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Abstract

A central area of current philosophical debate in the foundations of mathe-
matics concerns whether or not there is a single, maximal, universe of set theory.
Universists maintain that there is such a universe, while Multiversists argue that
there are many universes, no one of which is ontologically privileged. Often forc-
ing constructions that add subsets to models are cited as evidence in favour of
the latter. This paper informs this debate by analysing ways the Universist might
interpret this discourse that seems to necessitate the addition of subsets to V. We
argue that despite the prima facie incoherence of such talk for the Universist, she
nonetheless has reason to try and provide interpretation of this discourse. We
analyse extant interpretations of such talk, and analyse various tradeoffs in natu-
rality that might be made. We conclude that the Universist has promising options
for interpreting different forcing constructions.

Introduction

Recent discussions of the philosophy of set theory have often focussed on how many
universes of sets there are. The following is a standard position:

Universism. There is a unique, maximal, proper-class-sized universe
containing all the sets (denoted by V).

Universism has often been thought of as the ‘“default’ position on the ontology
of setsﬂ However, some have seen the existence of many different epistemic pos-
sibilities for the nature of the set-theoretic universe, shown by the large diversity
of model-theoretic constructions witnessing independence (we discuss two of these
methods later) as indicative of the existence of a diversity of different set-theoretic
universes. In this paper, we will be concerned with forcing. This technique has been
undeniably central in the study of independence in set theory, and (prima facie at
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least) adds a set (or—as we shall see—a class) G to a model 9 to form a forcing
extension IM[G].

In broad strokes, the problem arises when we note that set-theoretic practice is
replete with uses of forcing where the symbol ‘V’ is used to denote the model over
which we force (the so-called ‘ground model’). Since, for non-trivial forcing, the
relevant G added cannot be in the ground model, one might naively think that the
relevant G lives outside V, and so the Universist position is immediately false.

As is well-known, however, there are various interpretative strategies available
to the Universist when it comes to forcing. We discuss these in detail later, but for
now we note that two popular options have been the use of countable transitive
models and Boolean-valued models. In these cases, we re-interpret some or all of
the terms in the forcing construction to yield an interpretation of the forcing talk that
does not commit us to sets outside V. Opponents of Universism sometimes argue
that these interpretations are problematicﬁrin this paper, we argue for the following
claims:

(1.) There is some pressure arising from set-theoretic practice to provide an interpre-
tation of forcing where the use of ‘V”’ in a forcing construction is linked to actual
truthin V.

(2.) Nonetheless, the Universist has several options available, and only mild com-
promises have to be made for some of these interpretations.

In this way, we aim to advance and clarify the dialectic between the Universist
and her opponents. In particular we will argue that underpinning (1.) are additional
philosophical commitments to naturality of interpretation, and that these are (2.)
largely satisfied when considering some extant possibilities for interpreting forcing
constructions.

Here’s the plan: After these introductory remarks, we (§1) briefly outline the
kinds of forcing construction we will consider. Next (§2) we will argue that despite
the fact that the Universist has methods for interpreting the forcing required for in-
dependence results, there is nonetheless some pressure to interpret forcing in such a
way that its use is linked to the use of the symbol ‘V” in forcing constructions. Specif-
ically, we will argue that the Universist is able (through the formulation of axioms
and proving of theorems) to learn more about the structure of V' by viewing V' as
situated in a multiverse framework. We'll argue then that if the Universist accepts
certain constraints on the naturalness of interpretation of mathematical discourse,
there is additional pressure on her interpretation of forcing. Finally (§3) we pro-
vide an analysis of extant interpretations of forcing found in the literature (the forc-
ing relation, Boolean-valued models, the Boolean ultrapower, and countable transi-
tive models). We argue that use of the forcing relation and Boolean-valued models
largely violate the constraints of §2. We will argue that the situation for the Boolean
ultrapower and countable transitive models is more subtle. While there are tradeoffs
to be made for each interpretation, for the countable transitive model strategy these
are relatively minimal (especially given the existence of certain large cardinals), and
for a certain class of forcing constructions the Boolean ultrapower is especially nat-
ural (and especially unnatural for a different class). We conclude with some open
questions concerning the directions of debate for both the Universist and her critics.

2A good example here is [lamkins, 2012].



1 Varieties of forcing

We start with a brief description of forcing constructions to make plain some of their
mathematical properties that will be philosophically relevant later. Forcing comes
in two main kinds; set forcing and class forcingﬂ We briefly sketch the constructions
(deferring to the relevant technical literature where appropriate) noting their simi-
larities and differences. The details will be familiar to specialists, but a feel for some
of the properties of the constructions is necessary for seeing the challenges faced.

1.1 Set forcing

For set forcing we begin with a partial order with domain P, ordering <p, and maxi-
mal element 1p, denoted by ‘P = (P, <p, 1p)’, and have P € 9t for some ZFC mode]ﬁ
9. The relevant p € P are known as conditions and effectively operate by providing
partial information about membership of the new object to be defined. We then, via
a careful choice of names (known as ’P-names’ﬂ and evaluation procedureﬂ add a
filter G on P that intersects all dense sets of P in 9 to M. The end result is a model
IM[G] that (i) satisfies ZFC, (ii) has exactly the same ordinal height as 91, and (iii) is
strictly larger than 9 (in the sense that Mt < M[G])[]

Forcing is an especially interesting philosophical construction for a number of
reasons. First, it is historically significant in that it has been used to settle many open
questions (the most famous examples being the independence of CH and AC). Sec-
ond, it is of central importance in virtue of its ubiquity across modern set-theoretic
mathematics; much of set theory concerns constructing one model from another us-
ing forcing arguments. However, especially philosophically interesting is that (for a
wide class of structures) it keeps models standamﬂ Assuming that the ground model
2 is transitive, well-founded, and satisfies ZFC, and that there is a generic G avail-
able, the forcing extension 9MM[G] (i) has the same ordinals as 9, (ii) satisfies ZFC,
and (iii) is transitive and well-founded. The fact that forcing often keeps the mod-
els standard is significant; generic extensions of a standard model of ZFC are also
ZF C-satisfying cumulative hierarchies and hence ‘look’ like a bona fide universe of
sets.

The issue concerning forcing and V' is, of course, that if we wish to perform a
non-trivial forcing where ‘V’ denotes the Universist’s V' as the ground model, the
relevant generic G must lie outside V| But V was meant to be all the sets there are,

3There is also the related notion of arithmetic forcing used to study models of second-order arithmetic.
Since we are interested primarily in models of set theory here, we set this aside.

4 A brief remark is in order here: One does not always force over models of full ZFC, and forcing over
models of weaker theories is well studied. Indeed, in several mathematics texts (such as [Kunen, 2013]),
the “official” approach is to use the reflection theorem to obtain a model of ‘enough’ ZFC to conduct the
independence proof. We defer consideration of this issue until later.

5A P-name is a relation 7 such that ¥{o,p) € 7[“c is a P-name” Ap € P]. In other words, T is
a collection of ordered pairs, where the first element of each pair is a P-name and the second is some
condition in P (the definition is not vacuous in virtue of the empty set trivially being a P-name).

SWe evaluate P-names by letting the value of 7 under G (written ‘val(r,G) or ‘rg’) be
{val(c,G)|3p € G({o,p) € 7)}. The valuation operates stepwise by analysing the valuation of all the
names in 7 and then either adding them to 7 (if there is a p € G and {0, p) € 7) or discarding them (if
there is no such p € G).

"It should be noted that in order for the forcing to be non-trivial, P has to be non-atomic (i.e. every
p € P has incompatible extensions in P).

8 A model M is normally called standard iff it has the real e-relation. When there is a generic available,
the resulting forcing extendion 9G] will be standard if 91 is. See [Kunen, 2013], §IV.2 for verification of
the basic properties of forcing.

9This is because if G were in V, P — G would be a dense set in V missed by G.



and so such a G does not exist.

1.2 Class forcing

Class forcing is very similar to set forcing, except we drop the requirement that the
partial order and generics are members of 9t and instead permit proper-class-sized
partial orders. The technique also uses partial orders with maximal elements (P, <p, 1p),
and adds a generic G to our ground model 9. The difference with class forcing is
that P (and hence any associated dense classes and () can now be proper-class-sized
rather than just set-sized, and so while P < 91, it is not in general true that P € 90,
and G is added as a class (from which it may be possible to construct new sets).
The construction goes through largely the same as set forcing, with a few additional
intricacies and features[[Y

Class forcing has some interesting properties not enjoyed by standard set forcing.
A good example is that if we allow class forcing over L, then there are reals that we
can add using class forcing that cannot be added by set forcings Further, using
class forcing we can produce models that violate ZFC. For example, the partially
ordered class Col(w,On) (i.e. functions p from finite subsets of w into On ordered
by reverse inclusion) is (without further constraints) perfectly legitimate. But if we
force with this poset we obtain a model 9G] that satisfies ZFC as long as G is not
allowed as a class predicate, as the first-order domains of 9t and 9[G] are identi-
Cal However, if we admit G as a predicate into the language, Replacement fails.
This is because G' codes a cofinal sequence from w to On™(] and there is no set in
M[G] corresponding to On™¢1[13 This is unlike the case of set forcing where 9[G
is guaranteed to satisfy ZFC if 0t does. If ZFC preservation is desired *|some careF_;]
is required in defining the relevant P < 9t to be used in forcing.

Class forcing thus introduces two additional challenges not posed by set forcing.
Whilst we must provide an interpretation of any sets that get added, we must also
explain what happens with a forcing that violates ZFC, and also how we should un-
derstand the addition of a class without the addition of any sets that could underpin
the ‘change’ in classesE]

190ne option here is to force over models of the form L(A) = |J{L(A n Va)|a € On}. Any model
(M, A) of ZF (where we include Replacement for formulas mentioning A) can be changed to a model
of this form by expanding it to a model (M, A*) where A* = {(0,z)|z € A} U {(1,V.M)|a € OnM}.
Details of this presentation are available in [Friedman, 2000], Chapter 2. A second (more recent) option is
to proceed directly in a second-order set theory. See [Antos, 2018] for explanations of approaches of this
method.

UThisis a deep result of Jensen, see [Friedman, 2010], p. 559 for details.

12To see this, note that for any P-name o for this poset and for each condition p in the in-
tersection of the transitive closure of o with P, ran(p) < rank(c). We then define the dense
set D = {p € P|rank(c) € ran(p)}. D is then both dense and definable over 9. Letting
oP = {7P|3q € P[r,q € 0 A p <p q]}. We then have 6” = 0% € M whenever G is P-generic over
Mand p € D n G, because p either extends or is incompatible with any condition in the transitive closure
of 0. Hence, whenever G is P-generic over 9, they contain exactly the same first-order objects.

B3For details, see [Holy et al., 2016].

14We shall argue later that for the purposes of talking about forcings over V/, there is no a priori reason
why ZFC preservation is especially desirable.

15The relevant conditions are pretameness and tameness of the partial order, corresponding respectively
to preservation of Replacement and Power Set. See [Friedman, 2000] for details.

16 A delicate issue here is exactly what theory our starting universe satisfies when performing a class
forcing. [Friedman, 2000] is a thorough presentation, and studies class forcing over structures of the form
(M, A), where A is first-order definable with parameters. However, we might also try to force over
models of full Morse-Kelley class theory, see [Antos, 2018] for discussion. We will suppress these details
for philosophical ease.



2 Looking at V' through the Multiversist lens

We thus have two kinds of construction that seem to add external entities to models,
and the datum that often set theorists use the terms ‘V’" and ‘V[G]’ when performing
a forcing construction. However, more must be done philosophically to create a
genuine problem here. For example, why (given the Universist’s ‘predicament) can’t
she just insist that the use of the terms ‘V’ and ‘V[G]’ should not be understood
literally, or that forcing is simply not a legitimate construction? In this section we’ll
provide some support to the idea that there is a genuine problem to be dealt with
here, and one way of motivating this problem is via constraints on the naturality of
interpretation.

We will simply take it as read that the Universist should not outright reject forcing
as a legitimate mathematical technique. Forcing is an essential part of the working
set theorist’s toolkit, and clearly represents a coherent body of study. We are also
moved by the more open-ended desire to provide the Universist’s opponent with the
tools she requires to construct her objection, rather than just rejecting the grounds for
the question outright.

