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In this paper, we review a general technique for converting the standard Lagrangian description
of a classical system into a formulation that puts time on an equal footing with the system’s degrees
of freedom. We show how the resulting framework anticipates key features of special relativity,
including the signature of the Minkowski metric tensor and the special role played by theories that
are invariant under a generalized notion of Lorentz transformations. We then use this technique
to revisit a classification of classical particle-types that mirrors Wigner’s classification of quantum
particle-types in terms of irreducible representations of the Poincaré group, including the cases of
massive particles, massless particles, and tachyons. Along the way, we see gauge invariance naturally
emerge in the context of classical massless particles with nonzero spin, as well as study the massless
limit of a massive particle and derive a classical-particle version of the Higgs mechanism.

I. INTRODUCTION

The Lagrangian formulation of classical physics pro-
vides an elegant and powerful set of techniques for an-
alyzing the behavior of physical systems. For classical
fields, it is customary to employ Lagrangians that make
the symmetries of special relativity manifest, but text-
book treatments of mechanical systems tend to treat time
and energy very differently from degrees of freedom and
momenta.
In this paper,1 we cast new light on a technique for re-

solving this shortcoming. Among its useful features, we
show that this framework anticipates key aspects of spe-
cial relativity, like the signature of the Minkowski metric
tensor and the special role played by classical systems
that exhibit generalizations of Lorentz invariance.
Extending earlier work, including [2–5], we then

present a fully classical version of Wigner’s famous
classification [6] of quantum particles into general
types—massive, massless, and tachyonic. In close par-
allel with Wigner’s construction, which is based on iden-
tifying the Hilbert spaces of quantum particles with irre-
ducible representations of the Poincaré group, our classi-
fication of classical particle-types consists of identifying
their phase spaces with “irreducible” (or, more properly,
transitive) group actions of the Poincaré group, so that
those phase spaces serve as homogeneous spaces for the
Poincaré group. Our classical particles generically pos-
sess fixed total spin, but without spin quantization, and
therefore correspond to the limit of large spin quantum
numbers.
Along the way, and as a case study in how kinematics

can determine dynamics, we show that the structure of
these phase spaces leads to a simple Lagrangian formu-
lation that can handle both massive and massless parti-
cles, and that neatly accommodates spin. In addition,
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1 For a synopsis of the results obtained in this paper, see [1].

by paying careful attention to the compactness proper-
ties of these phase spaces at fixed energy, we show that
physically acceptable massless particles with spin feature
a classical point-particle manifestation of gauge invari-
ance that is deeply connected to the gauge invariance of
electromagnetism—meaning that this form of gauge in-
variance is not solely a property of classical field theory or
of relativistic quantum mechanics. By studying the rela-
tionship between the massive and massless cases through
the massless limit, we also derive a classical point-particle
version of the Higgs mechanism.

II. THE LAGRANGIAN FORMULATION

We start with a brief review of general classical systems
and their standard Lagrangian formulation.2 Afterward,
we will turn to the development of a manifestly covariant
approach.

A. Classical Systems

In general, the mathematical description of a classi-
cal system consists of a configuration space whose points
denote the possible “snapshots” that the system can oc-
cupy, together with a list of rules or laws that determine
how the system’s instantaneous configuration is allowed
to evolve.

If qα are a collection of independent numerical coordi-
nates that label the points in the system’s configuration
space, with α an index distinguishing the different coor-
dinates, then we call qα a set of degrees of freedom for
the system. We will assume for simplicity that we can
cover the entire configuration space with a single such co-
ordinate system, apart from possible regions of measure
zero where the coordinates are not well-defined.

2 For a more extensive introduction, see [7].
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A candidate trajectory of the system is an arbitrary
smooth path through the system’s configuration space,
and is conveniently defined by specifying the system’s
degrees of freedom qα(t) as functions of a real-valued pa-
rameter t called the time. The system’s rates of change
are then denoted by q̇α(t), where dots denote derivatives
with respect to t:

q̇α(t) ≡
dqα(t)

dt
, (1)

q̈α(t) ≡
d2qα(t)

dt2
, (2)

and so forth. Altogether, the system’s configuration
space, a choice of degrees of freedom qα, and all the sys-
tem’s candidate trajectories make up the system’s kine-
matics.
The rules or laws that prescribe which candidate tra-

jectories are physical trajectories that the system can ac-
tually follow make up the system’s dynamics. In the sim-
plest cases, these rules take the form of first- or second-
order differential equations of the form

fα(q, q̇, q̈) = 0, (3)

which are called the system’s equations of motion.
As a simple example, consider a Newtonian particle of

constant inertial mass m in an inertial reference frame
in three spatial dimensions. At the level of kinematics,
the particle has a three-dimensional configuration space
isomorphic to R3, and three degrees of freedom qx, qy, qz
that make up the particle’s position vectorX in Cartesian
coordinates:

X ≡ (X,Y, Z) ≡ (qx, qy, qz). (4)

At the level of dynamics, we assume a given force vector

F ≡ (Fx, Fy, Fz), (5)

in which case the system’s equations of motion make up
the three components of Newton’s second law,

F = ma, (6)

where a is the system’s acceleration vector:

a ≡ Ẍ = (Ẍ, Ÿ , Z̈). (7)

B. The Lagrangian Formulation

Returning again to the case of a general classical sys-
tem, let L(q, q̇, t), assumed to have units of energy, be a
function of the system’s degrees of freedom qα, its rates
of change q̇α, and the time t. Notice that if we do not
specify a candidate trajectory, then qα, q̇α, and t are all
independent variables.

By contrast, if we are given a candidate trajectory
qα(t) from an arbitrary initial time tA to an arbitrary

final time tB , then the degrees of freedom qα(t) and their
rates of change q̇α(t) become functions of t, and we can
define an integral of L(q(t), q̇(t), t) over time:

S[q] ≡
∫ tB

tA

dtL(q(t), q̇(t), t). (8)

The bracketed argument [q] in this notation indicates
that S[q] is a functional of the system’s candidate tra-
jectory, meaning that S[q] depends on the infinite con-
tinuum of real numbers—parametrized by t—that make
up the entire candidate trajectory qα(t).
If we extremize S[q] over all candidate trajectories that

share the same initial and final conditions,

δS[q] = 0,

with qα(tA) and qα(tB) held fixed for all α, (9)

then, as we will review in detail, we obtain the Euler-
Lagrange equations,

∂L

∂qα
− d

dt

(
∂L

∂q̇α

)
= 0. (10)

For many Lagrangians used in practice, the Euler-
Lagrange equations are typically second-order in the time
t. If the Euler-Lagrange equations collectively turn out
to be equivalent to the system’s equations of motion (3),
then we respectively call L = L(q, q̇, t) and S[q] a La-
grangian and an action functional for the system, and we
say that S[q] ≡

∫
dtL provides a Lagrangian formulation

for the system. (Note that L and S[q] are generally not
unique for a given system.)

Deriving the Euler-Lagrange equations from the ex-
tremization condition (9), known as Hamilton’s principle
or the principle of least action, takes just a few steps,
and will be an illustrative exercise before we generalize
the construction later on. We start by varying the sys-
tem’s candidate trajectory qα(t) according to

qα(t) 7→ qα(t) + δqα(t), (11)

where the variations δqα(t) are infinitesimal functions of
the time t that are assumed to vanish at the endpoints
of the system’s trajectory in keeping with (9),

δqα(tA) = 0, δqα(tB) = 0, (12)

but are otherwise arbitrary and independent. Taking a
time derivative of the variation rule (11) yields the corre-
sponding variations in the system’s rates of change q̇α(t):

q̇α(t) =
dqα(t)

dt
7→ d(qα(t) + δqα(t))

dt

= q̇α(t) +
d

dt
δqα(t). (13)

We infer that the induced variation in q̇α(t) is precisely
the time derivative of the variation in qα(t),

δq̇α(t) =
d

dt
δqα(t), (14)
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so, loosely speaking, the variation operator δ “commutes”
with the time derivative d/dt.
Applying the extremization condition (9), using the

chain rule, carrying out an integration by parts, and
dropping boundary terms that vanish by the assumption
that the variations vanish at the initial and final times,
we find

δS[q] ≡
∫

dtL(q + δq, q̇ + δq̇, t)

−
∫

dtL(q, q̇, t)

=

∫
dt

∑
α

(
∂L

∂qα
δqα +

∂L

∂q̇α
δq̇α

)
=

∫
dt

∑
α

(
∂L

∂qα
δqα +

∂L

∂q̇α

d

dt
δqα

)
=

∫
dt

∑
α

(
∂L

∂qα
− d

dt

(
∂L

∂q̇α

))
δqα = 0. (15)

Because the infinitesimal variations δqα(t) are assumed to
be arbitrary and independent within the domain of inte-
gration, we conclude that the factor in parentheses must
be zero, so we end up with the Euler-Lagrange equations
(10), as claimed.
As an example, consider a Newtonian particle of con-

stant inertial mass m and position vector X ≡ (X,Y, Z)
with kinetic energy

T (Ẋ) =
1

2
mẊ2 =

1

2
m(Ẋ2 + Ẏ 2 + Ż2) (16)

and subject to a conservative force

F = −∇V =

(
− ∂V

∂X
,−∂V

∂Y
,−∂V

∂Z

)
, (17)

corresponding to a potential energy V (X) = V (X,Y, Z).
If we choose the Lagrangian

L(X, Ẋ) ≡ T − V =
1

2
mẊ2 − V (X), (18)

then the Euler-Lagrange equations (10), with X =
(X,Y, Z) = (qx, qy, qz), give

∂L

∂Xi
− d

dt

(
∂L

∂Ẋi

)
= − ∂V

∂Xi
−mẌi = 0,

which replicate the three components of Newton’s second
law (6), F = ma. Notice also that the object’s momen-
tum

p ≡ (px, py, pz) ≡ mẊ (19)

is related to the Lagrangian (18) by

pi = mẊi =
∂L

∂Ẋi

, (20)

and that the object’s total mechanical energy

E ≡ T + V (21)

is related to p and L by

E =
1

2
mẊ2 + V (X) =

p2

2m
+ V (X)

= p · Ẋ− L. (22)

For a generic physical system that may not resemble a
Newtonian object, we might not have an obvious choice
for defining the system’s momenta and energy. The for-
mulas at the end of (20) and at the end of (22) have the
virtue of being general and of leading to quantities pi and
E that, as we will see shortly, are respectively conserved
if the system’s action functional (8) is symmetric under
translations in space, Xi 7→ Xi + (constant), or under
translations in time, t 7→ t+ (constant).

Given a generic system with a Lagrangian formula-
tion, we are therefore motivated to define each of the
system’s canonical momenta pα in terms of the system’s
Lagrangian L as the partial derivative of L with respect
to the corresponding rate of change q̇α:

pα ≡ ∂L

∂q̇α
. (23)

Recalling that the set of points labeled by particular val-
ues qα of a system’s degrees of freedom define the sys-
tem’s configuration space, the set of points (q, p) labeled
by particular values of the system’s canonical variables
qα and pα define the system’s phase space.

If we can solve the definitions (23) for the rates of
change q̇α as functions of the canonical variables qα and
pα, then the system’s Hamiltonian H(q, p, t), which is
a function on the system’s phase space and roughly de-
scribes the system’s energy, is defined as

H ≡
∑
α

∂L

∂q̇α
q̇α − L,

=
∑
α

pαq̇α − L, (24)

which is known as a Legendre transformation of L.

In terms of the canonical momenta (23), we can recast
the Euler-Lagrange equations (10) as

dpα
dt

=
∂L

∂qα
. (25)

One can also use the chain rule together with the Euler-
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Lagrange equations to show that

dH

dt
=

∑
α

ṗαq̇α +
∑
α

pαq̈α − dL

dt

=
∑
α

d

dt

(
∂L

∂q̇α

)
q̇α +

∑
α

∂L

∂q̇α
q̈α − dL

dt

=
∑
α

∂L

∂qα
q̇α +

∑
α

∂L

∂q̇α
q̈α − dL

dt

=

(∑
α

∂L

∂qα
q̇α +

∑
α

∂L

∂q̇α
q̈α +

∂L

∂t

)
︸ ︷︷ ︸

dL/dt

−dL

dt
− ∂L

∂t

= −∂L

∂t
,

from which we conclude that the time derivative of the
Hamiltonian (24) is given by

dH

dt
= −∂L

∂t
. (26)

The two equalities (25) and (26) look very similar, apart
from an overall minus sign that we will eventually see
is not an accident but has an important physical signifi-
cance.

Moreover, we see right away from (25) that if the La-
grangian is invariant under constant translations along
a specific degree of freedom, qα 7→ qα + (constant), so
that ∂L/∂qα = 0, then the corresponding canonical mo-
mentum pα is conserved, dpα/dt = 0. Similarly, we
see from (26) that if the Lagrangian is invariant un-
der constant translations in time, t 7→ t + (constant),
so that ∂L/∂t = 0, then the Hamiltonian H is con-
served, dH/dt = 0. These results are both special cases
of Noether’s theorem, which establishes a general cor-
respondence between continuous symmetries of a classi-
cal system’s dynamics and quantities that are conserved
when the system follows its equations of motion.

