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Mathematics appears to play an explanatory role in science. This, in turn, is thought to pave a way
toward mathematical Platonism. A central challenge for mathematical Platonists, however, is to
provide an account of how mathematical explanations work. I propose a property-based account:
physical systems possess mathematical properties, which either guarantee the presence of other
mathematical properties and, by extension, the physical states that possess them; or rule out other
mathematical properties, and their associated physical states. I explain why Platonists should
accept that physical systems have mathematical properties, and why a property based account
is better than existing accounts of mathematical explanation. I close by considering whether
nominalists can accept the view I propose here. I argue that they cannot.
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1. Introduction

A mathematical explanation in science (MES) is a scientific explanation in which mathematics
is playing a substantive explanatory role.1 Debate continues over whether there are any genuine
MESs. The case for the affirmative is based largely on the presentation of putative examples.2

Against such cases, a number of philosophers have argued that mathematics is playing a merely
representational role in science, and is not doing any explanatory work.3 The presence of genuine
MESs paves a road to mathematical Platonism via the enhanced indispensability argument (Baker

1See (Andersen [2016]; Baker [2005]; Baker [2009]; Baron et al. [2017]; Colyvan [2001]; Jansson and
Saatsi [2019]; Knowles and Saatsi [2019]; Lange [2016]; Leng [2010]; Lyon [2012]; Pincock [2012];
Povich [2021]; Saatsi [2011]).

2See (Baker [2005]; Batterman [2006]; Colyvan [2001]; Lange [2016]; Lyon [2012]; Pincock [2012]) for
cases.

3See (Bueno [2012]; Leng [2010]; Melia [2000]; Saatsi [2011]; Yablo [2012]).
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[2009]). In this paper, I will assume that there are some genuine MESs. My goal is to present
an account of how MESs work, given Platonism. The account I offer is property-based: physical
systems share intrinsic properties with mathematical objects, and these shared properties either
guarantee the presence of other mathematical properties and, by extension, the physical states that
possess them; or rule out other mathematical properties, and any associated physical states. The
central ‘mechanism’ of an MES is a relation between mathematical properties that are physically
instantiated.

The assumption that physical objects possess mathematical properties involves commitment to
a partial form of Pythagoreanism: the belief that the universe is ‘made’ of mathematics. I thus
begin, in Section Two, by explaining why Platonists should accept Partial Pythagoreanism. In
Section Three I briefly motivate my account of MESs by showing why Platonists should prefer
it to existing accounts. This sets the stage for Section Four, in which I outline my account of
mathematical explanation. I will close, in Section Five, by responding to an objection: namely,
that my account cannot support the indispensability argument for Platonism.

2. Partial Pythagoreanism

In this paper, I will talk of physical and mathematical properties. I won’t provide an account
of what I mean by ‘physical’ here, deferring instead to whatever the best account of this notion
happens to be. A physical property is any intrinsic property that satisfies the best account of what
it is to be physical. A mathematical property, by contrast, is any intrinsic property possessed by
a mathematical object, or any property possessed by a mathematical object that supervenes on
intrinsic properties. A mathematical object is an abstract, non-causal, non-spatiotemporal entity.

There is a stronger notion of a mathematical property that I will mention only to set it aside:
a strongly mathematical property is an intrinsic property that only mathematical objects possess.
Some properties of mathematical objects are like this. For instance, the property of being prime is
a property that only a number can have. Strongly mathematical properties are not the focus of this
paper.

Platonists should accept that physical and mathematical objects share intrinsic properties. I call
this view ‘Partial Pythagoreanism’ on the grounds that physical and mathematical objects are not
entirely distinct. They overlap in terms of their qualitative aspects. In this, fairly weak sense, the
physical world is partly mathematical in nature. The intrinsic properties that are shared between
physical and mathematical objects include properties of having a certain structure, such as having
a particular geometry or being ordered in a certain way (as in a linear or partial ordering). Mathe-
matical and physical objects can also share other properties in virtue of having a shared structure.
Such properties can include cardinality properties like being finite or infinite, or, as we shall see,
certain pathing properties.

Partial Pythagoreanism is recommended by our best account of applied mathematics. Platonists
are united in the belief that mathematical objects play a modelling role in science. A common
analogy used for the modelling role of mathematics in science is a map (Bueno and Colyvan [2011],
p. 346; Saatsi [2011], p. 146). A map is an object that depicts the world in a specific way, for a



A Pythagorean Proposal 3

specific purpose. When the map is accurate, we learn a great deal about the world just by reading
the map. A mathematical model, like a map, is an object that can provide us with information about
the world. Model and map thus play what Saatsi ([2012], p. 579) calls a ‘knowledge-conferring’
role.

A long-standing view is that the relation between a mathematical model M and its target T is a
mapping relation, in the sense of a morphism.4 The strongest mapping relation is an isomorphism.
When M and T are isomorphic, they share the same structure. From this it follows that M and T
share a property in common. At the very least, they share the property of having a specific structure.
Call this property P.

P is an intrinsic property. According to Lewis ([1983], p. 197), intrinsic properties are those
preserved under duplication. So, for instance, take a particular graph. Suppose the graph has a
specific structure consisting of adjacency relations between vertexes. If we duplicate the graph
then we must duplicate the structure as well. We cannot copy the graph without giving it the same
structure of adjacency relations. By the same token, a physical system, like the famous Bridges of
Königsberg has a specific structure, involving the adjacency relations between the various bridges.
Just like the graph, we cannot duplicate the entire bridge system without duplicating the structure.

Of course, some mathematical models have more structure than the physical systems they
represent; others have less. Accordingly, partial isomorphisms, homorphisms, epimorphisms and
monomorphisms are also used (Bueno and French [2011]; Bueno and Colyvan [2011]). In each
case, the mapping relation is structure-preserving. Given the presence of the mapping there is some
aspect of structure shared between the model and its target. The fact that physical entities share
some structure with mathematical objects is enough to establish shared properties. Physical and
mathematical entities share structural properties in common, even if the structure specified by the
property does not exhaust the structure of the entity in question (mathematical or physical).

