
 
 

Why   You   Should   Vote   to   Change   the   Outcome  

Abstract :  Prevailing  opinion—defended  by  Jason  Brennan  and  others—is  that  voting           
to  change  the  outcome  is  irrational,  since  although  the  payoffs  of  tipping  an  election               
can  be  quite  large,  the  probability  of  doing  so  is  extraordinarily  small.  This  paper               
argues  that  prevailing  opinion  is  incorrect.  Voting  is  shown  to  be  rational  so  long  as                
two  conditions  are  satisfied:  First,  the  average  social  benefit  of  electing  the  be�er              
candidate  must  be  at  least  twice  as  great  as  the  individual  cost  of  voting,  and                
second,  the  chance  of  casting  the  decisive  vote  must  be  at  least  1/ N ,  where N  stands                 
for  the  number  of  citizens.  It  is  argued  that  both  of  these  conditions  are  often  true  in                  
the   real   world.  

1 Introduction  
When  voting  comes  with  a  cost,  why  pay  it?  Sometimes,  there  is  a  simple  answer.                
We  pay  the  cost to  make  our  preferred  outcomes  likelier .  When  I  cast  my  vote  for                 
Class  President  or  Team  Captain,  there’s  a  certain  result  I  want,  and  I’m  trying  to                
bring   it   about.  

One  might  worry,  though,  that  this  simple  rationale  is  inapplicable  to  very             
large  elections.  After  all,  when  there  are  millions  and  millions  of  voters,  the              
chance  that  my  individual  vote  will  make  a  difference  to  the  final  outcome  is               
u�erly  miniscule.  How  could  it  be  rational  for  me  to  do  something  that’s              
virtually   certain   to   have   zero   impact?  

In  response  to  this  challenge,  one  might  encourage  me  not  to  overlook  the              
magnitude  of  the stakes .  If  there  are  millions  of  voters,  there  are,  presumably,              
millions  of  people  who  will  be  affected  by  the  result.  Yes,  the  chance  that  my  vote                 
makes  the  difference  is  very  tiny,  but  the  difference  my  vote  could  make  is  very                
great.  Arguably,  the  magnitude  of  the  stakes  can,  at  least  sometimes,  offset  the              
tininess  of  the  chance  of  affecting  the  outcome—making  it  rational  to  vote  solely              
in  virtue  of  the  expected  consequences  of  doing  so.  This  is  the consequentialist              
defense    of   voting.  1

While  it  would  certainly  be  nice  if  the  consequentialist  defense  could            
succeed,  the  prevailing  view  seems  to  be  that,  unfortunately,  the  numbers  just             
don’t  add  up.  Here  is  a  representative  passage  from  the Stanford  Encyclopedia  of              2

Philosophy entry  on  “The  Ethics  and  Rationality  of  Voting,”  authored  by  Jason             
Brennan   (2016a,    §1.1 ).  

1 Derek  Parfit  sketches  a  defense  of  voting  along  these  lines  (1984,  pp.  73-74).  But               
today,   few   in   philosophy   endorse   it.   

2 Alexander  Guerrero  deems  the  consequentialist  defense  “unsatisfactory”  (2010,  p.          
274);  Luke  Maring  considers  it  “not  promising”  (2016,  p.  245).  Geoffrey  Brennan  and              
Geoffrey  Sayre-McCord  assert  that  the  prospect  of  casting  the  deciding  vote  will  never              
move  the  rational  voter  (2016,  p.  38).  Christopher  Freiman  argues  that  one’s  duty  to  vote                
“cannot   be   based   on   the   good   political   consequences”   of   one’s   doing   so   (2020,   ch.   3).  
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There  is  some  debate  among  economists  and  political  scientists  over  the  precise  way              
to  calculate  the  probability  that  a  vote  will  be  decisive.  Nevertheless,  they  generally              
agree  that  the  probability  that  the  modal  individual  voter  in  a  typical  election  will               
break  a  tie  is  small,  so  small  that  the  expected  benefit...  of  the  modal  vote  for  a  good                   
candidate  is  worth  far  less  than  a  millionth  of  a  penny.  [...]  Thus...  for  most  voters  in                  
most  elections,  voting  for  the  purpose  of  trying  to  change  the  outcome  is  irrational.               
The   expected   costs   exceed   the   expected   benefits   by   many   orders   of   magnitude.  3

Elsewhere  (2011,  pp.  18-20),  Brennan  offers  a  compelling  example,  purportedly           
illustrating  the  futility  of  voting  to  change  the  outcome—even  when  the  stakes             
are  assumed  to  be  extraordinarily  high.  Brennan’s  example  is  succinctly           
summarized   by   Luke   Maring   (2016,   p.   245):  

[I]magine  that  a  particular  candidate's  victory  is  worth  $33  billion  to  the  common              
good  (suppose  she  is  a  civic-minded,  financial  wizard),  that  there  are  122,293,322             
voters  (as  in  the  2004 U.S.  presidential  election),  and  that  the  probability  of  any              
given  voter  supporting  our  financial  wizard  is  50.5%.  With  the  stakes  artificially             
raised,  one  might  expect  that  individual  votes  are  impactful.  But  the  expected  value              
to  the  common  good  of  one's  vote  for  the  financial  wizard  is  a  mere  $4.77 × 10 —2650 .                
We  might  wonder  whether  expected  financial  return  is  the  best  way  to  measure  the               
value  of  casting  a  ballot.  But  however  those  wonderings  turn  out,  Brennan's             
example   illustrates   that   an   individual   vote   is   a   drop   in   the   ocean.  

To  drive  the  point  home,  Brennan  observes  that  while  the  nucleus  of  an  atom  is                
about  fifteen  orders  of  magnitude  smaller  than  a  human  being,  the  expected             
benefit,  in  dollars,  of  a  vote  for  the  financial  wizard  is  2,648  orders  of  magnitude                
smaller  than  a  penny.  If  we  are  looking  to  justify  voting,  it  is  tempting  to                
conclude   that   we’ve   no   choice   but   to   look   elsewhere.  4

Such  a  conclusion  would  be  premature,  however.  A  simple  yet  powerful            
consequentialist  case  for  voting  can  be  made.  Given  certain  basic  assumptions,            
the  rationality  of  voting  can  be  proven  to  hold  given  two  conditions:  a stakes               
condition  and  a chances  condition.  It  will  be  argued  here  that  both  conditions  are               
often  satisfied  in  typical  electoral  circumstances.  After  examining  the  argument,           
we   will   conclude   with   a   discussion   of   why   Brennan’s   example   led   us   astray.  