Taking partial derivatives of the Hamiltonian H with
respect to the canonical variables qα and pα, now treated
as independent variables, and regarding q̇α as a function
of the canonical variables, we have

∂H

∂pα
=

∂

∂pα

(∑
β

pβ q̇β − L

)
= q̇α +

∑
β

pβ
∂q̇β
∂pα

−
∑
β

∂L

∂q̇β

∂q̇β
∂pα

= q̇α +
∑
β

(
pβ − ∂L

∂q̇β

)
∂q̇β
∂pα

= q̇α

and

∂H

∂qα
=

∂

∂qα

(∑
β

pβ q̇β − L

)
=

∑
β

pβ
∂q̇β
∂qα

− ∂L

∂qα
−
∑
β

∂L

∂q̇β

∂q̇β
∂qα

=
∑
β

(
pβ − ∂L

∂q̇β

)
∂q̇β
∂qα

− ∂L

∂qα

=
d

dt

(
∂L

∂qα

)
= ṗα,

where we have used the Euler-Lagrange equations (10) in
the last line. Hence, the Euler-Lagrange equations (10)
imply the canonical equations of motion:

q̇α =
∂H

∂pα
,

ṗα = − ∂H

∂qα
.

 (27)

By a similar calculation going the other way, one can
also show that the canonical equations of motion imply
the Euler-Lagrange equations, so the two sets of equa-
tions are equivalent. The canonical equations of motion
therefore make it possible to encode the system’s dynam-
ics in an alternative way, known as the Hamiltonian for-
mulation.

C. The Manifestly Covariant Lagrangian
Formulation

The standard Lagrangian formulation of classical
physics treats time and energy differently from space and
momentum, in tension with the spirit of special relativity.
Fortunately, we can recast the Lagrangian formulation in
a more elegant way that puts time and degrees of free-
dom on the same footing, with the result that energy
and momentum will naturally also end up on the same
footing.3

To begin, we turn again to the case of a general clas-
sical system with degrees of freedom qα, Lagrangian
L(q, q̇, t), and action functional (8),

S[q] ≡
∫

dtL(q, q̇, t).

We carry out a smooth, strictly monotonic change of in-
tegration variable from t to a new parameter λ:

t 7→ t(λ). (28)

3 For an early example of this formalism, see [8]. See also [9]. For
more modern reviews, see [4, 10].
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Letting dots now denote derivatives with respect to λ,

ḟ ≡ df

dλ
, (29)

we obtain the following differential relationships:

dt = dλ ṫ,
dqα
dt

=
q̇α

ṫ
. (30)

Our action functional then becomes

S[q] ≡
∫

dλ ṫ L(q, q̇/ṫ, t). (31)

This formula for the system’s action functional is
reparametrization invariant, meaning that it would main-
tain its form if we were to carry out any subsequent
smooth, strictly monotonic change of parametrization
λ 7→ λ(λ′):

S[q] ≡
∫

dλ′ dt

dλ′ L

(
q,

dq

dλ′ /
dt

dλ′ , t

)
. (32)

Reparametrization invariance is an example of a gauge
invariance, meaning a redefinition of the system’s degrees
of freedom that leaves all the system’s physically observ-
able features unchanged. A gauge invariance represents a
“redundancy” in the mathematical description of a phys-
ical system, in the sense that if we were to redefine the
system’s degrees of freedom according to a gauge invari-
ance, then we would obtain a distinct but mathematically
equivalent description of the same system in the same
physical state.
A gauge invariance should be distinguished from a

dynamical symmetry, which consists of transformations
that alter the system’s physical state but leave the sys-
tem’s dynamics unchanged. For example, a Newtonian
system of particles could have dynamical symmetries un-
der translations or rotations in three-dimensional space,
both of which would alter the system’s physical state.
We can formally regard the reparametrization-

invariant formula (31) for the action functional as de-
scribing a system with an additional “degree of freedom”
t and a modified Lagrangian

L (q, q̇, t, ṫ) ≡ ṫ L(q, q̇/ṫ, t). (33)

Notice that

∂L

∂ṫ
=

∂

∂ṫ
(ṫ L(q, q̇/ṫ, t))

= L+
∑
α

ṫ
∂L

∂(q̇α/ṫ)

(
− q̇α

ṫ2

)
= L−

∑
α

pα
dqα
dt

= −H

and

∂L

∂q̇α
=

∂

∂q̇α
(ṫ L(q, q̇/ṫ, t))

= ṫ
∂L

∂(q̇α/ṫ)

1

ṫ
= pα.

Thus, the system’s new canonical momenta (23) conju-
gate to our original degrees of freedom qα are the same
as before, Pα = pα, whereas the system’s canonical mo-
mentum Pt conjugate to t is equal to minus the system’s
original Hamiltonian H:

Pt ≡
∂L

∂ṫ
= −H,

Pα ≡ ∂L

∂q̇α
= pα.

 (34)

These formulas motivate introducing “upper-index” and
“lower-index” versions of our canonical variables by mim-
icking the analogous rules for the components of the four-
vectors that are used in special relativity:

qt ≡ c t, qt ≡ −c t,

qα ≡ qα,

pt ≡ H/c, pt ≡ −H/c,

pα ≡ pα.

 (35)

To ensure that we are using the same units for qt and qα

and also the same units for pt and pα, we have introduced
an arbitrary constant c with units of energy divided by
momentum. (The constant c also has units of distance
divided by time, or speed, but not all classical systems
possess a notion of distance.) Note also that we have
defined pt ≡ Pt/c.
Applying the extremization condition (9) to the action

functional with respect to the new degrees of freedom qt

and qα, we obtain a new set of Euler-Lagrange equations
given by

∂L

∂qt
− d

dλ

(
∂L

∂q̇t

)
= 0,

∂L

∂qα
− d

dλ

(
∂L

∂q̇α

)
= 0.

 (36)

Observe that

∂L

∂qα
− d

dλ

(
∂L

∂q̇α

)
= ṫ

∂L

∂qα
− dt

dλ

d

dt

(
ṫ

∂L

∂(q̇α/ṫ)

(
1

ṫ

))
= ṫ

(
∂L

∂qα
− d

dt

(
∂L

∂(dqα/dt)

))
,

so the Euler-Lagrange equations for the degrees of free-
dom qα unsurprisingly give us back our original Euler-
Lagrange equations (10),

∂L

∂qα
− d

dt

(
∂L

∂(dqα/dt)

)
= 0,

which, as we recall from (25), can be written more com-
pactly as

dpα
dt

=
∂L

∂qα
.
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Meanwhile, we also have

∂L

∂qt
− d

dλ

(
∂L

∂q̇t

)
=

1

c

∂L

∂t
− 1

c

d

dλ

(
∂L

∂ṫ

)
=

1

c
ṫ
∂L

∂t
− 1

c

d

dλ

(
L+

∑
α

ṫ
∂L

∂(q̇α/ṫ)

(
− q̇α

ṫ2

))
=

1

c
ṫ
∂L

∂t
− 1

c
ṫ
d

dt

(
L−

∑
α

pα
q̇α

ṫ

)
=

1

c
ṫ

(
∂L

∂t
+

dH

dt

)
,

so the Euler-Lagrange equation for qt replicates the equa-
tion (26) that relates the total time derivative of the sys-
tem’s original Hamiltonian H to the partial time deriva-
tive of the system’s original Lagrangian L,

dH

dt
= −∂L

∂t
.

We can combine these results in terms of the raised-
index versions pt and pα of the canonical momenta de-
fined in (35) as the symmetric-looking equations

dpt

dt
=

∂L

∂qt
,

dpα

dt
=

∂L

∂qα
,

 (37)

or, equivalently, in terms of L and derivatives with re-
spect to λ as

ṗt ≡ dpt

dλ
=

∂L

∂qt
,

ṗα ≡ dpα

dλ
=

∂L

∂qα
.

 (38)

Furthermore, we can write our action functional (31) as

S[q] =

∫
dλ ṫ L =

∫
dλ ṫ

(∑
α

pα
dqα
dt

−H

)
=

∫
dλ

(∑
α

pα
dt

dλ

dqα
dt

− (q̇t/c)H

)
=

∫
dλ

(∑
α

pαq̇
α + q̇tpt

)
.

That is, rather remarkably, we can recast our action func-
tional in a form that resembles a Lorentz-invariant dot
product, despite the fact that we have not assumed that
our system has anything to do with special relativity or
four-dimensional spacetime:

S[q] =

∫
dλL =

∫
dλ

(
ptq̇

t +
∑
α

pαq̇
α
)
. (39)

We therefore refer to this framework as the manifestly co-
variant Lagrangian formulation for our classical system.

Introducing a square matrix η ≡ diag(−1, 1, . . . ) that
naturally generalizes the Minkowski metric tensor from
special relativity,

η ≡

−1 0 0
0 1 0
0 0

. . .

, (40)

we can write the system’s action functional (39) in matrix
form as

S[q] =

∫
dλ

(
pt pα

)
η

(
q̇t

q̇α

)
, (41)

where pα and q̇α here are notational abbreviations for
their whole lists indexed by α. This expression for S[q]
immediately suggests the consideration of systems whose
action functionals have a symmetry under rigid linear
transformations of the form(

qt

qα

)
7→ Λ

(
qt

qα

)
,

(
pt

pα

)
7→ Λ

(
pt

pα

)
(42)

for constant matrices Λ that preserve the generalized
Minkowski metric tensor η in the sense that

ΛTηΛ = η. (43)

The matrices Λ therefore represent generalizations of
Lorentz transformations.

Recall the group O(N) of orthogonal N ×N matrices
R, meaning matrices that preserve the N × N identity
matrix 1 ≡ diag(1, 1, . . . ),

RTR = RT1R = 1. (44)

Letting N denote the system’s original number of degrees
of freedom qα, we see that the set of generalized Lorentz-
transformation matrices Λ preserve the (N+1)×(N+1)
matrix η ≡ diag(−1, 1, . . . ), so we correspondingly refer
to them as making up the group O(1, N).

The formula (39) for the action functional also implies
that the new “Hamiltonian” H , defined in line with (24),
trivially vanishes, and therefore (at least classically) does
not hold any physical meaning:

H ≡ ptq̇
t +

∑
α

pαq
α − L = 0. (45)

This equation is closely related to the fact that arbitrary
changes of parametrization represent a gauge invariance
of the system and likewise do not have any physical mean-
ing.

III. SPACETIME IN SPECIAL RELATIVITY

We now turn to a brief review of special relativity.4

4 For a more extensive introduction, see the opening chapters of
[11].
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A. Spacetime and Four-Vectors

In special relativity, time t and space x ≡ (x, y, z) join
together to form four-dimensional spacetime coordinates,

xµ ≡ (xt, xx, xy, xz)µ

≡ (c t,x)µ ≡ (c t, x, y, z)µ, (46)

where c is the speed of light. We will use Greek let-
ters α, β, . . . , µ, ν, . . . for Lorentz indices, which will each
run through the four possible values t, x, y, z, and we will
use Latin indices i, j, k, . . . for the spatial values x, y, z,
where we will consistently employ Cartesian coordinate
systems.
Defining the (3+1)-dimensional Minkowski metric ten-

sor by

ηµν ≡ ηµν ≡

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


µν

, (47)

and employing Einstein summation notation, we can
raise and lower indices on the components of four-vectors
according to vµ ≡ ηµνv

ν and wµ ≡ ηµνwν , with the fol-
lowing results:

vt = −vt,

vx = vx,

vy = vy,

vz = vz.

 (48)

We let Λµ
ν be a 4 × 4 Lorentz-transformation matrix,

meaning that Λµ
ν is an element of O(1, 3) and therefore

preserves the Minkowski metric tensor ηµν in the sense
that

Λµ
ρηµνΛ

ν
σ = ηρσ, (49)

or, in matrix notation,

ΛTηΛ = η. (50)

Then Lorentz transformations of four-vectors vµ, mean-
ing linear transformations of the form

vµ 7→ Λµ
νv

ν , (51)

preserve four-dimensional dot products defined by

v · w ≡ vνw
ν = ηµνv

µwν . (52)

Four-vectors vµ are classified as timelike, null, or space-
like according to whether the dot product of vµ with itself
is respectively negative, zero, or positive:

v2 ≡ v · v


< 0 timelike,

= 0 null,

> 0 spacelike.

(53)

The Lorentz invariance of the dot product (52) ensures
that this classification is invariant and therefore well-
defined under Lorentz transformations.