3. Motivation

In the next section I will use the shared properties of physical and mathematical objects to give an
account of MESs. First, however, some motivation. Various accounts of MESs are already avail-
able, why should Platonists prefer mine? The answer is that existing accounts are controversial,
either on their own or when coupled with Platonism.

For instance, Baron et al.’s ([2017]) account requires that some counterfactuals with impossible
antecedents are non-trivially true. However, the status of such counterfactuals is hotly debated (see
the exchange between (Berto et al. [2018] and Williamson [2018]). Baron et al.’s account also
likely requires a non-classical logic to support the relevant counterfactuals, namely a logic that
can tolerate contradictions. Platonists, however, may reasonably wish to remain classical.5 Two

4See (Krantz et al. [1989], Pincock [2004] and Bueno and Colyvan [2011]).
5Accounts given in (Knowles and Saatsi [2019]; Jansson and Saatsi [2019]) avoid these commitments, but
are nominalistic.
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other views incur similar commitments. Povich’s ([2021]) ontic counterfactual account uses similar
counterfactuals to Baron et al.’s account, and so is controversial in a similar way. Baron’s ([2020])
hybrid counterfactual-unificationist account is in the same boat, adding that unification is necessary
for explanation, which is a contested assumption in its own right (Gijsbers [2007]).

Counterfactual views are also controversial in another respect. Counterfactual dependence
generally holds in virtue of some underlying connection between whatever enters into the rele-
vant counterfactual relationship at issue. For instance, if it is true that had Suzy not thrown the
rock, the window would not have smashed, this is generally because of some underlying causal or
nomic connection between the throwing and the smashing. For a Platonist, then, there needs to be
a connection between mathematical and physical objects in virtue of which one counterfactually
depends on the other. It remains unclear, however, what the relevant connection might be. The con-
nection is certainly not the causal connection implicated in interventionist theories of explanation
(Woodward [2003]).

Povich ([2021]) offers two accounts of the connection. First, he proposes grounding. Ground-
ing, however, is a metaphysical dependence relation of relative fundamentality such that x grounds
y only if x is more fundamental than y (Schaffer [2009]). However, the idea that the physical is
less metaphysically fundamental than the mathematical is not obviously something that Platonists
should accept. Second, Povich considers an instantiation relation between physical objects and
mathematical properties. As we shall see, however, MESs can be accounted for using relations
between the very same physically instantiated mathematical properties. A property-based account
is therefore simpler as it does not require an added layer of counterfactual structure (Baron et al.
appeal to morphisms to underwrite counterfactuals, but the moral is the same).

Baron’s ([2019]) DN account avoids controversial counterfactuals, but still employs a non-
classical logic, namely relevance logic (though he does suggest a way to make the view classical).
Baron’s picture is also open to symmetry problems due to its reliance on the standard machinery
of DN accounts (Povich [2021]). More importantly, on Baron’s view mathematical facts manage
to carry information about physical systems. As he notes, there is a question concerning how this
happens, and there is a worry that, for a Platonist, some connection between physical and mathe-
matical objects will be needed to explain the informational relationship at issue. The answer that
Baron gives appeals to mapping relations and shared structure: mathematical facts carry infor-
mation about physical systems because there are morphisms between mathematical and physical
objects, and physical systems sometimes possess mathematical properties. Again, as we shall see,
these shared properties are enough for MESs, and so there is no need for the DN framework.

Lange’s ([2013; 2016]) constraint-based approach does better, requiring no controversial coun-
terfactuals or non-classical logic. For Lange, mathematical facts play an explanatory role by con-
straining the world in much the way laws do, except that the constraints exerted by mathematics
are stronger than any physical law. Now, Lange never frames his account in terms of mathematical
objects. Indeed, he deems the question of whether mathematical objects exist “irrelevant” (Lange
[2013], p. 492) to his account. What happens, then, when we try to combine Lange’s account with
a Platonistic picture of MESs in which mathematical objects play a role? For a Platonist, it seems,
mathematical objects must be implicated in the constraints that form the core of Lange’s account.
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A Platonist who endorses Lange’s view thus seems to require that mathematical objects somehow
constrain the physical world. This is similar to the need for a connection between mathematical
and physical objects that underwrites counterfactual dependence, and is controversial in the same
way: how, exactly, do mathematical objects exert this kind of influence?

This brief survey is by no means exhaustive. But it is enough to show that recent accounts of
MESs carry some surprising commitments for Platonists. Specifically, one needs either (i) non-
trivially true counterfactuals with impossible antecedents; (ii) non-classical logic; (iii) a connec-
tion between physical and mathematical objects that underwrites counterfactual dependence (or
information sharing); or (iv) a way for mathematical objects to constrain the physical world. Com-
mitments (i) and (ii) are independent of Platonism, whereas commitments (iii) and (iv) arise when
the Platonist adopts certain existing views. My account of MESs, by contrast, avoids all of these
commitments, and uses only what Platonists already accept given the best account of applied math-
ematics. In this way, the view boasts a prima facie advantage for Platonists over current offerings.

4. Mathematical Explanation

My view is similar to Lyon’s ([2012]) programming account. Before outlining my account, then, it
is useful to briefly examine Lyon’s account and show why there is a need to go beyond it.

4.1. Program and Process
Lyon’s programming account rests on a distinction between program and process explanations.
A process explanation is an explanation in terms of the low-level causal facts that bring about a
particular event. A program explanation, by contrast, is an explanation in terms of high-level facts
that ensure a certain causal fact must obtain. Lyon’s view is that mathematical facts sometimes
play a programming role by ensuring the presence of certain causal facts that, in turn, bring about
particular explananda. One way of understanding this idea appeals to properties: the high-level
mathematical properties of a physical system program for low-level causal properties.

Lyon’s account over-emphasises causation. According to Lyon, MESs that fit the programming
account:

...cite properties and/ or entities which are not causally efficacious but neverthe-
less program the instantiation of causally efficacious properties and/or entities that
causally produce the explanandum. (Lyon [2012], p. 567)

On this picture, a given explanandum in an MES is always causally produced, and it is the cause
of the explanandum that is programmed by high-level mathematical properties. Mathematical ex-
planation, on the programming account, is causally mediated.