 

3 There  are  some  departures  from  this  consensus,  such  as  Edlin  et  al  (2007),  which               
makes  an  empirical  case  for  the  rationality  of  voting.  In  §4,  we  will  examine  the  research                 
to   which   Brennan   alludes,   as   it   relates   to   the   expected   impact   of   a   single   vote.  

4 Owing  partly  to  widespread  pessimism  about  the  prospects  for  a  consequentialist            
defense  of  voting,  some  have  sought  to  defend  voting  in  other  ways.  Specifically,  some               
have  suggested  that  we  vote  to  express  our  preferences  (Brennan  and  Lomasky  1993),  to               
share  in  a  winning  effort  (Goldman  2001,  Tuck  2008),  to  be  an  excellent  citizen  (Dagger                
1997),   or   to   respect   democracy   (Maring   2016).  
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2 The   Expected   Value   of   Voting  
Suppose  you’re  eligible  to  vote  in  a  large,  upcoming  election.  On  the  ballot  are               
two  candidates:  Daisy  and  Donald.  You  regard  Daisy’s  policies  as  significantly            
be�er  for  the  common  good.  You’ll  vote  for  her,  provided  that  you  vote  at  all.  But                 
you’re  not  sure  whether  you’ll  vote.  You’re  inclined  to  do  so  only  to  the  extent                
that  your  vote  bears  directly  on  the  final  result.  And  in  all  likelihood,  it  won’t.  At                 
the  same  time,  you  recognize  that  the  stakes  are  high.  Should  you  vote?  How               
should  you  decide?  In  thinking  through  your  predicament,  we  will  make  two             
simplifying   assumptions,   which   will   inform   our   discussion.   

To  make  the  problem  tractable,  we  will  make  the  standard  decision-theoretic            
assumption  that an  act  is  rational  if  its  expected  benefits  exceed  its  costs .  But  we  must                 
specify:  Costs  and  benefits  to  whom—you,  the  voter?  No.  If  you  were  wholly              
self-interested,  voting  would  hardly  ever  be  rational.  Since  the  aim  of  this  paper              5

is  to  assess  the  consequentialist  case  for  voting,  we  will  assume  that you  are  a                
consequentialist  voter —that  is,  your  voting  decisions  (whether  to  vote,  whom  to            
vote  for)  will  be  based  solely  on  what  is  best  for  the  public,  where  everyone’s                
interests  are  given  equal  weight,  including  your  own.  So  when  we’re  assessing             6

the  expected  impact  of  your  potential  vote,  we’ll  be  thinking  about  the  social              
costs   and   the   social   benefits.   

To  determine  whether  you  should  vote  or  abstain,  we’ll  need  to  compare  the              
cost  of  your  voting,  whatever  it  is,  with  the  expected  social  benefit  of  a  vote  for                 
Daisy.   If   this   expected   benefit   exceeds   the   cost,   your   voting   for   Daisy   is   rational.  7

The  expected  benefit  of  a  vote  for  Daisy  is  basically  a  function  of  two               
variables.  First,  there’s  the net  social  benefit  associated  with  having  Daisy  rather             

5 This  fact  gives  rise  to  Anthony  Downs’  (1957) paradox  of  voting ,  sometimes  called              
the paradox  of  voter  turnout .  On  the  classical  assumptions  of  self-interest  and  rationality,              
the  fact  that  anyone  votes  at  all  is  difficult  to  explain.  Our  focus,  however,  is  on  a                  
different   issue—whether   voting   is   rational   for   a    consequentialist   voter ,   as   specified   below.  

6 I’m  working,  here,  under  a  means-end  conception  of  rationality,  according  to            
which  potential  courses  of  action  are  rational  to  the  extent  that  they  promote  the  agent’s                
aims  or  goals,  whatever  those  happen  to  be.  In  the  case  at  hand,  the  thought  is  that  some                   
citizens  may  be  public-spirited  voters:  they  may  aim  to  benefit  the  public  through  their               
voting  decisions.  For  such  people,  the  rationality  of  voting  will  depend  upon  whether  the               
act  of  voting  actually  tends  to  benefit  the  public.  Brennan  and  others  argue  that,  even  in                 
the  best  case,  the  cost  imposed  upon  the  voter  exceeds  (in  expectation)  the  benefit               
conferred   to   the   rest   of   the   public;   this   paper   defends   an   alternative   view.  

7 Strictly  speaking,  for  voting  to  be  rational,  it  must  have  a  higher  expected  value               
than  all  possible  alternative  courses  of  action.  For  simplicity,  the  only  options  we  will               
consider  are voting  and abstaining  (which  are,  I  think,  the  two  main  options  on  many                
would-be  voters’  minds).  If  it  could  be  shown  that,  rationally  speaking,  the  public-              
spirited  voter  should  vote  rather  than  stay  at  home,  this  would  be  a  noteworthy               
observation—and   one   which   runs   contrary   to   received   wisdom.  
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than  Donald  in  charge,  which  we  can  call B .  Second,  there’s  the probability  that               
your   vote   for   Daisy   is   decisive ,   which   we   can   call    d .  

What  does  it  mean  for  a  vote  to  be  decisive?  We’ll  follow  Brennan  and  others                
in  using  the  term  “decisive”  to  refer  to  a  vote  that changes  the  outcome —that  is,  a                 
vote  that  breaks  a  tie  (when  the  number  of  voters  is  odd)  or  causes  a  tie  (when                  
the   number   of   voters   is   even).  

Now  it  might  seem  that  the  expected  benefit  of  a  vote  for  Daisy,  then,  would                
simply  be  the  product  of  our  two  variables, B  × d .  But  given  how  we  have                 
understood   decisiveness,   it’s   actually   going   to   be   about   half   of   that.  