B. The Spacetime Transformation Groups

The collection O(1, 3) of all possible Lorentz transfor-
mations (51),

vµ 7→ Λµ
νv

ν ,

is called the Lorentz group.5 The largest subgroup that
excludes parity transformations,

Λparity = diag(1,−1,−1,−1) =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

,

(54)
is called the proper Lorentz group and is denoted by
SO(1, 3), mirroring the notation SO(N) for N × N ro-
tation matrices R that do not involve parity transforma-
tions. The largest subgroup of the Lorentz group that
excludes time-reversal transformations,

Λtime-reversal = diag(−1, 1, 1, 1) =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, (55)

is called the orthochronous Lorentz group and is denoted
by O+(1, 3) or O↑(1, 3). The set of all Lorentz transfor-
mations that can be reduced smoothly to the identity
transformation Λ = 1 cannot include parity or time-
reversal transformations, and is called the proper or-
thochronous Lorentz group SO+(1, 3) or SO↑(1, 3).
A simple calculation shows that for four-vectors vµ

that are timelike or null, the sign of the temporal compo-
nent vt is invariant under orthochronous Lorentz trans-
formations vµ 7→ Λµ

νv
ν :

v2 ≤ 0 =⇒ sign of vt is invariant under O+(1, 3).
(56)

As a consequence, future-directed (vt > 0) four-vectors
that are timelike or null remain future-directed under
orthochronous Lorentz transformations, with a similar
statement for past-directed (vt < 0) four-vectors that
are timelike or null. These properties ensure that if the
displacement between two spacetime points is timelike
or null, then their chronological ordering is an invariant
fact of nature. By contrast, the temporal components
vt of spacelike four-vectors (v2 > 0) can change sign un-
der orthochronous Lorentz transformations, a behavior
that is closely related to the breakdown of simultaneity
in special relativity.
We can also consider additive shifts in the four-

dimensional coordinates (46) by constants aµ:

xµ 7→ xµ + aµ. (57)

5 For a comprehensive presentation of the group theory underlying
special relativity, see [12].
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These transformations make up the spacetime-
translation group, which is isomorphic to R4 but is
denoted by R1,3 to emphasize the mathematical and
physical distinctions between time and space.
Combining spacetime translations with Lorentz trans-

formations of the spacetime coordinates xµ gives the
Poincaré group:

xµ 7→ Λµ
νx

ν + aµ. (58)

Like the Lorentz group, the Poincaré group has proper
and orthochronous subgroups that are respectively de-
fined by dropping all Lorentz transformations that in-
volve parity or time-reversal transformations.6

IV. TRANSITIVE GROUP ACTIONS OF THE
POINCARÉ GROUP

The set of all physical transformations (q, p) 7→ (q′, p′)
that can be carried out on a system’s state (q, p) in its
phase space are collectively called a group action on the
system’s phase space. If we include translations in time
among these physical transformations, then by starting
with a single convenient choice of reference state (q0, p0),
we can reach every other possible state that the system
can occupy. The group action provided by the system’s
phase space is therefore “irreducible,” or, more precisely,
transitive, referring to the fact that no proper subset of
the system’s phase space can be dropped without violat-
ing the group action. One then says that the phase space
serves as a homogeneous space for the group of physical
transformations.
As we will show, the different possible transitive group

actions (or homogeneous spaces) of the Poincaré group
turn out to provide a complete classification of the phase
spaces of the different categories of particles in physics,
in parallel with Wigner’s method for classifying quan-
tum particle-types by identifying their Hilbert spaces as
irreducible representations of the Poincaré group.7

A. Systems Singled Out by the Poincaré Group

To start, we note that the Poincaré group (58) natu-
rally singles out classical systems that have three phys-
ical degrees of freedom (qx, qy, qz) = X ≡ (X,Y, Z)
and therefore three corresponding canonical momenta
p = (px, py, pz). It follows that the system’s manifestly

6 As a mathematical aside, the Poincaré group is formally denoted
by the semi-direct product R1,3 ⋊O(1, 3), which generalizes the
notion of a direct product G = H1 × H2 to the case in which
the second factor H2 is not necessarily a normal subgroup of the
overall group G.

7 For alternative classical approaches to this classification problem,
see [2–5].

covariant Lagrangian formulation involves four spacetime
degrees of freedom

Xµ ≡ (qt, qx, qy, qz)µ

= (c T,X, Y, Z)µ ≡ (c T,X)µ, (59)

together with a canonical four-momentum

pµ ≡ (pt, px, py, pz)µ

≡ (E/c,p)µ (60)

whose individual components, in lower-index form pµ, are
defined in terms of the system’s covariant Lagrangian L
in accordance with (34),

pµ ≡ ∂L

∂Ẋµ
. (61)

Here dots denote derivatives with respect to the arbitrary
parameter λ,

Ẋµ ≡ dXµ

dλ
, (62)

we have identified the system’s energy E as

E ≡ H ≡ ptc, (63)

and candidate trajectories of the system are now called
worldlines.

B. Angular Momentum and Spin

In analogy with the Newtonian definition L ≡ X×p of
an object’s orbital angular momentum, whose individual
components are

Lk = Xipj −Xjpi,

with (i, j, k) = (x, y, z), (z, x, y), or (y, z, x), (64)

we will find it convenient to introduce an antisymmetric
tensor

Lµν ≡ Xµpν −Xνpµ = −Lνµ (65)

whose spatial components Lij (that is, for i, j each taking
the values x, y, z) encode the components of L. We will
accordingly refer to Lµν as the system’s orbital angular-
momentum tensor, although one should keep in mind
that its temporal components Lti (for i a spatial index)
are not angular momenta. Indeed, if the system’s energy
(63) is nonzero, E ≡ ptc ̸= 0, then we can write these
temporal components as

Lti = Xtpi −Xipt = c T pi −XiE/c

= −E

c

(
Xi − pic2

E
T

)
. (66)

We will see later that the factor pc2/E, which has
units of distance divided by time, will typically yield the
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system’s three-dimensional physical propagation velocity
v ≡ dX/dt through space, so the quantity in parentheses
will turn out to be related to the system’s linear motion.
To be as general as possible, we can also allow the sys-

tem to possess an intrinsic notion of angular momentum,
called spin, that does not involve the system’s spacetime
coordinates Xµ or its four-momentum pµ, and that can
be encoded in an antisymmetric tensor

Sµν = −Sνµ, (67)

called the system’s spin tensor. The system’s total angu-
lar momentum is then represented by an antisymmetric
tensor defined as the sum of the tensors representing the
orbital and spin contributions:

Jµν ≡ Lµν + Sµν = −Jνµ. (68)

We will refer to Jµν as the system’s total angular-
momentum tensor.
We can define the following three-vectors from the in-

dependent components of Jµν and Sµν :

J ≡ (Jx, Jy, Jz) ≡ (Jyz, Jzx, Jxy), (69)

K ≡ (Kx,Ky,Kz) ≡ (J tx, J ty, J tz), (70)

S ≡ (Sx, Sy, Sz) ≡ (Syz, Szx, Sxy), (71)

S̃ ≡ (S̃x, S̃y, S̃z) ≡ (Stx, Sty, Stz). (72)

We will call S the system’s spin three-vector and S̃ its
dual spin-three vector.
We can now write the system’s total angular-

momentum tensor Jµν and its spin tensor Sµν as

Jµν ≡

 0 Kx Ky Kz

−Kx 0 Jz −Jy
−Ky −Jz 0 Jx
−Kz Jy −Jx 0


µν

, (73)

Sµν ≡


0 S̃x S̃y S̃z

−S̃x 0 Sz −Sy

−S̃y −Sz 0 Sx

−S̃z Sy −Sx 0


µν

. (74)

Note that if S = 0, then J = L = X × p reduces to
the usual Newtonian definition (64) of orbital angular
momentum.

C. Defining a System by a Transitive Group
Action of the Poincaré Group

The state of our system in its phase space is fully deter-
mined by knowing the values of the system’s spacetime
coordinates Xµ, its four-momentum pµ, and its spin ten-
sor Sµν , which together determine the orbital angular-
momentum tensor Lµν and the total angular-momentum
tensor Jµν . We can therefore define a transitive group

action of the Poincaré group on the system’s phase space
by defining what Poincaré transformations do to the val-
ues of Xµ, pµ, and Sµν that define the system’s state
(X, p, S).
Specifically, we define the action of Lorentz transfor-

mations on the system’s state (X, p, S) by generalizing
the transformation rule (51) to the statement that every
free upper Lorentz index on Xµ, pµ, and Sµν receives a
linear factor of a shared Lorentz-transformation matrix
Λ:

Xµ 7→ Λµ
νX

ν , (75)

pµ 7→ Λµ
νp

ν , (76)

Sµν 7→ Λµ
ρΛ

ν
σS

ρσ = Λµ
ρS

ρσ(ΛT)σ
ν . (77)

It follows from the definitions (65) of Lµν and (68) of Jµν

that we have the additional Lorentz-transformation rules

Lµν 7→ Λµ
ρΛ

ν
σL

ρσ = Λµ
ρL

ρσ(ΛT)σ
ν , (78)

Jµν 7→ Λµ
ρΛ

ν
σJ

ρσ = Λµ
ρJ

ρσ(ΛT)σ
ν . (79)

Meanwhile, we define the action of spacetime translations
on the system’s state (X, p, S) solely as (57) for the space-
time coordinates Xµ, with the system’s four-momentum
pµ and spin tensor Sµν unchanged:

Xµ 7→ Xµ + aµ, (80)

pµ 7→ pµ, (81)

Sµν 7→ Sµν . (82)

These definitions then determine the additional transla-
tion rules

Lµν 7→ Lµν + aµpν − aνpµ, (83)

Jµ 7→ Jµν + aµpν − aνpµ. (84)

We can then construct general Poincaré transformations
from combinations of Lorentz transformations and space-
time translations.
One can check that the three-vectors J, K, S, and S̃

defined in (69)–(72) all indeed transform as three-vectors
under proper rotations. One can also show that K and
S̃ transform as proper vectors (or polar vectors) under
parity transformations (54),

K 7→ −K,

S̃ 7→ −S̃,

}
(parity) (85)

whereas J and S are pseudovectors (or axial vectors),
meaning that they do not change sign under parity trans-
formations:

J 7→ J,

S 7→ S.

}
(parity) (86)

If the system’s phase space provides a transitive group
action of the Poincaré group, then, by construction, ev-
ery state (X, p, S) can be reached by starting with an
arbitrary choice of reference state

(X0, p0, S0) (87)
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and then acting on it with an appropriate choice of
Poincaré transformation (a,Λ):

(X, p, S) ≡ (ΛX0 + a,Λp0,ΛS0Λ
T). (88)

That is,

X ≡ ΛX0 + a, (89)

p ≡ Λp0, (90)

S ≡ ΛS0Λ
T, (91)

or, displaying indices explicitly,

Xµ ≡ Λµ
νX

ν
0 + aµ, (92)

pµ ≡ Λµ
νp

ν
0 , (93)

Sµν ≡ Λµ
ρS

ρσ
0 (ΛT)σ

ν . (94)

Without loss of generality, we will always take the ref-
erence value of the system’s spacetime point to be at the
origin:

Xµ
0 ≡ 0. (95)

Due to the transformation rule (92), the system’s space-
time point Xµ in any other state (X, p, S) can then be
identified with the translation-group four-vector aµ, so
we will refer to aµ as Xµ in our work ahead,

Xµ ≡ aµ, (96)

keeping in mind that these variables are independent of
the Lorentz-transformation matrix Λµ

ν . We will choose
the reference values pµ0 and Sµν

0 in (87) on a case-by-case
basis later.

D. The Pauli-Lubanski Pseudovector

Introducing the totally antisymmetric, four-index
Levi-Civita symbol,

ϵµνρσ ≡


+1 for µνρσ an even permutation of txyz,

−1 for µνρσ an odd permutation of txyz,

0 otherwise

= −ϵµνρσ, (97)

we can form a convenient mathematical object, called
the Pauli-Lubanski pseudovector Wµ, by contracting the
Lorentz indices of the system’s four-momentum pµ and
the total angular-momentum tensor Jµν with the indices
of ϵµνρσ:8

Wµ ≡ −1

2
ϵµνρσpνJρσ. (98)

8 The minus sign in this definition is a reflection of our metric sign
conventions.

Decomposing the total angular-momentum tensor as
in (68) into its orbital (65) and spin (67) contributions,

Jρσ = Lρσ + Sρσ

= Xρpσ −Xσpρ + Sρσ,

the contributions from the orbital-angular momentum
tensor Lρσ cancel out of the definition of Wµ, so we can
replace the total angular-momentum tensor Jρσ with just
its spin contribution Sρσ in the formula for Wµ:

Wµ = −1

2
ϵµνρσpνSρσ. (99)

It follows from a straightforward calculation that we can
express the Pauli-Lubanski pseudovector in terms of the
spin three-vector S defined in (71), the dual spin three-

vector S̃ defined in (72), and the components of the sys-
tem’s four-momentum pµ = (E/c,p)µ as

Wµ = (p · S, (E/c)S− p× S̃)µ. (100)

The formula (99) makes manifest that the Pauli-
Lubanski pseudovector does not involve the spacetime
coordinatesXµ, so it is invariant under translation trans-
formations (80)–(84):

Wµ 7→ Wµ (spacetime translations). (101)

Meanwhile, under Lorentz transformations of pν and Sρσ,
Wµ transforms as

Wµ 7→ det(Λ)Λµ
νW

ν , (102)

where det(Λ) is the determinant of Λµ
ν . Hence, under

parity transformations Λparity, for which det(Λparity) =
−1, Wµ transforms oppositely to the way that ordinary
four-vectors transform:

W t 7→ −W t, W i = W i (parity). (103)

It is because of this transformation behavior that Wµ is
called a pseudovector.

