vβ |= ZFC. We now just need to check that (Lβ[r])Vβ = (Vβ)Lκ[r],
but this follows from the fact that β is a i-fixed point (a consequence of
the worldliness of β) in both Vκ and hence Lκ[r]. Thus (Vβ)Lκ[r] |= ZFC
(for any r) contradicting the claim (in ZFCCIMH) that there is an r such
that Lκ[r] contains no worldly cardinals, and so if Vκ is inaccessible
then Vκ cannot satisfy ZFCCIMH. This deals with (ii). For (iii) note that
any inner model M of Vκ such that M |= ZFCCIMH will have to contain
a model of the form Lκ[r] containing no worldly cardinals. Since any r
is also in Vκ if it is in M, we can again build Lκ[r] to obtain a Lκ[r] ⊆ Vκ
with no worldly cardinals; a contradiction. This proves Claim 22 and
hence Proposition 21.40

Remark 23. The downward absoluteness of worldly cardinals to in-
ner models of the form L[r] for r a real is especially interesting for two
related reasons. First, it shows that the CIMH prohibits not just the
existence of inaccessible cardinals in V , but worldly cardinals too. Sec-
ondly, it shows that ZFCCIMH will strongly maximise over any natural
parameter-free extension of ZFC of weaker consistency strength (wit-
nessed by a fair interpretation in ZFCCIMH) that proves “There exists a
worldly cardinal”.

We can thus see that the CIMH has maximising properties with re-
spect to large cardinals, in particular how it shows them to be restric-
tive in the sense of Maddy-restrictiveness (our current way of getting
a grip on maximality in interpretive power). Of course, for stronger
large cardinals that are capable of proving the CIMH consistent (e.g.
anything stronger than the existence of a Woodin cardinal with an
inaccessible above), it is not possible to provide a fair interpretation
of those large cardinals within ZFCCIMH alone, and so neither strongly
maximizes over the other. However, if we are able to augment our
theory of NBG + CIMH (albeit somewhat artificially) with a a claim
that allows us to define an inner model of ZFC with the relevant large
cardinals in a parameter-free way, then parallel reasoning yields the
same restrictiveness result. One can do this, for example, by asserting
the existence of mice; small structures that allow us to construct inner
models for large cardinals by iterated ultrapowers. If we have a mouse
N whose iterated ultrapower generates an inner model of M |= φ for
some large cardinal φ, the first-order part of the theory NBG + CIMH
+ “N exists” will strongly maximise over ZFC + φ as before, assuming
that the existence of the relevant mouse is consistent with the CIMH,

40I am grateful to Kameryn Williams and Victoria Gitman for some useful discus-
sions concerning this proof, and to an anonymous reviewer for pressing me on the
details with parameters.
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and the model can be defined without using parameters. There are
some limitations here since; (i) the CIMH implies that the reals are not
closed under ] and PD is false,41 and (ii) the existence of mice generat-
ing n-many Woodin cardinals for every n is equivalent to PD. We thus
cannot go as far as ω-many Woodin cardinals using this tactic. These
complications aside, for many large cardinals the restrictiveness result
does hold, and we’ll return to these issues in §6.

4 The CIMH and set-existence maximality

We have reached a point where:

(1.) We have seen that there are axioms (e.g. CIMH) that have anti-large
cardinal properties.

(2.) There is an apparent standoff: From the perspective of the ad-
vocate of large cardinals the CIMH appears to consider only very
small transitive models, and from the perspective of the supporter
of the CIMH, the truth of large cardinal axioms requires missing
out subsets that witness accessibility and/or non-worldliness.

(3.) If we analyse this debate in terms of Maddy’s notion of restrictive-
ness, it is the large cardinal axioms, at least up to the level of many
measurable cardinals, that appear restrictive.

We are thus at a point where some large cardinal axioms are viewed
as restrictive relative to maximality in interpretive power given theo-
ries based on the CIMH. However, it is one thing to provide an axiom
for which the restrictiveness results hold, and another to argue that
said axiom is a reasonable one. Maddy herself is aware that her no-
tion of restrictiveness delivers far too many false-positives when ‘dud’
theories are considered. So, is the CIMH (and the first-order theory it
generates) a ‘dud’?

In this section I argue that the CIMH can be motivated along similar
lines to bounded forcing axioms via considerations of maximality in
set-existence. In seeing this we shall use the idea of absoluteness (in
width) which is appealed to by both the friend of bounded forcing
axioms and the supporter of the CIMH. We’ll see though that these are
calibrated in very different ways. On this basis, I’ll argue that the CIMH
should count as a natural axiom in the sense of [Bagaria, 2005].

One can formulate a general template for a width-absoluteness
principle as follows:

41This also holds in virtue of Theorem 15 in [Friedman, 2006].

19



Width Absoluteness Principles. Let Γ be a class of sentences in some
appropriate logic. If φ ∈ Γ is true in some appropriate extension of V
with the same ordinals (i.e. a width extension) then φ is already realised
in some appropriate structure contained in V .

Clearly the idea of a width absoluteness principle is schematically
formulated, and the content a width absoluteness principle has will be
relative to the logical resources, extensions, and internal structures al-
lowed. Some precedents exist for justification of axioms by this means.
Bounded forcing axioms are a good example here. To facilitate under-
standing of the ideas later in this section, we first provide a very coarse
and intuitive sketch of the forcing technique.

Forcing, loosely speaking, is a way of adding subsets of sets to cer-
tain kinds of model. For some model M and atomless partial order
P ∈ M, we (via ways of naming possible sets and evaluating these
names) add a set G that intersects every dense set of P in M.42 The
resulting model (often denoted by ‘M[G]’), can be thought of as the
smallest object one gets when one adds G to M and closes under the
operations definable in M.