Why?  Suppose  your  vote  turns  out  to  be  decisive:  it  breaks  a  tie  in  favor  of                 
Daisy.  Even  here,  your  vote  doesn’t  cause  Daisy  to  win when  she  otherwise  would               
have  lost .  If  you  had  abstained,  there  would  have  been  a  tie.  What  happens  in  case                 
of  ties?  For  simplicity,  we’ll  assume  that,  in  the  event  of  an  exact  tie,  both                
candidates  are  equally  likely  to  be  awarded  victory—perhaps  a  coin  is  flipped  to              
determine  a  winner.  Given  this  assumption,  the  expected  value  of  a  tie  between              
Daisy  and  Donald  is  ½  × B .  It  follows  that  the  expected  benefit  of  a  decisive  vote                  
for  Daisy,  one  which  causes  Daisy  to  win when  she  otherwise  would  have  tied ,  is B –                  
½   ×    B ,   or   simply   ½   ×    B .  8

So  the  expected  benefit  of  a  vote  for  Daisy,  then,  is  ½  × B × d .  For  voting  to  be                     
rational,   this   expected   benefit   must   exceed   the   voting   cost,    c.  

EB vote      =     ½   ×    B    ×    d      >       c  

In  thinking  through  how  to  assess  whether  this  condition  is  met  in  a  given  case,  it                 
will  prove  helpful  to  think  about  how  the  expected  benefit  of  voting  varies  with               
N ,   the   number   of   citizens   in   the   community.  

The  probability  that  your  vote  is  decisive, d ,  diminishes  as N  grows.  The              
more   voters   there   are,   the   smaller   your   chance   of   being   the   difference-maker.   

In  contrast,  the  net  social  benefit, B ,  is  proportional  to N .  After  all,  an               
election  that  affects  eight  million  is,  other  things  equal,  twice  as  important  to  the               
consequentialist  voter,  as  an  election  that  affects  four  million.  Accordingly,  we            
will  rewrite B  as b × N ,  where b  stands  for  the average  social  benefit —that  is,  the                  
average   benefit,   per   person—of   having   Daisy   rather   than   Donald   in   charge.  

With  this  in  mind,  here  are  two  substantive  conditions,  which  happen  to  be              
together   sufficient   for   the   rationality   of   voting.  

First,  there  is  the stakes  condition ,  which  requires  the  average  social  benefit             
of  electing  the  be�er  candidate  to  be  more  than  twice  as  great  as  the  individual                
voting   cost.  

8 When N  is  even,  a  decisive  vote  causes  Daisy  to  tie  when  she  otherwise  would                
have   lost.   Here   too,   the   expected   benefit   of   a   decisive   vote   works   out   to   ½   ×    B .  
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Stakes   Condition : The  average  social  benefit  of  electing  the  be�er  candidate  is           
more   than   twice   as   great   as   the   cost   of   voting   (in   short:    b    >   2× c ).  

In   §3,   it   will   be   argued   that   this   condition   is   often   satisfied   in   the   real   world.  
Second,  there  is  the chances  condition ,  which  requires  the  chance  of  casting             

a   decisive   vote   to   be   at   least   one   divided   by   the   number   of   citizens.  

Chances   Condition : The  probability  of  casting  the  deciding  vote  is  at  least  one            
divided   by   the   number   of   citizens   (in   short:    d    ≥   1/ N ).  

On  the  face  of  it,  this  condition  may  not  seem  plausible  for  large  elections.  But  in                 
§4,   it   will   be   argued   that   this   condition,   too,   is   often   met   in   the   real   world.  

Given  these  two  conditions,  the  expected  benefit  of  voting  can  be  proven  to              
be   greater   than   the   cost.  

EB vote      =     ½   ×    B    ×    d      =     ½   ×    b    ×    N    ×    d      ≥ i      ½   ×    b    ×   1     =     ½ b      > ii       c  
(inequality    i    follows   from   the   chances   condition;   inequality    ii    follows   from   the   stakes   condition.)  

The  bo�om  line:  if  the  stakes  and  chances  conditions  are  met,  voting  is  rational.               
How   often   are   these   conditions   true   in   the   real   world?   We’ll   explore   that   next.  

 
3 The   Stakes   Condition:   A   Qualified   Defense  
The  stakes  condition  asserts  that  the  average  social  benefit  of  electing  the  be�er              
candidate  is  more  than  twice  as  great  as  the  individual  cost  of  voting.  How  often                
is  this  true  in  real  life?  Not  always,  to  be  sure.  There  isn’t  always  very  much  at                  
stake.  For  instance,  two  candidates’  respective  platforms  may  be  quite  similar.  Or             
even  if  they  differ,  the  differences  may  wash  out.  If,  for  example,  Daisy’s  policies               
stand  to  benefit  rural  voters,  while  Donald’s  stand  to  benefit  urban  voters,  the  net               
social   benefit   associated   with   electing   Daisy   might   be   slim   to   none.  

Nevertheless,  there  is  reason  to  think  that  the  stakes  condition  will  be  met  in               
a  wide  range  of  realistic  electoral  circumstances.  Consider,  for  example,  a  simple             
referendum  on  a  policy  substantially  reducing  the  tax  burden  on  every            
household  earning  less  than  the  median  income.  Though  such  a  policy  would  not              
benefit  all  citizens,  it  would  benefit  about  half  of  them  quite  substantially.  The              
average  benefit  of  this  tax  relief  policy  (provided  that  the  downsides  were  small)              
would   be   quite   high—plausibly   much   higher   than   the   typical   cost   of   voting.  

Or  consider  a  different  example.  Estimates  of  the  total  cost  of  military             
operations  in  Iraq  and  Afghanistan  undertaken  by  the  American  Government  in            
the  aftermath  of  September  11,  2001  range  from  $1.4  trillion  to  $3.5  trillion.  This               9

9 The  lower  estimate  was  offered  by  the  Congressional  Budget  Office  (2007);  the             
higher  one  was  offered  by  the  Joint  Economic  Commi�ee  of  the  United  States  Congress               
(2007).   See   also   Stigli�   and   Bilmes   (2008),   who   price   the   Iraq   War   at   $3   trillion.  
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is  more  than  $4000  per  U.S.  citizen.  Even  if  these  wars  delivered  significant              
benefits  to  the  public  (a  proposition  which  would  be  emphatically  denied  by             
some),  the  sheer  magnitude  of  these  figures  illustrates  just  how  much  can  ride  on               
political   decisions.   The   individual   cost   of   voting   pales   in   comparison.  