Therefore throughout the paper we will analyse ways in which the Universist can
interpret forcing talk. However just to begin setting things up, we should note that
the Universist can provide interpretations of forcing that are non-vacuous. We discuss
these approaches in detail §3, but two standard approaches are either to regard forc-
ing statements as a fagon de parler for speaking about Boolean-valued models or as
concerned with countable transitive models of (a fragment of) ZFC Each method
of interpretation, however, yields a model that does not commit the Universist to sets
outside VE;] This is pertinent, since one important use of forcing constructions has
been to show independence results. Specifically, given a statement ¢ (such as the con-
tinuum hypothesis) we use forcing to construct a model of (a fragment of) ZFC+ —¢,
thereby showing that ¢ is not a consequence of (a fragment of) ZFC (or some exten-
sion thereof). If all we wish to do is show essentially number-theoretic facts about
relative provability, then there is little pressure to accept that forcing requires any-
thing more than a non-vacuous interpretation; all we need to do is show that there is
some model or other that can serve as the interpretation of the forcing language and as
a counterexample to the claim that ZFC |- ¢, and the Universist can already do this.

In order for the existence of forcing to provide evidence against the Universist
then, more needs to be said. In the rest of this section we will develop this problem.
We will argue for the following claims:

(i) Forcing is more than just a tool for proving number-theoretic consistency facts,

7Indeed, this is the strategy of many set theory textbooks. For example the Boolean-valued model
strategy is put forward by [Jech, 2002]:

“As the properties of the generic extension can be described entirely withing the ground
model, statements about V[G] can be understood as statements in the ground model using
the language of forcing.” ([Jech, 2002], p. 201)

Whereas the countable transitive model strategy is the main strategy pursued in [Kunen, 2013] (see Ch.
4 85).
18K oellner, for example, is sensitive to this point:

“The advocate of the universe view is unmoved by these considerations [arising from forc-
ing] since the models produced are not candidates for the universe of sets, the first because
it is an object within the universe of sets, the second because it is a description of a class-size
structure which is not even of the relevant type. The mere existence of the model-theory
of forcing (something that is uncontroversially accepted by both parties) is not sufficient to
secure the multiverse conception. Something more needs to be said.” ([Koellner, 2013], pp.
18-19)



it is also useful for formulating axioms and proving theorems about large in-
finitary objects in V.

(ii) Given an acceptance of the claim that providing a ‘natural” or ‘transparent’” in-
terpretation of mathematical discourse is desirable, the Universist has addi-
tional constraints on her interpretation of forcing.

2.1 Proving theorems and formulating axioms

How is forcing useful for more than proving number-theoretic facts? As we'll see,
forcing over V' can be used in analysing the structure of large infinitary objects out-
side the domain of number theory. This is both with respect to proving theorems
from within ZFC, but also for formulating axioms that go beyond ZFC (and prov-
ing theorems on their basis). As we’ll discuss below, this puts some pressure on the
claim that we might want more than just any old interpretation of the mathematics—
since viewing V" as though it were part of a multiversist framework facilitates insight
concerning V, we might desire an interpretation of this talk that respects as much in-
tuitive content of the mathematics as possible. Before we provide this philosophical
analysis though, we provide a brief description of the mathematical landscape to
show the importance of this way of thinking.

Proving theorems

Within ZFC, there are a wide number of questions concerning V' that can be settled
on the basis of considering forcing extensions. The rough strategy of such theorems
is to show that if V' has a forcing extension such that ¢ (for some particular ¢) then
some other sentence ¢ holds of V' (say by using absoluteness facts). For exampleEg]

Theorem 1. [Baumgartner and Hajnal, 1973] w; — («)2 for all finite n and count-
able « (i.e. For all finite n and countable , every partition of the two-element subsets
of wy into a finite number of pieces has a homogeneoug™|set of order-type a).

The proof proceeds by finding a homogeneous set in a forcing extension where
MA holds. This establishes that a certain tree from the ground model is non-well-
founded in the extension. We then know, by the absoluteness of well-foundedness,
that the tree is also non-well-founded in the ground model, establishing the theorem.

The theorem is broadly illustrative of how one can use the perspective of exten-
sions to prove facts about the ground model. One moves to an extension where
one has ensured the existence of objects of a certain desirable kind, used these to
reason about objects in the ground model, and then inferred via absoluteness facts
(e.g. Lévy-Shoenfield absoluteness) that the ground model must in fact have the rele-
vant properties. Importantly here, theorems like the above are not straightforwardly
about number theory and the possibility of proof, but rather concern genuine infini-
tary objects in the ground model.

A compendium of similar theorems is available in [Todorcevi¢ and Farah, 1995].
One further clear example bears mentioning here though. Since the formulation
of CH (and realisation that it is independent from ZFC) set theorists have studied
so-called cardinal characteristics; the study of uncountable infinite sets that may or
may not be smaller than the continuum. The relationships of these infinite cardinals

19T am grateful to Andrés Caicedo for pointing out this example.
20Here, a homogeneous set is a subset X of wi such that every 2-element subset of X is in the same
member of the partition.



are well studied@ but recently [Malliaris and Shelah, 2016] showed that two such
characteristics (namely p and t) that were previously thought to be likely separable
in certain models were in fact equal. The proof is rather involved@ but depends
crucially on supposing for contradiction that p < tin V, and then tracing out some
consequences of this assumption (and finding a contradiction) in a forcing extension
V[G]. Thus, situating V within a Forcing Multiversist framework (i.e. someone who
thinks that no universe is maximal and we can always move to a forcing extension)
allows us to solve importanﬁ and difficult set-theoretic questions on the basis of
how V behaves with respect to its forcing extensions.

Thus, forcing extensions can function with respect to V' in contemporary set the-
ory somewhat like the historical situation with complex and real numbers. For sev-
eral years, before the advent of interpretation of the complex numbers in the Eu-
clidean plane, mathematicians were still using the algebraic properties of complex
numbers to prove results about the reals with great success|*| Similarly, extensions
of V' can be used to determine properties of V. It is the external perspective provided
by the forcing extension that can facilitate a greater understanding of the ground
model. The Universist then, might feel some pressure to interpret forcing over V—
by looking at V' from V[G], she is able to see more.

Formulating axioms

The same is true also for theories extending ZFC. Especially interesting here is that
forcing becomes a useful tool not just for proving theorems, but also formulating axioms.
As we explain below, the flexibility afforded by extensions often provides us with
additional resources for expressing axioms with interesting properties.

One way of asserting the existence of large cardinals (often quite strong), is through
the use of elementary embeddings. The cardinals measurable, strong, supercompact
(among others) are all naturally defined by positing the existence of elementary em-
beddings from V into transitive inner models. These represent strong axioms, push-
ing us (unlike smaller large cardinals) well beyond V' = L. When defining a large
cardinal through an embedding j : 91 — 9, the strength of the embedding depends
mainly on two parameters:

(i) The size of 9T and IN.

(ii) Where j sends the ordinals.

For instance, the minimal case for an embedding between proper class models;
namely the existence of a non-trivial j : L — L suffices to define the principle
that “0% exists”. If we assume that dom(j) = V, we strengthen to the level of a
measurable cardinal. We know that the existence of a non-trivial j : V. — V is

21Chichon’s diagram, for example, is a manifestation of the detailed knowledge we now have concern-
ing how some of these characteristics behave in models of ZFC.

22 thank Jonathan Schilhan for patient explanation here.

Z3For instance, the result (unlike much of set theory) attracted some interest from the wider mathemat-
ical community, being the subject of a piece in Quanta magazine and receiving some attention from Tim
Gowers.

24Gee, for example the remarks in [Painlevé, 1900] concerning real and complex analysis:

“The natural development of this work soon led the geometers in their studies to embrace
imaginary as well as real values of the variable. The theory of Taylor series, that of elliptic
functions, the vast field of Cauchy analysis, caused a burst of productivity derived from this
generalization. It came to appear that, between two truths of the real domain, the easiest
and shortest path quite often passes through the complex domain.”



inconsistent (modulo ZF) with ACE] Despite this we can study intermediate cardinals
by modifying the properties of j and 91. For example, we can use the following pair
of definitions to strengthen the notion of measurable along the dimensions of (i) and
(ii):

Definition 2. A cardinal « is A-supercompact iff it is the critical point of a non-trivial
elementary embeddings j : V — N, such that j(x) > A and *M < M (i.e. M is
closed under A-sequences).

Definition 3. A cardinal « is supercompact iff it is A-supercompact for all A € On.

The definition of supercompact uses the dimensions of (i) and (ii) to increase the
strength of the embedding. We postulate a higher degree of similarity between V'
and 9 (in terms of closure under A-sequences for the relevant \), and stipulate that
j sends x above .

Standard discussions of middling large cardinals proceed from this template.
However, we can generalise the construction to generic embeddings. Given a forcing
construction adding a generic G over a model 91, a generic embedding is of the form
J N — M < N[G]. In other words, we begin to study embeddings from structures
to inner models of their forcing extensions.

Recently, there has been an increased focus on such embeddings. Indeed, the
study of generic embeddings has become widespread, as Foreman (in a Handbook of
Set Theory article on generic embeddings) illustratesﬁ]

“The main aim of the chapter is to illustrate that there is a coherent the-
ory here, that there are unifying fundamental ideas that occur frequently
in many different contexts. These include master condition ideals, nat-
ural and induced ideals, disjointing, self-genericity, the role of diagonal
unions for representing Boolean sums, good elementary substructures—
the list is long.” ([Foreman, 2010], p890)

Generic embeddings are thus useful for studying certain natural mathematical
properties. Furthermore, the involvement of extensions in the consideration of em-
beddings provides an additional dimension in which we may vary the nature of the
construction. Not only does the embedding depend upon the size of the domain
and range of the embedding and where the ordinals are sent, but also on a third
parameter:

(iif) The nature of the forcing required to define j E]

The fact that we have an extra dimension in which we can vary the structure of
these kinds of embeddings makes them an intriguing subject matter. However, even
more interesting is that the critical points of these axioms can be rather small. For
example, we have:

Theorem 4. If I is an wy-saturated ideal on w; and U is generic for the poset of I-
positive sets, then in V[U] the ultrapower Ult(V,U) is well-founded and we get a
map j : V — MM < V[U] with crit(j) = wy and j(w1) = wo.

25Gee [Kunen, 1971] for the result, and [Schindler, 2014] for a recent presentation.
26Gee also, [Foreman, 1986] for several key results, and [Foreman, 1998] for a more informal overview.
27For further exposition of this line of thinking, see [Foreman, 1998] and [Foreman, 2010].



Such an embedding from V to another model 9t has w; as its critical point, far
below the size of a measurable cardinal@ Despite the smallness of the critical points,
however, these embeddings have a significant amount of large cardinal strengthEg]
Thus, these embeddings provide significant combinatorial power whilst facilitating
proof concerning small uncountable sets Y|

Moreover, it is not just through postulating the existence of embeddings directly
between V' and models within forcing extensions that allow us to formulate new
axioms with significant large cardinal strength. Through analysing properties of or-
dinals in extensions, we can come to characterisations of new varieties of cardinal.
A relatively recent development is the emergence of virtual large cardinals. Here, we
postulate that a particular ordinal or initial segment of V' has a certain large cardinal
property in a forcing extension (as opposed to internal to V). Various generalisations of
the standard large cardinal notions have been studied in this framework, including
the notions of virtually supercompact, virtually strongly compact, virtually strong, virtu-
ally Woodin, and virtually extendible. As it turns out, the Kunen inconsistency does not
hold for virtual embeddings (in the sense that one can have elementary embeddings
J : Vx — Vi with X far greater than the supremum of the criticial sequence), and
so one even has a notion of virtually rank-into-rank without the usual restrictions on
the size of the rank. Especially interesting is that these cardinals are consistent with
V = L, in stark contrast to their ‘non-virtual’ counterparts. They thus provide an ele-
gant hierarchy that helps to elucidate the large cardinal landscape between ineffable
cardinals and 0¢F]

We will consider just one example to help see how these cardinals are defined:

Definition 5. [Schindler, 2000] A cardinal & is remarkable iff in the Col(w, <k) forcing
extension V[G], for every regular A > & there is a cardinal Ay < k, A¢ regular in V/,
and j : HY, — HY such that crit(j) = v and j(v) = &.