A forcing axiom expresses the claim that the universe has been sat-
urated under forcing for certain kinds of partial order and families of
dense sets. For example we have the following axiom:

Definition 24. Let κ be an infinite cardinal. MA(κ) is the statement that
for any forcing poset P in which all antichains are countable (i.e. P has
the countable chain condition), and any family of dense sets D such
that |D| ≤ κ, there is a filter G on P such that if D ∈ D is a dense subset
of P, then G ∩D 6= ∅.

Definition 25. Martin’s Axiom (or just MA) is the statement that for
every κ smaller than the cardinality of the continuum, MA(κ) holds.

One can think of Martin’s axiom in the following way: The uni-
verse has been saturated under forcing for all posets with a certain
chain condition and less-than-continuum-sized families of dense sets.

There are several kinds of forcing axiom, each corresponding to dif-
ferent permissions on the kind of forcing poset allowed (the countable
chain condition is quite a restrictive requirement). Many of these have
interesting consequences for the study of independence, notably many

42A subtle philosophical and technical question is exactly which models are ex-
tendible in width (e.g. must the model be countable?) and how we should under-
stand the metamathematics of this practice, given different ontological outlooks. See
[Barton, 2020] for discussion.
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(e.g. the Proper Forcing Axiom) imply that CH is false and that in fact
2ℵ0 = ℵ2.

It is, however, unclear exactly why we should accept forcing ax-
ioms. As it stands, though they seem to correspond to some rough
idea of ‘saturating’ under forcing, they are nonetheless combinato-
rially characterised principles, and it is not clear if this idea can be
cashed out in more foundational terms.43

One idea is to capture some of the content of forcing axioms by as-
similating them under principles of width absoluteness. This project
has been developed by Bagaria who provides the following character-
isations of bounded forcing axioms:

Definition 26. [Bagaria, 1997] (ZFC) Absolute-MA. We say that V sat-
isfies Absolute-MA iff whenever V [G] is a generic extension of V by a
partial order P with the countable chain condition in V , and φ(x) is a
Σ1(P(ω1)) formula (i.e. a first-order formula containing only param-
eters from P(ω1)), if V [G] |= ∃xφ(x) then there is a y in V such that
φ(y).

and we can characterise the Bounded Proper Forcing Axiom (BPFA) as
follows:

Definition 27. [Bagaria, 2000] (ZFC) Absolute-BPFA. We say that V sat-
isfies Absolute-BPFA iff whenever φ is a Σ1 sentence with parameters
from H(ω2), if φ holds a forcing extension V [G] obtained by proper
forcing, then φ holds in V .

and Bounded Martin’s Maximum (BMM):
43There are those that think that forcing axioms are well-justified just on the basis

of the saturation idea. Magidor, for example, argues:

Forcing axioms like Martin’s Axiom (MA), the Proper Forcing Axiom
(PFA), Martin’s Maximum (MM) and other variations were very suc-
cessful in settling many independent problems. The intuitive motiva-
tion for all of them is that the universe of sets is as rich as possible, or
at the slogan level: A set [whose] existence is possible and there is no
clear obstruction to its existence [exists]...
...What do we mean by “possible”? I think that a good approximation
is “can be forced to [exist]”... I consider forcing axioms as an attempt to
try and get a consistent approximation to the above intuitive principle
by restricting the properties we talk about and the the forcing exten-
sions we use. ([Magidor, U], pp. 15–16)

Magidor is clear that the idea is rough, and sees forcing axioms as a way of making
this precise. However, it seems that his motivations apply equally well to the idea of
width absoluteness, which is the focus of this paper.
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Definition 28. [Bagaria, 2000] (ZFC) Absolute-BMM. We say that V sat-
isfies Absolute-BMM iff whenever φ is a Σ1 sentence with parameters
from H(ω2), if φ holds a forcing extension V [G] obtained by a forcing
P that preserves stationary subsets of ω1, then φ holds in V .

Each of these axioms shows how one can encapsulate bounded
forcing axioms using absoluteness principles. One might think that
this provides evidence for their truth, or at least their naturalness:

In the case of MA and some weaker forms of PFA and MM,
some justification for their being taken as true axioms is
based on the fact that they are equivalent to principles of
generic absoluteness. That is, they assert, under certain
restrictions that are necessary to avoid inconsistency, that
everything that might exist, does exist. More precisely, if
some set having certain properties could be forced to exist
over V , then a set having the same properties already exists
(in V ). ([Bagaria, 2008], pp. 319–320)

These formulations and remarks make it particularly perspicuous
the sense in which some bounded forcing axioms can be thought of as
maximising the universe under ‘possible’ sets; if we could force there
to be a set of kind φ (for a particular kind of φ and P), one already exists
in V .44 There is a clear sense in which such an intuition corresponds
to a natural idea about mathematics: If it is possible to have an object
such that φ, then there actually is such an object—mathematics should
not be constrained by the limits of what is actual rather than possible.

Importantly for us, the CIMH is clearly a kind of width absoluteness
principle, asserting that anything true in an inner model of an outer
model is already true in an inner model of V . Moreover, it conforms
to criteria laid out by Bagaria (in [Bagaria, 2005]) on what it is to be a
natural axiom of set theory. His criteria (which he calls meta-axioms of
set theory) he terms Consistency, Maximality, and Fairness.45 We look at
each of them in turn. First:

44For some discussion of the coding of Absolute-MA (and similar principles) for
the philosopher inclined towards a “universist” picture of set-theoretic ontology see
[Barton, 2020] and [Antos et al., 2021]. .