E. Invariant Quantities of a Transitive Group
Action of the Poincaré Group

Notice that the quantities p2 ≡ pµp
µ, W 2 ≡ WµW

µ,
and S2 ≡ SµνS

µν are invariant under Poincaré trans-
formations, meaning that they are invariant under all
Lorentz transformations (whether or not parity and time-
reversal transformations are involved) as well as under all
spacetime translations. These quantities therefore each
have a single, constant value for all states in any phase
space that constitutes a transitive group action of the
Poincaré group, and so, in particular, have constant val-
ues along the system’s worldline.9

9 Quantities that have fixed values in a transitive group action or
in an irreducible representation of a given transformation group
are formally called Casimir invariants.
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We name these invariant quantities according to

p2 ≡ pµp
µ ≡ −m2c2, (104)

W 2 ≡ WµW
µ ≡ w2, (105)

1

2
S2 ≡ 1

2
SµνS

µν ≡ s2. (106)

The scalar constant m has units of momentum-squared
divided by energy (that is, units of mass), the scalar con-
stant w has units of momentum multiplied by energy
multiplied by time, and the scalar constant s has units
of energy multiplied by time (that is, units of angular
momentum).
Note that w2 and s2 having fixed values does not imply

any sort of quantization, any more than m2 being fixed
implies quantization. In our classical context, we are
essentially working in the limit of large quantum num-
bers in which w2 and s2 are invariant but are otherwise
permitted to take on any one of a continuous range of
possible real values.
In terms of the spin three-vector S defined in (71) and

the dual spin three-vector S̃ defined in (72), we can write
the invariant quantity s2 as

s2 ≡ 1

2
SµνS

µν = S2 − S̃2. (107)

We can also contract two copies of the spin tensor Sµν

with the Levi-Civita symbol (97) to obtain another quan-
tity with the same units as s2:

s̃2 ≡ 1

8
ϵµνρσS

µνSρσ = S · S̃. (108)

This quantity is invariant under spacetime translations
and also under proper orthochronous Lorentz transfor-
mations. However, due to the transformation rules (85)
and (86), s̃2 changes by an overall sign under parity trans-
formations, so it is called a pseudoscalar.
As was true for the scalar invariant quantities m2, w2,

and s2, the pseudoscalar quantity s̃2 cannot change in
value under smooth evolution along the system’s world-
line. To understand why, observe that if s̃2 = 0, then
it is invariant under parity and time-reversal transfor-
mations, and therefore has the unique value s̃2 = 0 for
the system’s entire phase space. By contrast, if s̃2 ̸= 0,
then our transitive group action of the Poincaré group
can contain only the values ±s̃2, and no smooth evolu-
tion can take the system from s̃2 > 0 to s̃2 < 0 or vice
versa. (In all our examples, ahead, we will end up finding
that s̃2 = 0.)
Classifying the possible systems whose phase spaces

provide transitive group actions of the Poincaré group
now reduces to selecting mutually consistent values for
the invariant quantities m2, w2, s2, and s̃2, and then
choosing a convenient reference state (X0, p0, S0) that is
compatible with those fixed values. Note again that the
constancy ofm2, w2, s2, and s̃2—including the constancy
of the system’s invariant spin-squared s2—is entirely clas-
sical and has nothing to do with quantization or quantum
theory.

As an aside, observe that the only other candidates for
invariant quantities that are derivable from the system’s
phase-space variables are

pµW
µ = 0,

pµpνS
µν = 0,

WµWνS
µν = 0,

WµpνS
µν = m2c2s̃2,

ϵµνρσWµpνSρσ = −2w2.

None of these expressions represent fundamentally new
quantities independent ofm2, w2, s2, and s̃2, so we do not
need to specify values for them as part of the definition
of our transitive group action of the Poincaré group.

F. The Generators of the Lorentz Group

Observe that the system’s phase space (88) is fully
parametrized by the values aµ and Λµ

ν that make up
a generic Poincaré transformation (a,Λ), where aµ en-
codes the system’s spacetime location and Λµ

ν encodes
the system’s motion and angular orientation. Lorentz-
transformation matrices are difficult to manipulate di-
rectly, due to the constraint ΛTηΛ = η from (50), so we
will find it useful to decompose them into simpler ingre-
dients.10

We start by considering a Lorentz transformation
Λ(ϵ) = 1 − ϵ that differs only infinitesimally from the
identity matrix 1:

Λα
β(ϵ) = δαβ − ϵαβ . (109)

(The minus sign is conventional.) Here ϵαβ represents a
collection of infinitesimal parameters, and δαβ is the four-
dimensional Kronecker delta,

δαβ ≡

{
1 for α = β,

0 for α ̸= β,
(110)

which represents the components of the identity matrix.
The constraint ΛTηΛ = η then yields the equation

(δαβ − ϵαβ)ηαγ(δ
γ
δ − ϵγδ) = ηβδ.

Working to first order in ϵ, we see from this equation that
the infinitesimal tensor ϵαβ obtained from ϵαβ by raising
its second index using the Minkowski metric tensor is
antisymmetric:

ϵαβ = −ϵβα. (111)

10 For a more extensive review of the mathematical details ahead,
see [12].
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The tensor ϵαβ therefore has six independent compo-
nents, with ϵyz, ϵzx, ϵxy respectively parametrizing rota-
tions around the x, y, z axes, and with ϵtx, ϵty, ϵtz respec-
tively parametrizing Lorentz boosts along the x, y, z di-
rections.
We can write any two-index, antisymmetric Lorentz

tensor Aαβ = −Aβα as

Aαβ =
1

2
(Aαβ −Aβα)

=
1

2
Aµν(δαµδ

β
ν − δβµδ

α
ν ).

Hence, the tensors defined by

[σµν ]
αβ ≡ −iδαµδ

β
ν + iδβµδ

α
ν (112)

form a basis for all two-index, antisymmetric tensors:

Aαβ =
i

2
Aµν [σµν ]

αβ . (113)

We can therefore write our infinitesimal Lorentz trans-
formation (109) as

Λα
β(ϵ) = δαβ − i

2
ϵµν [σµν ]

α
β . (114)

Equivalently, in matrix notation, with the free indices α
and β suppressed, we can write

Λ(ϵ) = 1− i

2
ϵµνσµν . (115)

The tensors [σµν ]
α
β are called the Lorentz generators

and are obtained by lowering the β index in the definition
(112) using the Minkowski metric tensor:

[σµν ]
α
β = −iδαµηνβ + iηµβδ

α
ν . (116)

We will often suppress the “additional” α, β indices for
notational economy.
Note that with our overall sign convention for (116),

the Lorentz generators describe passive Lorentz transfor-
mations, which transform our spacetime coordinate axes.
If we instead wished to describe active Lorentz transfor-
mations, then we could either replace σµν 7→ −σµν or
ϵµν 7→ −ϵµν .
By straightforward calculations, one can show that the

Lorentz generators satisfy the commutation relations

[σµν , σρσ] ≡ σµνσρσ − σρσσµν

= iηµρσνσ − iηµσσνρ − iηνρσµσ + iηνσσµρ, (117)

and that the matrix product of two Lorentz generators
σµν and σρσ on their additional α, β indices, traced over
those additional indices, yields

1

2
Tr[σµνσρσ] ≡

1

2
[σµν ]αβ [σρσ]

β
α

= δµρ δ
ν
σ − δµσδ

ν
ρ (118)

= i[σρσ]
µν . (119)

This last formula implies that antisymmetric tensors Aµν

satisfy the identity

1

2
Tr[σµνA] = iAµν . (120)

Using this formalism, we can rewrite our system’s spin
tensor (94) as

Sµν = − i

2
Tr[σµνS]

= − i

2
Tr[σµνΛS0Λ

−1]. (121)

G. The Manifestly Covariant Action Functional

In the absence of spin, the system’s manifestly covari-
ant action functional takes the form (39):

Sno spin[X,Λ] =

∫
dλLno spin

=

∫
dλ pµẊ

µ =

∫
dλ (Λp0)µẊ

µ. (122)

Here Xµ(λ) and pµ(λ) ≡ Λµ
ν(λ)p

ν
0 are functions of

the worldline parameter λ, and dots, as usual, denote
derivatives with respect to λ. We will eventually see
that this action functional is capable of accommodat-
ing particle types regardless of their mass—and, in par-
ticular, works just as well for massless particles as it
does for particles with nonzero mass. We will ultimately
also need to establish a definite relationship between the
system’s four-momentum pµ(λ) and the system’s four-

velocity Ẋµ(λ) ≡ dXµ(λ)/dλ.
In order to include spin in the system’s action func-

tional, we will need to develop a framework for taking
derivatives of the variable Lorentz-transformation matrix
Λµ

ν(λ) with respect to the worldline parameter λ in a
manner that is consistent with the constraint ΛTηΛ = η
from (50). To this end, we examine what happens if
we shift slightly forward along the system’s worldline, so
that

λ → λ+ dλ. (123)

Using the fact that successive Lorentz transformations
compose,

Λ′′ = Λ′Λ, (124)

and recalling the formula (115) for a Lorentz transfor-
mation that differs infinitesimally from the identity, with
dθµν ≡ ϵµν denoting our Lorentz-boost and angular pa-
rameters, it follows that

Λ(λ+ dλ) = Λ(dλ)Λ(λ)

= (1− (i/2)dθµν(λ)σµν)Λ(λ). (125)
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We can rearrange this formula to obtain the derivative
of Λ(λ) with respect to λ in terms of the rates of change

θ̇µν(λ) ≡ dθµν(λ)/dλ:

Λ̇(λ) ≡ lim
dλ→0

Λ(λ+ dλ)− Λ(λ)

dλ

= − i

2
θ̇µν(λ)σµνΛ(λ). (126)

Hence,

Λ̇(λ)Λ−1(λ) = − i

2
θ̇µν(λ)σµν ,

and so, invoking the identities (113) and (119), we obtain

an important formula for the rates of change θ̇µν(λ) of
the Lorentz-transformation parameters:

θ̇µν(λ) =
i

2
Tr[σµνΛ̇(λ)Λ−1(λ)]. (127)

Despite the factor of i, this expression is purely real, due
to the additional factor of i in the definition (112) of σµν .
We now look back at the manifestly covariant La-

grangian appearing as the integrand of our action func-
tional (122):

Lno spin = pµẊ
µ. (128)

Using the product rule in reverse (that is, “integration by
parts” without an actual integration), we can move the
derivative from Xµ(λ) to pµ(λ) at the cost of an overall
minus sign and an additive total derivative that does not
affect the system’s equations of motion. The result is

Lno spin = −Xµṗ
µ + (total derivative).

Remembering that the system’s four-momentum pµ(λ)
here is fundamentally defined according to (93) in terms
of its fixed reference value pµ0 and the variable Lorentz-
transformation matrix Λµ

ν(λ),

pµ(λ) ≡ Λµ
ν(λ)p

ν
0 ,

and relabeling indices for later convenience, we have

Lno spin = −XαΛ̇
α
γp

γ
0 + (total derivative).

Invoking (126) for the derivative of the Lorentz-
transformation matrix yields

Lno spin = −Xα

(
− i

2
θ̇µν [σµν ]

α
βΛ

β
γ

)
pγ0

+ (total derivative)

=
1

2
Xαi[σµν ]

α
βp

β θ̇µν + (total derivative).

Recalling our formula (116) for the Lorentz generators
[σµν ]

α
β , this expression simplifies to

Lno spin =
1

2
Xα(δ

α
µηνβ − ηµβδ

α
ν )p

β θ̇µν

+ (total derivative)

=
1

2
(Xµpν −Xνpµ)θ̇

µν + (total derivative).

The quantity in parentheses is precisely the system’s or-
bital angular-momentum tensor Lµν , as defined in (65),
so we end up with

Lno spin =
1

2
Lµν θ̇

µν + (total derivative). (129)

The first term in (129) has precisely the form of a
canonical momentum contracted with the rates of change
of its corresponding canonical coordinates, where the fac-
tor of 1/2 naturally prevents the implicit summation from
double-counting independent terms in the contraction of
the two antisymmetric tensors Lµν = −Lνµ and θ̇µν =

−θ̇νµ. It may seem surprising that we have managed to
rewrite the system’s kinetic Lagrangian Lno spin = pµẊ

µ

in terms of what looks superficially like purely orbital an-
gular momentum, but remember that the temporal com-
ponents Lti of the orbital angular-momentum tensor are
not angular momenta—indeed, in light of (66), they ac-
tually encode linear motion.