We are able to characterise the notion of a cardinal being remarkable if, when we
collapse all cardinals less than x to w through forcing, in this C'ol(w, <k) extension
V[G], for every regular X > « in V[G] there is a V-regular cardinal A\ < x such that
the heriditarily Ap-sized sets elementarily embed into the hereditarily A-sized sets.
The definition turns out to be a characterisation of the notion of virtual supercompact-
nesstl and lies in consistency strength between a 1-iterable and 2-iterable cardinal.
While not strong enough to push us outside V' = L (no known virtual cardinals can),

2We know, for instance, that |w1| < |P(w)|, making it accessible. To get an idea of the scale of the
difference, if k is measurable then it has to be an inaccessible limit of inaccessible cardinals.

2For example, the existence of both a saturated ideal on wy (and associated generic embedding) and a
measurable cardinal implies the existence of an inner model with a Woodin cardinal, whereas the consis-
tency strength of a measurable cardinal is far below that of a single Woodin. See [Steel, 1996 for details.

30Foreman, for example, writes concerning generic embeddings:

“The advantage of allowing the embeddings to be generic is that the critical points of the
embeddings can be quite small, even as small as w;. For this reason they have many
consequences for accessible cardinals, settling many classical questions of set theory.”
([Foreman, 2010], p887)

31 An excellent survey of the recent developments in virtual large cardinals mentioned here is available
in [Gitman and Schindler, 2018]]. Two particular uses of these cardinals are to study Silver indiscernibles in
L and index the consistency strength of other kinds of virtual axioms. In fact, we could have spoken for
longer about different kinds of virtual principle, such as virtual forcing axioms, but considerations of space
prevent a presentation of the full picture. For an overview, references, and further reading the reader is
once again directed to [Gitman and Schindler, 2018].

32Gee [Gitman and Schindler, 2018], p- 2.



it is substantially stronger than a weakly compact Cardinafj Thus, by studying how
sets are embeddable in the extension, we are able to ascribe large cardinal properties
to ordinals in V. The problem then for the Universist is that we are predicating a
large cardinal property of x, an object in V, but using resources from extensions to
define what it is to have said large cardinal property.

The case of class forcing is somewhat trickier, since it has received less attention
than set forcing. However, some uses have been found in the literature; for example
certain generic embeddings can be defined using class-sized stationary tower forcing
(on the assumption that V' satisfies large cardinal properties)ﬁ]

Moreover, one can show that class forcing facilitates the formalisation of different
axioms that go beyond what can be captured by set forcing.

A good example here is:

Axiom 6. The Inner Model Hypothesis. Let ¢ be a parameter-free first-order sentence.
By an outer model of a model 91, we mean a model O satisfying ZFC with the same
ordinals as 9, and such that 9t < O. Then the Inner Model Hypothesis for 91 states
that if ¢ is true in an inner model of an outer model of 91, then ¢ is already true in
an inner model of 9.

The Inner Model Hypothesis, as proposed by [Friedman, 2006]], is meant to apply
to arbitrary width extensions of a model, as well as arbitrary inner models. It is there-
fore often stated as second-order assertions concerned with a countable transitive
models M = (M,€,C™) in some ambient universe (possibly V), where quantifi-
cation over 91 and its outer models is uncontroversial. Recently, however, Antos,
Barton, and Friedman showed that by using infinitary logics to code satisfaction in
outer models, and coding the infinitary logic using using proper-class-sized trees,
one can formulate versions of the full IMH in a variant of MK Since we are in-
terested in forcing extensions, we will restrict ourselves to considering the following
two below restricted forms. Since we are just setting up the axioms at this stage,
one can regard them for the moment as concerned with a countable transitive model
M = (M, e,C™) of some second-order set theory, in a wider second-order multiverse
(possibly given by some ambient universe). Again, letting ¢ be parameter free we
have:

Axiom 7. 9 satisfies the Set-Generic Inner Model Hypothesis iff whenever a (first-
order, parameter free) sentence ¢ holds in an inner model of a set forcing extension
M[G] = (M[G],e,C™E) of M = (M,€,C™) (where M[G] consists of the inter-
pretations of set-names in V using G, and C™'¢] consists of the interpretations of
class-names in C™ using G), then ¢ holds in an inner model of 9.

33Weakly compact cardinals are so named in virtue of being characterisable through compactness prop-
erties on infinitary languages. They admit of a diverse number of equivalent characterisations. For details,
see [Kanamori, 2009].

34The following example is taken from [Larson, 2004], §2.3, p. 59. Suppose that V' contains a proper
class of completely Jénsson cardinals. Letting Po, be the class tower forcing, and G < Py, be V-generic,
and V[G] be:

VIGI = |J L(Va,GnVa)
aeOrd

there exists a generic embedding j : V. — V[G] such that for every a € Py, a € G iff j[ua] € j(a). I
thank Monroe Eskew for bringing this example to my attention.

%See [[Antos et al., 5] for discussion. One requires an additional assumption on the existence of iso-
morphisms, which Antos, Barton, and Friedman add to the second-order set theory. The proof does not
use the full strength of class comprehension, but rather can be accomplished with E%—Comprehension.
However, E%—Comprehension contradicts the usual IMH, and so in this framework the IMH is formalis-
able, but false. Antos, Barton, and Friedman remedy this by restricting to outer models which also satisfy
S1-Comprehension.
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This admits of a natural generalisation:

Axiom 8. Again, let M = (M,e,C™) be a NBG structure. The Class-Generic Inner
Model Hypothesis is the claim that if a (first-order, parameter free) sentence ¢ holds
in an inner model of a tame class forcing extension M[G] = (M[G],e,C™C]) of
M = (M,e,C™) (where M[G] and C™C] are defined as above), then ¢ holds in an
inner model of M.

If 91 satisfies the Set-Generic Inner Model Hypothesis we get some consequences:
Fact 9. If 9 satisfies Set-Generic Inner Model Hypothesis, then M |= V' + LFE]

However, though the Set-Generic Inner Model Hypothesis is sufficient to get us
a certain richness of inner models (enough to break V' = L) we get more if we allow
class forcings. This is brought out in the following:

Fact 10. Assuming the consistency of an model M with a (V,,)™ < M, there is a
model satisfying the Set-Generic Inner Model Hypothesis that does not satisfy the
Class-Generic Inner Model HypothesisE]

It thus seems that class forcing is able to aid in the facilitation of formulating ax-
ioms that substantially go beyond those that are formalisable using set forcingsEg]
Of course, we have thus far formulated these axioms as about countable transitive
models, which are not the ‘absolute” universe. We will discuss the merits of different
formulations of extension-talk involving V" later, but for now we note that these ver-
sions can be formulated by the Universist, assuming that she can use NBG over V.
In each case, we can use the class theory to quantify over inner models (that may not
be definable) whilst interpreting truth in an inner model of a forcing extensions by
what sentences (in the second order set theory) are forced by particular conditions.
We can (given some class theory) thus formulate these axioms as about V. Viewing
V as situated in a multiverse framework (suitably coded), may then yield insight.

36We can see this by the following:

Proof. Assume M = V = L and that 91 satisfies the Set-Generic Inner Model Hypothesis. Then there
is an inner model of an outer model in which V' = L is false (the addition of a single Cohen real x over
L to L[x] will suffice, with the relevant inner model simply being the forcing extension L[xz]). By the
Set-Generic Inner Model Hypothesis there is an inner model of L in which V' + L. But L is the smallest
inner model, andso M =V =Land M=V + L, L. O

37T am grateful to Sy Friedman and Monroe Eskew for discussion of the following:

Proof. Take a model M of V = L containing a V' = LY < V™ = L™ We work from the perspective
of M. For any particular 8, let Col(w, 8) be the Lévy collapse of 3 to w, and let G be generic for Col(w, k).
We claim that (L[G], Def¥[G]) satisfies the Set-Generic Inner Model Hypothesis. It suffices to show that
if a sentence holds after forcing with Col(w, A) for some A, then this A can be chosen to be less than «. This
is because any set-forcing can be absorbed into Col(w, A) for some X (see here [Cummings, 2010] (§14) for
technical explanation) and any two Col(w, A)-generic extensions satisfy the same sentences.

Now if ¢ holds after forcing with Col(w, X) for some ), then as L is elementary in L, ¢ also holds
after forcing over L, with Col(w, \') for some X < k. Butif G()\’) is generic over L, for Col(w, \'), then
L« [G(X)] is elementary in L[G(\')] as Col(w, ) is a forcing of size less than k, using the fact that x is a
cardinal of L. So ¢ holds after forcing with Col(w, \') for some X' < , as desired.

However, (L[G], DefL[G]) does not satisfy the Class-Generic Inner Model Hypothesis because every
real in L[G] is set-generic over L, and by Jensen coding any model of the Class-Generic Inner Model
Hypothesis must have reals which are not set-generic over L. O

38Since we are interested in what is possible for a Universist, we will say little about motivation for
these axioms here. However, one way of motivating these sorts of axioms is as absoluteness principles.
Effectively, they say that | already has witnesses for ways things ‘could’ be (in the sense of possibility in
coded extensions).
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2.2 The Naturalness Constraints

Above, we saw how situating V' in a multiverse of universes obtained by forcing
facilitates the proving of theorems and formulation of axioms beyond the merely
number-theoretic. However, we also noted that the Universist could at least inter-
pret this talk non-vacuously. How might we then combine the observation that forc-
ing is more than a tool for proving independence into a genuine problem for the
Universist?

The key notion will be the naturalness of interpretation provided. As we have
just argued, the proving of theorems and formulation of axioms in the present con-
text relates to more than the mere existence of models to required to prove relative
consistency proofs. Forcing allows us to prove that certain uncountable cardinals
are in fact equal (e.g. p = ), posit the existence of and study large cardinals (e.g.
remarkable cardinals), and formulate axioms with consequences for the existence of
real numbers and accessible cardinals (e.g. generic embeddings and variants of the
inner model hypothesis).

We might then press the following idea: It is not enough to merely give some
model or other in providing an interpretation of forcing. Since it seems that set-
theorists can use extensions of V' to reason about V, and that when performing this
reasoning the relevant extensions appear to be bona fide universes of set, we should
want whatever interpretation we prescribe to be as faithful as possible to the set
theorist’s intuitive thinking. Perhaps under such constraints the Universist’s inter-
pretations will come out as deficient?

There are two immediate challenges to this line of attack:

(1.) The notion of what counts as a ‘natural’ or ‘faithful” interpretation is imprecise.

(2.) Itis unclear why the Universist cannot just reject this requirement on naturalness
outright.

Both challenges can be answered, at least partially. Regarding (1.): While it is
true to say that what the notion of being a ‘natural’, ‘faithful’, or ‘semantically trans-
parent’ interpretation comes down to is going to be a difficult question to answer (in
the sense of providing necessary and sufficient conditions) this does not mean that
we have zero grip on the notion. In fact, the following all seem to be legitimate and
precise constraints on ways in which an interpretation can be more or less natural:

(1.) (The Facetious Constraint.) The interpretation of ‘V’ could refer to V, G to an
actual generic outside V, and V[G] to a literal extension of V.

(2.) The interpretation of ‘V” in the construction could be V itself.

(3.) More minimally, the interpretation of ‘V” in the construction could satisfy the
same first-order sentences as V.

(4.) One or both of the interpretations of ‘V’ and ‘V[G]’ could be well-founded, and
hence admit of an absolute notion of being formed through transfinite iteration
of a powerset-like operation.

(5.) The interpretations of ‘V" and ‘V[G]’ could contain uncountable sets.
(6.) Each of ‘V’ and ‘V[G]’ could contain all the ordinals.
(7.) The structures denoted by each of ‘V” and ‘V[G]’ could be two-valued.

12



(8.) The movement between the interpretation of ‘V" and ‘V[G]’ could be ‘transpar-
ent’, in the sense that whatever is denoted by ‘V[G]’ really is obtainable by the
usual forcing idea of the addition of a generic to whatever is denoted by ‘V".

(9.) Steps in proofs that use forcing constructions could be interpreted with the min-
imal amount of change, so additional or different steps do not need to be made
to keep the proof in line with the interpretation.

We will refer to the project of trying to satisfy as many of the above desiderata as
possible as satisfying the Naturalness Constraints. While we certainly do not contend
that the list is complete, we think that the ease of providing such a preliminary list
shows that we have some grip on the notion of what counts as more or less natural as
an interpretation. The Facetious Constraint is so-named because it obviously cannot
be satisfied by the Universist, but as we shall see shortly is helpful in clarifying the
dialectic.