Here’s  still  another  way  to  think  about  the  question.  According  to  the  Office              
of  Management  and  Budget,  the  United  States  Government  generates  more  than            
three  trillion  dollars  per  year  in  tax  revenue—about  $10,000  per  U.S.  citizen             
(2018,  p.  90).  The  result  of  an  American  presidential  election  affects  just  how  this               
revenue  will  be  spent.  If  one  candidate’s  spending  profile  were,  say,  5%  more              
efficient  than  another’s,  it  would  amount  to  a  difference  of  $500/citizen  in  well              
spent  revenue.  Presumably,  an  average  social  benefit  of  $500  would  dwarf  the             
individual   cost   of   voting   for   most   Americans.  

The  bo�om  line:  in  at  least  some  fairly  ordinary  electoral  circumstances,  the             
stakes   condition   is   comfortably   met.  10

4 The   Chances   Condition:   How   Likely   Am   I   to   Cast   a   Decisive   Vote?  11

At  this  point,  everything  seems  to  be  riding  on  the  chances  condition.  Is  it  really                
true   that   one’s   chance   of   casting   a   decisive   vote   is   greater   than   1/ N ?   

Often,  the  answer  is  ‘yes.’  This  may  seem  surprising.  But  in  this  section,  we’ll               
see  that  the  chances  condition  follows  from  two  weak  modeling  assumptions,            
together  with  the  claim  that both  candidates  have  at  least  a  10%  chance  of  winning .                
Before  presenting  the  argument,  it  is  advisable  to  examine  other  ways  of             
estimating    d ,   the   chance   of   casting   a   decisive   vote.  

10 Even  if  it  is  conceded  that  the actual  social  benefits  of  electing  the  be�er  candidate                
are  sufficiently  large,  one  might  object  that  the  stakes  condition  is  still  not  necessarily  met                
on  the  grounds  that  voters  may  not  be  in  a  position  to foresee  these  benefits.  Arguments                 
along  these  lines  have  been  developed  by  Caplan  (2008),  Brennan  (2011,  2016b),  Huemer              
(2012),  and  Freiman  (2020).  These  authors  make  the  case  against  voting  from  the  premise               
of  voter  ignorance.  At  first  glance,  their  conclusions  seem  in  direct  conflict  with  the  view                
defended  in  this  paper.  But  upon  closer  examination,  the  two  positions  may  actually  be               
compatible.  When  we  ask  whether  voting  is  rational,  we  should  distinguish  two             
questions:  (1)  Is  it  rational  to  vote, given  voters’  actual  beliefs ?  (2)  Is  it  rational  to  vote, given                   
the  beliefs  voters  ought,  epistemically,  to  have ?  To  see  why  this  distinction  ma�ers,  suppose               
that  Charlie  foolishly  believes  that  Daisy  is  the  messiah  and  that  he  has  a  50%  chance  of                  
single-handedly  tipping  the  election  by  voting  for  her.  Holding  fixed  Charlie’s  irrational             
beliefs,  of  course  voting  has  positive  expected  value.  But  this  facile  response  leaves  an               
important  question  unanswered:  it  does  not  tell  us  whether  voting  is  rational,  given  a               
realistic  assessment  of  the  candidates  and  a  realistic  estimate  of  one’s  chance  of  casting  a                
decisive  vote.  This  suggests  that  question  (2)  is  important.  To  the  extent  that  we’re               
interested  in  (2),  we’re  entitled  to  leave  aside  worries  about  voters’  actual  beliefs  and               
simply   assume   that   our   imagined   voter   is   a   well-informed   citizen.  

11 Thanks  to  the  Editors  of Philosophy  &  Public  Affairs  whose  constructive  suggestions             
clarified   and   enriched   the   arguments   advanced   in   this   section.  
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4.1   Existing   Approaches  
Some  of  the  earliest  estimates  of d  are  found  in  discussions  of voting              

power —a  measure  of  how  much  control  a  given  citizen  has  over  electoral             
outcomes.  For  example,  in  the  United  States,  we  might  wonder  whether            12

residents  of  different  states  possess  equal  voting  power  in  presidential  elections.            13

One  popular  way  to  investigate  questions  of  this  sort  involves  supposing  that             
each  citizen  votes  at  random.  That  is,  each  voter’s  decision  is  modeled  as  an               
independent  coin  toss,  with  a  50%  chance  of  producing  a  vote  for  either              
candidate.  This  model,  sometimes  called random  voting (or impartial  culture ,           14

among  social  choice  theorists ),  can  be  used  to  estimate  the  value  of d .  If  random                15

voting  is  assumed, d  actually  turns  out  to  be  far  greater  than  1/ N .  For  example,  if                 
you  and  500,000  fellow  citizens  all  vote  randomly,  your chance  of  casting  a              
decisive  vote  is  about  1  in  1,250.  In  general,  under  random  voting, d  is               16

proportional   to   1   /   √ N.  17

But  random  voting,  as  described  above,  is  not  a  flexible  model.  In  effect,  it               
assumes  that  both  candidates  have exactly  the  same  chance  of  winning.  And  in              
practice,  this  is  rarely  the  case.  To  handle  situations  where  one  candidate  is              
favored,  a  more  general binomial  model  can  be  used.  Under  a  binomial  model,  an               
N -voter  election  is  modeled  as N  tosses  of  a biased  coin,  where  the  coin’s  bias  is                 
fixed  by  the  specifics  of  the  case.  For  example,  if  Daisy  is  projected  to  earn  52%  of                  
the  vote,  we  can  represent  each  voter’s  decision  as  an  independent  toss  of  a               
biased  coin  which  has  a  52%  chance  of  landing  in  Daisy’s  favor.  (Notice  that               18

what  we  were  calling  random  voting,  which  uses  a  fair  coin,  is  a  special  case  of                 
this   more   general   binomial   model.)  