45He also mentions the criterion of Success for evaluating axioms determined to
be natural on the basis of Consistency, Maximality, and Fairness. I won’t discuss
this here since (a) I have reservations about how we assess the ‘success’ of an axiom,
and (b) at this stage, we’re just assessing whether or not the CIMH is a ‘dud’ for the
purposes of the restrictiveness argument, and arguing that is natural is presumably
sufficient for showing non-dud-ness. In any case, the CIMH has several interesting
consequences, and provides a cohesive (if controversial) perspective on the nature
of V , and so is successful in some sense.
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(Consistency) The new axiom should be consistent with ZFC.

By the results of [Friedman et al., 2008], if the existence of a Woodin
cardinal with an inaccessible above is consistent, then the CIMH is con-
sistent. Thus, the CIMH passes this test if certain large cardinal axioms
are consistent.

Bagaria’s second meta-axiom we have already seen in §1. We have:

(Maximality) The more sets the axiom asserts to exist, the better.

Bagaria acknowledges that this criteria is somewhat vague, and
makes it precise as follows:

To attain a more concrete and useful form of the Maximal-
ity criterion it will be convenient to think about maximality
in terms of models. Namely, suppose V is the universe of
all sets as given by ZFC, and think of V as being properly
contained in an ideal larger universe W which also satis-
fies ZFC and contains, of course, some sets that do not be-
long to V—and it may even contain V itself as a set—and
whose existence, therefore, cannot be proved in ZFC alone.
Now the new axiom should imply that some of those sets
existing in W already exist in V , i.e., that some existential
statements that hold in W hold also in V . [Bagaria, 2005]

Bagaria thus holds that we can cash out maximality in terms of ab-
soluteness, asserting that existential sentences true in extensions are
already true in V . Indeed, Bagaria argues that in addition to bounded
forcing axioms, many large cardinals should be counted as natural
on this basis, since they can be thought of as capturing absoluteness
through the use of reflection principles or embeddings to inner mod-
els. Bagaria’s condition does not then immediately tell in favour of
the CIMH over large cardinals. However, if we are trying to determine
whether the CIMH is a natural axiom (rather than a dud), its status
as a width absoluteness principle attempting to capture set-existence
maximality counts in its favour.

As Bagaria notes, one cannot have width absoluteness principles
without some restrictions, since both CH and ¬CH can both be formu-
lated as existential sentences; the former by postulating the existence
of sets of reals and the latter by asserting that functions exist between
P(ω) and subsets thereof. In order to maintain consistency, Bagaria
recommends a restriction to Σ1-sentences.
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Whilst the CIMH is not exactly of this form, it is close. Instead of
restricting to Σ1-sentences, we obtain (probable) consistency by assert-
ing that sentences that are realisable in tame class forcing extension
are already realised in inner models of V . Moreover, if we allow pred-
icative second-order quantification there are existential formulations
of the CIMH that do have a formulation in terms of Σ1

1-sentences. For
example we can characterise the CIMH using the following definition:

Definition 29. (NBG) A formula is persistent-Σ1
1 iff it is of the following

form:

(∃M)(“M is a transitive class” ∧M |= ψ)

where ψ is first-order.

Definition 30. (NBG) Tame parameter-free persistent Σ1
1-absoluteness is the

claim that if φ is persistent-Σ1
1 and true in a tame class-generic exten-

sion of V , then φ is true in V .

Theorem 31. [Friedman, 2006] (NBG) The CIMH is equivalent to tame
parameter-free persistent Σ1

1-absoluteness.46

In this way, we can view the CIMH as a generalisation of the follow-
ing theorem of ZFC (as [Friedman, 2006] notes):

Theorem 32. (ZFC) Parameter-Free Lévy-Shoenfield Absoluteness. Let φ
be a parameter-free Σ1-sentence. If φ is true in an outer model of V ,
then φ is true in V .

Thus the CIMH can be thought of as a principle along the lines that
Bagaria suggests—asserting that anything (of a particular kind) that
‘could’ have existed already has a witness. Moreover, it does so by
generalising an idea already present in ZFC. In this respect, it resem-
bles a reflection principle for height: A standard principle of absolute-
ness true in ZFC is generalised to a language of higher-order.

Bagaria’s third condition concerns how maximality through abso-
luteness is applied. Given that there are no a priori reasons for accept-
ing one existential statement true in some extension over another, we
should accept all statements of the same complexity. This motivates
the following criterion:

46Friedman in fact proves (Theorem 14 of [Friedman, 2006]) that the IMH is equiv-
alent to parameter-free persistent Σ1

1-absoluteness (i.e. there is no restriction to tame
forcings in the statement of his theorem). However, one can simply run his argument
replacing ‘outer model’ with ‘tame class forcing extension’ everywhere and get the
same result for the CIMH and tame parameter-free persistent Σ1

1-absoluteness, and
so we attribute the result to him.
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(Fairness) One should not discriminate against sentences of the same
logical complexity and (where parameters are concerned) one should
not discriminate against sets of the same complexity.

I contend that the CIMH also satisfies the Fairness condition, or at
least comes very close. Since the CIMH does not allow the use of pa-
rameters, the constraint to not discriminate against different param-
eters is vacuously satisfied.47 Concerning the discrimination against
sentences, the usual version of the CIMH concerns sentences of arbi-
trary complexity, and so does not discriminate on these grounds.

Of course one might then object that the usual version of the CIMH,
whilst it does not discriminate in terms of Fairness, does do so in terms
of Maximality, as formulated by Bagaria, since it reflects truth in outer
models to inner model of V , not V itself. On the other hand, the for-
mulation of the CIMH in terms of tame parameter-free persistent Σ1

1-
absoluteness, whilst it does not discriminate on the basis of Maximal-
ity (since it reflects directly to truth in V ), does discriminate on the
basis of only reflecting the persistent Σ1

1-sentences, rather than all of
them.

