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Wigner’s quantum-mechanical classification of particle-types in terms of irreducible representa-
tions of the Poincaré group has a classical analogue, which we extend in this paper. We study the
compactness properties of the resulting phase spaces at fixed energy, and show that in order for a
classical massless particle to be physically sensible, its phase space must feature a classical-particle
counterpart of electromagnetic gauge invariance. By examining the connection between massless
and massive particles in the massless limit, we also derive a classical-particle version of the Higgs

mechanism.

I. INTRODUCTION

The ingredients of classical physics are usually simpler
to visualize and understand than those of quantum the-
ory. Classical systems have definite configurations that
are related to physical properties like spatial location,
mass, momentum, and energy in a much more transpar-
ent way than is the case for abstract quantum states. It is
therefore worthwhile to determine which seemingly quan-
tum phenomena turn out to have classical realizations,
if only to clarify the underpinnings of those phenomena
without all the complexities that come along with Hilbert
spaces, and to help foster the kind of physical intuition
that can lead to new discoveries.

As an important example, intrinsic spin is often re-
garded as fundamentally quantum in nature, but there
exists a fully classical description of relativistic point par-
ticles with arbitrary masses and fixed spin. This classical
description makes it possible to distinguish between ef-
fects that are related to spin itself and effects that are
connected specifically to quantum mechanics.

With the eventual goal of explicating and extending
this framework,! we begin in Section II by suitably gen-
eralizing the usual Lagrangian formulation of classical
physics to a more expressly Lorentz-covariant form. In
Section III, we review the classification of particle-types
in terms of transitive group actions of the Poincaré group,
expanding on earlier work [2—4] and paralleling Wigner’s
classification [5] of quantum particle-types in terms of
irreducible Hilbert-space representations of the Poincaré
group. We will be most interested in the massless case,
for which we present new results that include the emer-
gence of a classical-particle form of electromagnetic gauge
invariance. In Section IV, we revisit this appearance of
gauge invariance from the perspective of the massive case
in the massless limit, along the way deriving a classical-
particle version of the Higgs mechanism, another novel
result.

* jacob_barandes@harvard.edu
1 For a more comprehensive treatment of the results in this paper,
see [1].

II. THE MANIFESTLY COVARIANT
LAGRANGIAN FORMULATION

Consider a classical system with time parameter ¢, de-
grees of freedom ¢, Lagrangian L, and action functional

Sl = / 0t L(q,d. ). (1)

Here dots denote derivatives with respect to the time
t, and we will assume that the system’s configuration
space is a linear manifold with a global coordinate system
given by the degrees of freedom ¢,. Before we apply this
framework to classical relativistic point particles, we will
find it useful to recast these ingredients in a form that is
more manifestly compatible with relativistic invariance.

To do so, we begin by replacing ¢ with an arbitrary
smooth, monotonic parameter A. Letting dots now de-
note derivatives with respect to A, we can rewrite the ac-

tion functional in the reparametrization-invariant form?
Slg,t] = /d)\f(q, q,t,1), (2)
where
Z(q.4.t,1) =i L(g,4/i,1). 3)

Although we are not assuming that the degrees of free-
dom ¢, have anything to do with physical space for
now, it will be convenient to introduce a Cartesian-like
raised /lowered-index notation according to

qt:ct, q = —ct,

7* = qa, 0
p'=Hje, pr=—HJe,

P = Pas

where p, are the system’s usual canonical momenta, H is
the system’s usual Hamiltonian derived from the original

2 For an early example of this technique, see [6]. For a more mod-
ern, pedagogical treatment, see [7].
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Lagrangian L in (1), and ¢ is a constant with units of
energy divided by momentum. The quantities p* and p®
are then expressible in terms of the function (3) as
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and one can show that the Euler-Lagrange equations take
the symmetric-looking form
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Moreover, the action functional (2) now takes a form
that resembles a Lorentz-covariant dot product involv-
ing a square matrix n = diag(—1,1,...) that naturally
generalizes the Minkowski metric tensor in Cartesian co-
ordinates from special relativity,