12 See  Penrose  (1946),  Banzhaf  (1968),  Felsenthal  and  Machover  (1998),  Laruelle  and            
Valenciano   (2008).  

13 See  Banzhaf  (1968)  for  the  classic  treatment  of  voting  power  under  the  Electoral              
College.  

14 One  might  object  that  this  model  is  psychologically  unrealistic,  since  voters  don’t             
typically  vote  at  random.  But  the  goal  of  an  election  model  is  not  to  describe  how  voters                  
in  fact  reach  their  voting  decisions  but,  rather,  to  guide  us  in  estimating  the  respective                
probabilities  of  various  different  pa�erns  of  votes.  Psychologically  unrealistic  models  can            
still   generate   accurate   estimates.  

15 In  the  social  choice  literature,  the  assumption  of  impartial  culture  is  sometimes             
used  to  facilitate  comparison  of  different  voting  rules.  See,  e.g.,  Merlin  and  Lepelley  2001               
or   Gehrlein   and   Lepelley   2010.  

16 See   Appendix   B   for   proof.  
17 This   fact   is   sometimes   called   Penrose’s    square-root   law .   See   Penrose   (1946).  
18 The  motivating  idea,  here,  is  that  if  Daisy  is  projected  to  earn  52%  of  the  vote,  then                  

for  an  arbitrary  citizen,  our  credence  that  she  will  vote  for  Daisy  should  be  52%.                
Accordingly,  it  seems  legitimate  to  represent  each  voter’s  decision  as  an  independent             
coin   toss   with   a   52%   chance   of   landing   for   Daisy.  
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This  binomial  model  has  been  widely  used  to  estimate d .  As  we  saw  above,               19

when  there  is  total  parity  between  the  candidates  (that  is,  when  both  candidates              
are  assumed  to  be  exactly  equally  likely  to  win), d  turns  out  to  be  quite  high,                 
under  the  binomial  model.  But  crucially,  the  value  of d  falls  drastically  if  we               
depart  from  this  parity  assumption  even  slightly.  If  either  candidate  is  assumed             20

to  possess  a  slight  advantage  over  the  other, d  turns  out  to  be  substantially  lower,                
typically  far  below  1/ N .  In  Brennan’s  example  discussed  earlier,  the  posited            
advantage  for  the  leading  candidate  is  very  slight:  50.5%  vs.  49.5%.  But  as  we               
saw,  the  chance  of  casting  a  decisive  vote  in  such  a  case,  according  to  the                
binomial  model,  is  less  than  1  in  10 2,659 ,  which  is  unfathomably  tiny,  and              
obviously   far   below   1/ N .   

So  in  brief,  under  an  influential  and  popular  election  model, d  turns  out  to               
be  many  orders  of  magnitude  smaller  than  1/ N  under  all  but  the  rarest  of               
conditions.  This  is,  I  take  it,  the  sort  of  consideration  that  leads  Brennan  and               
others   to   conclude   that   the   consequentialist   case   for   voting   is   hopeless.  

But  this  conclusion  is  premature.  The  binomial  model  is  not  the  only  game              
in  town.  Some  authors  have  proposed  alternative  ways  to  model  large  elections,             21

and  others  have  endeavored  to  estimate  the  value  of d  empirically  (that  is,  by               
examining  election  data  and  then  observing  just  how  large  the  margins  of  victory              
have  really  been).  The  estimates  of d  resulting  from  these  alternative            22

approaches  all  turn  out  to  be  considerably  greater  than  the  binomial  model             
predicts—indeed,   many   suggest   that   on   the   order   of   1/ N .  

Given  the  disagreement  found  among  experts  surrounding  these  issues,  it           
would  be  convenient  if  there  were  a  straightforward  and  uncontroversial  way  for             

19 Authors  who  employ  this  model  to  estimate d  include  Banzhaf  (1968),  Rae  (1969),              
Beck  (1975),  Owen  and  Grofman  (1984),  Mueller  (1989),  Brennan  and  Lomasky  (1993),             
Carling  (1995),  and  Dowding  (2005).  This  model  is  also  used  in  Brennan’s  vivid  example,               
which  will  be  discussed  later.  For  detailed  empirical  criticism  of  this  binomial  model,  see               
Margolis  (1983),  Gelman  et  al  (2002),  or  Gelman  et  al  (2004).  As  we  will  see  in  §5,                  
however,  the  binomial  model  is  inadequate  for  a  simple  reason:  it  vastly  underestimates              
the   probability   of   an   upset.  

20 This  particular  observation  is  emphasized  by  Brennan  and  Lomasky  (1993)  as  well             
as   Brennan   (2011,   p.   19).  

21 See  Tullock  (1967),  Riker  and  Ordeshook  (1968),  Good  and  Mayer  (1975),  Margolis             
(1977),   and   Chamberlain   and   Rothchild   (1981).  

22 Estimating d  empirically  is  a  delicate  task,  since  few  large  elections,  if  any,  have               
actually  been  decided  by  a  single  vote.  Given  this,  it  might  seem  that  our  sample  size  is                  
too  small  to  support  a  trustworthy  estimate.  Some  authors  explore  an  interesting  way              
around  this  problem.  They  tally  up  the  number  of  elections  where  the  margin  of  victory                
was  very  small—say  within  100  votes.  Each  such  election  counts,  for  estimation             
purposes,  as  1/100th  of  a  case  where  a  decisive  vote  was  cast.  See  Gelman  et  al  (1998),                  
Gelman   et   al   (2002),   and   Mulligan   and   Hunter   (2003)   for   instances   of   this   strategy.  
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us  to  make  progress  toward  estimating d  directly,  without  relying  on  contentious             
modeling  assumptions,  and  without  analyzing  election  data  in  detail.  As  it            
happens,  progress  of  this  sort  can  be  made.  We’ll  see  that,  given  two  weak               
modeling  assumptions—assumptions  which  any  plausible  model  should        
make—the  probability  of  casting  a  decisive  vote, d ,  can  be  shown  to  be  greater               
than   1/ N     as   long   as   both   candidates   have   at   least   a   10%   chance   of   winning .  