Regarding (2.): The question of whether or not the Universist should accept the
Naturalness Constraints to any degree is going to be a difficult one. However, some
points can be made in the favour of acceptance.

First, we might accept the Naturalness Constraints just for the sake of examining
the opponents challenge on the strongest grounds possible. If the Universist can
provide an interpretation that respects as many of the Naturalness Constraints as
possible, this represents a more robust conclusion and so is philosophically desirable
anyway.

Second, responding to the Naturalness Constraints is particularly dialectically ef-
fective given that some opponents to Universism seem to subscribe to similar ideas.
Consider the following passages from Hamkins (an ardent anti-Universist):

“This abundance of set-theoretic possibilities poses a serious difficulty
for the universe view, for if one holds that there is a single absolute back-
ground concept of set, then one must explain or explain away as imagi-
nary all of the alternative universes that set theorists seem to have con-
structed. This seems a difficult task, for we have a robust experience in
those worlds, and they appear fully set theoretic to us. The multiverse
view, in contrast, explains this experience by embracing them as real, fill-
ing out the vision hinted at in our mathematical experience, that there is
an abundance of set-theoretic worlds into which our mathematical tools
have allowed us to glimpse.” ([Hamkins, 2012], p. 418)

and

“...a set theorist with the universe view can insist on an absolute back-
ground universe V, regarding all forcing extensions and other models
as curious complex simulations within it. (I have personally witnessed
the necessary contortions for class forcing.) Such a perspective may be
entirely self-consistent, and I am not arguing that the universe view is
incoherent, but rather, my point is that if one regards all outer models of
the universe as merely simulated inside it via complex formalisms, one
may miss out on insights that could arise from the simpler philosophical
attitude taking them as fully real.” ([Hamkins, 2012], p. 426)

Part of Hamkins’ point, it seems, is that while he acknowledges that the Uni-
versist can interpret forcing constructions, the interpretation provided is oftentimes
unnatural requiring “contortions” and not respecting the “mathematical experience”.
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Better instead (he argues) to take a forcing multiversist position on which extensions
are uncontroversially and easily available (indeed, the forcing multiversist immedi-
ately satisfies the Facetious Constraint). If the Universist can provide a response that
satisfies as many of the Naturalness Constraints as possible, she would thus provide
the strongest possible response to criticisms in the style of Hamkins.

Thirdly, the Naturalness Constraints chime well with things the Universist might
be tempted to say anyway. A standard (but by no means the only) response one of-
ten receives when asking why one might hold the Universist picture is that it seems,
given the iterative conception of set, that one is defining a unique structure. One
simply iterates the powerset operation through the ordinals, thereby specifying V.
Now, while the significance or effectiveness of such an argument is highly debatable,
it nonetheless bears mentioning that the line of thinking relies on something like the
Naturalness Constraints: It certainly seems as though we talk about a unique struc-
ture when we begin to study set theory through the iterative conception, and so the
most natural interpretation (the Universist might argue) is that we do so. (Note that
this remark (and the current debate) would apply equally well to theorists who do
not hold that the universe has a definite height, but are nonetheless tempted by the
idea that the powerset operation is definite.) In short, the Universist believes that
there is an absolute universe V in which the greater-than-first-order notions of well-
foundedness, uncountability, containing all the ordinals, etc. can be computed. An
interpretation in which we have more of these object-language notions absolute be-
tween the interpretation in question and V' (understood as the context for the meta-
theory) is thus more natural than one in which fewer notions are absolute@ She is
thus involved in a delicate balancing act in which she tries to find an interpretation
that is as ‘V'-like’ as possible, whilst keeping forcing as about a genuine extension of
the interpretation by generic filters.

We thus believe that the Universist has at least some reason to try and provide an
interpretation of forcing that respects the Naturalness Constraints. From now on we
shall simply take it as an assumption that she would like to satisfy as much of the
Naturalness Constraints as possible, whilst acknowledging that this is an area that
merits further analysis.

As we shall see, extant interpretations of forcing constructions reveal that the
Universist can satisfy a good deal of the Naturalness Constraints, although the vari-
ous interpretations behave differently. First, however, let’s examine a quick example
to see how the Naturalness Constraints might exclude certain interpretations as fully
satisfactory. Both remarkable cardinals and generic embeddings in fact admit of for-
mulations internal to V, without mentioning forcing at all. Remarkable cardinals, for
example, can be formulated in terms of embeddings between countable models and
certain sets of particular hereditary cardinalities{*”| Generic embeddings can like-
wise be formulated by an internal to V' condition, usually in terms of the existence
of particular idealsF_T] One might then just regard the formulation of remarkable car-

3This is not to say that keeping the distinction between object-language and meta-theory isn’t impor-
tant, and that significant mathematical insights can’t be gained by working in a non-standard meta-theory;
a good example here being [Hamkins and Yang, 2013||. The point is rather that the Universist believes in
the existence of these absolute notions, and thereby believes some contexts are more ‘V'-like” than others.

40See here [Schindler, 2001].

#1Some remarks of Foreman are pertinent here:

“The language of ideals, together with the mechanics of forcing provide the same kind of
vehicle for stating generalized large cardinal axioms in the language of set theory. Assum-
ing the existence of a proper class of Woodin cardinals, Burke’s Proposition...shows that
every countably complete ideal is pre-precipitous. More directly: the existence of an ele-
mentary embedding j : V — 9 < V[G] where G < P is generic and j” X € 9 is easily
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dinals and generic embeddings as a fagon de parler for ascribing these internal-to-V’
properties to certain objects.
Given the Naturalness Constraints, this strategy seems to perform relatively poorly.

In particular, whilst there is no denying the mathematical interest of these equiva-
lent characterisations, as an interpretation of the relevant forcing discourse there is
no actual interpretation given to the forcing itself, no model similar to V' is extended,
and there is no actual forcing occurring at all. In this way, the interpretation does not
seem very natural and somewhat contorted; part of the insight gained from having
these axioms is facilitating the study of objects of V' ‘as if’ they were situated in a
forcing multiversist framework Often the most natural context in which to define
and study them (and the relevant associated objects internal to V') is the forcing per-
spective. An interpretation of forcing which can make use of this perspective thus
gains more insight than one which cannot.

3 Available interpretations

Thus far we’ve argued that (1.) The Universist has reason to want to interpret forc-
ing talk over V (in order to study the objects of V') and (2.) Taking the Universist’s
opponent’s complaints seriously depends on holding that some degree of ‘natural-
ness in interpretation’ is desirable. We will now analyse ways that we might code
talk concerning forcing extensions, and see how they perform with respect to the
Naturalness Constraints. We'll argue that different interpretations sacrifice different
aspects of the Constraints, but that some are more serious than others. In the end
we’ll see that the so-called Boolean ultrapower map is especially natural for a certain
class of forcings, and the countable transitive model strategy provides a method that sat-
isfies many of the Naturalness Constraints. We'll also see that certain natural forcing
contexts can be obtained through the use of large cardinals.

3.1 The forcing relation

We begin with a discussion of how we might try to capture claims concerning forc-
ing extensions syntactically by defining a relation that captures the consequences of
extensions without actually committing to the existence of any models. For forc-
ing, this can be done by defining a so-called forcing relation. Roughly put, letting

seen to be equivalent to the existence of a P-term for an ultrafilter U < P(P(A))V is normal
for regressive functions in V' and fine and is such that there is no descending w-sequence of
U-equivalence classes of functions from V. The idea of an induced ideal allows us to restate
this combinatorially as a normal, fine, precipitous ideal I on P(X) such that the quotient
algebra P(P(X))/I inherits some of the properties of the original partial ordering P. Fi-
nally, moving along the “F” axis [the nature of forcing required to define j] in the direction
of greater strength, the saturation properties of ideals play exactly the same role for gener-
alized large cardinals as ultrafilters do for conventional large cardinals.” ([Foreman, 2010],
p1128)

42 An anonymous reviewer helpfully points out that this is somewhat similar to the case where we con-
sider large cardinals of measurables and stronger as defined through elementary embeddings j : V' — 9.
For example, a cardinal « is measurable iff it is the critical point of an elementary embedding j : V' — 97,
and a cardinal & is strong iff for every 6 thereis a j : V' — 9t with Vj contained in 9. Since these formu-
lations quantify over j, V/, and 9 they look second-order, but they also have first-order characterisations
in terms of measures and extenders, of a much more complicated nature. The embedding characteriza-
tions are robust and philosophically pleasing, whereas the first-order characterizations are tedious and
less enlightening.
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P = (P, <p) be a forcing poset, p € P, and ¢ be in the forcing language for PF_?} we
can define a relation p I3 recursively@ One can then verify:

(1) If ¢1,..., 0, = and p IF} ¢; for each 4, then p IFE 4.
(2) plI-p ¢ for every axiom of ZFC.

3) If ¢(x1, ..., x,) is a formula known to be absolute for transitive models, then for
every pand all sets ay, ..an; p IFp (a1, ..., an) iff 1p 5 @(an, ..., Gy ) iff ¢(a1, ..., arn)
is truein V.

Essentially, IF} lets us talk about what would be satisfied in the extension V[G]
by analysing what sentences conditions p € P force. In particular, if we can show
that there is a p € P such that p I} ¢, we can behave and talk as if such a forcing
extension exists. By (3), any theorem proved ‘in V[G]" will be verified by the check
names and hence by specific sets in V. Similarly, if we wish to formulate an axiom
about V using a forcing extension, we can do so by finding a p that forces the required
sentence about objects in the ideal extension.

The use of the forcing relation is absolutely fine for relative consistency proofs.
We know that if we can find a p € P such that p |-} ¢, then we cannot prove —¢
(assuming the consistency of ZFC). There are, however, several problems with this
approach to interpreting forcing talk.

First, there is a problem of scope. The difficulty lies in the fact that the forcing
relation need not be definable when the forcing poset in question is proper-class-sized.
For example, consider the following forcing:

Definition 11. Let 9 be a model for ZFC. Then the Friedman poset (denoted by
‘F™) is a partial order of conditions p = {(d,, €, f,) such that:

(i) dp is a finite subset of w.

(ii) e, is a binary acyclic relation on d,,.
(iii) fp is an injective function with dom(f,) € {5, d,} and ran(f,) < M.
(iv) If dom(f,) = d, and 4, j € d,,, then ie,j iff f,(i) € f,(4).

v) The ordering on F™ is given by:
g g y

p<pm g d, Sd, nepn(dgxdy) =eqg A fg S fp.

This defines a proper-class-sized partial order as the individual f, include every
function from some finite subset of w to a (sub)set of M, and hence there are proper-
class-many such ordered triples (relative to 9t). The partial order adds a bijection
Fr between w and M, and a relation Er € M[G] such that (w, Fr) and (M, €) are
isomorphic. If the forcing relation for F were definable, 9t would then have access
to its own truth definition (contradicting Tarski’s Theorem)E]

Thus we have:

Theorem 12. [Holy et al., 2016] (attributed to Friedman) I is not uniformly defin-
able for F.

BThe forcing language of P is the collection of all formulas that can be formed by the usual logical
operators from the language - combined with a constant symbol for every name in V" (the P-names).

#Gee [Kunen, 2013] for details of the forcing relation and verification of the relevant proofs.

45For the details of the proof, and further discussion of the Truth and Definability lemmas in context of
class forcing, see [Holy et al., 2016
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Hence, there are forcings for which there is no definition of the forcing relation
in the ground model. This is true, despite the fact that F™" itself is definable over
M. If we wish to use FV in proving facts about V then, we cannot do so through
consideration of a forcing relation in V. Since well-behaved forcings (so called ‘tame’
and ‘pretame’ class forcingsﬁ] have definable forcing relations, we know that any
extension using F must violate ZFC One may feel that this provides a response:
we should not consider such forcing arguments as legitimate for proving facts about
V because the resulting “‘model” we are trying to talk about is pathological—it is
non-ZFC-preserving.