Slq] = /d>\ (ped" +_pad®™) = /dA (»* p*)n (g;)
(7)

despite the fact that, again, the degrees of freedom ¢, are
not assumed at this point to have anything to do with
physical space. The action functional is then invariant
under transformations

t t t t

(@) =2@) Go)=aG) o

for square matrices A satisfying the condition ATnA = 7.
Thus, this reparametrization-invariant Lagrangian for-
mulation motivates the introduction of phase-space vari-
ables qt, ¢%, pt, p® that transform covariantly under a gen-
eralized notion of Lorentz transformations. We therefore
refer to this framework as the manifestly covariant La-
grangian formulation of our classical system’s dynamics.

III. TRANSITIVE GROUP ACTIONS OF THE
POINCARE GROUP

Wigner showed in [5] that classifying the different
Hilbert spaces that provide irreducible representations of
the Poincaré group yields a systematic categorization of
quantum-mechanical particle-types into massive, mass-
less, and tachyonic cases.®> As shown in various treat-
ments, such as [2-4], there exists a classical analogue of
this construction, one version of which we review here.
Toward the end of this section and in the next section,
we will present fundamental new results concerning pre-
viously unexamined features of the massless case.

3 See [8] for a pedagogical review.

A. Kinematics

We start by laying out a formulation of the kinematics
of a system that we will eventually identify as a classical
relativistic particle.

Given a classical system described by a manifestly co-
variant Lagrangian formulation, we say that its phase
space provides a transitive or “irreducible” group ac-
tion of the Poincaré group (or serves as a homoge-
neous space for the Poincaré group) if we can reach
every state (¢,p) in the system’s phase space by start-
ing from an arbitrary choice of reference state (qo,po)
and acting with an appropriate Poincaré transformation
(a,A) € R x O(1,3), where a = (at,a®,a¥,a%) is a
four-vector that parametrizes translations in spacetime
and A is a Lorentz-transformation matrix. The Poincaré
group singles out systems whose phase spaces consist of
spacetime coordinates

Xt = (T, X)" = (cT,X,Y, Z)" (9)

and corresponding canonical four-momentum compo-
nents

02
COXn
where we identify H = E as the system’s energy. We will
see that such a system formalizes the notion of a classical
relativistic particle.

To be as general as possible, we allow the system to

have an intrinsic spin represented by an antisymmetric
spin tensor S with components

S = —5vh, (11)

L

* = (E/c,p)", (10)

in terms of which we can define a proper three-vector S
and a three-dimensional pseudovector S according to

0 S &, 5.\
-5 0 S, =8
W = o z v 12
=15, -8 0 s, (12)
5. S, -8 0

Hence, the system’s phase space consists of states that we
can denote by (X,p,S) and that, by definition, behave
under Poincaré transformations (a, A) according to

(X,p,S) — (AX +a,Ap, ASAT). (13)
Taking our reference state to be

(0,p0,S0) (14)

for convenient choices of pff and S§* that will be made
on a case-by-case basis later, we can therefore write each
state of our system as

(X7p7 S) = (aaAp(LASOAT)' (15)



Thus, the components a* of the four-vector a and the
entries A¥, of the Lorentz-transformation matrix A ef-
fectively become the system’s fundamental phase-space
variables.

To keep our notation simple, we will refer to a* as
X" in our work ahead, remembering that these variables
are independent of the Lorentz-transformation variables
A*,. We will therefore express the functional dependence
of the system’s manifestly covariant action functional as
S[X, Al

It is natural to introduce several derived tensors
from the system’s fundamental physical quantities
X# pt SH . We define the system’s orbital angular-
momentum tensor L by

LM = XPp” — XVpt = — LV, (16)

and L together with S make up the system’s total
angular-momentum tensor J:

JHY = LAY 4 SHY = — JVB, (17)
Defining the four-dimensional Levi-Civita symbol by

+1 for puvpo an even permutation of tryz,
€uvpe = § —1 for prpo an odd permutation of txyz,

0 otherwise
= —eh?P9, (18)

the system’s Pauli-Lubanski pseudovector W is defined
by

1 ~
WH = 27,8y = (p-S, (E/c)S —px §). (19)