4.2   Warm-Up   Example  
Before  we  look  at  the  argument  in  detail,  it  will  be  helpful  to  examine  a  warm-up                 
example   first,   to   gain   an   intuitive   sense   of   how   the   argument   will   work.   

For  ease  of  presentation,  let’s  suppose  that  the  electorate  is  composed  of  you              
and  one  million  others—so N =  1,000,001.  And  to  make  things  as  tough  on               
ourselves  as  possible,  let’s  suppose  that  all of  your  fellow  citizens  are  certain  to               
vote—no  one  will  abstain,  except  maybe  you.  Finally,  let’s  suppose  that  Daisy             
and  Donald,  our  two  candidates,  are  exactly  equally  likely  to  win.  (Later  we  will               
relax   this   assumption.)  

Given  this  background,  how  likely  is  it  that  your  vote  will  be  decisive?              
Likelier  than  1/ N ,  I  think.  This  can  be  shown  by  way  of  a  simple  counting                
argument.   Here   are   the   different   ways   that    everyone   else    could   have   voted.  

 

Notice  that  your  vote  is  guaranteed  to  be  decisive  in  exactly  one  case:  the  case                
where  everyone  else  ends  up  tied.  Since  there  are  1,000,001  outcomes  in  total,  the               
probability  that  your  vote  is  decisive  will  depend  upon  the  relative  likelihood  of              
the   middle   row.  

If,  for  some  reason,  each  of  these  outcomes  were  equally  likely,  then  the              
probability  that  your  vote  is  decisive  would  be  exactly  1/1,000,001  (which  is             
precisely  1/ N ).  But  presumably,  these  outcomes  are  not  all  equally  likely,  for  we              
know  that  the  two  candidates  are  equally  likely  to  win.  In  light  of  this,  the                
outcomes  toward  the  top  and  bo�om  of  our  list  are  less  likely,  and  the  outcomes                
toward  the  center  are,  presumably,  likelier.  If  this  is  right,  the  chance  that  your               
vote   is   decisive   seems   greater   than   1/1,000,001—and   probably   much   greater.  
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Now  admi�edly,  the  foregoing  reasoning  depends  crucially  on  the          
assumption  that  our  candidates  are  exactly  equally  likely  to  win—an  assumption            
which  is  rarely  true.  But  as  we’ll  see,  a  version  of  the  argument  can  be  advanced                 
even   if   this   assumption   is   relaxed.  

4.3   Two   Modeling   Assumptions  
To  present  the  more  general  argument  for  the  chances  condition,  we  will  need  to               
make  two  important  modeling  assumptions.  These  assumptions  pertain  to  the           
proportion  of  votes  earned  by  the  leading  candidate, when  we  count  up  everyone’s              
votes   except   for   your   own .  

Partial  Unimodality :  T he  leading  candidate  is  at  least  as  likely  to  earn  exactly  half  of               
the   vote   as   she   is   to   earn   any   precise   share   of   the   vote   smaller   than   this.  23

Narrow  Upsets :  If  the  leading  candidate  fails  to  earn  a  majority,  then  the  likelihood              
that   she   comes   within   ten   percentage   points   of   her   opponent   is   at   least   ½.  

Both  assumptions  are  true  of  every  election  model  with  which  I  am  familiar,              
including  the  binomial  model  favored  by  Brennan.  Nonetheless,  I  will  explain            
and   defend   each   assumption   in   turn.  

( Partial  Unimodality )  Partial  Unimodality  asserts  that,  when  we  tally  up           
everyone’s  votes  except  for  your  own,  the  leading  candidate  is  at  least  as  likely  to                
earn  exactly  50%  of  the  vote  as  she  is  to  earn  any  particular  smaller  share  of  the                  
vote.   Why   think   that   this   is   true?   

For  starters,  here’s  a  quick  and  intuitive  defense  of  the  idea.  Suppose  that              
Daisy  is  ahead  of  Donald  in  the  polls.  Presumably,  there  is  some  share  of  the  vote                 
greater  than  50%,  which  Daisy  is  projected  to  receive—this  might  be  her  polling              
average.  No  ma�er  what  this  projected  outcome  is,  we  know  that  the  outcome  in               
which  Daisy  earns  50%  of  the  vote  is closer  to  this  projected  outcome  than  are  all                 
outcomes  in  which  Daisy  earns  less  than  50%.  Other  things  equal,  it  is  reasonable               
to  suppose  that  outcomes  which  are  closer  to  the  projected  outcome  are  at  least               
as   likely   as   those   which   are   farther   away.   

This  intuition  can  be  spelled  out  more  thoroughly,  though.  Partial           
Unimodality  follows  from  a  more  basic  modeling  assumption,  often  called           
unimodality .  When  a  probabilistic  model  is  unimodal,  it  means  that  the  likeliest             
outcomes  are  clustered  together,  while  outcomes  become  less  and  less  likely  as             
one   moves   further   and   further   from   that   cluster.   

This  more  general  assumption  of  unimodality,  as  a  constraint  on  election            

23 This  formulation  of  Partial  Unimodality  assumes  that N  is  odd.  The  even  case  is               
handled   in   Appendix   A.  
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models,  can  be  defended  on  Bayesian  grounds.  Suppose  we’re  trying  to  estimate             
the  degree  of  support  for  Daisy  among  the  general  public.  We  conduct  a  random               
sample  and  find  that,  among  those  polled,  53%  support  Daisy.  Under  what             
conditions  would  this  finding  be  likeliest?  Well,  the  finding  would  of  course  be              
likeliest  if  the  true  degree  of  support  were  53%;  the  finding  would  be  slightly  less                
likely  (but  still  unsurprising)  if  the  true  degree  of  support  were  52%  or  54%;  and                
the  finding  would  be  very  improbable  indeed  if  the  true  degree  of  support  for               
Daisy  were,  say,  30%  or  80%.  In  general,  our  finding  of  53%  was  to  be  expected to                  
the  extent  that  53%  is  close  to  the  true  degree  of  support  for  Daisy  among  the  public .                  
This  observation,  on  a  standard  Bayesian  picture,  corroborates  a  unimodal           
assignment  of  probabilities  to  outcomes  centered  at  53%  (or,  visually,  a            
hill-shaped   distribution   with   a   ‘peak’   at   53%).  24

( Narrow  Upsets )  Narrow  Upsets  asserts  that if  Daisy  fails  to  earn  a  majority,              
then  the  chance  that  she  comes  within  ten  points  of  her  opponent  is  at  least  ½.                 
Why   think   that   this   is   true?  