We hold that the Universist should have little truck with such a claim. It is true
that the resulting extensions are pathological in violating ZFC. However, we should
note that (from the Universist’s perspective) the whole enterprise with which we are
engaged (namely considering extensions of V') is somewhat pathological: such sets
cannot literally exist. We are rather trying to code in V' the effects of viewing V' as
part of a forcing multiversist framework despite the fact that the relevant extensions
do not exist (strictly speaking). Thus, there seems to be no objection to considering
models where, say, there is a bijection between w and V' (as is the case when forcing
using FY). If consideration of such “pathologies” has interesting consequences (such
as the study of how truth predicates might behave) within V' then there seems little
a priori reason to prohibit their examination.

One might simply postulate that a definition can be given for F¥ and other class-
sized partial orders with non-first-order definable forcing relations. Such definitions
could not be first-order, but interestingly such a hypothesis fits naturally in the space
of second-order set theories between NBG and MK. [Gitman et al., 2017] showed
that the hypothesis that every class partial order has a forcing relation is equivalent
to the principle that transfinite recursions of class relations for ordinal length are
legitimate (so called "ETRo,q"). Whether this issue of scope can be assuaged thus
depends precisely on one’s attitude to second-order class theory. Presumably the
Universist who wishes to try and interpret class forcing over V' has some sympathy
with the use of second-order resources (since the classes added are often non-first-
order definable), and so we set the problem of scope aside.

Regardless, the use of I} fares reasonably poorly with respect to the Naturalness
Constraints. For many cases of forcing, reasoning syntactically about the forcing
relation does not accord with the phenomenological character of the set theorist’s
reasoning. They wish to reason about sets which can be combinatorially manipu-
lated, embeddings which move ordinals, and so forth. Thus, while 'V’ is able to
denote V in this interpretation of forcing, there are no models involved (two-valued
or otherwise), there is no actual forcing occurring, and no model which is actually
extended. This issue is brought out clearly when we consider generic embeddings.
These provide us with quintessentially combinatorial kinds of reasoning; we want
to see what ordinals are moved by j (and where) and what the structure of the re-
maining sets looks like given the existence of j. Here, however, the reasoning is fully
syntactic; we analyse which formulas particular p € P force, and so are explicitly not
working with sets in the above manner. In this way, the use of the forcing relation,
though both useful and of mathematical interest, leaves some philosophical issues
untouched.

46Pretameness implies the preservation of Replacement in a class forcing, and tameness additionally
requires that the forcing preserve the Power Set Axiom. For details, see [Friedman, 2000].
47See [Holy et al., 2016].
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3.2 Boolean-valued models

Next, we consider the use of Boolean-valued models@ Starting with a forcing poset
P, we can find a separative@ partial order Q, equivalent to P for forcing, and a
(unique up to isomorphism) Boolean completion of Q (denoted by ’B(Q)’)[ﬂ We then
consider the class of B(P)-names (denoted by ‘VB(P)), assign values from B(P) to
atomic relations between them, and provide an inductive definition for the quanti-
fiers2

It is then routine to show that VB() is a Boolean-valued model of ZFC. In par-
ticular every axiom (and hence every theorem) of ZFC has Boolean-value 1gp) in

VB(P). Moreover, for the purposes of consistency proofs, we know that if we can
assign ¢ a Boolean-value greater than Og(p), then —¢ is not a consequence of ZFC
(as if —¢ is a consequence of ZFC, then ¢ receives Boolean value Og(p)). In fact, an
assignment of a Boolean value greater than Ogp) to ¢ exactly mimics the satisfaction
of ¢ in some V[G], for V-generic G.

Thus, by discussing the Boolean-valued model VE(), we are able to capture the
intra-V content of talking about set forcing extensions of V. For example, suppose
that we wish to show that the satisfaction of ¢ in a set forcing extensionby G < P e V
has consequence ¢ within V. We can then take the Boolean completion B(P), and
show that we can assign ¢ Boolean-value greater than Og(p) in VBP), By tracing the
Boolean-values back to V, we then know that V' satisfies 1.

There are several problems with the use of Boolean-valued models, however. It
has two particular limitations when it comes to forcing, despite its ability to capture
satisfaction in forcing extensions.

The first is again a problem of scope. It is unclear how to interpret class forcing
on the present approach. For, in class forcing, the relevant partial order P is proper-
class-sized, and hence unbounded in the V,,. When defining the Boolean completion
B(P) we then encounter a difficulty. The usual method for defining a Boolean com-
pletion is to find a separative partial order equivalent to P for forcing (known as the
separative quotient), and embed it into a Boolean algebrﬁ Effectively, we add a
bottom element and the required suprema to form B( P)

In the present context, however, it is unclear that this can always be done. Since
the partial order always goes to the ‘top” of V, one can not always assume that there
will be space to add a bottom element and suprema. This is not to say that it is
impossible to provide a Boolean completion for class forcings; as it turns out a class
partial order has a class Boolean-completion in a model of MK precisely when all
antichains are at most set-sized (known as the Ord-chain Condition)E] This does
show, however, that the kinds of class forcings one can interpret using this technique
are rather restricted.

#8The Boolean-valued approach was developed by Scott and Solovay, with additional contributions by
Vopénka (among others). See [Smullyan and Fitting, 1996], p. 273 for historical details and references.

49 A partial order P = (P, <p) is separative iff for all p, ¢ € P, if p £p g then there exists an r <p p that
is incompatible with g.

50For details of Boolean algebras (from which our presentation is derived) see [Jech, 2002], Chapter 7.
A discussion of Boolean completions is available in ibid. Chapter 14.

51We will (mildly) abuse notation and use B(P) to refer to the relevant Boolean completion even when
P is not separative (i.e. the Boolean completion obtained from a separative partial order Q, such that Q is
equivalent to P for forcing).

52Gee here, [Jech, 2002], Ch. 14.

53More formally, for any set-sized partial order P, there is a Boolean algebra B(P) and an embedding
e: P — B(P)* (where B(P)™ is the set of non-zero elements of B(P)) such that for p,q € P: (i) if p <p q,
then e(p) <p(p) e(g), (i) p and g are compatible iff e(p) A e(q), and (iii) {e(p)|p € P} is dense in B(P).

54For the full details, see [Jech, 2002], Chapter 14.

555ee [Holy et al., 2016]] and [Holy et al., 2018] for the result (attributed to Hamkins).

18



However, putting aside the questions of scope here, we note that even for the
forcings that can be interpreted this way, the Naturalness Constraints are left some-
what neglected. This is for similar reasons to the forcing relation. Though the ap-
proach is now somewhat model-theoretic, the two-valued aspect of the set theo-
rist’s reasoning is missed. When we reason with V[G] it looks-like” we reason with
a standard set-theoretic model, and the Boolean valued model VB does not have
this flavour—rather it looks like we reason with Boolean-valued “probabilistic” sets
(since, one can informally think of a Boolean-valued model VB as assigning ‘proba-
bilities” from B to membership and equality). Moreover, again no model is actually
extended in considering these constructions. To accord more fully with the Natural-
ness Constraints, we need a two-valued model that looks a lot like V, and also gets
extended in the relevant construction.

3.3 Boolean ultrapowers and quotient structures

There are, however, ways of modifying Boolean-valued models to proper-class-sized
two-valued structures. We provide an informal description of the technique to high-
light philosophical issues, but it is developed in detail in [Hamkins and Seabold, 2012
(and referred to in Hamkins’ paper on the multiverse [Hamkins, 2012]]). Importantly,
the method provides a way of finding models internal to V' that bear forcing relation-
ships to one another. More formally, one can prove:

Theorem 13. [Hamkins and Seabold, 2012 The Naturalist Account of Forcing. If V' is
the universe of set theory and B is a notion of forcing, then there is in V" a definable
class model of the theory expressing what it means to be a forcing extension of V.
Specifically, in the forcing language with €, constant symbols & for every x € V, a
predicate symbol V' to represent V as a ground model, and a constant symbol G, the
theory asserts:

(1) The full elementary diagram of V, relativised to the predicate V, using the con-
stant symbols for elements of V.

(2) The assertion that V' is a transitive proper class in the (new) universe.
(3) The assertion that Gisa V—generic ultrafilter on B.

(4) The assertion that the new universe is V[G], and ZFC holds there.

Hamkins and Seabold achieve this is by first taking an ultrafilter U on the relevant
Boolean-algebra B (for convenience sake, we now drop the notation B(P)) and con-
structing a particular ultrapower embedding jy; (the so-called Boolean ultrapower
map) between V and an inner model V;;. When we then form the quotient structure
VB/U of VB (formed by taking the standard quotient structure), we find an interest-
ing relationship between Vi; and VB/U: VB/U is precisely the forcing extension of
Viy by U. One can verify that VB/U |= ZFC and also that if ¢ has Boolean-value
greater than Og in VB, then VB/U |= ¢.

Importantly, there is no need for the ultrafilter U to be V-generic here, and hence
U can perfectly well be in V. In fact, when one constructs the Boolean ultrapower
over some model of set theory MM = (M, E), the claim that U is 9-generic is equiv-
alent to the Boolean ultrapower ji; being trivial (i.e. letting Ey be the ‘membership’
relation defined by the Boolean ultrapower, jy is an isomorphism between 2t and
(My, Ev)).

In the case where ji; is non-trivial on V, we map V' to a subclass of itself (much as
we do with a measurable cardinal embedding). Since V7 is not the whole of V when
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U is in V (and hence not V-generic), it is possible for a set external to Vi to be our
generic for V7. Our interpretation of forcing might then be as follows. We note that
Vi, whilst not isomorphic to V, nonetheless looks a lot like V; it is a proper-class-
sized elementary extension of V. Instead of using the Boolean-valued model VB
(with its attendant difficulties regarding classicality and combinatorial properties),
we could interpret our use of the term ‘V’ and ‘V[G] as Vi and VB/U respectively.
We would then perform far better with respect to the earlier outline Naturalness
Constraints, we have a two-valued structures, both proper-class sized, and there is
actual model-theoretic extension of these structures occurring.

There are, however, several problems with this approach. We should first note
that the use of Boolean ultrapowers and quotient structures suffers from the same
problem of scope as the Boolean-valued model approach—since it depends on find-
ing Boolean completions we will not be able to use the method for certain kinds of
class forcing. We have, however, moved to an interpretation on which the reasoning
is both two-valued and combinatorial, and on which a model very similar to V is
extended.

However, this construction can often come at the price of well-foundedness. Ob-
serve that if the Boolean ultrapower map is to be well-founded, it must elementarily
embed V into an inner model thereof, and hence must have a critical point « that is
measurable. More precisely:

Theorem 14. [Hamkins and Seabold, 2012] If U is an ultrafilter in V' on the complete
Boolean algebra B, then the following are equivalent:

(1) Vi is well-founded.

)
(2) Vi is an w-model (i.e. has the standard natural numbers).
(3) U meets all countable maximal antichains of Bin V.

)

(4) U is countably complete over V (i.e. if (a,|n < w) € V is an w-sequence of a,, € U,
then A, a, € U).

(5) U is weakly countably complete over V (i.e. if (a,|n < w) € V is an w-sequence
of a, € U, then A\, a,, + ).