To see why the emphasis on causation is a problem, consider the well-known Bridges of
Königsberg case. It is impossible to walk across the seven bridges of Königbserg crossing each
bridge exactly once. Why? The answer lies in graph theory. The seven bridges and the land-
masses they connect can be represented by a graph: a mathematical object consisting of vertexes
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connected by edges. A graph lacks an Eulerian circuit just in case there is no path through the
graph that crosses every edge exactly once. The graph corresponding to the seven bridges lacks an
Eulerian circuit. Thus, it follows that there is no way to cross the seven bridges exactly once.

The Bridges of Königsberg is one of the core examples that Lyon uses to motivate the pro-
gramming account. With respect to this case, however, it is important to differentiate between two
explananda:

Why has no one ever continuously walked over Königsberg’s seven famous bridges
passing over each bridge exactly once?

Why can’t anyone walk over Königsberg’s seven famous bridges exactly once?

Mathematical facts about Eulerian graphs are relevant to both explananda. The fact that the
bridges have the same structure as a non-Eulerian graph explains why, as a matter of fact, no-one
has walked over the seven bridges. But these structural facts also explain why no-one can walk over
the bridges in the required manner. Now, causal facts are clearly relevant to the first explanandum.
The fact that no-one has ever walked over the seven bridges, passing over each bridge exactly once,
can be explained in terms of a series of causal histories, each of which starts with a walker and ends
in failure. The mathematical facts thus program these causal histories by ensuring that each occurs
and, in this way, program the explanandum.

However, the causal facts seem to be irrelevant to the second explanandum. Even if no-one
has ever or will ever attempt to cross the seven bridges, still it would be impossible to do so. In
so far as the mathematics has an explanatory role to play in such a situation, it cannot be because
it ensures the existence of some property or entity that causally produces the explanandum. That’s
because the second explanandum does not seem to be causally produced in any obvious sense. The
explanandum is not an effect, nor even the absence of an effect. It is the impossibility of a physical
event of a certain type.

Because of its emphasis on causation, Lyon’s account is unfit to handle a range of MESs that
Lange ([2013]) calls ‘distinctively mathematical explanations’. These are explanations in which
a given explanandum is explained entirely in terms of mathematical facts without any reference
to causation. Of course, Lyon admits that his account may not be fully general, and so may not
extend to every MES. But the lack of generality is a symptom of a deeper concern. In Lyon’s
account, mathematics is subordinate to causal and physical explanations. This seems to blunt the
explanatory potential of mathematics, particularly once it is realised that many of the cases Lyon
focuses on feature a modally strengthened explanandum like the one considered above.

A second reason to be unsatisfied with Lyon’s account is offered by Saatsi ([2012]). Because of
the mediating role that causation plays in Lyon’s account, mathematical properties must be shown
to ensure or otherwise generate causal properties. Saatsi’s worry is that there is no metaphysical,
nomic, or logical connection between mathematical and physical properties in virtue of which
mathematical properties might generate causal ones. Here’s Saatsi:

What kind of metaphysical connection or law of nature could in this way link a math-
ematical property to causally efficacious properties? It beats me, and I am not opti-
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mistic about the prospects of making sense of a mathematical property entering into
a kind of programming relation. (Saatsi [2012], pp. 582–583)

Saatsi’s worry is strongest when we assume that mathematical properties are possessed only
by mathematical objects. Then it would seem we need some account of how it is that properties
possessed by mathematical objects ‘reach into’ the physical realm and bring about causal facts. To
some extent the worry can be addressed by coupling Lyon’s account to Partial Pythagoreanism.
For then, at least, the mathematical properties that ensure the various causal properties of physical
systems are properties of those systems. There is less of a metaphysical gap to be bridged. Even
if we assume Partial Pythagoreanism, however, Saatsi’s objection is not completely answered. For
it remains unclear exactly how mathematical properties force certain causal properties to obtain.
Lyon doesn’t tell us how programming works, only that it does. What we need, as Saatsi points
out, is an analysis of the programming relation itself.

4.2. Mathematical Explanation
Like Lyon’s account, my account focuses on the mathematical properties of physical systems.
However, the account is designed to overcome the limitations of Lyon’s account. Let us assume, as
seems plausible, that a single physical system can enter into multiple distinct physical states. Sup-
pose also that physical systems have global properties—properties that the system has regardless
of its state. And also that there are state-specific properties: properties that a system would have,
were it to enter a specific physical state. Then:

An MES is any case in which a system has global mathematical properties that relate
to state-specific mathematical properties in such a way that either (i) the system is
forced to enter a physical state because that state has certain mathematical proper-
ties that are required by the global mathematical properties of the system or (ii) the
system is forbidden from entering a certain physical state because the mathematical
properties of the state conflict with the global mathematical properties of the system.

In general, MESs are a function of exclusion and requirement relations between global and
state-specific mathematical properties. Because the state-specific mathematical properties are al-
ways possessed by some physical state or other, certain physical states are forced or forbidden
in virtue of the exclusion and requirement relations between their mathematical properties. The
explanatory work, however, is always being done by the relationships between mathematical prop-
erties in the first instance. Mathematical properties don’t ensure physical properties directly; only
indirectly in virtue of the enforcement or exclusion of a particular state’s properties.

MESs, on my view, are not really that different to a certain class of non-mathematical expla-
nations. Many explanations within science involve showing how a certain physical system cannot
enter into a particular state, because the specific physical properties it would gain by entering that
state conflict with the global physical properties of the system.
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For instance, consider a spatiotemporally located physical system consisting of Sara and Nox.
Sara and Nox both hold matches, and are at a spacelike distance from one another. Suppose that
only Sara strikes her match and that the system undergoes a state change as a result. It cannot be
the case that Nox’s match lights as a result of Sara’s striking. That state—the state of both matches
having lit—is inaccessible from a state in which just Sara strikes her match. It is inaccessible
because the system is a spatiotemporal one, and spatiotemporal systems forbid faster than light
processing. For Nox’s match to light because of Sara’s strike some faster than light processing
would be needed from Sara’s striking to Nox’s lighting (assuming that no other causes are present
within or impinging on the system). This example is one in which a state is out of bounds for a
system. But it is not difficult to imagine a case in which a specific physical state of a system is
forced instead, given the global physical properties of the system.