Leading  candidates  do  lose  from  time  to  time.  Election  forecasts  are  not             
perfectly  accurate.  But  when  leading  candidates  do  lose,  they  tend  to  do  so              
narrowly:  Election  forecasts  are  rarely  wildly  off  the  mark.  In  case  of  an upset  (an                
unexpected  victory),  it  is  common  for  the  losing  candidate  to  lose  by  a  narrow               
margin,  maybe  a  percentage  point  or  two.  Given  this  fact,  the  proposed  modeling              
assumption  says  something  very  cautious:  only  that,  if  the  leading  candidate  fails             
to  earn  a  majority,  then  there’s  at  least  a  ½  chance  that  the  leading  candidate                
comes   within    ten    percentage   points   of   her   opponent.   

One  can  consult  historical  data  for  extra  assurance  here.  Looking  back  on             
United  States  Senate  races  from  the  last  ten  years,  one  finds  that  in  cases  where                
the  leading  candidate  lost,  he/she  still  came  within  ten  points  of  winning  about              
92%   of   the   time.   This   is   considerably   greater   than   the   proposed   bound   of   ½.  25

24 Admi�edly,  one  can  cook  up  cases  where  unimodal  expectations  would  not  be             
appropriate:  Suppose  that  two  polls  are  conducted,  and  you  suspect  that  exactly  one  is               
fraudulent,  but  you  don’t  know  which.  If  the  two  polls  estimate  the  degree  of  support  for                 
Daisy  at  55%  and  45%  respectively,  then  you  should  expect  that  the  true  level  of  support                 
for  her  is  either  at  ~55%  or  ~45%,  but  probably  not  50%.  However,  if  both  polls  were                  
honestly  and  competently  conducted  (and  sampled  equally  many  citizens),  then  the            
likeliest   explanation   is   simply   that   the   true   level   of   support   for   Daisy   is   at   ~50%.  

25 Senate  races  from  2010,  2012,  2014,  2016,  and  2018  were  analyzed.  The             
RealClearPolitics.com  polling  average  was  used  to  identify  leading  candidates.  Upsets           
occurred  in  Colorado  2010,  Nevada  2010,  Montana  2012,  North  Dakota  2012,  Kansas             
2014,  North  Carolina  2014,  New  Hampshire  2016,  Pennsylvania  2016,  Wisconsin  2016,            
Arizona  2018,  Florida  2018,  and  Indiana  2018.  Of  these,  only  in  the  Kansas  2014  race  was                 
the   margin   of   victory   greater   than   ten   percentage   points.  

 
11  



 
 

4.4   The   Argument  
With  these  modeling  assumptions  in  place,  it  can  be  argued  that  the  value  of d  is                 
often   going   to   exceed   1/ N ,   so   long   as   the   election   is   reasonably   competitive.  

For  illustration,  let’s  again  suppose  that  the  electorate  is  composed  of  you             
and  one  million  fellow  citizens,  all  of  whom  are  certain  to  vote  ( N  =  1,000,001).                26

But  this  time,  we  will  not  assume  that  Daisy  and  Donald  are  equally  likely  to                
win.  Instead,  we’ll  assume  that  while  Daisy  is  the  leading  candidate,  Donald  still              
has at  least  a  10%  chance  of  achieving  an  upset  victory .  From  these  limited               
assumptions,   what   can   be   inferred   about   your   chance   of   casting   a   decisive   vote?  

Well,  we  know  that  there’s  clearly  at  least  a  10%  chance  that  Daisy  fails  to                
earn  a  majority.  Given  Narrow  Upsets,  we  know  that if  Daisy  fails  to  earn  a                
majority,  then  there’s  at  least  a  ½  chance  that  she  comes  within  ten  percentage               
points  of  Donald.  Pu�ing  these  claims  together,  we  obtain  the  observation  that             
there’s  at  least  a  5%  chance  that  Daisy  fails  to  earn  a  majority  but  still  comes                 
within  ten  percentage  points  of  Donald—or  in  other  words,  there’s  at  least  a  5%               
chance   that    Daisy   earns   between   45%   and   50%   of   the   vote .  

This  observation,  together  with  Partial  Unimodality,  already  entails  that d  ≥            
1/ N .  To  see  this,  consider  the  following  list,  which  describes  the  different  ways              
that   Daisy   could   receive   between   45%   and   50%   of   the   vote   (not   counting   you).  

 

We  want  to  know  how  likely  the  outcome  at  the  bo�om  is.  That’s  the  one  case                 
where  your  vote  will  be  decisive.  We  have  already  inferred  that  there  is  at  least  a                 
5%  chance  that  the  actual  outcome  appears  somewhere  in  this  list.  But  how  likely               
is   the   outcome   at   the   bo�om,   in   comparison   to   the   others?  

If,  somehow,  the  outcomes  in  this  list  were  all  equally  likely,  then  the              
probability  of  your  casting  a  decisive  vote  would  be  at  least  (5%)  ×  (1/50,000)  =                
1/1,000,000,  which  is  already  greater  than  1/ N .  But  given  the  assumption  of             
Partial  Unimodality,  things  look  even  be�er,  for  we  know  that  the  outcome  at  the               
bo�om  of  the  list  is at  least  as  likely  as  everything  above  it.  So  the  probability  of                  
your  casting  a  decisive  vote  is  (at  least  5%)  ×  (at  least  1/50,000),  which  is  at  least                  
1/1,000,000,  which  is  greater  than  1/ N .  Even  given  our  very  limited  assumptions,             

26 See  Appendix  A  for  a  more  general  version  of  the  argument,  which  does  not               
assume    N    to   be   any   particular   number.  
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the   chances   condition   still   turns   out   to   be   true.  
The  reasoning  outlined  above  can  be  used  to  derive  a  more  general  lower              

bound  on d  in  terms  of u ,  the  probability  of  an  upset.  Specifically,  it  can  be                 
proven  from  our  modeling  assumptions  that,  for  large N , d  ≥  10 u / N .  This              27

observation  helps  us  assess  how d  varies,  under  different  conditions  of  electoral             
competitiveness.  