The following quantities are then invariant under proper,
orthochronous Poincaré transformations, and therefore
represent fixed features (or Casimir invariants) of the sys-
tem’s phase space:

—m?c® = pupt, (20)
w? = W,WH, (21)
1 -
s? = §SWS“” =8? -8 (22)
1 -
= ée,wp(,su”spf’ =S-8S. (23)

In the analogous quantum case, the third of these in-
variant quantities, the spin-squared scalar s?, would be
quantized in increments of A (or, more precisely, 42). In
our classical context, we are essentially working in the
limit of large quantum numbers, in which the correspon-
dence principle holds and these quantities are free to take
on fixed values from a continuous set of real numbers.
Note, in particular, that the invariance of s? is entirely
separate from issues of quantization, just as the invari-
ance of m? does not require quantization.

B. Dynamics

We now turn to the system’s dynamics.
In the absence of intrinsic spin, S*¥ = 0, the system’s
manifestly covariant action functional is, from (7), given

by

Snospin[Xa A] :/d)‘puX'u :/CD\ (APO)MXM' (24)

We will eventually need to establish a definite relation-
ship between the system’s four-momentum p* and its
four-velocity X# = dX"/d\.

First, however, we will extend the action functional
(24) to include intrinsic spin. We begin by introducing
the standard Lorentz generators:

low]® 5 = =16 m0p + inusdy . (25)

Using the composition property of Lorentz transforma-
tions applied to the case of infinitesimal shifts A — A+dA
in the parameter A,

AA+dN) = AdNAN)
= (1—(i/2)do0"" (N) o )A(N), (26)
where df*” are the components of an antisymmetric ten-

sor of infinitesimal Lorentz boosts and angular displace-
ments, we have

AN+ d\) — A(N)

AN = Jim, X
- —%éW(A)aWA(A). (27)

Invoking the following trace identity satisfied by antisym-
metric tensors A*Y = —AYF,

1
iTr[a‘“’A] =AM (28)
or, more explicitly,
1 1 aNes N v
o1 AR = i, (29)

we can express the rates of change grv (M) according to
1 (\) = %Tr[aWA(A)A*(A)}. (30)

By an integration by parts, we can then recast the action
functional (24) (up to an irrelevant boundary term) as

1 )
Sho spin[ X, A] = / AN 5 Ly (31)

With the alternative form (31) of the action functional
in hand, we can straightforwardly introduce intrinsic spin
into the system’s dynamics by making the replacement
L, — Juw = Ly, + Syu. Converting the term involving



L, back into the form (24), we thereby obtain the new
action functional

. 1 .
S[X,A] = /dA,,sf = /d)\ (pMX” + 2Tr[SAA_1]>,
(32)
which now properly accounts for intrinsic spin. Explic-

itly, the last term, which encodes the system’s intrinsic
spin, is given by

1 . o i B
5 Tr[SAA = -S%A5 AT, (33)

DN | =

The equations of motion derived from this action func-
tional are

pP« = Oa (34)

Jm =0, (35)

and respectively express conservation of four-momentum
and conservation of total angular momentum, in keep-
ing with Noether’s theorem and the symmetries of the
dynamics under Poincaré transformations. It follows
that the Pauli-Lubanski pseudovector (19) is conserved,
W+ = 0, and that the scalar quantities —m?2c? and w?
defined in (20) and (21) are guaranteed to be constant,
as required.

As shown in [9], constancy of the spin-squared scalar
s? defined in (22) requires the imposition of an important
Poincaré-invariant condition on the system’s phase space.
To see why, we make use of the equation of motion (35)
to compute the rate of change of s%:

% @S,Ws#") =5,,5" =2X"p"S,, = 0.

Keep in mind that without a definite relationship be-
tween the four-momentum p* and the four-velocity X*,
this condition is nontrivial. Because it establishes a con-
straint on all solution trajectories in the system’s phase
space, we conclude that the following Lorentz-invariant
condition must hold:

PuS™ = 0. (36)

Combined with the system’s equations of motion (34)
and (35), this condition yields a pair of basic relation-
ships between the system’s four-momentum p* and its
otherwise-unfixed four-velocity X*,

p- X =+me?\/—X2/c2, (37)
my/—X2/c2 p* = Fm2XH, (38)
where p- X = p,X* and X? = X, X*. The equations

(34)—(38) complete our specification of the system’s dy-
namics.