It is tempting to add that the mathematical properties of physical systems always supervene on
physical properties. If this is assumed, then an incompatibility between mathematical properties
will generally correspond to an incompatibility between subvenient physical properties. My ac-
count does not, however, require the supervenience of mathematical properties on physical ones. It
could be that the mathematical properties supervene on physical ones, but it could also be that some
physical properties supervene on mathematical ones. Or there may be no supervenience relation at
all.

The nature of the relationship between physical and mathematical properties is not important.
The core of an MES is not a matter of mathematical properties interacting with physical ones. It is a
matter of mathematical properties interacting with other mathematical properties. So long as there
is some reason to think that physical systems have certain mathematical properties—and I have ar-
gued that, for a Platonist, there is—then that is enough to get the account off the ground. Of course,
it must also be assumed that physical systems have both global and state-specific mathematical
properties. But since it is possible to represent physical systems in full generality using mathemat-
ical models, and since it is also possible to represent specific physical states mathematically, we
(Platonists) have reason to believe that there are physically instantiated mathematical properties of
both kinds. In this way, the requirements of the account are quite minimal. All that the account of
explanation needs is whatever we already gain from the modelling role of mathematics: namely,
property sharing between physical and mathematical objects.

In a sense, mathematical properties can be said to ‘program’ physical systems on my account.
At least, this is true in so far as ‘programming’ just means that the mathematical properties
of physical systems force them to enter or avoid certain physical states. The picture is not the
standard programming account, which brings me back to the difference between my account and
Lyon’s. The difference is represented in Figure 1. On the left-hand side, we have the standard
programming relation. The explanatory power of mathematics is mediated by causal properties.
On the right-hand side, by contrast, we have the relationship between mathematical properties that
characterises my account.
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M-Property

C-Property Explanandum

M-Property 1 M-Property 2

Explanandum

Figure 1: M-properties are mathematical properties, C-properties are causally efficacious
properties.

In the picture on the right, the explanatory power of mathematics is not mediated by any causal
properties. Rather, mathematics explains why some physical system is in a certain state by directly
ruling in or ruling out other mathematical properties possessed by a state. Because the explanatory
power of mathematical properties is not mediated by the causal properties of physical systems,
there can be a mathematical explanation of some fact even when there is no causal explanation of
that fact available (unlike Lyon’s account). There is also no need to further explain how mathe-
matical properties bring about or otherwise ensure causally efficacious physical properties (as per
Saatsi’s objection to Lyon’s account).

Nonetheless, like Lyon’s account, my account provides a way for mathematics to ensure that
a certain physical explanandum occurs. But there is no mystery as to how this happens: it hap-
pens because physical systems have certain global mathematical properties, and these properties
are incompatible with the mathematical properties that the system would gain were it to enter
certain physical states. All that the account requires is for physical entities to have these global
and state-specific mathematical properties. The exclusion and requirement relations between the
mathematical properties then do all of the explanatory work.

4.3. Concrete Examples
To make this all a bit more concrete, let’s take a look at some specific examples. I will focus on
two: the Bridges of Königsberg case already discussed, and the cicada case outlined by Baker
([2005]). I will assume that these are genuine MESs, and thus that mathematics has an explanatory
role to play. Nothing I say here is supposed to constitute an argument for the explanatory power of
mathematics in these cases.

A note on methodology: in each case I will start from the assumption that various aspects
of physical systems can be modelled mathematically. I will then use the modelling relation as a
basis for identifying properties that are shared between physical systems and mathematical objects.
These properties will then be used to interpret the cases so that they fit the account of explanation
outlined above. The advantage of proceeding in this way is that the properties I appeal to are
properties that the Platonist has reason to believe in.

Let us begin with the Bridges of Königsberg. As already discussed, the seven bridges have the
same structure as a non-Eulerian graph. It is possible to abstract away from the specific details
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of bridges or graphs and talk about the structure they share in general terms. From this abstract
standpoint, the structural property at issue is a matter of featuring certain adjacency relations
between points. Different things can play the role of points or adjacency relations. In the case
of a graph, the points are vertexes and the adjacency is mediated by edges. In the case of the
bridge system, the points are land-masses and the adjacency is mediated by bridges. In the most
general terms, the structural property shared between the seven bridges and certain graphs can be
represented by an adjacency matrix: an n × n two-dimensional matrix with i rows and j columns
where the ij-th entry is the number of connections between adjacent points i and j (see Figure 2). In
the case of a graph, the entries in the matrix correspond to edge connections between nodes. In the
case of a structure of bridges, the entries in the matrix correspond to bridge connections between
land-masses. Call the structural property represented by the adjacency matrix in Figure 2, M1.

1

2

3

4

0 2 0 1

2 0 2 1

0 2 0 1

1 1 1 0





Figure 2: The matrix represents the structure of the graph and of the bridges.

M1 is only part of the story. In addition, we must also look at the properties of a path. A path
is an abstract way of talking about the way in which the points in a structure represented by an
adjacency matrix may be traversed in a specific sequence. By filling in particular details of the
kind of object whose structure is being represented, we manage to isolate the kinds of things that
paths can be. In the case of a graph, a path is a line that runs across some sequence of edges and
vertexes. In the case of a bridge system, a path is a worldline that covers some sequence of bridges
and land-masses. Paths through graphs model paths across bridges. In virtue of this modelling
relationship, the two types of path share properties with one another, just like the bridges and the
graphs themselves.