I think there are a couple of responses here. The first point to bear
in mind is that that we are currently trying to determine whether or not
the CIMH is a dud, in order to run the argument concerning Maddy-
restrictiveness. In this context, we might think that even if the CIMH
does not exactly satisfy Bagaria’s requirements, it does come desper-
ately close, and this is perhaps sufficient for it to clear the bar of non-
dud-ness.

Second, we might point out that there are other respects in which
the CIMH is less discriminatory than bounded forcing axioms. In par-
ticular, all the bounded forcing axioms that Bagaria considers discrim-
inate against tame class forcing extensions, and we might think that
fairness in the kind of extension considered is a requirement over-
looked by Bagaria. In this way the CIMH incorporates a more liberal
and less discriminatory account of possibility than its bounded (dis-
tant) cousins.48

47The use of parameters in the CIMH is prohibited because one could quickly col-
lapse ω1 in an inner model and hence in V , contradicting ZFC. Nonetheless, there
are variants of the IMH that consider the careful introduction of parameters, such as
the Strong Inner Model Hypothesis, see [Friedman, 2006].

48Indeed, we might think that set-forcing is a relatively mild kind of extension.
Bukovský’s Theorem (in [Bukovský, 1973]) states that if M an inner model of N de-
finable in N, and κ a regular uncountable cardinal in M, then M κ-globally covers
N if and only if N is a κ-c.c. set-generic extension of M. This theorem suggests
that set-forcing is relatively mild, since if one model is a set forcing extension of
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I thus think that the CIMH is minimally in the running as a con-
tender for an axiom, albeit a controversial one, at least insofar as
one accepts NBG class theory. Of course one could reject the use
of NBG, but this strikes me as an overly harsh restriction (though
[Bagaria, 2005] is keen to make sure all axioms are first-order). For
the sake of argument, let us assume from this point on that the CIMH
is a natural enough axiom of set theory that can be motivated along
similar lines to bounded forcing axioms.

Immediately though, we run into an apparent problem. Given
that both the CIMH and bounded forcing axioms represent natural set-
existence maximising axioms, we may wish to use them in tandem.
However, this is not possible:

Proposition 33. (NBG) The CIMH is inconsistent with the BPFA (and
hence BMM).

Proof. Say that a cardinal κ is reflecting iff κ is regular and Vκ �Σ2 V .
[Goldstern and Shelah, 1995] showed that over ZFC, BPFA implies that
ωV2 is reflecting in L, and their arguments hold for any model of the
form L[x] where x is a real. Thus, under BPFA, any inner model of
the form L[x] contains a reflecting cardinal (and hence an inaccessi-
ble) namely ωV2 . This straightforwardly contradicts the claim that the
CIMH implies that there is a model of the form L[x] that contains no
inaccessibles.

What is going on here? The key issue is that any width absolute-
ness principle depends on a careful calibration between the following
factors:49

another (by some κ-c.c. forcing), then every function in the extension is already κ-
covered by some function in the ground model, which stands in contrast to class
forcing (though, whether there could be an analogue for class forcing is still open).
See [Friedman et al., F] for further discussion of the Bukovský Theorem.

49I am grateful to Matteo Viale for discussion of the nature of the calibration of
width absoluteness principles. Whilst a full examination of the whole space of pos-
sibilities for absoluteness principles is outside the scope of this article, some alter-
natives deserve mentioning. [Bagaria, 2006] provides a detailed survey of how the
various variables of principles of generic absoluteness can be tweaked to yield dif-
ferent results, and how the consequences of the absoluteness principles depend on
the ambient properties of the model. In this vein, Viale has provided a fine-grained
analysis of various forcing axioms including (a) how Martin’s Maximum can be
strengthened and how this relates to category forcings, (b) how many forcing ax-
ioms can be characterised as principles of resurrection (c) how many principles of
set theory such as AC, Łoś’ Theorem, and some large cardinals, can be characterised
as forcing axioms, and (c) how these results are able to yield the kind of absoluteness
suggested as desirable by Bagaria. See [Viale, 2016], [Viale, 2016a], [Viale, 2016b] for
these results. A different approach is suggested by [Venturi, 2020] and taken up by
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(1.) What extensions you consider for width absoluteness. For exam-
ple we might allow set forcing extensions (possibly with some ad-
ditional constraints—e.g. obtained by forcings with the countable
chain condition or proper posets), tame class forcing extensions,
arbitrary extensions etc.

(2.) What complexity of sentences you reflect, and in what language.

(3.) What parameters you allow in the reflected sentences.

(4.) Where we reflect the sentences (e.g. to V , to an inner model
M ⊆ V , to a structure of the form Hκ, etc.).

The problem is that over-generalisation across different areas will
result in inconsistency. It is obvious, for instance, that allowing arbi-
trary parameters and arbitrary set forcing extensions is immediately
inconsistent by collapsing ω1. Or that having Σ2-sentences reflected to
V is inconsistent (since both CH and ¬CH are Σ2). More generally, we
know that no two transitive models M and N with the same ordinals
can be fully Σ1-elementary (with parameters) in one another, since

˜
Σ1-

elementarity entails that V M
α = V N

α for every α.50 Combining the BPFA
with the CIMH is, unfortunately, asking for too much; the absoluteness
given by BPFA produces large cardinals in all models of the form L[x],
but the absoluteness given by the CIMH kills large cardinals in at least
one such model.

5 Maddy-restrictiveness redux: Width abso-
luteness principles

Is there a way to break the deadlock? Since both the CIMH and
bounded forcing axioms count as axioms that maximise in set-
existence, one attractive idea is to examine how they compare with
respect to maximality in interpretive power, and in particular Maddy-
restrictiveness. Here we can prove:

Proposition 34. (NBG) The CIMH strongly maximizes over the BPFA,
in the sense that ZFCCIMH strongly maximizes over ZFC + BPFA.