Notice that the self-consistency condition (36),
ppS* = 0, is phrased entirely in terms of ingredients
that have clear counterparts in classical field theory and
in quantum theory—namely, linear and angular momen-
tum. As we will see shortly, the condition (36) eliminates
unphysical spin states that formally arise due to our use
of a manifestly Lorentz-covariant formalism, and thereby
serves a role that is closely related to the Lorenz equation
0, A" = 0 that appears both in the Proca field theory of a
massive spin-1 boson and as the Lorenz-gauge condition
in electromagnetism.

Indeed, for a plane-wave mode of the form A*(z) =
et exp(ip - ¢/h) for a spin-1 field theory, where e is the
wave’s polarization four-vector and encodes the wave’s
underlying spin, the Lorenz equation reduces to p,e# =
0, thereby eliminating one linear combination of polar-
izations and therefore one independent spin state from
the underlying spin-1 boson. By contrast, our classical
particle has a fixed but not quantized overall spin (22),
and the self-consistency condition p,S*” = 0 removes a
continuous infinity of unphysical spin states.

C. Classification of the Transitive Group Actions

Specializing to the orthochronous Poincaré group, clas-
sifying the different systems whose phase spaces give
transitive group actions is a straightforward exercise that
parallels Wigner’s approach in [5]. As derived in detail
in [1], one finds that each such system can describe a
massive particle m? > 0 or a massless particle m? = 0
with either positive energy E = p‘c > 0 or negative en-
ergy £ = ptc < 0, or a tachyon m? < 0, or the vacuum
p* = 0. Furthermore, the relations (37) and (38) im-
ply that for each of these cases, the four-momentum is
parallel to the four-velocity, p* o X*#. Tt then follows
immediately from the equations of motion (34) and (35)
that L*” and S*¥ are separately conserved.

For a massive particle, we can take the reference state
(14) to describe the particle at rest, with reference four-
momentum

ph = (mc, 0)*. (39)

The condition (36) then eliminates unphysical spin de-
grees of freedom and implies that the particle’s spin ten-
sor (12) reduces to the three-dimensional spin pseudovec-
tor S, whose possible orientations fill out a compact,
fixed-energy region of the particle’s phase space.

By contrast, for massless particles and tachyons, the
little group of Lorentz transformations that preserve
the particle’s reference four-momentum pfj dictates that
the particle’s phase space at any fixed energy is seem-
ingly noncompact, leading to infinite entropies and other
thermodynamic pathologies, besides problems that arise



in the corresponding quantum field theories.* For a

tachyon, the only way to eliminate this noncompactness
is to require that the spin tensor vanishes, S** = 0,
meaning that tachyons are naturally spinless.

For a massless particle, by contrast, the story is more
interesting. We can take the massless particle’s reference
four-momentum to be

po = (E/c,0,0,E/c)", (40)

and the phase-space self-consistency condition (36),
pS* = 0, then implies the corresponding reference spin
tensor

0 Soy —So. 0 Y7
_SO,y 0 SO,z _SO,y
SO,x _SO,Z 0 80796

0 Soy —S0e O

5

Sy = (41)

The most general little-group transformation preserving
the reference four-momentum (40) consists of a Lorentz-
transformation matrix A of the form?®

Ala, B,0) = L{a, B)R(O), (42)
where

1 0 0 O
10 cosf sinf 0O
R(9) = 0 —sinf cosf 0 (43)

0 0 0 1

is a pure rotation by an angle # around the z axis and
where

1+¢af —
L= 5 o1 2% (44)
¢ apl-¢

is a complicated combination of Lorentz boosts and ro-
tations. One can show that

R(61)R(02) = R(61 + 62), (45)
L(ay, B1)L(ag, f2) = L(ay + g, f1 + f2), (46)

so rotations R(6) around the z axis and the Lorentz trans-
formations L(«, ) respectively form a pair of commuta-
tive subgroups of the particle’s little group. Noting that

R(0)L(c, BYR™1(0)
= L(acosf + Bsinf, —asinf + [ cosb), (47)

4 See, for example, [10, 11], but also [12] for a more optimistic
take.
5 For a derivation, see, for example, [1, 8].

we identify the little group as I.S0O(2), which is the non-
compact group of rotations and translations in the two-
dimensional Euclidean plane.