One such property is the property of being complete. A path through a certain structure (such
as any object with the M1 structural property) is complete when that path crosses every point in
the relevant structure of adjacency relations exactly once. Lines through graphs can be complete
in this sense. A line through a graph is complete just when it is an Eulerian circuit. Worldlines
can also be complete in this sense. A worldline across the seven bridges is complete in so far as it
crosses every bridge exactly once. The reason why the completeness property can be had by lines
and worldlines alike is just that the structural properties they relate to can be had by mathematical
objects and physical objects alike. In both cases, there is good sense to be made of a total tour of
the relevant structure.
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Call the completeness property of a path M2. For any object that has the M1 structural property,
no path through that object can have the M2 completeness property. This is the reason why there
are no Eulerian circuits through certain graphs (because these would be paths that are complete,
and thus would be ones that possess the M2 property). The graph-theoretic case is, however, just an
instance of the more general conflict between M1 and M2, a conflict that can arise for any structure
and any path through that structure. This more general conflict is represented by a general result
for adjacency matrixes, namely that for any adjacency matrix in which the number of columns or
rows that sum to an odd number is greater than two, there will be no complete path through an
object that possesses the structure represented by that matrix (regardless of whether the object is a
graph or some other object).

It is the general conflict between M1 and M2 that explains what is happening in the Bridges of
Königsberg case. The seven bridges can be treated as a single physical system. The starting state
of the system, T1, is a state in which no-one has crossed any bridges. Let T2 be a state in which a
walker tours all seven bridges without doubling back over a single bridge and let T3 be a state in
which a walker tours all seven bridges and doubles back at least once. The M1 property is a global
property of the bridges: a property it has regardless of the state it is in. Any worldline across the
bridges that traverses every bridge exactly once would possess the M2 completeness property. M2

is thus a state-specific property that the system would gain were it to enter T3. Because no system
with an M1 structure can enter a state that gives it the M2 property, the bridge system cannot enter
the T3 state. That, in turn, explains why the system never enters the T3 state, regardless of how
many times a walker tries to cross the bridges.

The Bridges of Königsberg case involves a conflict between two very generic properties: the
property of having a certain structure, possessed by some physical systems, and the property of
being complete, possessed by some worldlines through those systems. The same conflict arises for
graphs, because graphs are capable of possessing the same generic properties. The conflict itself,
however, has little to do with bridges or graphs per se, since it arises at a more general level of
adjacency relations, a level at which we can discern a shared structure between bridges and graphs.

4.4. The Cicadas
This brings us to the second example: Baker’s cicada case. The magicicada spends most of its
life in the ground, in its larval form. After a certain period of time, magicicadas arise as a swarm
for around two weeks during which they eat, breed, die and repeat the cycle. The sub-species of
magicicada spend thirteen or seventeen years underground respectively. Why these life-cycles?
Why not twelve and fourteen? Or sixteen and eighteen?

Here’s one answer. Suppose that, in the past, the cicadas were predated by organisms that have
two, three, four, five, six, seven, eight and nine-year life-cycles respectively. The optimal way
for the cicadas to avoid predation is for them to come out of the ground when their predators are
still lying dormant. More generally, if the cicadas can minimise the frequency with which both
they and their predators are out of the ground, then they will have the best chance at long-term
evolutionary success. Now, suppose that the cicadas are constrained to have life-cycles within
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the twelve to eighteen year range for ecological reasons (an assumption that Baker maintains is
plausible). Within that range, the optimal way to avoid predation is to adopt a thirteen or a seventeen
year life cycle.

This explanation relies on two results in number theory concerning the lowest common multiple
(LCM) of two numbers. Baker ([2005]) outlines the two results as follows:

Lemma 1: the lowest common multiple of m and n is maximal if and only if m and
n are coprime.

Lemma 2: a number, m, is coprime with each number n < 2m, n , m if and only if
m is prime.

Take the numbers two, three, four, five, six, seven, eight, nine and compare them to the numbers
twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen. By Lemma 2, only thirteen and
seventeen are coprime with each of two to nine. By Lemma 1, the lowest common multiple of
each of two to nine is maximal with respect to thirteen and seventeen only. Now, the frequency
with which the cicadas intersect with their predators is a function of the lowest common multiple
of cicada and predator life-cycle length. The frequency of intersection is minimal when the lowest
common multiple of life-cycle lengths is maximal. Assuming that cicadas should evolve toward
the optimal strategy for predator avoidance, it follows that they should have prime life-cycles, and
thirteen and seventeen are their only options.

In order to reconstruct this explanation using the account offered above, we must identify a
feature of a physical system consisting of the cicadas and their environment that can be modelled
mathematically. One way forward is to focus on time. The temporal structure of the cicada system
is a crucial aspect of the case, and time is something that can be quite easily modelled using
mathematics. Cicada life-cycles are expressed in physical quantities of time, in particular: intervals
of years. Intervals of time form a cumulative series. First, a year passes. After a year has passed
and another year has passed, two years have passed. After another year has passed, three years
will have passed and so on. This temporal series of years can be mapped to a number series.
Specifically, it can be mapped to N1: the natural numbers without zero (aka the whole numbers).

A time-series of years, and the series N1 are both linear orders and both series are discrete.
More importantly, for present purposes, both series are also additive. In the numerical case, when
we take two numbers and combine them, we get a third number that is greater than the first two.
Similarly, when we take two intervals of years (say three years and four years) and combine them,
we get a third interval of years that is larger than the first two. The notion of ‘combining’ in the case
of years corresponds to the combination of quantities: when we combine two physical quantities of
time we get a third quantity of time. If the notion of ‘combining’ for years seems too abstract, we
can focus, instead, on the passage of time. A two-year passage of time is made up of two one-year
passages of time, in the sense note above: if one year passes, and then another year passes, two
years will have passed.

Despite the similarities between a time-series of years and N1, we cannot transport Baker’s two
lemmas over to the time-series. For it is unclear that multiplication makes sense for quantities of
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time. What would it mean to multiply one quantity of time by another? To be sure, we can take
the numbers that represent the quantities, and multiply those. But this is not the same thing as
multiplying the temporal quantities themselves. Without an obvious notion of multiplication it is
difficult to make sense of the notions of lowest common multiple, primality and coprimality. These
are properties of structures for which multiplication is well-defined.