[Venturi and Viale, 2019] and [Viale, 2020]; to use Robinson infinite forcing in com-
bination with an analysis of model completion and model companionship in charac-
terising absoluteness properties.

50These points, as well as some other easy impossibility results, are made by
[Bagaria, 2006], §3. For a proof of the folklore result that

˜
Σ1-elementarity en-

tails identity for transitive models with the same ordinals, see Observation 2.4 of
[Barton et al., 2020].
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Proof. We first need to show that ZFCCIMH can provide a fair interpre-
tation of ZFC + BPFA (this will immediately give us the maximzation
of ZFCCIMH over ZFC + BPFA since they are mutually inconsistent). As
ZFCCIMH implies the existence of 0], within L we have a reflecting car-
dinal κ (i.e. a regular cardinal such that Vκ �Σ2 V , and in this case an
L-regular cardinal such that V L

κ 4Σ2 L). [Goldstern and Shelah, 1995]
(Theorem 2.11) showed that if κ is reflecting, then there is a proper
forcing iteration P ⊆ Vκ of length κ forcing BPFA. Standard facts about
L under the existence of 0] imply that if L thinks that κ is the least re-
flecting cardinal, then κ is countable.51 Thus, there is an L-generic G
for said forcing in L[0]]. L[G] is then an inner model of ZFC + BPFA. To
eliminate the parameter G (and hence get a fair interpretation within
ZFCCIMH) note that since (i) G is in L[0]], (ii) 0] is definable if it ex-
ists, and (iii) L[0]] has a definable well-order, we can eliminate G via
quantification and putting together definable notions into the follow-
ing formula (informally expressed):

x ∈ L[G] iff ”There is a G such that G is the L[0]]-least generic for the
Goldern-Shelah forcing over the least L-reflecting cardinal and there is
an α such that x ∈ Lα[G]”

Since BPFA is inconsistent with ZFCCIMH, we get maximization im-
mediately, and inconsistent maximization if we can show that ZFC +
BPFA does not maximize over ZFCCIMH.

We prove this by showing that ZFC + BPFA cannot provide a fair
interpretation of ZFCCIMH. By [Goldstern and Shelah, 1995], we know
that over ZFC, BPFA implies that ωV2 is reflecting in L, and their argu-
ments hold for any model of the form L[x] where x is a real. Thus,
under BPFA, any inner model of the form L[x] contains an inaccessible
(and hence a reflecting cardinal) namely ωV2 . This straightforwardly
contradicts the claim that the CIMH implies that there is a model of
the form L[x] that contains no inaccessibles, and the L[x] of any in-
ner model (possibly satisfying the CIMH) is also the L[x] of V (by the
absoluteness of the construction of L[x]). Clearly, truncation at an in-
accessible leaves the argument unaffected.

For exactly this reason, no consistent extension of ZFC + BPFA can
maximise over ZFCCIMH, since any extension of ZFC + BPFA proves
that every model of the form L[x] contains a reflecting cardinal, by
the BPFA alone. We therefore get the strong maximization of ZFCCIMH

over ZFC + BPFA for free.

Thus, despite the inconsistency between the CIMH and BPFA, the

51See Corollary 18.2 on p. 312 of [Jech, 2002].
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CIMH appears appears to Maddy-maximize over the BPFA. Does the
CIMH strongly maximize over BMM? The following theorem indicates
that this may be difficult:

Theorem 35. [Schindler, 2006] (ZFC) BMM implies that for every set X
there is an inner model with a strong cardinal containing X .

BMM thus implies that there are inner models containing cardinals
outside the reach of the CIMH using current technology. It is thus un-
clear if the CIMH alone can maximize over BMM. However, the fact
that the CIMH implies the existence of a model of the form L[x] with
no worldly cardinals has ramifications for interactions with BMM and
other generic absoluteness principles (such as those mentioned above).
We can immediately identify:

Proposition 36. No theory T that implies that there is an inaccessi-
ble (or even worldly) cardinal in L[x] for every real x can ever max-
imise over ZFCCIMH. Hence, if we extend ZFCCIMH to a consistent exten-
sion ZFCCIMH∗ that has a parameter-free definable inner model for T,
ZFCCIMH∗ will strongly maximize over T.

Proof. By assumption, any such ZFCCIMH∗ inconsistently maximizes
over T. But also by assumption, no consistent extension of T can find
a fair interpretation of ZFCCIMH∗ (exactly as in Proposition 34), and so
we have strong maximization.

Since BMM is exactly one such T, if we find a reasonable extension
of ZFCCIMH then such an extension will strongly maximize over ZFC +
BMM.

Thus, whilst the CIMH is inconsistent with other width absolute-
ness principles, it is the other putative axioms that seem restrictive.
Moreover, it is the fact that the CIMH has such strong anti-large car-
dinal properties (prohibiting even principles that imply that all inner
models of the form L[x] for x a real have large cardinals) that gives it
these maximisation properties.

6 Foundational roles of large cardinal axioms
under the CIMH

We are now in a position where we have seen that:

(a) The CIMH can be motivated along lines similar to other principles
of absoluteness such as bounded forcing axioms, and hence should
count as a natural set-existence maximising principle (along the
lines of Bagaria’s account of natural axioms).
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(b) If true, the CIMH implies that some large cardinal axioms (up to the
level of many measurable cardinals) are Maddy-restrictive. More-
over, if the CIMH is extended to include definable inner models
for stronger large cardinals, then we get strong maximisation over
these cardinals too.

(c) Whilst the CIMH is inconsistent with many bounded forcing ax-
ioms, it Maddy-maximises over some of them (e.g. BPFA), and if
extended to include inner models of others (e.g. BMM) maximises
over them too.