By (4), for the Boolean ultrapower to remain well-founded, we need significant
large cardinal properties attaching to the completeness of the ultrafilter U °| Recall
that many of the generic embeddings we wished to talk about had very small critical
points. We are now in a position to mention the following;:

Fact 15. Let U be an ultrafilter on a complete Boolean algebra B € V, and assume
that Vi is well-founded with jy such that crit(jy) = k. Then Viy cannot be used to
interpret forcing constructions that change the structure of sets below VHE]

%6 The existence of a countably complete non-principal ultrafilter is equivalent to the existence of a mea-
surable cardinal.
57This can be seen by the following quick:

Proof. It is a basic fact concerning measurable cardinals that if x is measurable and the critical point of
some j, then j preserves Vi. (This is because if ji; did not, there would be (per impossibile) a different
critical point below x—see for example [Schindler, 2014], p. 51.) In the case where ji; is well-founded,
since « is the critical point of ji; we know that ji; preserves Vi.. Thus one cannot add subsets below
Vi O
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The key philosophical consequence of this fact is that if we are to interpret a
forcing construction that involves the structure of sets below a measurable cardinal,
then the Boolean ultrapower cannot be well-founded. This creates drawbacks with
respect to the Naturalness Constraints; in virtue of our adherence to the iterative
conception, one might think that well-foundedness is an especially important condi-
tion on structures conforming to our concept of set and qualifying as intended. But
the above feature of the Boolean ultrapower violates this for many of our favourite
forcing constructions. One cannot even add a single Cohen real without the Boolean
ultrapower being non-well-founded. Moreover, we noted earlier that one of the key
strengths of generic embeddings was to study ‘small” accessible cardinals through
the lens of large-cardinal-like embeddings. But, if we wish to move w; using a
generic embedding, then any Boolean ultrapower construction interpreting the re-

quired forcing will have differences in relatively ‘small’ levels’ (e.g. VLZ Y., and Vw‘ji/ S

will have different sets as w)” is countable in V8/U). By the previous fact, there
cannot be any difference in these levels without Vi becoming non-well-founded; a
philosophical limitation when we consider how a set theorist conceives of V and M
as interrelated well-founded structures in V[G]. Philosophically, this feature of forc-
ing is especially important—it keeps the models well-founded and the resulting model
also therefore conforms to the iterative conception of set (a notion the Universist be-
lieves has absolute significance) in the sense that there is a powerset-like operation
that can be iterated along the ordinals to generate the modelF_g]

This philosophical problem has a technical manifestation: While we can still trace
results derived from the study of these embeddings back through ji; to V, our rea-
soning in the embedded model may be restricted. Since the non-well-foundedness
of the models implies a high degree of non-absoluteness (the satisfaction predicate
itself is not even absolute’), we cannot simply use many of our normal assump-
tions regarding the relationship of sets in V to those in Vi and VB/U. For example,
consider the following reasoning template (stated in naive forcing-language):

Example 16. Extend V with a generic G that adds subsets above the least measurable
« to form V[G]. Now extend V[G] with a generic H adding subsets below « to form
V[G][H]. Show that V[G][H] satisfies some A;-formula ¢, and hence infer (by the
absoluteness of A; formulas for transitive models) that V' satisfies ¢.

How would this be interpreted using the Boolean ultrapower? Letting B be
the Boolean algebra for G, and Ug be the relevant ultrafilter, it is at least possible
that ‘V[G]’ can be interpreted as some well-founded inner model VB/U, extending
Vis- Letting C be the Boolean algebra corresponding to H, ji,, (C) be the image of
C under jy,, and Ug the corresponding ultrafilter on jy (C), we would then em-
bed VB/Ug into (VB/Ug)y,,, with forcing extension (VB/Ug)?ve(®) /Uy. But now,
while we would know that (VB/Ug)7ve(©) /Uy = ¢, it would also be a non-well-
founded structure, and so we cannot use the absoluteness and A; nature of ¢ to infer
# holds of V. (from where we could infer that ¢ holds of V either by absolute-
ness or pulling back along j,). Rather we have to slowly and carefully trace where
each embedding takes us, what is satisfied where, and the nature of the models in-
volved. Specifically, since (VB/Ug)?ve(®) /Uy = ¢, we know by absoluteness there

58Plausibly, this is a reason why the independence phenomenon has gained more traction in set theory
than in arithmetic; the arithmetic sentences we know of that are independent are require non-standard
models to witness the independence.

%For details, see [Hamkins and Yang, 2013]. To give an example of just how extreme the phenomenon
is, one can have two models that have the same objects as natural numbers, but disagree about whether a
particular (non-standard) » is odd or even.
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that (VB/Ug)y, [ ¢ (since the two models are transitive relative to each other).

Pulling back along ji,,, we then have that VB /U & ¢, and hence by absoluteness
Ve EE ¢. (We can then pull back again or just use absoluteness to obtain V = ¢.)
In short, if we repeatedly apply the Boolean ultrapower, our initial representation
of V will be well-founded, as will our representation of V[G]. But then in the sub-
sequent application of the Boolean ultrapower the new representation of V[G] be-
comes ill-founded as does V[G][H]. The fact that our initial representation of V is a
well-founded model, whereas our representation of V[G][H] is not, means that we
cannot infer by well-foundedness directly that our initial representation of V' satisfies
¢, instead we have to be careful where we apply absoluteness, making sure that we
pull back along the Boolean ultrapower before applying absoluteness to ensure no
illegitimate uses of the absoluteness of A;-formulas. In the ‘naive’ reasoning, we just
inferred from the fact that forcing keeps the models standard and V[G]|[H] |= ¢ that
Vo

The philosophical point here is just the following; sometimes one might want to
reason about V as though it were in a multiverse framework, but the moves made
can depend upon the nature of forcing with respect to V. The fact that the Boolean
ultrapower often fails to keep the models standard can result in extra steps needing
to be made (rather than the single one required to interpret the forcing), and so can
somewhat deform the set-theorist’s intuitive thought.

One rejoinder to the above example is that there will be a representation of V' in-
side the representation of V[G][H], and one can conduct the absoluteness reasoning
‘in one step’ there before pulling back along the ultrapower (since that representation
of V is ill-founded in the Universists real V, but transitive relative to the Boolean-
ultrapower representation of V[G][H]). The issue is thus whether we should think
of the set theorist as being located at a particular stage of a process in constructing a
forcing argument, and try to keep her reasoning as natural as possible at every stage,
or whether instead we should look for the best possible interpretation post hoc. If
the former, then we encounter problems in absoluteness reasoning when interpret-
ing the set theorist stepwise as she reasons, if the latter then this problem can be
circumvented.

It seems then, that though the use of Boolean ultrapowers and quotient struc-
tures provides a way of modifying Boolean-valued structures into a two-valued
framework, there can be a price, and this is high if one is especially attached to the
well-foundedness of models in assessing the naturalness constraints. Interestingly,
this opens a new area of enquiry; examine the cases where forcing and large car-
dinals combine to keep the ultrapower well—founded@] In these cases, the Boolean
ultrapower fares excellently as an interpretation of forcing (since we can have well-
founded, two-valued, proper-class-sized contexts of interpretation), suggesting that
there are an especially natural” class of forcing constructions for the Universist.
However, as a general technique for interpreting forcing constructions within a Uni-
versist framework, the technique may fall short%]

60See [Hamkins and Seabold, 2012] for discussion.

61 A side remark should be made here about previous philosophical discussion concerning the Boolean
ultrapower. Hamkins takes the Boolean ultrapower to show that the Universist can simulate forcing within
her framework, and so should be moved to accept the existence of forcing extensions intuitively under-
stood, and hence the falsity of her position. Koellner provides a response along the lines some of our
observations here:

“There are three important things to note about [V'B/U]—it need not be transitive, it need
not be well-founded, it is a definable class in V. For all three reasons it is as non-standard a
model of set theory...one sees by construction that the model produced is not of the appro-
priate type to count as the universe of sets.” ([Koellner, 2013], pp. 19-20)
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3.4 Countable transitive models

Examining the Naturalness Constraints, we can see that given that (i) we actually
want a model to be extended in a forcing-like way, (ii) these models should be two-
valued, and (iii) we would like the relevant models to satisfy as much as possible
of the theory of V, the strategy of interpreting forcing constructions via the use of
a Boolean ultrapower got a lot right. It suffered two problems, however; one of
scope (interpreting class-sized Boolean algebras) and one of how the ultrapower be-
haved with respect to ‘small’ sets. This is what we’ll try to remedy by analysing
how we might use countable transitive models in interpreting forcing. As we’ll see,
there are several respects in which the countable transitive model strategy performs
better with respect to the Naturalness Constraints, but nonetheless this comes at a
price (specifically concerning uncountable sets). We’ll conclude that the countable
transitive model strategy represents an attractive way of interpreting forcing using
the symbol ‘V’, however for certain applications the Boolean-ultrapower strategy is
especially natural.

The countable transitive model strategy comes in several forms. Initially, the
method was designed to deal with the apparently problematic metamathematics of
forcing from within ZFC. Given a desired relative consistency proof of some sen-
tence ¢, we assume that ¢ (respectively —¢) is provable from ZFC. Since proofs are
finite, we then know (by the Reflection, Lowenheim-Skolem, and Mostowski Col-
lapse theorems) that there is a countable transitive model satisfying ¢, and further-
more this countable transitive model can be arranged so as to have enough structure
to enable forcing. Since the model is countable, we know that generics are avail-
ableFE] and can force to obtain —¢ (whilst preserving the relevant fragment of ZFC),

Our point is just the following: Even if the Universist should (plainly) assert that neither Vi nor VB/U
is the universe of sets, it can sometimes provide a very close simulation of forcing claims. Hamkins takes
this to show that the Universist is wrong. We push this in the other direction: It shows that the Universist
can sometimes capture much of the insight that is meant to be an advantage of the forcing multiversist’s
position.

62Assuming, of course, that V' is uncountable.
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contradicting the claim that (the relevant fragment of) ZFC proves ng_?’-]

Such methods are fine as far as they go. For the purpose of allowing us to anal-
yse forcing arguments establishing relative consistency proofs from within ZFC the
technique performs adequately; any inconsistency of ¢ with ZFC could be traced to
a countable model, and the relevant forcing argument shows that there is no such
inconsistency (on the assumption that ZFC itself is consistent).

However, while V' presumably satisfies ZFC and its finite fragmets for the Uni-
versist, there is no guarantee that a given countable transitive model of (a fragment
of) ZFC represents V' with respect to first-order truth in general. While we can, for
any appropriate given finite set I' of sentences satisfied by V, assume that there is a
countable transitive model 9 satisfying I', V' can (and indeed will) satisfy sentences
beyond those in I', and there may be sentences such that V' = ¢ and I = —¢. In
order then to mimic the behaviour of V' as closely as possible (and in line with the
Naturalness Constraints) we would like a countable transitive model 91 that resem-
bles V sufficiently well to allow us to interpret forcing over V as closely as possible.

This can be achieved by assuming that there is a countable transitive model ele-
mentarily equivalent to V for first-order truth (we will denote such a model with the
letter “%){**| We can then interpret any forcing over this model, formulating axioms
and proving theorems concerning 0 (over which generics abound) and then, by the
elementary equivalence, exporting the relevant consequences back to V' proper. This
is somewhat similar in spirit to the Boolean ultrapower; we find a context in which
generics are available and subsequently pullback to V' via a kind of resemblance. In
the case of the Boolean ultrapower this was witnessed by an embedding, whereas
in the case of our % it is mere elementary equivalence (though see below for some
remarks about embeddings).

For example, if we wish to formulate an axiom that uses an extension (say a
generic embedding), we simply formulate it as concerned with 2 (where extensions

%3 Formally, there are two main ways of executing the strategy (see [Kunen, 2013], IV.5.1 for details):

Suppose that we wish to prove that some statement ¢ is independent from ZFC. We then suppose that
¢ (or —¢) has a proof in ZFC (from now on we only consider the case where we wish to show that —¢
is unprovable). If —¢ were provable, we would have ZFC + ¢ |- 0 = 1. Since proofs are finite, we then
know that this proof would only use a finite set of axioms of ZFC (let it be denoted by ‘I'’). We then
know (by the forcing method) that given such a T', there is a larger finite set of axioms of ZFC (let it be
denoted by “A’) such that ZFC proves the conditional:

“If there is countable transitive model for A, then there is a countable transitive model for
r'+¢.”

However, now we can use the Reflection Theorem, Lowenheim-Skolem Theorem, and Mostowski Col-
lapse Lemma to then obtain a countable transitive model 91 for A, and hence have a countable transitive
model for I' + ¢, contradicting our supposition thatI" + ¢ - 0 = 1.

Alternatively, we could expand .Z¢ to % ¢, r by two constant symbols C' and F. We then add axioms
to ZFC as follows (for this specific approach, see [Shoenfield, 1967] as well as [Kunen, 2013]):

Definition 17. ZFC* is a system in .%¢ ¢, with the following axioms:
1. ZFC
2. Cis atransitive set.
3. F'is abijection from w onto C.
4. ¢C for every axiom ¢ of ZFC (note that, by Godel’s Second Incompleteness Theorem, this is an

axiom scheme).

We know (by the Reflection Theorem, Léwenheim-Skolem Theorem, and Mostowski Collapse Lemma)
that ZFC* is a conservative extension of ZFC. We can then treat C' as our countable transitive model,
and conduct our construction there.

64Uses of this idea for developing axioms have been explored by Friedman and collaborators in
[Arrigoni and Friedman, 2013], [Antos et al., 2015], and [Friedman, 2016].
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are uncontroversially available) and then know that any first-order consequence of
the axiom true in ¥ is also true of V. If an ideal of the required kind I exists in V,
then we will have a corresponding object I’ € U, and then there will be the required
embedding i’ : ¥ — M < V[G].