Given the differences between a time-series of years and N1, a straightforward interpretation
of the cicada case is unavailable. A straightforward interpretation of that case attributes the math-
ematical properties of primality and coprimality to intervals of years directly, and then seeks to
show that a prime life-cycle is required for the cicadas to optimally avoid their predators. It is not
at all obvious, however, that we can take intervals of years to have mathematical properties that are
reserved for numbers.

There are, however, nearby properties that are held in common between the natural number
series N1 and a time-series of years. Using these properties, it is possible to reformulate the cicada
case. First of all, there is a notion of primality, call it primality*. Primality* can be defined as
follows:

Primality* For any element x either inN1 or in a time-series of years τ, x is prime* iff
x cannot be produced by combining equal multiples of elements of the series except
by combining equal multiples of the first element.

Note that ‘multiple’ in the above definition does not denote multiplication. A multiple is just
a matter of having many elements; an equal multiple is a matter of having many of the same
elements. So, for instance, in the case of a time-series, three one-year intervals is an equal multiple
of elements of that series. We can produce other members of the time series by combining equal
multiples. Indeed, every member of the time-series can be produced by combining equal multiples
of the first element of the series—a one-year interval. Which is to say that the passage of any
amount of years is equivalent to the passage of some multiple of one-year intervals.

Prime numbers in N1 are also prime*. 3 is prime. But it is also prime*, since it cannot be
produced by combining equal multiples of elements of N1 except by combining equal multiples of
one (that is, one plus one plus one). Similarly, thirteen is a prime number. But it is also prime*.
We cannot, for instance, produce thirteen by adding equal multiples of twos, threes, fours, fives or
sixes and so on. Elements in the time series can be prime* as well. A thirteen-year interval cannot
be produced by combining equal multiples of two-year intervals, three-year intervals or four-year
intervals and so on. It can only be produced by combining thirteen one-year intervals. If you want
to wait out thirteen years, you can only do so by waiting out one year thirteen times. You can’t do it
by waiting out two years any number of times, or by waiting out three years any number of times.

In addition to primality*, we can also define a notion that is analogous to LCM. Here’s the
definition:

LCM* For any elements x and y that appear together either in N1 or in a time-series
of years τ, the LCM* of x and y is the smallest element of the series that can be
produced both by combining equal multiples of x and by combining equal multiples
of y.
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So, for example, consider a ten-year interval and a four-year interval. The LCM* of these two
intervals is the smallest interval of years that can be produced both by combining equal multiples
of ten-year intervals and by combining equal multiples of four-year intervals. In this case, the
LCM* is a twenty-year interval. Similarly, consider the numbers 4 and 10 in N1. Their LCM* is
twenty, since that is the smallest number that can be produced both by adding multiples of four and
by adding multiples of ten. The key difference between LCM* and LCM is that LCM* is defined
in terms of an addition-like property of combining elements, whereas LCM is generally defined
in terms of multiplication. Since multiplication cannot be defined in terms of addition, the two
properties are not the same. They do, however, agree for all numbers in N1. The LCM* of two
numbers is always their LCM and vice versa.

Finally, we can define a notion analogous to coprimality, as follows:

Coprimality* For any elements x and y that appear together either in N1 or in a time-
series of years τ, x and y are coprime* iff the only element of the series that can be
combined in equal multiples to produce both x and y is the first element.

A two-year interval and a five-year interval are coprime*, since the only element of the time-
series that can be combined in equal multiples to produce both intervals, is a one-year interval
of time. Simarly, the numbers two and five are coprime* because the only number that can be
combined in equal multiples to produce two and five is the number one. For any two numbers
in N1, if those two numbers are coprime then they will be coprime* and vice versa. Coprimality
and coprimality* are, however, different notions: elements of a time series can be coprime* with
one another, but they can’t be coprime (because coprimality, like primality, is standardly defined in
terms of numbers and multiplication).

With the notions of primality*, coprimality* and LCM* in hand, we can now state versions
of Lemma 1 and Lemma 2 above, that are true for both numbers in N1 and years. Now, strictly
speaking we don’t need anything quite as strong as Lemma 1. Rather we can get by with Lemma
1*:

Lemma 1*: For any elements x and y that appear together either in N1 or in a time-
series of years τ such that y is close to x, the average LCM* for x and each element
smaller than x in the series is higher than the average LCM* for y and each element
smaller than y in the series iff x is coprime* with every element smaller than x and y
is not coprime* with every element smaller than y.

Where y is ‘close’ to x if y is smaller than the element produced by combining x with itself.
Lemma 1* is a bit of a mouthful. What it basically does is capture the idea that the LCM*

between an element x and other nearby elements in N1 or in a time-series of years is generally
higher when x is coprime* with all of those elements. So, for instance, consider a thirteen-year
interval and compare it to a fourteen-year interval. The LCM* between a thirteen-year interval and
each interval of years smaller than it is, on average, higher than the LCM* between a fourteen-year
interval and each interval of years smaller than it. This is predicted by Lemma 1*, since a thirteen-
year interval is coprime* with each interval smaller than it, and a fourteen-year interval is not.
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Note that the average is calculated by taking each LCM* and dividing it by the number of LCM*s.
The average LCM* is not, itself, a member of the time-series of years at issue, but is a statistical
measure (just as the average person is not part of a population that is measured statistically).

In addition to Lemma 1*, we need Lemma 2*:

Lemma 2*: For any element x either in N1 or in a time-series of years τ, x is co-
prime* with every element in the series that is smaller than the element produced by
combining x with itself iff x is prime*.

Lemma 2* tells us, basically, that when an element of N1 or a time-series of years is prime*
then that is necessary and sufficient for it to be coprime* with every element smaller than double its
size. Lemma 2* thus captures a connection between coprimality* and primality* that is analogous
to the connection between coprimality and primality in Lemma 2.

Using Lemma 1* and 2* we can now formulate the cicada case in terms of the shared properties
of primality*, coprimality* and LCM*. We start with a physical system composed of the cicadas,
their environment and a temporal structure of years. The temporal structure of the system imbues
intervals of years with a range of global properties: properties that intervals have regardless of the
state the system enters into. In particular, the structure of time dictates that only certain intervals are
prime*. Any interval of years that can be represented by a prime number will be a prime* interval.
Because cicada life-cycles just are intervals of years, a cicada life-cycle will also be prime* just in
case that interval can be represented by a prime number.