Including the system’s spin in the dynamics means gen-
eralizing the orbital angular-momentum tensor Lµν in
(129) to the total angular-momentum tensor Jµν defined
in (68),

Lµν 7→ Jµν ≡ Lµν + Sµν ,

where Sµν is the system’s spin tensor. The system’s man-
ifestly covariant Lagrangian correspondingly becomes

Lno spin 7→ L ≡ 1

2
Jµν θ̇

µν + (total derivative)

=
1

2
Lµν θ̇

µν +
1

2
Sµν θ̇

µν + (total derivative).

(130)

At this point, we are free to recombine the first and
last terms in L to get back the expression pµẊ

µ that
we started with. Moreover, by contracting both sides of
our formula (127) for θ̇µν with the system’s spin tensor
Sµν , and using (i/2)Sµν [σ

µν ]αβ = Sα
β from (113), we

can write the second term in (130) as

1

2
Sµν(λ)θ̇

µν(λ) =
1

2
Tr[S(λ)Λ̇(λ)Λ−1(λ)]. (131)

Hence, as originally shown in [3, 13–15], the complete
action functional for the system is

S[X,Λ] =

∫
dλL =

∫
dλ

(
pµẊ

µ +
1

2
Tr[SΛ̇Λ−1]

)
.

(132)
In using the action functional (132), keep in mind that

the four-momentum pµ(λ) and the spin tensor Sµν(λ)
are given respectively by (93) and (121) in terms of their
constant reference values pµ0 and Sµν

0 together with the
variable Lorentz-transformation matrix Λµ

ν(λ):

pµ(λ) ≡ Λµ
ν(λ)p

ν
0 , (133)

Sµν(λ) ≡ Λµ
ρ(λ)S

ρσ
0 (ΛT)σ

ν(λ)

= − i

2
Tr[σµνΛ(λ)S0Λ

−1(λ)]. (134)
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Consequently, before the equations of motion are im-
posed, neither pµ(λ) nor Sµν(λ) depend on the spacetime
degrees of freedom Xµ(λ).

H. The Equations of Motion

To obtain the system’s equations of motion, we ap-
ply the extremization condition (9) by varying the action
functional (132) with respect to its fundamental variables

Xµ and Λµ
ν . The spin term (1/2)Tr[SΛ̇Λ−1] does not

involve the spacetime coordinates Xµ, so varying the ac-
tion functional with respect to Xµ yields

δXS =

∫
dλ (pµδẊ

µ + 0)

=

∫
dλ pµ

d

dλ
δXµ

= −
∫

dλ ṗµδX
µ,

where we have dropped a boundary term. Setting this
variation equal to zero for arbitrary δXµ leads to the
system’s first equation of motion, which we see describes
conservation of energy-momentum:

ṗµ = 0. (135)

Notice that this equation of motion, by itself, does not
determine the system’s four-velocity Ẋµ ≡ dXµ/dλ, or
even establish any sort of relationship between pµ and
Ẋµ. We will return to this issue later.

Varying the action functional with respect to the vari-
able Lorentz-transformation matrix Λµ

ν is more compli-
cated, due to its appearance in both terms in the inte-
grand. As our first step, we find

δΛS =

∫
dλ

(
(δpµ)Ẋµ +

1

2
Tr[δ(SΛ̇Λ−1)]

)
. (136)

Invoking our formula (133) for the four-momentum pµ

in terms of its reference value pµ0 and the Lorentz-
transformation matrix Λµ

ν , the first term in (136) gives

(δpµ)Ẋµ = (δΛµ
ν)p

ν
0Ẋµ

= (−(i/2)δθρσσρσΛ)
µ
νp

ν
0Ẋµ

= − i

2
δθρσ[σρσ]

µ
νp

νẊµ

= − i

2
δθρσ(−iδµρ ησν + iηρνδ

µ
σ)p

νẊµ

=
1

2
(−Ẋρpσ + Ẋσpρ)δθ

ρσ.

Meanwhile, using Sα
β = (ΛS0Λ

−1)αβ , the second term

in (136) gives

1

2
Tr[δ(SΛ̇Λ−1)] =

1

2
Tr[S0δ(Λ

−1Λ̇)]

=
1

2
Tr[S0δ(Λ

−1)Λ̇ + S0Λ
−1δΛ̇]

=
1

2
Tr[S0Λ

−1(−(i/2)δθ̇ρσσρσ)Λ]

= − i

4
Tr[S0Λ

−1σρσΛ]δθ̇
ρσ

=
1

2
Sρσ

d

dλ
δθρσ,

where we have invoked (134) in the last step. Thus, drop-
ping a boundary term, we see that the overall variation
(136) in the action functional reduces to

δΛS =

∫
dλ

1

2
(−Ẋρpσ + Ẋσpρ − Ṡρσ)δθ

ρσ.

Setting this variation equal to zero for arbitrary δθρσ

leads to the system’s second equation of motion:

Ṡµν = −Ẋµpν + Ẋνpµ. (137)

To provide an interpretation for this equation of mo-
tion, we recall again the definition (65) of the tensor Lµν

that encodes the system’s orbital angular momentum:

Lµν ≡ Xµpν −Xνpµ.

Because the system’s four-momentum pµ is conserved,
(135), we see that the rate of change in Lµν is given by

L̇µν = Ẋµpν − Ẋνpµ, (138)

so we can recast the equation of motion (137) for the
spin tensor Sµν as the statement that the system’s total
angular momentum Jµν ≡ Lµν + Sµν is conserved:

J̇µν = 0. (139)

Combining ṗµ = 0 and J̇µ = 0, it follows immediately
that the system’s Pauli-Lubanski pseudovector (98) is
likewise constant in time:

Ẇµ = 0. (140)

At a deeper level, the system’s two equations of motion
(135), ṗµ = 0, and (139), J̇µν = 0, are consequences of
Noether’s theorem together with the fact that the sys-
tem’s action functional (132) has continuous symmetries
under spacetime translations and Lorentz transforma-
tions.

I. Self-Consistency Conditions on the Phase Space

Now that we know the system’s equations of motion,
we will need to ensure that they are consistent with the
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invariance of the fixed quantities m2, w2, s2, and s̃2 from
(104)–(108).
For our first check of self-consistency, we note that the

invariance of p2 ≡ −m2c2 is compatible with the equation
of motion (135), ṗµ = 0:

d

dλ
(p2) = 2pµṗ

µ = 0. (141)

Similarly, the constancy of W 2 ≡ w2 is compatible with
the constancy (140) of the Pauli-Lubanski pseudovector:

d

dλ
(W 2) = 2WµẆ

µ = 0. (142)

By contrast, the constancy of the spin-squared scalar
(1/2)SµνS

µν ≡ s2, combined with the equation of motion

(137), Ṡµν = −Ẋµpν + Ẋνpµ, requires that

d

dλ

(
1

2
SµνS

µν

)
= Sµν Ṡ

µν = 2ẊνpµSµν = 0. (143)

Again, keep in mind that we have not yet estab-
lished a definite relationship between the system’s four-
momentum pµ and its four-velocity Ẋµ ≡ dXµ/dλ. In
particular, it is not clear at this point whether or not
pµ is proportional to Ẋµ, so the condition (143) is not
trivial.
Because the condition (143) must hold for all solution

trajectories, it imposes an additional requirement on the
system’s phase space. Specifically, the system’s refer-
ence four-momentum pµ0 and its reference spin tensor Sµν

0

must satisfy

p0,µS
µν
0 = 0. (144)

The tensor-contraction appearing on the left-hand side
therefore vanishes in one inertial reference frame, so it re-
mains zero under all Poincaré transformations and there-
fore represents a Poincaré-invariant statement about the
system’s phase space:

pµS
µν = 0. (145)

Notice that this last self-consistency condition, which
was also introduced in [14], is phrased in terms of lin-
ear and angular momentum, both of which have physi-
cal meanings in classical field theory. In particular, the
condition pµS

µν = 0 is closely related to the momentum-
space version of the Lorenz equation

∂µA
µ = 0 (146)

that appears both in the Proca theory of a massive spin-
1 bosonic field and as the condition for Lorenz gauge in
electromagnetism. Like the Lorenz equation in those field
theories, we will eventually see that the condition (145)
ends up eliminating unphysical spin states.
To make this connection with field theory more ex-

plicit, consider the classical theory of a spin-1 field, and
let

Aµ(x) = εµ exp(ip · x/ℏ) (147)

be a monochromatic plane wave of the field. Here εµ is
the wave’s polarization four-vector, which ultimately en-
codes the field’s quantized spin. Then the Lorenz equa-
tion ∂µA

µ = 0 reduces to the statement that

pµε
µ = 0, (148)

which eliminates one linear combination of polarizations,
meaning one unphysical spin state. In contrast with a
spin-1 field theory, our classical particle’s invariant spin
is not quantized, and our condition pµS

µν = 0 will turn
out to eliminate a continuous infinity of unphysical spin
states.

Our final self-consistency condition is that the
derivative of the pseudoscalar invariant quantity
(1/8)ϵµνρσS

µνSρσ ≡ s̃2 must vanish:

d

dλ

(
1

8
ϵµνρσS

µνSρσ

)
=

1

4
ϵµνρσṠ

µνSρσ

= −1

2
ϵµνρσẊ

µpνSρσ

= ẊµWµ = 0. (149)

We will need to verify in the explicit examples ahead that
this condition is indeed satisfied.

J. The Four-Velocity

The self-consistency condition (145), pµS
µν = 0, will

play an important role in our work ahead. As we will
now investigate, its implications include a general set of
relationships between the system’s four-momentum pµ

and its four-velocity Ẋµ.
Taking a derivative of both sides of pµS

µν = 0 with
respect to the worldline parameter λ, and invoking the
equations of motion (135), ṗµ = 0, and (137), Ṡµν =

−Ẋµpν + Ẋνpµ, we obtain

pµṠ
µν = −(p · Ẋ)pν + (−m2c2)Ẋν = 0, (150)

which gives us an equation that relates pµ and Ẋµ:

(p · Ẋ)pµ = (−m2c2)Ẋµ. (151)

Contracting both sides with Ẋµ, we find

(p · Ẋ)2 = m2c2(−Ẋ2). (152)

Taking the square root of this last equation, and sub-
stituting the result back into the equation before it, we
arrive at the following pair of equations:

p · Ẋ = ±mc2
√
−Ẋ2/c2, (153)

m

√
−Ẋ2/c2 pµ = ∓m2Ẋµ. (154)

Together with (135), ṗµ = 0, (139), J̇µν = 0, and (145),
pµS

µν = 0, these final two equations complete our spec-
ification of the system’s dynamics.
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V. CLASSIFICATION OF THE TRANSITIVE
GROUP ACTIONS OF THE ORTHOCHRONOUS

POINCARÉ GROUP

We are now ready to apply the foregoing framework to
the task of classifying systems whose phase spaces pro-
vide transitive group actions of the Poincaré group. For
simplicity, we will focus our attention on transitive group
actions of the orthochronous Poincaré group, putting
aside time-reversal transformations (55) until our paper’s
conclusion.
Notice then that for m2 ≥ 0, the system’s four-

momentum pµ is either timelike or null, p2 ≤ 0, and so
(56) implies that the sign of pµ is an invariant property
of the system. When we consider transitive group ac-
tions having m2 ≥ 0, we will assume the positive-energy
case pt > 0 on physical grounds. We will address the
“negative-energy” case pt < 0 in our conclusion.

A. Massive, Positive-Energy Particles

As our first example, we consider a transitive group
action of the orthochronous Poincaré group for which
m > 0 is real and positive, and for which the system’s
energy E = ptc > 0 is likewise positive. Then pµ is a
timelike four-vector, so we know from (56) that the sign
of pt is invariant under orthochronous Lorentz transfor-
mations, and thus our choice of positive energy is well-
defined.
Given that p2 = −m2c2 for m > 0 with positive pt, we

can express the system’s energy E = ptc in terms of its
three-dimensional momentum p = (px, py, pz) as

E =
√
p2c2 +m2c4, (155)

a formula known as the system’s mass-shell relation be-
cause it takes the visual form of a hyperboloid (a “shell”)
when plotted in terms of the four variables E, px, py, pz.
Furthermore, there exists a state of the system in which
the four-momentum pµ takes the specific value (mc,0)µ,
which we will choose to be its reference value:

pµ0 ≡ (mc,0)µ = mc δµt . (156)

Due to the condition m > 0, the four-momentum pµ

cannot vanish, and under our assumption of a strictly
monotonic parametrization Xµ(λ), the four-velocity Ẋµ

cannot vanish either, so the relation (154),

m

√
−Ẋ2/c2 pµ = ∓m2Ẋµ,

implies that Ẋ2 ̸= 0. We therefore have

pµ = m
Ẋµ√

−Ẋ2/c2
,

where we have taken the positive sign by choosing our
parametrization Xµ(λ) such that Ẋµ is future-directed.