These little-group transformations act nontrivially on
the particle’s reference spin tensor (41):

L(Oé, B)SoLT(Oé, 6)

0 *55072 OZSO_]Z 0
ﬁS()’Z 0 0 ﬁSO,z
OéSQ’Z 0 0 _aSO,z

0 —55072 (XSO,Z 0

= S0+ (48)

Hence, the only way to ensure that the massless particle
has a compact phase space at fixed reference energy while
still allowing for nonzero spin is to impose the following
equivalence relation on the particle’s phase space:

(X,p,5) = (X,p, 5"). (49)

This equivalence relation is a new result. Just as
the self-consistency condition (36), p,S*” = 0, is the
classical-particle analogue of the Lorenz-gauge condi-
tion 0,A" = 0 for the gauge potential A, in electro-
magnetism, the equivalence relation (49) is a classical-
particle manifestation of electromagnetic gauge invari-
ance A, = A, +0,f. Indeed, for the case of plane waves
AF = et exp(ip- x/h) and f = aexp(ip - z/h), where the
polarization four-vector e* encodes the wave’s underly-
ing spin, electromagnetic gauge invariance reduces to an
equivalence relation of the form e* = ¢ + (ia/R)p* for
the wave’s polarization, and therefore implies an equiva-
lence relation on the wave’s underlying spin directly anal-
ogous to (49).

In particular; in the same sense in which electromag-
netic gauge invariance is responsible for removing un-
physical spin states, and furthermore implies that all ob-
servable quantities must be gauge invariant, the equiv-
alence relation (49) cuts the classical massless particle’s
phase space at fixed energy down to a compact extent,
with the implication that (49) must be an invariance of
all observable quantities. The distinct physical states of
the massless particle are then characterized by a space-
time position X*, a four-momentum p*, and a helicity
o= (p/lpl)-8.°

Components of the spin tensor S#*” that are transverse
to the particle’s three-momentum p are not invariant un-
der the equivalence relation (49). As a consequence, S*”
cannot directly appear in Lorentz-covariant interaction
terms in equations of motion that couple the particle to
other systems, in close analogy with the fact that gauge
invariance precludes the electromagnetic gauge potential

6 Note that if we permit parity transformations, which map o —
—o, then we must require that the equivalence relation (49) hold
only for states that share the same helicity o.



A, from showing up directly in Lorentz-covariant field
equations outside of the gauge-invariant Faraday tensor
F.,=0,A, —-0,A,.

IVv. THE MASSLESS LIMIT

We can better understand the origin of the novel equiv-
alence relation (49) by starting with the massive case
m > 0 and then taking the massless limit m — 0.

Our original massive-particle reference state (39) de-
generates for m — 0, so we instead take the massive
particle’s reference four-momentum to be

P = (0',0,0,p7)" = (V(p*)2 + m2e2,0,0,p%)". (50)
This choice has the correct m — 0 limit (40):

lim p* = (Eo/c,0,0, Eo/c)", Eo=p°c. (51)
m—0

Moreover, (50) is related to our original choice (39) of
reference four-momentum for the massive particle by a
simple Lorentz boost A along the z direction,

= Abpg, (52)

v

and the new reference value S of the massive particle’s
spin tensor is related to its original reference value Sy
according to

v = (AS,AT)

~2 =z InZ
0 piso ) _&SO . 0
. me me .
D p
——50y O Soz  ———Soy
_ me me
pZ ﬁt (53)
750,:1: _SO z 0 750 T
me . - me
p
0 —S50,y — So,z 0
me ¢

For m — 0, we have p', p* — Fy/c, so the components
SHv of the spin tensor involving p’/mc or p* /mc diverge.
Furthermore, there is a discrete mismatch in the parti-
cle’s spin-squared scalar (22) between the massive case
and the massless case:

2 2 2 2 .
s =S50, +S5,+S55,. (massive)

#S5. (massless). (54)

These discrepancies are hints that the massive case in-
cludes spin degrees of freedom that need to be removed
before taking the massless limit.