Now, the system begins in a state, T1, where the cicadas have life-cycle lengths of, let us say,
twelve years. Predators with life-cycles of two to nine years are then added to the system, which
triggers a state change. For simplicity, let us suppose that there are two states for the system to
enter into: T2, in which the cicadas have thirteen or seventeen-year life-cycles, and T3 in which the
cicadas have some other life-cycle in the range of twelve to eighteen years.

Let us assume for a moment that the system is deterministic, in this sense: if predators are
added to the environment of the cicadas, then anything other than the optimal strategy for predator
avoidance will result in cicada extinction. Then in order for the system to enter T3—a state in
which the cicadas survive and they have life-cycles other than thirteen or seventeen—some other
life-cycle in the twelve to eighteen year range would need to be the optimal way to avoid predator
avoidance. Call this life-cycle L. L can only be the optimal way to avoid predator avoidance if the
frequency of intersection between L and the life-cycles of predators is minimised compared to all
other life-cycles in the twelve to eighteen year range.

However, the frequency of intersection between two life-cycles—which, again, are just inter-
vals of years—is a function of their LCM*: the higher the LCM*, the lower the frequency of
intersection over time. Thus, in order for L to be optimal, its LCM* with all smaller life-cycles
would, on average, need to be higher than the average LCM* for all other life-cycles. By Lemma
1*, this can only be true if L is coprime* with every life-cycle smaller than it; which in turn re-
quires, by Lemma 2*, that L is prime*. It is, however, impossible for L to be prime*, given the
structure of the time-series at issue. L’s being prime* is ruled out by the mathematical structure
of time. It follows, then, that there is a conflict between the global mathematical properties of the
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system—the mathematical properties of the time series—and the state-specific mathematical prop-
erties L would have were the system to enter T3. It is this conflict that forces the system to enter
T2.

What if the system is not deterministic? Then we can still model the explanation, so long as the
cicadas are likely to evolve toward the optimal method for predator avoidance. For, again, L cannot
be the optimal method for avoiding predation without being prime*. So if the system is likely to
be in an optimal state, then it is likely to be in a state where the cicadas have thirteen and seventeen
year life cycles, since that is the only situation mathematically compatible with optimality.

In sum, the mathematical properties of time can be used to explain why it is that cicadas have
evolved to avoid predators in a certain way. In particular, there are properties that time shares with
the number series N1 that are sufficient to explain why the cicadas have a certain life-cycle length.
These are not properties that we are generally interested in within mathematics. We are usually
interested in primality not primality*, and with LCMs not LCM*s. Nonetheless, N1 has the starred
properties, and these are properties that time has as well.

Once we see how the account applies to the cicada case and to the Bridges of Königsberg case,
it is not difficult to see how it generalises. Why do hivebees have hexagonal honeycomb? Because
hexagons are the most efficient shape for a nectar-storing honeycomb cell (Lyon [2012]). This,
in turn, is because honeybee hives share geometric properties with hexagons, and the face of a
honeybee hive shares properties in common with the Euclidean plane. Why do sharks in the open
sea adopt certain paths to find prey? Because those paths are optimal in a prey-scarce environment
(Baron [2014]). This, in turn, is because those paths share properties in common with random
walks, a particular kind of mathematical path through a space, and the open sea shares properties
in common with a 3-geometry.

4.5. False Positives
So far I have shown that key MESs can be captured within my account. In addition, a viable account
of MESs should not classify cases in which mathematics is playing a merely representational role
as genuine MESs. So, for instance, consider Baron’s train case:

Suppose we want to explain why it is that a train T arrives at a station, S, at 3:00
pm. The explanation is as follows: T left another station, S*, 10 kilometres away at
2:00 pm and headed towards S at 10 kph. . . . Numbers are used to state the distance
between stations as well as the speed of the train and a very basic mathematical cal-
culation is deployed, namely: 10/10 = 1. However, the mathematics itself does not
do any explanatory work. (Baron [2016], pp. 459–460)

In order to work out whether the train case is classified as an MES by my account, we need
to determine the mathematical properties of the train system. For that, we need a model. In order
to model the train case we need to represent the spatiotemporal structure of the system. This
can be done by using a flat, four-dimensional geometry in which the train’s path is represented
as a line connecting two points. The final states of the system can be represented as different
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geometrical configurations involving different lines. A short line represents a quick journey, a long
line represents a long journey. For simplicity, let us compare just two states: T2, in which the train
arrives at 3:00pm, and T3 in which the train arrives at some other time (the starting state of the
system is T1).

By attending to the model, we can see that the train system does indeed possess mathematical
properties. It has global mathematical properties, which correspond to the global geometry of the
system, and it has state-specific properties, which correspond to the particular geometric configura-
tions of the T2 and T3 states. The trouble is that there does not seem to be any conflict between the
state-specific mathematical properties of the system and the global geometry. The global geometry
permits both of the configurations at issue. There is, in particular, nothing like the mathematical
property of completeness for paths (as in the Bridges of Königsberg case) or the primality* of
years (as in the cicada case) that would rule out some geometric configurations, thereby ensuring
a certain time of arrival for the train. It is only once we specify a range of physical properties for
the train, that its arrival time is determined. In particular, it is only when we specify that the train
is travelling at a particular speed, in a certain direction that we can then see why the train arrives at
3:00pm. These properties are not properties that any mathematical object can possess and so there
is no plausible way to describe the train case as a conflict between mathematical properties of the
system.

Now, one might worry that my model does not capture the full structure of the case. In addi-
tion to specific geometry, the train case involves a particular relationship between time travelled,
velocity and distance covered. The relationship is hydraulic, in this sense: fix any one of these
features, and the other features will be such that as one diminishes, the other increases and vice
versa. A mathematical function with the same hydraulic structure exists (but where it is a function
of three variables x, y and z that can be filled in by numbers). One might therefore argue that the
train system shares a structural property in common with some mathematical functions. This struc-
tural property, one might continue, can be used to generate a conflict with state-specific properties.
Holding fixed a particular velocity for the train, and a particular distance to cover, the train cannot
enter into T3 since this would violate the hydraulic relationship at issue.