We thus seem to have a legitimate perspective on set theory on
which large cardinal axioms are false and restrictive, but consistent.
Earlier however (§1) we identified the following features of large car-
dinals:

(1.) Large cardinals appear to be linearly ordered by consistency
strength and are the standard indicies of consistency strength.

(2.) They are used in various technical model-building constructions
in inner model theory.

(3.) They can be used to prove axioms of definable determinacy.

(4.) They are often regarded as species of ‘maximality’ axiom, in par-
ticular with respect to maximality in interpretive power and maximal-
ity in set-existence.

Our previous arguments put pressure on elements of (4.): There
are set-theoretic frameworks on which large cardinal axioms, whilst
counting as set-existence maximality axioms, are in fact restrictive with
respect to interpretive power. In this section, we’ll argue that nonethe-
less large cardinal axioms can still fulfil roles (1.)–(2.), and (3.) remains
open.

Point (1.) can be dealt with very quickly. In order to study the
consistency strengths of mathematical theories, we only require that
the theories be true in some model or other, not necessarily in V . More
generally, there are the following ‘levels’ for where an axiom Φ can be
true:

(i) Φ could be true in V .

(ii) Φ could be true in an inner model.

(iii) Φ could be true in a transitive model.
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(iv) Φ could be true in a countable transitive model.

(v) Φ could be true in some model (whatever it may be).

For consistency statements, any model will do, and so any of (i)–(v)
are acceptable places for considering Φ. There is no obstacle to having
any of (ii)–(v) for the friend of the CIMH (or any other anti-large car-
dinal principle). Indeed they may well want to accept the consistency
(in some model or other) of ZFC + “There is a Woodin cardinal with
an inaccessible above”, since this allows them to prove their theory
consistent. There is no incoherence here; it is just that for the friend
of the CIMH, large cardinal ‘axioms’ form a body of false but useful
principles.

This, as we saw, played out in the role of large cardinals concern-
ing interpretive power. In order to maximise interpretive power we
just need some ‘appropriate’ (e.g. well-founded, containing all ordi-
nals) place where the relevant mathematics can be developed. But our
earlier observations concerning the maximising properties of the CIMH
show that we can perfectly well have large cardinals in inner models,
and indeed this is positively implied for many large cardinals.52 Thus
far from their being a loss of interpretive power there may in fact be a
gain. Any interpretability work that could be done using a large car-
dinal axiom can be done in an inner model, without requiring that the
axiom be true.

Since they are interrelated, let’s examine (2.) (model-building) and
(3..) (the case for axioms of definable determinacy) in tandem. For
(2.) we should begin by noting that there are a wide variety of model
building enterprises that set theorists engage in. In many cases, we
try to build models that are L-like in that we can determine a rich
variety of their properties (e.g. satisfying the GCH), but also satisfy
some large cardinal axiom. Often such models are of the form L[E]
where E is a set or a class, and in this vein we can consider L[∅] = L
(the vanilla constructible hierarchy), L[M] (where M is the class of
all mice—this is the Dodd-Jensen core model), L[U ] (where U is an
ultrafilter on the least measurable cardinal), L[U ] (where U is a proper
class of ultrafilters; one for each measurable cardinal), and so on.53

For many of these models we can simply build them in V , exactly as
from the perspective of the large cardinal theorist. For example we can
construct L as normal, and since the CIMH implies the existence of 0]

we can build L[0]] too.

52[Arrigoni and Friedman, 2013] also make this point.
53See [Mitchell, 2010] for an outline of inner model theory.
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There are, however, some limitations here. The CIMH implies that
the reals are not closed under ], and so there is some real x for which
x] (and hence L[x]]) does not exist. However, in these cases we can
(if we so desire) interpret the construction as conducted within an in-
ner model on which the reals are closed under sharp. This possibility
shows how one can interpret a construction as building a smaller inner
model within a proper inner model of V with the required properties.54

Within this perspective all the usual technical work can be carried out
(such as comparing different ultrapower iterations and so on). In this
respect, there is still a place to interpret inner model theory in a natural
way.

However, there is a sense then in which the CIMH provides a dif-
ferent picture of the kinds of L-like model that can be built from reals
compared to the large cardinal theorist. For the large cardinal theo-
rist there is often a unique real corresponding to the mouse/mice from
which we want to build the model. For the friend of the CIMH the real
we choose will only have its properties relative to a perspective pro-
vided by a proper inner model, and so there is not in general a unique
real corresponding to the building of some L-like model.55 I remain
agnostic about whether or not this is merely a matter of taste or repre-
sents an objection.

For some philosophical applications of inner model theory, how-
ever, this difference in how models relate to reals is immaterial. For
example, one philosophical application of the existence of L-like mod-
els is given by John Steel who writes:

Canonical inner models admit a systematic, detailed, “fine
structure theory” much like Jensen’s theory of L. Such a
thorough and detailed description of what a universe sat-
isfying H might look like provides evidence that H [a large
cardinal axiom] is indeed consistent, for a voluble witness
with an inconsistent story is more likely to contradict him-
self than a reticent one. ([Steel, 2014], p. 156)

Steel’s point is the following. Given a large cardinal axiom H , we
might (rightly) be concerned about its consistency. However, if we can
construct an L-like inner model MH with the requisite structure theory
(often this is founded on some form of condensation) then we have
a huge amount of information about MH , for example such models
usually satisfy the GCH and versions of principles like ♦ and �. This

54This point is also made by [Arrigoni and Friedman, 2013].
55Though see below for some possible modifications to the CIMH that might avoid

this feature.
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should give us confidence that H is consistent, since we know that if
H is consistent then it is also consistent with the GCH etc. (and indeed
anything that can be forced over MH whilst preserving H). We might,
therefore, expect any inconsistency encoded by H to turn up in one of
these models (which would imply the inconsistency of H by modus
tollens), and since we have not discovered any inconsistency in the in-
ner model we can be more confident that H is indeed consistent. This
contrasts with those large cardinals for which we do not yet have an
inner model theory, since we do not have such information-rich con-
texts in which to examine them. We can now simply note that Steel’s
argument does not depend on there being a unique real in any way, it
is enough for his argument to work that there is some information-rich
context(s) in which H is satisfied, and these models can perfectly well
all be constructed within different proper inner models.