Our approach for removing these ill-behaved spin de-
grees of freedom is motivated by a corresponding proce-
dure in quantum field theory that was originally devel-
oped by Stueckelberg in [13]. We start with the redefini-
tion

Sa me (S, + Ptsﬂx) me (5;1;) <<PI>
_ '_> —_ _ . e — _ + s
(Sy> P <Sy +p'oy Pt \ Sy me Py

(55)

where ¢, (\) and ¢, () are arbitrary new functions on
the particle’s worldline. The particle’s spin tensor (53)
then has the decomposition

P* P* -
0 ESO,y ESO,:& 0
ﬁz
Sv;u/ _ _ESO Y 0 SO z _SO,y
D
TtSO,;E SO,Z 0 SO,w
0 So,y S0,z 0
0 Py —PPee 0\
—pPpy 0 0 —ploy

0 pt Py _ﬁt@x 0

and the spin-squared scalar (22) becomes

2
82 = <]_ — (;) ) ((5071; +]7t80x)2
+ (Soy +ﬁt<py)2) +S2.. (57)

The particle’s spin tensor (56) is now invariant under the
simultaneous transformations

(5)~ (5)-7(%) (59)
()= (2)+ (%) 5

where f,(\), fy()\) are arbitrary functions on the parti-
cle’s worldline.

Our massive particle’s original phase space, with states
labeled as (X, p, S), is therefore equivalent to a formally
enlarged phase space consisting of states (X, p, S, ) un-
der the equivalence relation (X,p,S,0) = (X,p,S —
ptf, o+ f), suitably generalized from the reference state
(X,p,5,p) to general states (X,p, S, ) of the system.
Indeed, one can check that the specific choice (fz, fy) =
—(pu, py) vields (X,p, S + ple, 0), which gives back the
state (X, p, S) after undoing the redefinition (55) of S*¥.

We can now safely take the massless limit of the sys-
tem’s redefined spin tensor (56):

124

0 Soy —S0e O

. & —5o 0 So. —So
7S 2 Y 32 Y
nlzlglos | Sox —So. O So,x
0 Soy —S0e O
0 @y —pz O -
E —py O 0 —ypy
— 60
0 Spy —Px 0
and
lim s* =57 . (61)

m—0



The degrees of freedom describing spin components per-
pendicular to the particle’s reference three-momentum p
no longer contribute to the particle’s spin-squared scalar
s2. If we remove these ancillary degrees of freedom by
setting ¢, ¢, equal to zero, then the particle’s spin ten-
sor (60) reduces correctly to the reference spin tensor
(41) for a massless particle, and our equivalence relation
(58) reduces to the gauge invariance (49). We have there-
fore completed our recovery of the massless case from the
m — 0 limit of a massive particle.

We can run these arguments in reverse to obtain
a classical-particle counterpart of the celebrated Higgs
mechanism. Recall that in the simplest version of the
field-theoretic Higgs mechanism, we start with a massless
spin-1 boson and then spontaneously break the underly-
ing gauge invariance. The overall effect is to give the orig-
inal spin-1 boson a nonzero mass while augmenting its
two spin states with another spin state from a Higgs bo-
son, so that we now have the necessary three spin states
for a massive spin-1 boson. Analogously, suppose that
we start with a classical massless particle with reference
four-momentum (40), pff = (E/c,0,0, E/c)*, and phase-
space equivalence relation (49), (X,p,S) = (X,p,5).
Running the analysis of this section in the other direc-
tion, we see that we can transform the massless particle
into a massive particle if we augment the particle’s phase
space with ancillary “Higgs” degrees of freedom ¢, ¢y .
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