There are two things to say here. First, the relationship between time travelled, velocity and
distance covered is a law of nature. It is, however, the law that shares mathematical structure
with some function. While the law might govern a physical system, it is not clear that any of the
physical objects that make up such a system thereby possess the mathematical structure of the law
as an intrinsic property. On my account, explanations involve the intrinsic structural properties of
physical objects. So it is not clear that the law at issue gives the system global properties of the
right kind. Second, the state-specific property that generates a conflict with the relevant law doesn’t
seem to be a mathematical property. The state-specific property that conflicts with the law is just
the property of having a certain arrival time, namely one that is not 3:00pm. The conflict arises
because the law, the arrival time, the velocity and the distance travelled are mutually inconsistent.
But, as before, the relevant state-specific property is not shared by any mathematical objects, since
mathematical objects lack temporal properties.

What emerges from the train case is a general picture: mathematics is playing a merely repre-
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sentational role when it is used to model a physical system, but where there is no detectable conflict
between global and state-specific intrinsic mathematical properties. A counterexample to my ac-
count is a case in which such a conflict exists, but the mathematics is not intuitively explanatory.
While I cannot rule such cases out, I find it hard to see how there could be any. Our intuitions about
MESs appear to be driven by the sense that mathematics sometimes forces physical phenomena to
happen. That’s exactly what occurs when the global mathematical properties of a system exclude
or require state-specific mathematical properties. My bet is that the kind of conflict underlying my
account, once identified for a case, is likely to generate an intuition that mathematics is explanatory
in that case. Whether that’s right, however, can only really be determined by applying the account
to a wider range of examples.

5. Back to Indispensability

My account involves structural properties shared between physical and mathematical objects. But,
one might argue, a nominalist could just take these properties to be physical structural properties—
properties that don’t involve mathematical objects. If nominalists can accept the account as it
stands, however, then a case cannot be made in favour of Platonism via MESs given my view.
Platonists should thus reject my account because it undermines the case for Platonism.

It is, however, far from obvious that nominalists can endorse the structural properties needed
for my account. I take a structural property to be the property of having a particular structure. But
I follow Resnik in thinking that:

Structures are abstract entities; they can exist without being instantiated in space-time
and they are independent of our knowledge and beliefs about them. (Resnik [1985],
p. 177)

A physical system has a particular structure when the system instantiates it. Structural properties
on my account make indispensable reference to abstract objects.

A nominalist hoping to adopt my account has two choices. She can either show that the notion
of instantiating a structure is nominalistically acceptable, or she can replace structural properties
with properties of her own. The first option does not seem very promising. The main challenge
is to say what structures are. Initially, this looks easy: a structure, a nominalist might argue, is
just a collection of physical objects that stand in certain relations to one another. But this won’t
do. Structures are multiply realisable: many different collections of physical objects can share the
same structure. A structure therefore cannot be identified with any particular collection of physical
objects.

Perhaps, then, structures are collections of collections of physical objects. However, a structure
cannot be any collection of collections of actual objects. For there are merely possible instances of
any given structure (perhaps no-one has arranged train tunnels in the same manner as the Bridges
of Königsberg but one certainly could). It seems, then, that structures have to be collections of
collections of actual and possible objects. But this account requires possibilia, which are not nom-
inalistically acceptable either.
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Now, a nominalist might resist the need to nominalise structures, by denying that they exist. If
structures don’t exist, however, then no physical system can literally instantiate one. This is fine,
one might think: we can pretend as if a given physical system has a certain structure and adopt
the explanations outlined in §3 accordingly. It is not clear, however, that this will work. Suppose
we pretend as if the Bridges of Königsberg have a certain structure, and then we use that structure
to explain something about the bridges. If the bridges don’t in fact have that structure, then it is
hard to see how the explanation we’ve provided is a genuine explanation. It’s like explaining why
a window smashed by pretending that Suzy threw a rock at it. If Suzy didn’t in fact throw the rock,
then we’ve just failed to explain the smashing.

Without a better account of what structures are, a nominalist who accepts my account must
replace structural properties with something else. Again, this might seem straightforward. For
surely it is nominalistically acceptable to say that physical objects stand in relations. Moreover,
we can treat a description of some objects and the relations in which they stand as a property. Call
this: a characterising property. Characterising properties, one might argue, can play the same role
in my account as structural properties.

However, characterising properties are not enough; structural properties are essential to the
account. For suppose we introduce a characterising property, P, which just describes each of the
seven Bridges of Königsberg and each relation between them. We can then introduce another
nominalistically acceptable property, C, which is a property of wordlines: namely the property
of crossing every bridge exactly once, possesed by any worldline that does so. Now, using the
framework of my account, the proposed nominalistic explanation would have to go as follows: the
P-property is a global property of a physical system involving the bridges, one it has regardless
of which state the physical system is in. Because P-properties of bridges exclude C-properties of
worldlines across those bridges, the bridge system cannot enter into a state in which a worldline
has the C-property. So it is impossible to cross the seven bridges, passing over each bridge exactly
once.

This, however, leaves it mysterious as to why the P-properties of bridges exclude C-properties
of worldlines. The only way that I can see to explain this further fact involves an appeal to struc-
tures. Any physical system with the P-property is an instance of a particular structure S, namely: a
structure of adjacency relations described by a certain matrix. It is a general fact about structures of
this kind, that they do not allow for paths through them that are complete (in the manner discussed
in §3). Because a worldline across all seven bridges would be complete in the relevant sense, there
can be no such worldline through any physical system that is an instance of the relevant structure.

Without structural properties we lack an account of why the exclusions core to my account
hold. The exclusion relations between properties are explained by general features of instantiated
structures, which is key to understanding. Of course, a nominalist could develop a new account
of MESs using only characterising properties, one that doesn’t involve the particular relationship
between global and state-specific properties seen in my account. If a nominalist wants to accept
the approach to MESs developed here, however, then she must first nominalise structures.
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