The discussion of inner models immediately brings us on to (3.) the
case for axioms of definable determinacy. Whilst it is not the case that
a principle having anti-large cardinal features immediately disqualifies
the justificatory case for PD found in the literature, we will see that
there are again limitations when it comes to the CIMH.

Anti-large cardinal frameworks can incorporate axioms of defin-
able determinacy because they do not require the literal truth of large
cardinal axioms, but rather only the truth of the large cardinals axioms
in inner models. Generally speaking this is where there are equiva-
lences (rather than strict implications from the large cardinals to ax-
ioms of definable determinacy). For example56:

Theorem 37. (Woodin) The following are equivalent:

(a) Projective Determinacy (schematically rendered).

(b) For every n < ω, there is a fine-structural, countably iterable inner
model M such that M |= “There are n Woodin cardinals”.

Thus it may very well be the case that PD holds, there are plenty of
Woodin cardinals in inner models, but no actual Woodin cardinals in
V . More must be done to argue why the existence of such models must
be explained by truth of the large cardinals, rather than the apparent
consistency of the practice.57

56For a list see [Koellner, 2011].
57This is perhaps what lies behind the following idea of Woodin:

“A Set Theorist’s Cosmological Principle: The large cardinal axioms
for which there is an inner model theory are consistent; the correspond-
ing predictions of unsolvability are true because the axioms are true.”
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Nonetheless, for the specific case of the CIMH (rather than anti-large
cardinal principles in general), we have some limitations. This is due
to the fact that the CIMH implies that PD is false outright, because (as
noted above) the CIMH implies that it is not the case that for every real
x, x] exists and boldface (i.e. with parameters)

˜
Π1

1-determinacy fails.
In spite of this, we do have some definable determinacy; the CIMH is
consistent with (and in fact implies) lightface (i.e. parameter-free) Π1

1-
determinacy.58 Moreover, it is open whether there could be CIMH-like
principles with some anti-large cardinal features that are nonetheless
consistent with strong axioms of definable determinacy like PD.

For example, suppose that one is moved by justifications for
Woodin cardinals and adopts ZFC + “There is a proper class of Woodin
cardinals” as one’s canonical theory of sets and one is not prepared to
give up on this theory in the face of our earlier observations about
restrictiveness. Suppose further that one holds that some CIMH-like
principle should hold on the basis of absoluteness considerations. We
might then formulate the following principle:

Definition 38. (NBG) Let (V ,∈, C) be a NBG structure containing a
proper class of Woodin cardinals. The Class-Generic Inner Model Hy-
pothesis for Woodins CIMHW states that if a (first-order, parameter-
free) sentence φ holds in an inner model of a tame class forcing ex-
tension (V [G],∈, C[G]) containing a proper class of Woodin cardinals,
then φ holds in an inner model of V .

Assuming this axiom is consistent, we would have a version of the
CIMH that is consistent with PD (since a proper class of Woodin car-
dinals implies PD), and the CIMHW trivially implies that there is such
a class. The CIMHW might still have some anti-large cardinal features
though. The usual ways of killing large cardinals under the CIMH in-
volve moving to an outer model of the form L[x] such that L[x] |= ZFC,
but every level Lα[x] violates ZFC, and pulling this back to V using the
CIMH. Assuming then that the existence of a proper class of Woodin
cardinals can be given an inner model theory (i.e. there is a model of
the form L[E] with sufficient fine structure such that L[E] |= “There

([Woodin, 2011], p. 458)

Woodin’s idea is that on the basis of consistency statements, we can make predic-
tions. For example, “There will be no discovery of an inconsistency in the theory
ZFC+“There is a Woodin cardinal” in the next 10’000 years” is a prediction ratified
by the truth of the theory ZFC + “There is a proper class of Woodin cardinals”. I see
no reason why this prediction should be explained by the truth of the large cardinal
axiom rather than its consistency (possibly witnessed by an inner model).

58See [Friedman, 2018], p. 91.
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is a proper class of Woodin cardinals”), the results of [Friedman, 2006]
(in particular Theorem 15) might well then be generalised to show that
over the base theory ZFC + “There is a proper class of Woodin cardi-
nals”, the Inner Model Hypothesis for Woodins implies that there is
no inaccessible limit of Woodin cardinals in V in the presence of PD.
The details appear difficult, especially since the construction of these
inner models is complex, and so we leave the question open in the
conclusion. However, if consistent, we might thereby obtain an ax-
iom with some anti-large cardinal properties, but nonetheless consis-
tent with stronger axioms of definable determinacy.

7 Open questions and concluding remarks

In this paper I have argued that:

(1.) There is a set-theoretic principle of absoluteness (the CIMH) which
should count as both natural and a set-existence maximising.

(2.) Under this principle, some large cardinal axioms (and some
bounded forcing axioms) are Maddy-restrictive.

(3.) Large cardinals can still play many of their usual foundational
roles on this framework, despite their falsity. Nonetheless, there
are some specific questions about how much definable determi-
nacy is desirable.

I’ll close with a few philosophical upshots and directions for future
research.