This strategy seems to resolve some of the problems of our previously considered
accounts. First, regarding class forcing, we remarked earlier that we would like to in-
terpret class forcings that lack a definable forcing relation, do not necessarily satisfy
ZFC, or add classes but not sets. All these can be easily interpreted for U: Letting
U = (V,€), we can consider models of the form U’ = (V,€,C?), where C? is some
countable collection of classes for U. We can then perfectly well consider extensions
that add classes to C? without adding sets to U, and /or ones in which the the forcing
relation is not definable over 2, and first-order consequences{gfl thereby derived in
can be transferred back to V. Similarly, since 2 is very small by the standards of V,
there is no obstacle to defining meaningful notions of Boolean completions for class
forcings over *U (though they might not be in ), since we can use the resources in V/
external to 2J. Moreover, since generics are freely available over 2 one does not need
the Boolean algebras to interpret the forcing (though their study might nonetheless
carry mathematical interest).

It seems then that the countable transitive model strategy is at least flexible con-
cerning interpretation of forcing, providing a uniform way of interpreting the con-
structions. But how does it fare with respect to the Naturalness Constraints? Here, it
also has a number of pleasing philosophical features. U in many ways very closely
resembles V; it is a two-valued structure that satisfies the same first-order sentences
as V and (in contrast with certain applications of the Boolean ultrapower) is really a
well-founded structure (and so forms a genuine cumulative hierarchy). In this way,
U provides a miniature ‘picture’ of V inside V/, one which can be freely reasoned
about using extensions. Moreover, once we have interpreted ‘V” as “¥’ in a forcing
construction, interpretation is completely transparent; 0 really is extended by some
G to form Y[G], and Y[G] has all the properties we would expect it to have: It is a
well-founded cumulative hierarchy obtained from 2 by forcing with G.

There are some drawbacks concerning the Naturalness Constraints, however.
Unlike the Boolean ultrapower, 2J cannot contain all the ordinals or uncountable sets.
One response would be to argue that preservation of well-foundedness is preferable
to containing uncountable sets. This is in part for philosophical reasons; a well-
founded model is one that is obtained by admitting a genuine powerset-like opera-
tion transfinitely, and thus comes close to the iterative conception in an absolute sense.
A non-well-founded model, even one containing uncountable sets, only has V,, inter-
nally (since the model will still satisfy the theorem of ZFC that every set belongs to
some V), but actually admits of a descending membership sequence and so cannot
be said to satisfying the iterative conception in any absolute sense. One might then
think that having an absolute notion of the iterative conception should be privileged
over the existence of actual uncountable sets—the former concerns the fundamentals
of our contemporary conception of set whereas the latter is a result of our conception
of set (as evidence for this, consider the fact that we call the Axiom of Foundation an
axiom, whereas Cantor’s Theorem is called a theorem)E] We might thus feel that it is
more important for the former to be satisfied in an absolute manner than the latter (it
is more important that our model actually be a well-founded cumulative hierarchy

%In this paper we restrict only to first-order consequences. Salient here is that the use of countable
transitive models can also be applied to higher-order axioms that use extensions (such as those mentioned
in [Friedman, 2016]). See [Antos et al., S| for an application of these axioms to the Universist perspective.

66[Koellner, 2014], §1.4.1 makes a similar point concerning a different theorem (The Hydra Theorem)
and axiom (that ¢g is well-ordered).
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than actually contain uncountable sets). Moreover, a well-founded model (even a
countable one) can have (a subclass of) real membership as its membership relation,
whereas a non-well-founded model cannot. Other reasons are more technical; as we
noted earlier (when considering repeated applications of forcing to form V[G][H],
absoluteness inferences concerning A;-formulas, and the Boolean ultrapower) one
of the salient features of forcing is that it keeps the relevant model standard relative
to the ground model. In the context of the use of countable transitive models then,
repeated applications of forcing will always keep the model well-behaved with re-
spect to the iterative conception (and subsequent uses of absoluteness), whereas this
is not the case when the possibility of non-well-foundedness is introduced (as we
saw with the abstract example of V[G][H] earlier).

One question that then remains is the following: Is there a way of modifying
the countable transitive model strategy so that we are able to incorporate actually
uncountable sets? The following result shows that if countable transitive models are
obtained in a certain way, then we can use them to construct uncountable contexts
for forcing, under the assumption of large cardinals:

Theorem 18. E]Assume that there is a proper class of measurable cardinals and that
we have a V5 < V@ Let 2t be a countable elementary submodel of Vs, P € 9t be a
set forcing partial order such that p IFp ¢ in 2. Let 7 be the collapsing function to
U =M < Vs < V. Then there is a model U* such that:

(i) U* contains uncountable sets.
(ii) U* is transitive.
(iii) U* is elementarily equivalent to V.
(iv) Thereis a G € V such that G is U*-generic for 7(P) and U*[G] = ¢.

As arough sketch: The theorem can be shown by moving to a countable transitive
model U, obtained by collapsing a countable elementary submodel of the universe
and then iterating measures within 2§ uncountably many timeslg_g] While stated some-

7T am very grateful to Sy Friedman for suggesting the theorem and proof, and to Sandra Miiller and
Sam Roberts for some helpful clarifications.

A Vs < V can either be argued for informally or through the use of a truth predicate. See below for
discussion.

®The details:

Proof. Assume that there is a proper class of measurable cardinals and that there is a Vs < V. Let
M < V5 < V be a countable elementary submodel, and 7 be the collapsing function to a countable
transitive submodel 0 = V. Take some forcing partial order P € 9t, and assume that there is a condition
p € P such that p IFp ¢ over 9. By the elementarity of =, there is a ¢ € 7(P) such that q I (py ¢ over
0. Since “There is a proper class of measurable cardinals” is first-order definable, U |= “There is a proper
class of measurable cardinals”. So pick some U-measurable cardinal g such that kg > rank™(r(P)),
and let Uy be the measure witnessing xq;’s U-measurability. Let Uy, be 7~ 1(Uy), which is a measure on
some measurable cardinal xy, € V. Since we know (by elementarity) that Uy is a genuine measure, we
know that all iterated ultrapowers of V by Uy, are well-founded. Moreover, it is a standard fact that any
iteration of U by Uy embeds into an iteration of V' by Uy (see here [Schindler, 2014], Ch. 10, especially
Theorem 10.3 and Lemma 10.4), and so all successive ultrapowers of U by Uy are well-founded. So, it-
erate ¥ by Uy uncountably many times to obtain U*. Clearly 2* is transitive and contains uncountable
sets (since Uy is iterable and we have embedded uncountably many critical points), and by the elementar-
ity of the ultrapowers is elementarily equivalent to V. It just remains to show that there is a generic G € V
that is U*-generic for 7(P). Since U was countable, we know that there is a G € V that is U-generic for
7(P). Moreover, it is a standard fact about well-founded ultrapowers that if a cardinal § with measure Uy
is measurable in a transitive 9, then (V)™ = (V)V*WUs). Thus (Vi )” is preserved at every stage of
the iteration (and indeed in the direct limit), and so P, the subsets of P (including any generics and dense
sets) are preserved at each stage of the iteration. Thus G is generic for U*. O

26



what technically, it shows that if we have some partial order Py (definable using real
parameterﬂ and py € Py such that py IFp, ¢, we can use countable transitive
models to obtain an uncountable transitive model U* with a corresponding partial
order Py, with a py« € Py« such that py« Ibq . ¢, and actual V*-generic G with
0*[G] = ¢. In other words, given sufficient large cardinals, for any definable (with
real parameters) set-forcing, we can always find an uncountable model elementar-
ily equivalent to V' and over which we can actually force with a very similar partial
order. Thus, for a broad class of forcings, countable transitive models can also be
instrumental in finding uncountable contexts for forcing, satisfying the Naturalness
Constraints further.

Countable transitive models and Universism

Thus far, we have argued that a modification of the countable transitive model strat-
egy is reasonably philosophically virtuous, at least as far as the Naturalness Con-
straints are concerned. We are not done yet, however. Critics of Universism (such
as [Hamkins, 2012]]) are well aware of the possibility of both a countable transitive
model of ZFC, and well as one elementarily equivalent to VF_T] Hamkins has two
main objections against the use of countable transitive models (especially with re-
gards to forcing constructions).

First, he complains that the countable transitive model strategy is not broad
enough, since it only accounts for forcing over certain models of set theory, whereas
other methods (such as the Boolean ultrapower) can interpret (set) forcing over any
model 2]

Hamkins” second complaint surrounds the metamathematical commitments of
the theorist endorsing the countable transitive model strategy. In order to interpret
forcing over a countable transitive model, Hamkins argues, we have to assume the
existence of a countable transitive model of ZFC. But this takes us somewhat be-
yond the consistency strength of our canonical set theory (ie. ZFC); in fact the
existence of a countable transitive model of ZFC implies the consistency of the-
ories obtained by transfinite iterations of the consistency operator (so Con(ZFC),
Con(Con(ZFC)), and so on transfinitely). In this way, he argues, the Universist
is forced to pay a metamathematical tax in implementing the countable transitive
model strategy.

7ONote that in the previous proof we can choose any finite list of real parameters to be in 9.
71For the former claim see [Hamkins, 2012]], and for the latter claim [Hamkins, 2003].
72See for example, the following remarks:

“There are a number of drawbacks, however, to the countable transitive ground model
approach to forcing. The first drawback is that it provides an understanding of forcing
over only some models of set theory, whereas other accounts of forcing allow one to make
sense of forcing over any model of set theory. With the countable transitive model approach
to forcing, for example, the question “Is ¢ forceable?” appears sensible only when asked
in connection with a countable transitive model M, and this is an impoverishment of the
method.” ([Hamkins, 2012]], p421)

73For example, Hamkins argues as follows:

“A second drawback concerns metamathematical issues surrounding the existence of
countable transitive models of ZFC: the basic problem is that we cannot prove that there
are any such models, because by Godel’s Incompleteness Theorem, if ZFC is consistent
then it cannot prove that there are any models of ZFC at all. Even if we were to assume
Con(ZFC), then we still can’t prove that there is a transitive model of ZFC, since the ex-
istence of such a model implies Con(ZFC + Con(ZFC)), and the consistency of this, and
so on transfinitely...As a result, this approach to forcing seems to require one to pay a sort
of tax just to implement the forcing method, starting with a stronger hypothesis than one
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We find each of Hamkins’ objections unconvincing from the Universist’s per-
spective. Concerning the scope of the countable transitive model strategy: Whilst
Hamkins is, as a matter of mathematical fact, correct that if we interpret width-
extending constructions as concerned with countable transitive models, our inter-
pretation of extensions will not apply to arbitrary models, in the present context this
does not motivate the claim that insight might be missed. In particular, if we slowly
work through the dialectic, we see that the main difficulties we noted were (i) to
provide an interpretation of of axioms mentioning extensions, (ii) to explain why
theorems making use of extensions were acceptable for proving facts about V, and
do so (iii) in a way that accounts for the majority of our intuitive thinking concerning
extensions. For these purposes, the countable transitive model strategy is reasonably
satisfactory as it stands. It is uncontroversial for a Universist that some models can-
not literally be extended in width, indeed it is part of their view that width extension
is impossible for some models (such as V' or one of its initial segments). Whilst it is
true that certain constructions (such as use of the forcing relation or Boolean ultra-
power map) permit interpretation of forcing extensions where ‘v’ denotes V/, some
uncountable class, or possibly even a non-well-founded structure, we deny that this
represents a significant impoverishment of the countable transitive model strategy.
Those techniques are always available in cases where the countable transitive model
does not apply (such as in the case of a non-well-founded proper class structure). We
do not wish to argue that the countable transitive model strategy is superior in every
case, rather we wish to analyse what is possible given the Naturalness Constraints
and argue that the countable transitive model strategy is natural for interpreting a
certain class of extensions (namely when we wish to talk about V' using well-founded
and transitive extensions). Moreover, as we have seen, countable transitive models
(if obtained by a collapse from a countable elementary submodel) can be used to ob-
tain uncountable transitive contexts for set forcing. Our point is just that if we are
concerned with V, the countable transitive model strategy provides ways of inter-
preting the forcing practice in line with the Naturalness Constraints.