We therefore learn that the system’s four-momentum pµ

is given by

pµ = muµ, (157)

where uµ is the system’s normalized four-velocity:

uµ ≡ Ẋµ√
−Ẋ2/c2

, u2 = −c2. (158)

We can interpret the equation (157) as supplying our

definition of Ẋµ (or uµ) in terms of pµ and m. Fur-
thermore, because pµ is parallel to uµ, we see that the
self-consistency condition (149), ẊµWµ = 0, is satisfied.

As a consequence of (158), we also see that when the
system is in its reference state with pµ = pµ0 = (mc,0)µ,
the four-velocity describes the system at rest, with

uµ
0 = (c,0)µ = uµ

rest. (159)

For general states, the equation of motion (135) for the
system’s four-momentum, ṗµ = 0, tells us that the sys-
tem’s normalized four-velocity is constant:

u̇µ = 0. (160)

It follows that the system describes a pointlike particle
that travels along a straight, timelike path in spacetime.

Defining the particle’s three-dimensional velocity v =
(vx, vy, vz) as

v ≡ dX

dt
=

Ẋ

Ṫ
, (161)

and using (157), pµ = muµ, together with E = ptc and
the mass-shell relation (155) between E and p, we also
obtain an important equation connecting the system’s
three-dimensional velocity v and its three-dimensional
momentum p:

v =
pc2

E
=

p

|p|
c√

1 +m2c2/p2
. (162)

We see right away from this equation that the particle’s
speed |v| is always slower than the speed of light c:

|v| < c. (163)

Moreover, in the general case in which particle may be
in motion, its normalized four-velocity is

uµ = (γc, γv)µ, (164)

where the Lorentz factor γ is defined by

γ ≡ 1√
1− v2/c2

≥ 1. (165)

We next examine the particle’s orbital and spin an-
gular momentum. The relation (157), pµ = muµ =



17

mẊµ/
√

−Ẋ2/c2, immediately implies that the particle’s

orbital angular momentum (65) is conserved:

L̇µν = Ẋµpν − Ẋνpµ = 0. (166)

Remembering our formula (66) for the temporal compo-
nents Lti of the orbital angular-momentum tensor,

Lti = −E

c

(
Xi − pic2

E
T

)
,

and invoking the constancy of E and pi from the equation
of motion (135) for pµ, we see that L̇ti = 0 gives the
relation

pc2

E
=

Ẋ

Ṫ
,

which is just our earlier equation (162) connecting
the particle’s three-dimensional velocity v to its three-
dimensional momentum p.11

Combining the conservation equation (166) for the par-
ticle’s orbital angular-momentum tensor Lµν with the
equation of motion (137) for the particle’s spin tensor
Sµν tells us that the particle’s spin is separately con-
served:

Ṡµν = 0. (167)

Furthermore, the condition (144), p0,µS
µν
0 = 0, becomes

mcStν
0 = 0, (168)

so only the purely spatial components of the particle’s
reference spin tensor Sµν

0 are nonzero,

Sµν
0 =

0 0 0 0
0 0 S0,z −S0,y

0 −S0,z 0 S0,x

0 S0,y −S0,x 0


µν

, (169)

where the particle’s spin three-vector S ≡ (Syz, Szx, Sxy)
was defined in (71). Thus, the invariant quantity s2 de-
fined in (107) and characterizing the system’s overall spin
is non-negative:

s2 = S2 − S̃2

= S2
0 = S2

0,x + S2
0,y + S2

0,z ≥ 0. (170)

The corresponding reference value Wµ
0 of the Pauli-

Lubanski pseudovector (99) is then

Wµ
0 = (0,mcS0)

µ. (171)

11 More generally, for a system of multiple particles labeled by α =
1, 2, . . . , the spatial components Lti generalize to the system’s
center-of-mass-energy Xi

CM =
∑

α EαXi
initial,α/Etotal, and so

their conservation implies the constancy of XCM.

The Lorentz dot product of Wµ with itself therefore has
the non-negative, Lorentz-invariant value

W 2 ≡ w2 = m2c2s2 ≥ 0. (172)

Notice that the reference value of the particle’s dual
spin three-vector S̃ ≡ (Stx, Sty, Stz), as defined in (72),
vanishes in this case:

S̃0 = 0. (173)

It follows that the pseudoscalar invariant quantity s̃2 de-
fined in (108) likewise vanishes:

s̃2 = S · S̃ = S0 · S̃0 = 0. (174)

On physical grounds, a localized system at fixed energy
should have a compact (that is, closed and bounded) set
of states, because otherwise its Boltzmann entropy un-
der any equitable choice of coarse-graining of the sys-
tem’s fixed-energy phase space would be infinite, and
thus the system would exhibit an infinite heat capac-
ity.12 The compactness of a system’s phase space at
fixed energy in any one inertial reference frame deter-
mines the compactness of the system’s phase space in
any other inertial reference frame at the correspondingly
Lorentz-transformed energy, so it suffices to examine the
compactness of our particle’s phase space at the fixed
reference energy E0 = pt0c = mc2 corresponding to the
reference value (156) of the particle’s four-momentum.
The size of this subset of the particle’s phase space
is determined by the set of all orthochronous Lorentz
transformations that leave the particle’s reference four-
momentum pµ0 ≡ (mc,0)µ fixed. This collection of trans-
formations is called the little group of pµ0 . In the present
case, in which pµ0 = (mc,0)µ, this little group consists
solely of the group O(3) of three-dimensional rotations
and parity transformations, which collectively form a
compact set, so we are assured that the particle’s phase
space at any fixed energy is likewise compact, as required.

To summarize, we see that a transitive group action of
the orthochronous Poincaré group for the case of a real
and positive m > 0 and positive energy E = ptc > 0
describes a massive pointlike particle of inertial mass m,
non-negative spin-squared s2 = S2

0 ≥ 0, non-negative
squared Pauli-Lubanski pseudovector w2 = m2c2s2 ≥ 0,
and timelike four-momentum pµ = muµ. The particle
moves along a straight worldline in spacetime character-

ized by a normalized four-velocity uµ ≡ Ẋµ/
√

−Ẋ2/c2

and a three-dimensional velocity v = pc2/E that is al-
ways slower than the speed of light, |v| < c, and the
particle has a compact phase space at any fixed value of
its energy E.

12 For related arguments, see [12, 16].
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B. Massless, Positive-Energy Particles

As our second example, we consider the case of m = 0
and positive energy E = ptc > 0. Because the system’s
four-momentum pµ is therefore null, p2 = 0, we again
have from (56) that the condition pt > 0 is invariant
under orthochronous Lorentz transformations, and thus
our positivity condition on E is well-defined.
We can use p2 = 0 to express the system’s energy E =

ptc in terms of its three-dimensional momentum p as the
mass-shell relation

E = |p|c. (175)

In contrast with the massive case, there is no rest frame
in the massless case—that is, we cannot set all three com-
ponents of p to be zero, due to the pair of assumptions
p2 = 0 and E = ptc > 0. There exist states in the sys-
tem’s phase space in which the four-momentum pµ has
no x or y components, and we take one such value of the
four-momentum to be its reference value, for a fixed but
arbitrarily chosen value E0 > 0 of the system’s energy:

pµ0 ≡ (E0/c, 0, 0, E0/c)
µ =

E0

c
(δµt + δzt ). (176)

The positive-energy condition E > 0 implies that the
four-momentum pµ cannot vanish, and under our as-
sumption of a strictly monotonic parametrization Xµ(λ),

the four-velocity Ẋµ also cannot vanish. With m = 0,
the relation (153) degenerates to

p · Ẋ = 0. (177)

A nonzero four-vector that has vanishing dot product
with a null four-vector must be parallel to that null four-
vector. We can therefore take the four-velocity Ẋµ to be
a null four-vector that is parallel to the four-momentum
pµ,

pµ ∝ Ẋµ, (178)

which then ensures that the self-consistency condition
(149), ẊµWµ = 0, is satisfied.
The equation of motion (135), ṗµ = 0, implies that

pµ is constant along the system’s worldline, so we can
always choose our parametrization Xµ(λ) to make the
proportionality factor in (178) equal to a constant:

pµ = (const)Ẋµ. (179)

We then have

Ẍµ = 0, (180)

so we see that the system describes a pointlike particle
that travels along a straight, null path in spacetime.
In addition, invoking the mass-shell relation (175) be-

tween the particle’s energy E and its three-dimensional

momentum p, we see that the particle’s three-
dimensional velocity v is related to its three-dimensional
momentum p according to

v =
dX

dt
=

Ẋ

Ṫ
=

pc2

E
=

p

|p|
c. (181)

Hence, the particle’s speed |v| is always equal to the
speed of light c:

|v| = c. (182)

Turning to the particle’s spin, we will find a much more
nuanced story than in the massive case.

The proportionality relationship pµ ∝ Ẋµ from (178)
together with the equation of motion (137) for the parti-
cle’s spin tensor Sµν again imply that the particle’s angu-
lar momentum (65) and the particle’s spin are separately
conserved:

L̇µν = Ẋµpν − Ẋνpµ = 0, (183)

Ṡµν = 0. (184)

As in the massive case, the conservation law for Lti

gives back the formula (181) relating the particle’s three-
dimensional velocity v to its three-dimensional momen-
tum p.
However, the condition (144), p0,µS

µν
0 = 0, is more

complicated than it was in the massive case:

−E0

c
Stν
0 +

E0

c
Szν
0 = 0. (185)

This equation implies that

Stν
0 = Szν

0 , (186)

or, equivalently, that the quantities

A ≡ Sx + S̃y,

B ≡ Sy − S̃x,

}
(187)

and S̃z all vanish in the particle’s reference state:

A0 ≡ S0,x + S̃0,y = 0,

B0 ≡ S0,y − S̃0,x = 0,

S̃0,z = 0.

. (188)

The reference value of the system’s spin tensor is there-
fore

Sµν
0 =

 0 S0,y −S0,x 0
−S0,y 0 S0,z −S0,y

S0,x −S0,z 0 S0,x

0 S0,y −S0,x 0


µν

. (189)

In other words, the reference value of the particle’s spin
three-vector S ≡ (Syz, Szx, Sxy), as defined in (71), and
the reference value of the particle’s dual spin three-vector
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S̃ ≡ (Stx, Sty, Stz), as defined in (72), are mutually per-
pendicular and are related explicitly by

S̃0 = S0 × ez, (190)

where ez ≡ (0, 0, 1) is the usual three-dimensional Carte-
sian unit vector pointing along the positive z axis. It
follows that the pseudoscalar invariant quantity s̃2 de-
fined in (108) vanishes, as we also saw was true in the
massive case:

s̃2 = S · S̃ = S0 · S̃0 = 0. (191)

Meanwhile, the invariant quantity s2 defined in (107)
is non-negative, as in the massive case, but is now de-
termined solely by the z component S0,z of the reference
value S0 of the particle’s spin three-vector:

s2 = S2 − S̃2 = S2
0,z ≥ 0. (192)

In general, the projection of the particle’s spin three-
vector S onto the particle’s three-dimensional momentum
p ≡ (px, py, pz) is called the particle’s helicity σ:

σ ≡ p

|p|
· S. (193)

The massless particle’s helicity is insensitive to our ref-
erence choice of energy E0, due to the fact that p ap-
pears only as the ratio p/|p|, and is also invariant under
proper rotations, due to the three-dimensional dot prod-
uct. Thus, σ represents a fundamental feature of the par-
ticle in the m = 0 case that can only change under parity
transformations (54), meaning that σ is a pseudoscalar:

σ 7→ −σ (parity). (194)

It follows from evaluating the definition (193) of the he-
licity in the massless particle’s reference state that the
helicity is equal to the z component S0,z of the massless
particle’s reference spin three-vector S0, up to a possible
sign that changes under parity transformations:

σ = (±)
parity

S0,z. (195)

We can therefore use σ to write our expression (192) for
the invariant quantity s2 as

s2 = σ2 ≥ 0. (196)

The reference value Wµ
0 of the particle’s Pauli-

Lubanski pseudovector (99) is parallel to the particle’s
reference four-momentum (176):

Wµ
0 =

(
S0,z

E0

c
, 0, 0, S0,z

E0

c

)
= S0,zp

µ
0 . (197)

More generally, Wµ is given in terms of the particle’s
helicity (193) by

Wµ = σpµ, (198)

where the pseudovector nature of Wµ is neatly captured
by the pseudoscalar nature of σ. As a consequence of the
condition p2 = 0, we see that the invariant quantity w2

defined in (105) vanishes:

W 2 ≡ w2 = 0. (199)

As in the massive case, we will need to examine the
compactness of the subset of the particle’s phase space
at the fixed reference energy E0 = pt0c. Again, this
subspace is determined by the little group of the par-
ticle’s reference four-momentum (176), meaning the set
of all orthochronous Lorentz transformations that leave
pµ0 ≡ (E0/c, 0, 0, E0/c)

µ invariant.
Let Λ be a little-group transformation, so that Λp0 =

p0. For now, we will assume that Λ does not involve a
parity transformation. As a trick for finding these little-
group transformations,13 let vµ ≡ (1,0)µ be a purely
timelike four-vector. Then

(Λv) · p0 = −(Λv)t
E0

c
+ (Λv)z

E0

c

also = (Λv) · (Λp0) = v · p0 = −E0

c
.