Tension with ‘height’ absoluteness. Throughout this paper we’ve
been considering principles of absoluteness (e.g. BPFA, CIMH) that are
‘width-like’ in the sense that they consider what is absolute between
the universe and some extension of the universe with the same or-
dinals but different subsets. In this way, the rough motivation is to
make V as ‘wide’ as possible by ensuring that witnesses for certain
claims true in extensions exist. These contrast with ‘height’ absolute-
ness principles (often called ‘reflection principles’) that assert that sen-
tences satisfied by the universe are satisfied (suitably relativised) by
substructures thereof (usually some Vα). But even second-order height
absoluteness (i.e. the claim that if φ(A) holds then there is a Vα such
that (Vα,∈,A ∩ Vα) |= φVα(A) ) implies the existence of inaccessible
cardinals. Both count as principles of set-existence maximality. This
shows that there is a tension between height and width absoluteness
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(and thus perhaps set-existence maximality in general); one cannot
have both in full generality.59

At this point, we might wonder if there are natural weakenings
of the CIMH that yield a greater degree of consistency with large cardi-
nals, thereby incorporating the best of both worlds. Some have already
been considered, for example [Friedman, 2016] considers the IMH], a
principle combining the IMH with a certain amount of reflection from
height extensions. For stronger large cardinals, however, the question
is still open. In this direction we recall questions raised by earlier dis-
cussion:

Questions. Is the CIMHW consistent? If so, does it have substantial
anti-large cardinal consequences?

Answering these questions positively would not only provide us
with a width absoluteness principle consistent with many large car-
dinals but destroying others, but would also provide a version of the
CIMH consistent with axioms of definable determinacy.

Connection to the iterative conception of set. One might instead
push back on the claim that we should be trying to incorporate height
absoluteness at all at the expense of width absoluteness. Whilst we
have mostly concerned ourselves with the idea of restrictiveness, an ar-
gument in favour of width absoluteness as privileged as compared to
height absoluteness can be obtained by considering the iterative con-
ception of set. This tells us to:

1. Take all possible sets at successor stages.

2. Continue this process for as long as possible.

If one thinks then that the CIMH is a good measure of taking all sub-
sets at successor stages, we might simply say that it is not possible to
take all subsets at successor stages and iterate the stages far enough to
satisfy strong height reflection principles or large cardinal axioms. In

59This is especially interesting since certain other kinds of width-absoluteness
principles—such as Woodin’s results concerning the absoluteness of Th(L(R)) or
the Inner Model Reflection Principles of [Barton et al., 2020]—are positively implied
by large cardinal axioms. The situation is complicated by the fact that this tension
seems to generalise further: [Barton and Friedman, MS] shows that there are prin-
ciples related to the CIMH that (i) imply that there are no uncountable sets, and (ii)
under a certain Maddy-inspired definition of maximisation, show existence of un-
countable cardinals to be restrictive (see [Barton, F]).
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this sense, width absoluteness is privileged in relation to height abso-
luteness and/or large cardinal existence.60

Should we repudiate large cardinals on this basis as definitively
false? I want to emphasise that this is not my intention. All we have
seen is that there are certain perspectives on which large cardinal ax-
ioms appear restrictive, and that this calls into question the idea that
the truth (as opposed to consistency in inner models) of large cardinals
is needed for maximality in interpretive power. Moreover, there is a
question as to whether they really postulate ‘large’ sets in a straight-
forward sense. Rather, large cardinal axioms postulate a careful cali-
bration between the largeness of ordinals and the kinds of subset that
exist within the universe. Even the existence of inaccessibles—large
cardinal axioms right at the bottom of the hierarchy—can be viewed
as asserting that certain functions (i.e. subsets) witnessing accessibility
do not exist.

Nonetheless, there are plenty of places where one can object to the
arguments given in this paper, and I am mindful of the phrase “One
person’s modus ponens is another’s modus tollens.” One might take
my observations to show that instead width absoluteness is not a good
measure of subset maximisation. Another option is to take this as a
further false positive for Maddy’s theory of restrictiveness. Either way,
I think that (i) the sense in which large cardinal axioms are taken to be
clear examples of maximisation principles, and (ii) the idea that the
truth (rather than consistency in inner models) of large cardinals is
an essential ingredient of any successful foundational programme are
both deserving of serious philosophical scrutiny and require further
foundational support.
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[Gödel, 1947] Gödel, K. (1947). What is Cantor’s continuum problem?
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Interpreting Gödel. Cambridge University Press.

41

http://logic.harvard.edu/EFI_Magidor.pdf
http://logic.harvard.edu/EFI_Magidor.pdf


[Steel, 2010] Steel, J. R. (2010). An Outline of Inner Model Theory, pages
1595–1684. Springer Netherlands, Dordrecht.

[Venturi, 2020] Venturi, G. (2020). Infinite forcing and the generic mul-
tiverse. Studia Logica, 108(2):277–290.

[Venturi and Viale, 2019] Venturi, G. and Viale, M. (2019). The model
companions of set theory.

[Viale, 2016a] Viale, M. (2016a). Category forcings, MM+++, and
generic absoluteness for the theory of strong forcing axioms. J. Amer.
Math. Soc, 29:675–728.

[Viale, 2016b] Viale, M. (2016b). Martin’s maximum revisited. Archive
for Mathematical Logic, 55(1-2):295–317.

[Viale, 2016] Viale, M. (2016). Useful axioms. ArXiv e-prints.

[Viale, 2020] Viale, M. (2020). Tameness for set theory i.

[Welch, 2017] Welch, P. (2017). Obtaining Woodin’s cardinals, pages 161–
170. Contemporary Mathematics. American Mathematical Society,
United States.

[Woodin, 2001] Woodin, H. (2001). The continuum hypothesis, Part I.
Notices of the American Mathematical Society, 48(6):569–576.

[Woodin, 2011] Woodin, W. H. (2011). The transfinite universe. In
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