One might instead interpret Hamkins as stressing not an impoverishment of the
countable transitive model method itself, but rather the method of forcing as inter-
preted through countable transitive models One could not, for instance, then ask
about the modal logic of forcing of V, since V' is not a countable transitive model.
Again, we wish to emphasise that we still allow other interpretations to be used. For
example, in assessing questions concerning modal logic and forcing, we could in-
stead talk about forcing relations, which will have to be mirrored between 2 and
V by elementary equivalence (it is just that 0 has the actual extensions to go along
with this). Our point is not what the Universist must do in interpreting forcing, but
what she can do, and what the relative merits and drawbacks of each are.

These points do nothing to assuage Hamkins” second worry, however. There is
still the charge that the Universist pays a problematic metamathematical tax. Of
course, one blunt response would be to say that the tax is worth it, so it should be
paid. We wish to see if we can do better, however.

There are at least two ways in which we might take the Universist to have to pay
a tax she would rather not. The first is a formal one: it might be the case that she must
use assumptions of greater strength than ZFC (or the theory in which one begins)
in executing the strategy. Second, she might be paying an ontological tax, in that she
has to commit herself to the existence of objects to which she would rather not.

ends up with just in order to carry out the argument.” ([Hamkins, 2012]], p421)

74Many thanks to an anonymous reviewer for suggesting this interpretation of Hamkins’ criticisms.
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Regarding the formal tax, Hamkins is correct that baldly asserting the existence of
a countable transitive model of ZFC or one’s starting theory (of which presumably
¥ is one) implies Con(ZFC), Con(Con(ZFC)), and so on, transfinitely. A response
here is quick, however. The extent to which we move beyond ZFC is very dependent
upon how we formulate the axiom. If we write:

Axiom 19. There exists a countable transitive model 2 such that U = ZFC.

we would indeed go beyond ZFC (and, indeed V' might satisfy very different sen-
tences from ). Can we do better, getting a countable transitive model close in truth
to to V, whilst not increasing the consistency strength of our theory? One has to be a
little careful here; adding a constraint that U satisfies all the same sentences (includ-
ing parameters) as V would yield a contradictionE] We could instead formulate the
axiom scheme that there is a V,, which is ¥ -elementary in Vm a very slight exten-
sion of the provable Lévy Reflection Principle, and then Skolemise over V,,. Much
like the assumption of a transitive model of ZFC this assumption is very weak (well
below an inaccessible). However, we can do even better formally. We can formulate
the claim that there is a countable transitive model elementarily equivalent to V' via
the use of the following axiom scheme (as noticed by [Feferman, 1969]):

Definition 20. Let £, i be the language .7 augmented with a single constant sym-
bol ¥. ZFC? is then a theory in Z. 5 with the following axioms:

(i) ZFC
(ii) U is countable and transitive.

(iif) For every ¢ in Z, ¢ < ¢T (by Tarski’s Theorem, this is an axiom scheme).

By replicating the proof of the Reflection Theorem for ZFC”, we know that
ZFC? is a conservative extension of ZFC However, U then satisfies exactly the
same parameter-free first-order sentences of ZFC as V. When conducting a forcing
proof in ZFC (or some extension thereof), we can use the usual trick of reflecting a
finite set of axioms, but without loss of generality assume that they are reflected to 0
to ensure enough similarity to V' and conformity with the Naturalness Constraints.

75One way to see this is to note that w¥ would be uncountable according to 20 but countable in V.

76Such an « is sometimes called “fully correct”.

77 Proof Sketch. Begin by replicating the usual proof of the Reflection Theorem for ZFC¥. Suppose then
that ¢ € % and ZFC™ |- ¢. Then there is a finite set of axioms I' of ZFC¥, such that I' - ¢. Let 1 be
the conjunction of all axioms of ZFC¥ in T' containing 0, and  be conjunction of all axioms of ZFC¥
in T' not containing . Without loss of generality, we may then assume that I' = {1, x}. v is then a
sentence which states that there is a countable transitive model of some finite list of ZFC axioms A, and
X is a finite part of ZFC. Since ZFC already proves that there is a countable transitive model for A (by
the Reflection Theorem and Mostowski Collapse Lemma in ZFC), and hence proves x A (IM)M = A,
we have ZFC |- ¢. Many thanks to Asaf Karagila and Sam Roberts for pointing out to me this theorem
of Feferman, and for discussion of the proof. A referee helpfully points out that it is possible that the
models of ZFC? involved may be non-well-founded, and in fact that it may be that the all the models
of ZFCY in a universe of set theory are non-well-founded. We wish to emphasise that this proof sketch
should only convince the Universist of the conservativity of the theory, it is not intended to convince
her that countable transitive models of the required kind actually exist. That claim will require other
philosophical and mathematical arguments (such as those given in the text); the point here is that we can
formally get away with no increase in consistency strength, if we think that a countable transitive model
elementarily equivalent to V' exists.

781t is interesting to note that [Hlamkins, 2003] discusses this formulation in depth, and is well aware of
the conservativity result. It is perhaps the metatheoretical character of the claim that 2 satisfies ZFC that
explains the absence of this strategy when considering countable transitive models in [Hamkins, 2012].

29



Whilst we can only see from the metatheory (without a non-conservative extension
of ZFC) that U is a countable transitive model elementarily equivalent the V/, this is
to be expected: V' cannot have access to its own truth definition. Moreover, the Uni-
versist is no stranger to accepting the use of metatheoretical talk in her set-theoretic
reasoning (for example: “V |= ZFC”).

So it seems that we need not pay a significant formal price when interpreting
width extensions with countable transitive models; the formal price can be circum-
vented by adopting a particular formulation of the countable transitive model strat-
egy. It remains to be seen that the Universist need not pay an ontological price. To
what extent does the existence of a countable transitive model elementarily equiva-
lent to V' represent a substantial ontological presupposition for the Universist? We
shall argue that the Universist already has good reasons to accept the existence of
such a model given her commitment to the existence of a unique and maximal proper
class model of set theory. We shall pursue two strategies here: (1) examining Skolem
functions in the Universist’s metatheory, and (2) the use of a truth predicate.

For (1) we start by examining an informal argument of Coher{ﬁ for the existence
of a countable transitive model of ZF:

“The Lowenheim-Skolem theorem allows us to pass to countable sub-
models of a given model. Now, the “universe” does not form a set and so
we cannot, in ZF, prove the existence of a countable sub-model. How-
ever, informally we can repeat the proof of the theorem. We recall that
the proof merely consisted of choosing successively sets which satisfied
certain properties, if such a set existed. In ZF we can do this process
finitely often. There is no reason to believe that in the real world this
process cannot be done countably many times and thus yield a countable
standard model for ZF.” ([Cohen, 1966], p79)

While Cohen is primarily interested in the existence of a countable transitive
model for ZF, we can import his argument to the case of V' as follows. When con-
sidering finite subsets I' of sentences in . satisfied by V' we move to a countable
transitive model of I" by using the Reflection Theorem to find a V,, = I'. We then
use AC to find a set of functions FV such that for every existential statement 3x¢(x)
true in V,, there is an f; € F that picks a single witness a such that ¢(a) holds.
We then form a countable 9t = T'. Since the relation (i.e. €) on V,, is extensional,
well-founded, and set-like, so is the relation on 9%, and we then use the Mostowski
Collapse Lemma to collapse to obtain a countable transitive model 9t |= I'. Turning
now to V, we simply note that V' is one model of ZFC among many. Thus, we can
posit the existence of a class of Skolem functions F" for V (by ’choosinég_vr a wit-
ness for the countably many existential statements satisfied by V' with a countable
sequence of choices). Then, by Skolemising and Collapsing, we obtain a countable
transitive model 2 that satisfies exactly the same parameter-free first-order sentences
as V. The main issue here is that, by Tarski’s Theorem on the undefinability of truth,
that V' does not know that F'V provides its own Skolem-functions. Thus, by adopt-
ing this informal and metatheoretic version of the Lowenheim-Skolem Theorem, we
justify the existence of a countable transitive model for V. Again, we note that the
Universist should not be bothered by making these various metatheoretic claims in
virtue of the things she wants to say already concerning her own view.

7Similar  arguments  (from a  non-Universist  perspective) are  available in
[Arrigoni and Friedman, 2013].
80 As Cohen notes, this is not possible in ZF(C) by Gédel’s Second Incompleteness Theorem.
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Though the Cohen-style argument depends on only mild metatheoretic assump-
tions (the possibility of transferring a countable sequence of choices in the metalan-
guage to the existence of Skolem functions in V'), it nonetheless depends upon a
certain amount of combinatorial reasoning outside the object language. We might,
therefore, find a more logical approach desirable. Here we find a role for the use
of a truth predicate. We begin by noting that the Universist already makes claims
concerning first-order truth in V. For example:

Example 21. “In V every sentence is either true or false.”
Example 22. “Every axiom of ZFC is true in V.”

Given that she would like some formal apparatus for talking about her own view,
it is natural for her to countenance the existence of a truth predicate for talking about
her own view (otherwise she ends up baldly stating the sentences in question, rather
than the truth thereof). We therefore make the followingfir]

Definition 23. Let ZFCr, be the result of adding to ZFC a truth-predicate T (x) for
a satisfaction class T'r for first-order truth, such that:

(i) Tr(x)iffx e Tr.

(if) T'r is a class consisting of pairs ("¢", @), where @ is an assignment of free vari-
ables in ¢ to the objects ordered by a.

(iif) T'r is correct about the atomic truths of V' in the language of ZFC.
(iv) (—¢", @y e Triff ('¢",@) ¢ Tr.
) (o nyp'ayeTriff (¢',dy e Trand (' a) e Tr.
(vi) ("Fzgp(x)',ady € Triff for some b, {"¢",b"ad)y € Tr.
(vii) We allow the use of T'r(z) in the Comprehension and Replacement Schema.

In other words T'r(x) is a predicate corresponding to a class computing atomic
truth correctly and closed under the Tarskian recursive clauses.

ZFCr, represents a very minimal formalisation of the first-level of typed truth
over V for the Universist. We now mention the following:

Fact 24. ZFCr, proves that there is a countable transitive model elementarily equiv-
alent to V for first-order parameter-free truth in ZFCEZ]

Thus, if we permit the addition of a truth predicate for V' to ZFC, the use of
which a Universist may well accept (given the other presuppositions of her view), we
obtain a countable transitive model elementarily equivalent to V. This argument, in
combination with the informal use of the Lowenheim-Skolem Theorem, shows that
the existence of a countable transitive model elementarily equivalent to V' is little

81T am grateful to Sam Roberts for technical discussion concerning the use of truth predicates and count-
able transitive models.
82This can be shown as follows:

Proof. (Sketch) Begin by proving the Reflection Theorem for ZFCr,.. Then, reflect on the formula “"¢’
is a Godel code of a formula and T7("¢")” to obtain a V,, elementarily equivalent to V' (since for a given
natural number n = ¢", V |=Tr("¢") iff Vo = Tr("¢"), and hence V' |= ¢ iff Vi, |= ¢). Then Skolemise
and Collapse over V, to get the desired countable transtive model. O
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ontological price to pay, if any. While the Universist still pays a ‘tax” in the sense that
the theory she forces over (i.e. the ZFC-theory of V) is different from the one used
to construct the countable transitive model (i.e. ZFCr,.), the tax is both one she is
already happy to pay and enables her to force over her preferred theory of sets.

Conclusion

We have seen that Universist has some reason to want to use forcing to prove theo-
rems and formulate axioms about V. Whilst the use of a Boolean ultrapower some-
times results in non-well-founded models, it suggests a class of forcings of special
interest for the Universist; those for which the Boolean ultrapower can be kept well-
founded, and thus she has a particularly natural interpretation of forcing. The count-
able transitive model strategy, augmented to yield a model elementarily equivalent
to V, we found to be an effective, flexible, and well-motivated method for interpret-
ing forcing constructions and can be modified to yield uncountable contexts over
which one can force. The extent to which one thinks that Hamkins’ complaints have
dialectic force against the Universist, thus turns precisely on further constraints on
naturalness of interpretation. Perhaps such an argument can be made, and we do
not expect this clarification of the tools available to the Universist in interpreting
forcing to be convincing to the Forcing Multiversist; she will always regard her in-
terpretation as the most natural, since the Universist will always have to admit some
re-interpretation of language. For now, however, we take ourselves to have shown
that the Universist should remain largely unfazed by criticisms stemming from forc-
ing constructions.
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