We conclude that

(Λv)t = 1 + (Λv)z, (200)

and thus that (Λv)µ has the form

(Λv)µ = (1 + ζ, α, β, ζ)µ (201)

for real-valued parameters α, β, and ζ. The normaliza-
tion condition (Λv)2 = v2 = −1 implies that these three
parameters are related by

ζ =
α2 + β2

2
. (202)

The effect of the little-group Lorentz-transformation
matrix Λ on vµ ≡ (1,0)µ fixes Λ up to an overall three-
dimensional rotation, and the little-group requirement
Λp0 = p0 further fixes Λ up to a rotation specifically
around the z axis. Hence, the most general such proper
orthochronous Lorentz-transformation matrix Λ has the
form

Λ(α, β, θ) = L(α, β)R(θ), (203)

where

R(θ) ≡

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 (204)

13 See, for example, [12].
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is a pure rotation by an angle θ around the z axis, and
where

L(α, β) ≡

1 + ζ α β −ζ
α 1 0 −α
β 0 1 −β
ζ α β 1− ζ

 (205)

is a complicated combination of proper orthochronous
Lorentz boosts and rotations satisfying the required con-
dition ΛTηΛ = η from (50).
By straightforward calculations, one can show that

R(θ1)R(θ2) = R(θ1 + θ2), (206)

L(α1, β1)L(α2, β2) = L(α1 + α2, β1 + β2), (207)

so rotations R(θ) around the z axis and the proper
orthochronous Lorentz transformations L(α, β) respec-
tively form a pair of commutative subgroups of the par-
ticle’s little group. Furthermore, we have

R(θ)L(α, β)R−1(θ)

= L(α cos θ + β sin θ,−α sin θ + β cos θ), (208)

so we see that rotating L(α, β) itself around the z axis has
the effect of rotating the two-dimensional vector (α, β).
The little group in this case is therefore the group

ISO(2) of translations and rotations in the two-
dimensional Euclidean plane. The subgroup SO(2) con-
sisting purely of rotations R(θ) in the two-dimensional
plane is compact, but the subgroup R2 consisting of two-
dimensional translations L(α, β) is noncompact. The
consequence is that the particle’s phase space at the fixed
reference four-momentum pµ0 would seem to be noncom-
pact as well, leading to the thermodynamic problems that
we discussed earlier, as well as to various issues that arise
in the corresponding quantum field theory, such as those
that are explored in [17], for example.14

The particle’s reference spacetime coordinatesXµ
0 ≡ 0,

four-momentum pµ0 ≡ (E0/c, 0, 0, E0/c)
µ, helicity σ =

±S0,z, and Pauli-Lubanski pseudovector Wµ
0 = σpµ0

are all insensitive to the noncompact transformations
L(α, β). However, the particle’s reference spin tensor
(189) transforms nontrivially under the action of L(α, β):

L(α, β)S0L
T(α, β)

= S0 +

 0 −βS0,z αS0,z 0
βS0,z 0 0 βS0,z

αS0,z 0 0 −αS0,z

0 −βS0,z αS0,z 0

. (209)

In particular, at the level of the massless particle’s refer-
ence spin three-vector S0, we have the transformation

S0 7→ S0 + (−αS0,z,−βS0,z, 0). (210)

14 For a more optimistic alternative perspective, see [18].

Notice that the discrepant spin components
(−αS0,z,−βS0,z, 0) here are perpendicular to the
particle’s reference three-momentum p0 = (0, 0, E0/c),
and, furthermore, parametrize all possible values of
components perpendicular to p0, contingent on the z
component of S0 being nonzero, S0,z ̸= 0. The fact
that the discrepant spin components are perpendicular
to p0 is ultimately guaranteed by the invariance of
the massless particle’s helicity σ ≡ (p/|p|) · S under
all proper Lorentz transformations, together with the
invariance of the particle’s reference momentum p0

under little-group transformations.
Moreover, suppose that two states of our massless par-

ticle both have four-momentum equal to the reference
four-momentum pµ0 = (E/c, 0, 0, E/c), but have different
values of the spin tensor Sµν

0 ̸= S′µν . The invariance of
the helicity σ ≡ (p/|p|) · S over the entire phase space,
up to a possible minus sign under parity transformations,
then implies that

S′
0,z = ±S0,z. (211)

Hence, all states with the reference momentum pµ0 have
spin-z component equal either to S0,z or to −S0,z, where
these two sets of states have opposite helicity σ. Fixing
the helicity, such states can then differ at most in their
spin-x and spin-y components.

The real-valued parameters α and β appearing in the
little-group transformations (209) and (210) are arbi-
trary, and parametrize a noncompact set of states at fixed
reference momentum pµ0 . As a consequence, the only way
to ensure that the massless particle’s phase space at the
fixed reference energy E = pt0c is compact is to insti-
tute an equivalence relation in which we declare that any
two states of the form (X0, p0, S0) and (X0, p0, S

′) that
have the same helicity σ and that differ solely in their
spin components are to be regarded as the same physical
state:

(X0, p0, S0) ∼= (X0, p0, S
′) [for fixed σ]. (212)

This equivalence relation immediately generalizes to ar-
bitrary states as

(X, p, S) ∼= (X, p, S′) [for fixed σ], (213)

where the two states have the same spacetime coordinates
Xµ, four-momentum pµ, and helicity σ.
The equivalence relation (213) is a new result, and is

another important example of a gauge invariance, dis-
tinct from the reparametrization invariance of a mani-
festly covariant action functional that we introduced ear-
lier. A space with an equivalence relation is known as a
quotient space, and so we see that the phase space of a
massless m = 0 particle with nonzero spin s2 ̸= 0 is a
quotient space under the gauge invariance (213).

All physical observables must therefore be gauge in-
variant, as is indeed the case for the particle’s spacetime
coordinates Xµ, its four-momentum pµ, its helicity σ,
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and its Pauli-Lubanski pseudovector Wµ = σpµ. By con-
trast, the equivalence relation (213), together with the
invariance of the helicity σ, as defined in (193), implies
that

σ ≡ p

|p|
· S ∼=

p

|p|
· S′, (214)

so components of the particle’s spin tensor Sµν that are
perpendicular to the particle’s three-momentum p—such
as Syz = Sx and Szx = Sy if p points along the z direc-
tion—are not gauge invariant, and are consequently not
physical observables.
Combining the equivalence relation (213) with the re-

lationship σ = ±S0,z from (195) and our condition (211),
we see that a massless particle has just two physical
spin states for each fixed value of the particle’s three-
momentum p. These two physical spin states correspond-
ing to the two parity-related helicities ±σ.
Summarizing our results, we see that a transitive group

action of the orthochronous Poincaré group with m = 0
and positive energy E = ptc > 0 describes the phase
space of a massless particle with null four-momentum pµ,
helicity σ, non-negative spin-squared s2 = σ2 ≥ 0, and a
null Pauli-Lubanski pseudovector Wµ = σpµ. The par-
ticle moves at the speed of light c along a null worldline
in spacetime with null four-velocity Ẋµ, and the parti-
cle’s spin tensor Sµν is uniquely defined only up to gauge
transformations Sµν 7→ S′µν for which S′µν differs from
Sµν solely by components perpendicular to the particle’s
three-momentum p. This gauge invariance implies that
the massless particle has just two physical spin states for
each fixed value of p, corresponding to the two helicities
±σ, which are related to each other by parity transfor-
mations.
As an aside, we note that in the counterpart quan-

tum theory, spin components that are perpendicular to
the particle’s direction of motion correspond to linear po-
larizations that are longitudinal, meaning that they are
parallel to the particle’s direction of motion. Accord-
ingly, spin components that are parallel to the particle’s
direction of motion correspond to transverse linear polar-
izations. So in the quantum version of this story, gauge-
invariant observables are those that are insensitive to the
particle’s longitudinal linear polarizations.
Moving on to connections with classical field theory,

recall our earlier analysis of the relationship between the
classical-particle condition pµS

µν = 0 from (145) and the
Lorenz equation ∂µA

µ = 0 from (146) for a spin-1 field
theory. In particular, we showed that the Lorenz equa-
tion ∂µA

µ = 0, applied to the case (147) of a monochro-
matic plane wave Aµ = εµ exp(ip ·x/ℏ) with polarization
four-vector εµ, yielded the condition (148), pµε

µ = 0,
which was precisely analogous to pµS

µν = 0, and played
the same role of eliminating unphysical spin states.

Similarly, the classical-particle gauge invariance (213)
is directly analogous to electromagnetic gauge invariance:

Aµ
∼= Aµ + ∂µf. (215)

Indeed, for the plane-wave case Aµ = εµ exp(ip · x/ℏ),
with f = α exp(ip · x/ℏ), the identification (215) yields
the condition that

εµ ∼= εµ + (iα/ℏ)pµ, (216)

which is likewise responsible for eliminating unphysical
spin states.
Both our classical-particle gauge invariance (213) and

electromagnetic gauge invariance (215) have nontrivial
implications for the allowed form of interactions between
systems, as any such interactions must be insensitive to
quantities that are not gauge invariant. For the case
of electromagnetism, the gauge potential Aµ cannot di-
rectly appear in Lorentz-covariant field equations, but
can only appear indirectly through the gauge-invariant
Faraday tensor Fµν ≡ ∂µAν − ∂νAµ. In an analogous
way, for our classical massless particle, the spin tensor
Sµν cannot directly appear in Lorentz-covariant interac-
tion terms in equations of motion that couple the particle
to other systems.
Interaction terms involving the particle’s four-

momentum pµ or Pauli-Lubanski pseudovector Wµ =
σpµ would both be permitted, although they get weak for
small momentum, corresponding in quantum mechanics
to large distances. We therefore anticipate that massless
particles with classically large total spin s ≫ ℏ cannot
mediate long-range interactions, and, indeed, a quantum
version of our classification of particle-types suggests that
long-range interactions are mediated only by massless
particles with total spin less than or equal to 2ℏ.15

C. The Massless Limit

It is an enlightening exercise to re-examine the massless
case m = 0 from the perspective of the massive case
m > 0 in the limit m → 0. Along the way, we will
provide a deeper explanation for the emergence of gauge
invariance, as well as derive a classical-particle version of
the Higgs mechanism.
To start, notice that our original choice (156) of refer-

ence four-momentum in the massive case, pµ0 ≡ (mc,0)µ,
does not have an appropriate massless limit. However,
our choice of reference four-momentum is entirely arbi-
trary apart from the condition that p2 = −m2c2 from
(104), so we can instead choose it to be

p̄µ ≡ (p̄t, 0, 0, p̄z)µ

= (
√
(p̄z)2 +m2c2, 0, 0, p̄z)µ. (217)

The bars in this notation are solely meant to distin-
guish this choice of reference momentum from our origi-
nal choice pµ0 ≡ (mc,0)µ in (156).

15 Again, for an alternative point of view, see [18].
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The massless limit m → 0 of this alternative reference
four-momentum replicates the reference four-momentum
(176) that we chose for the case of a massless particle:

lim
m→0

p̄µ = (E0/c, 0, 0, E0/c)
µ, E0 ≡ p̄zc. (218)

Moreover, the choice (217) is related to our original ref-
erence four-momentum (156),

pµ0 = (mc,0)µ,

by a simple Lorentz boost Λ̄ along the z direction,

p̄µ = Λ̄µ
νp

ν
0 , (219)

where

Λ̄ ≡


p̄t

mc
0 0

p̄z

mc
0 1 0 0
0 0 1 0
p̄z

mc
0 0

p̄t

mc

. (220)

It follows that the new reference value S̄µν of the mas-
sive particle’s spin tensor is related to its old reference
value Sµν

0 from (169) according to

S̄µν ≡ (Λ̄S0Λ̄
T)µν

=



0
p̄z

mc
S0,y − p̄z

mc
S0,x 0

− p̄z

mc
S0,y 0 S0,z − p̄t

mc
S0,y

p̄z

mc
S0,x −S0,z 0

p̄t

mc
S0,x

0
p̄t

mc
S0,y − p̄t

mc
S0,x 0



µν

. (221)

Both p̄t and p̄z approach the finite, nonzero value E0/c >
0 in the massless limit m → 0, so the components of S̄µν

that involve factors of p̄t/mc or p̄z/mc diverge in that
limit. Furthermore, the particle’s spin-squared scalar s2

continues to have its invariant value (170), which, despite
remaining well-defined in the limit m → 0, does not end
up agreeing with the corresponding massless particle’s
spin-squared scalar (192):

s2 = S2
0,x + S2

0,y + S2
0,z (massive)

̸= S2
0,z (massless). (222)

Meanwhile, the new reference value W̄µ of the par-
ticle’s Pauli-Lubanski pseudovector is related to its old
reference value Wµ

0 ≡ (0,mcS0)
µ from (171) according

to

W̄µ = Λ̄µ
νW

µ
0

= (p̄z S0,z,mcS0,x,mcS0,y, p̄
t S0,z)

µ. (223)

This expression has a well-defined massless limit that pre-
cisely agrees with the reference value (197) of the Pauli-
Lubanski pseudovector for a massless particle:

lim
m→0

W̄µ =

(
S0,z

E0

c
, 0, 0, S0,z

E0

c

)µ

. (224)

To make contact with the massless case, we can therefore
focus our efforts on the spin tensor (221).

An important hint is the discrete discrepancy (222)
between the spin-squared scalar s2 in the massive and
massless cases, signaling that the massive case features
spin degrees of freedom that need to be removed before
taking the massless limit. As we will see, removing these
extraneous spin degrees of freedom will require formally
enlarging our massive particle’s phase space while simul-
taneously introducing a compensating equivalence rela-
tion to ensure that we are not adding any physically new
states to the system. This approach corresponds to an
analogous construction in quantum field theory whose
origins go back to the work of Stueckelberg in [19].

At the conclusion of this procedure, we will be able
to isolate and eliminate the extraneous spin degrees of
freedom. Moreover, we will find that the equivalence
relation that we introduced along the way becomes the
gauge invariance (213) in the massless limit.

We begin by redefining the x and y components of the
reference value S̄ = (S̄x, S̄y, S̄z) of the massive particle’s
spin three-vector according to(

S̄x

S̄y

)
7→ mc

p̄t

(
S̄x + p̄tφx

S̄y + p̄tφy

)
=

mc

p̄t

(
S̄x

S̄y

)
+mc

(
φx

φy

)
,

(225)
where φx(λ) and φy(λ) are arbitrary new functions on
the particle’s worldline. The particle’s spin tensor (221)
then takes the form

S̄µν =



0
p̄z

p̄t
S0,y − p̄z

p̄t
S0,x 0

− p̄z

p̄t
S0,y 0 S0,z −S0,y

p̄z

p̄t
S0,x −S0,z 0 S0,x

0 S0,y −S0,x 0



µν

+

 0 p̄zφy −p̄zφx 0
−p̄zφy 0 0 −p̄tφy

p̄zφx 0 0 p̄tφx

0 p̄tφy −p̄tφx 0


µν

, (226)

where we have chosen the various factors of m, c, p̄t,
and p̄z in the redefinition (225) to ensure that the two
tensors appearing in (226) separately satisfy the funda-
mental condition p̄µ(· · · )µν = 0 from (145). The parti-
cle’s spin-squared scalar s2, as originally defined in (106),
now becomes

s2 =

(
1−

(
p̄z

p̄t

)2)(
(S0,x + p̄tφx)

2

+ (S0,y + p̄tφy)
2
)
+ S2

0,z. (227)

Notice that the particle’s spin tensor (226) is invariant
under the simultaneous transformations(

S̄x

S̄y

)
7→

(
S̄x

S̄y

)
− p̄t

(
fx
fy

)
, (228)(

φx

φy

)
7→

(
φx

φy

)
+

(
fx
fy

)
, (229)
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where fx(λ), fy(λ) are arbitrary functions on the par-
ticle’s worldline. We claim that our massive particle’s
original phase space, with states denoted by (X, p, S), is
equivalent to a formally enlarged phase space consisting
of states

(X, p, S, φ) (230)

under the equivalence relation

(X̄, p̄, S̄, φ) ∼= (X̄, p̄, S̄ − p̄tf, φ+ f), (231)

suitably generalized from the reference state (X̄, p̄, S̄, φ)
to general states (X, p, S, φ) of the system. To see why,
observe that the specific choice

f ≡ −φ, (232)

or, more explicitly, (
fx
fy

)
≡ −

(
φx

φy

)
(233)

makes clear that the state (X̄, p̄, S̄, φ) is equivalent to
the state (X̄, p̄, S̄+ p̄tφ, 0), which gives us back the state
(X̄, p̄, S̄) after undoing the redefinition (225) of S̄µν .

The system’s redefined spin tensor (226) now has a
nice massless limit,

lim
m→0

S̄µν =

 0 S0,y −S0,x 0
−S0,y 0 S0,z −S0,y

S0,x −S0,z 0 S0,x

0 S0,y −S0,x 0


µν

+
E

c

 0 φy −φx 0
−φy 0 0 −φy

φx 0 0 φx

0 φy −φx 0


µν

, (234)

as does the particle’s spin-squared scalar (227),

lim
m→0

s2 = S2
0,z. (235)

Our system fundamentally has the same number of de-
grees of freedom as it had before we took the massless
limit, but we see that the degrees of freedom describ-
ing spin components perpendicular to the particle’s ref-
erence three-momentum p̄ no longer contribute to the
particle’s spin-squared scalar s2, which agrees with the
spin-squared scalar (192) of the massless case. If we now
formally remove the spin degrees of freedom φx, φy by
setting them equal to zero, then the particle’s spin ten-
sor (234) reduces to the reference value of the massless
spin tensor (189), and our equivalence relation (231) re-
duces to the gauge invariance (212).

Notice that if we run all the arguments of this section in
reverse, then we can convert a massless particle with spin
into a massive particle by introducing additional spin de-
grees of freedom. We therefore obtain a classical version
of the celebrated Higgs mechanism.

To see the connection with the field-theoretic Higgs
mechanism in more detail, recall the case of a massless
spin-1 field, whose corresponding quantum-mechanical
boson has two physical spin states. If we spontaneously
break the gauge symmetry, then the spin-1 field gains a
positive mass along with an additional spin state that
is acquired from the Higgs field, so that the correspond-
ing quantum-mechanical boson ends up with the correct
three physical spin states for a massive spin-1 particle.
In a similar way, suppose that we start with a massless

classical particle with nonzero spin. From our preceding
work, we know that the particle has precisely two phys-
ical spin states, corresponding to the two helicities ±σ.
Reversing the logic of this section, we can convert our
massless particle into a massive particle by augmenting
the particle with spin states from the “Higgs” degrees of
freedom φx, φy.

D. Tachyons

The case m2 < 0 is also interesting. The invariant
quantity m is now purely imaginary and is therefore of
the form m = iµ for a real constant µ. The system’s
four-momentum pµ is spacelike, p2 = µ2c2 > 0, so its
temporal component pt does not have a definite sign un-
der orthochronous Lorentz transformations. As a conse-
quence, we cannot impose a positivity condition on the
system’s energy.
We can use p2 = µ2c2 to express the system’s energy

E = ptc in terms of its three-dimensional momentum p
as the mass-shell relation

E =
√
p2c2 − µ2c2. (236)

For convenience, we will take the system’s reference four-
momentum to be purely spacelike and aligned with the
z direction:

pµ0 ≡ (0, 0, 0, µc)µ = µc δµz . (237)

Once again, the four-momentum pµ and the four-
velocity Ẋµ are non-vanishing, and so the relation (154),

m

√
−Ẋ2/c2 pµ = ∓m2Ẋµ,

becomes √
−Ẋ2/c2 pµ = ∓iµẊµ. (238)

Because the right-hand side is imaginary, this equality
implies that Ẋ2 > 0, so the four-velocity Ẋµ is likewise
spacelike and is related to the four-momentum pµ by

pµ = µ
Ẋµ√
Ẋ2/c2

, (239)

where we have taken the positive sign by assuming that
our parametrization Xµ(λ) points in the positive di-

rection along pµ. This relation between pµ and Ẋµ
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again ensures that the self-consistency condition (149),

ẊµWµ = 0, is satisfied.
The equation of motion (135) for the system’s four-

momentum, ṗµ = 0, then tells us that the system’s path
has a fixed, spacelike direction in spacetime. A calcula-
tion of the system’s three-dimensional velocity v using
the mass-shell relation (236) yields the result

v =
dX

dt
=

Ẋ

Ṫ
=

pc2

E
=

p

|p|
c√

1− µ2c2/p2
. (240)

Hence, the system’s speed |v| is always greater than the
speed of light c:

|v| > c. (241)

Such a system is appropriately called a tachyon, from the
Greek for “swift.”
By the same reasoning as in the massive and massless

cases, a tachyon’s orbital and spin angular momenta are
separately conserved,

L̇µν = 0, (242)

Ṡµν = 0. (243)

The condition (144), p0,µS
µν
0 = 0, now gives

µcSzν
0 = 0, (244)

so the reference value of the system’s spin tensor is

Sµν
0 =


0 S̃0,x S̃0,y 0

−S̃0,x 0 S0,z 0

−S̃0,y −S0,z 0 0
0 0 0 0


µν

. (245)

The system’s spin-squared scalar (107) and spin-squared
pseudoscalar (108) have respective values

s2 = S2
0,z − S̃2

0,x − S̃2
0,y, (246)

s̃2 = 0, (247)

and the reference value of the system’s Pauli-Lubanski
pseudovector (99) is

Wµ
0 = µc(S0,z, S̃0,y,−S̃0,x, 0)

µ. (248)

We next consider the little group of orthochronous
Lorentz transformations that preserve the value of the
reference four-momentum (237), pµ0 ≡ (0, 0, 0, µc)µ. As
usual, these little-group transformations parametrize the
set of all states that share that same four-momentum,
so they include rotations around the z axis as well as
Lorentz boosts along the x and y directions.
If the system is to have a compact set of states at

any fixed four-momentum, then its spin tensor (245) and
Pauli-Lubanski pseudovector (248) must be invariant un-
der these noncompact Lorentz transformations. How-
ever, we see right away that Wµ

0 transforms nontrivially

under Lorentz transformations along the x or y direc-
tions if any of its components are nonzero, so our sys-
tem’s phase space at fixed four-momentum can be com-
pact only if all the components of Wµ

0 vanish:

S0,z = 0,

S̃0,x = 0,

S̃0,y = 0.

 (249)

The tachyon’s spin tensor and Pauli-Lubanski pseudovec-
tor therefore vanish identically,

Sµν = 0,

Wµ = 0,

}
(250)

so

s2 = 0,

W 2 ≡ w2 = 0,

}
(251)

and we see that a tachyon cannot have any intrinsic spin
at all.

E. The Vacuum

Finally, we consider the case in which pµ0 = 0, meaning
that the system’s four-momentum vanishes for all the
system’s possible states:

pµ = 0. (252)

The system then has no energy or momentum. The ki-
netic term pµẊ

µ in the system’s action functional (132)
vanishes, and we do not get a meaningful equation de-
scribing the behavior of Xµ(λ). The system’s orbital
angular momentum vanishes,

Lµν = 0, (253)

and its spin angular momentum is conserved:

Ṡµν = 0. (254)

The little group of orthochronous Lorentz transfor-
mations that leave pµ0 = 0 invariant consists of all or-
thochronous Lorentz transformations, and so the only
way to obtain a compact phase space at fixed four-
momentum is for the spin tensor to vanish for all the
system’s states:

Sµν = 0. (255)

We conclude that our system is entirely devoid of en-
ergy, momentum, and angular momentum, and therefore
describes an empty vacuum.
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VI. CONCLUSION

In this paper, we reviewed a general method for mak-
ing the standard Lagrangian formulation manifestly co-
variant. We employed this framework to develop a
classical counterpart of Wigner’s classification of quan-
tum particle-types in terms of the structure of the or-
thochronous Poincaré group. We also showed that clas-
sical massless particles with spin exhibit a novel manifes-
tation of gauge invariance, and used the massless limit
to derive a classical version of the Higgs mechanism.
An interesting way to extend our approach is to con-

sider phase spaces that provide transitive group actions
of the full Poincaré group, including time-reversal trans-
formations (55). This generalization does not affect our
analysis of tachyons or of the vacuum, which do not fea-
ture a definite sign for pt. But in the case of a system
with non-negative mass, m ≥ 0, enlarging the system’s
phase space so that it provides a transitive action of the
full Poincaré group means doubling the phase space to
include “negative-energy” states with pt < 0. Because

the four-momentum pµ is timelike or null when m ≥ 0,
we know from (56) that the sign of pt is invariant under
all physically realizable Lorentz transformations, which
are smoothly connected with the identity transformation
and therefore do not include time-reversal transforma-
tions. Hence, a system with m ≥ 0 cannot evolve from
states with pt > 0 to states with pt < 0 or vice versa.
We are therefore free to define the physical energy of the
additional pt < 0 states to be E ≡ −ptc > 0, and regard
them as states not of our original particle, but of its cor-
responding antiparticle. In this way, we can classically
unify particles with their antiparticles.
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