P robability   of   upset  d    is   at   least...  
50%  5   /    N  
40%  4   /    N  
30%  3   /    N  
20%  2   /    N  
10%  1   /    N  

Unsurprisingly,  when  an  election  is  more  competitive,  a  greater  minimum  value            
for d  can  be  established—approximately  5/ N  for  the  most  competitive  elections.            
But  even  for  quite  one-sided  elections  where  one  candidate  has  a  90%  chance  of               
winning,    d    can   still   be   shown   to   be   at   least   1/ N .  

The  bo�om  line:  Given  two  a�ractive  modeling  assumptions,  the  chances           
condition   is   true   in   a   wide   range   of   real-world   electoral   circumstances.  
 

4.5   Worries   About   Expected   Value   Reasoning  
The  argument  is  thus  complete.  We  have  seen  that  voting  is  rational  so  long  as                
two  key  conditions  are  met,  and  we  have  examined  some  grounds  for  thinking              
that,  indeed,  both  conditions  are  often  satisfied  in  the  real  world.  At  this  point,  I                
would  like  to  address  a  critical  reaction  some  readers  may  have,  which  can  be               
expressed   as   follows.  

At  the  end  of  the  day,  you’re  telling  me  it’s  rational  to  vote  on  the  hope  that  my                   
individual  vote  tips  the  election.  You  don’t  deny  that  this  prospect  is  incredibly  tiny               
(maybe  1/100,000,000  for  a  national  election  in  the  United  States).  Now,  I             
understand  the  decision-theoretic  argument  you’ve  given  (the  stakes  are  high,  the            
huge  stakes  get  weighed  against  the  tiny  chance,  etc.),  and  perhaps  the  math  works               
out  as  you  say.  Even  so,  I  find  it  difficult  to  accept  that  a  rational  actor  would  vote                   
on  the  basis  of  such  a  vanishingly  small  probability.  Perhaps  it’s  true  that  orthodox               
decision   theory   construes   rationality   this   way.   But   must   I?  

I  can  appreciate  the  objector’s  uneasiness  here.  When  I  vote  in  large  elections,  I               
sometimes  feel  an  intuitive  sense  of  pointlessness,  and  the  thought  that  my  act              
has  positive  expected  value  does  not  entirely  quell  these  doubts.  “One  in  a              
hundred  million?  That  is  just  not  going  to  happen,  period,”  I  might  think  to               

27 See   Appendix   A   for   proof.  
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myself.  And  it’s  worth  noting  that,  even  apart  from  the  voting  context,  some              
have  raised  independent  reasons  to  worry  about  how  decision  theory  handles            
tiny   probabilities.   There   are   two   points   worth   making   in   response,   however.  28

First,  even  if  it  is  conceded  that  sufficiently  tiny  probabilities  (such  as             
1/100,000,00)  should  simply  be  ignored  in  all  cases,  the  argument  presented  in             
this  paper  still  shows  that,  contrary  to  popular  opinion,  voting  to  change  the              
outcome   often   has   positive   expected   value.   This   is   a   fact   worth   acknowledging.  

Second,  while  acting  on  the  basis  of  tiny  probabilities  may  seem  troubling,             
it’s  not  clear  that  a  viable  alternative  is  available.  The  most  natural  alternative              
view  in  the  vicinity  simply  says  that  sufficiently  tiny  chances  can  rationally  be              
ignored ,  regardless  of  the  stakes.  But  this  view  comes  with  its  own  difficulties.              
Parfit   discusses   one   troubling   consequence   of   the   ‘ignore-tiny-chances’   view:  

It  may  be  objected  that  it  is  irrational  to  consider  very  tiny  chances.  [...]  Suppose  that                 
nuclear  engineers  did  ignore  all  chances  at  or  below  the  threshold  of  one-in-a-              
million.  It  might  then  be  the  case  that,  for  each  of  the  many  components  in  a  nuclear                  
reactor,  there  is  a  one-in-a-million  chance  that,  in  any  day,  this  component  would              
fail  in  a  way  that  would  cause  a  catastrophe.  It  would  be  clearly  wrong  for  those                 
who  design  reactors  to  ignore  such  tiny  chances.  If  there  are  many  reactors,  each               
with  many  such  components,  it  would  not  take  many  days  before  the             
one-in-a-million  risk  had  been  run  a  million  times.  There  would  fairly  soon  be  a               
catastrophe.  When  the  stakes  are  very  high,  no  chance,  however  small,  should  be              
ignored.   (1974,   p.   74)  

Parfit’s  argument,  of  course,  should  not  necessarily  be  regarded  as  the  final  word              
on  the  ma�er.  But  it  does  suggest,  at  least,  that  we  should  not  be  too  quick  to                  
abandon  the  standard  picture.  And  given  the  standard  picture,  the  conclusion            
that   voting   is   often   rational   will   be   difficult   to   avoid.  

5.   What’s   Wrong   with   Brennan’s   Example?  
At  the  outset  of  this  paper,  we  discussed  an  example  which  purportedly             
illustrates  that  voting  to  change  the  outcome  is  not  rational,  given  standard             
decision-theoretic  assumptions.  If  it  is  assumed  that  there  are  122,293,322  voters,            
that  each  individual  voter  independently  has  a  50.5%  chance  of  voting  for  Daisy,              
and  that  electing  Daisy  over  Donald  would  be  worth  $33  billion  to  the  common               
good,  then  it  can  be  proven  that  the  expected  impact  of  a  vote  for  Daisy  is                 
incredibly  small:  about  +$4.77 × 10 —2650 .  Since  this  result  is  in  tension  with  the             
views   expressed   in   this   paper,   an   explanation   is   in   order.  

The  assumptions  made  above  seem  innocent  enough,  but  one  merits  closer            
a�ention.  Specifically,  we  should  examine  the  assumption  that  each  voter  has  a             
50.5%  chance  of  voting  for  Daisy.  One  indication  that  there  is  something  amiss              

28 See   Bostrom   (2009)   for   an   amusing,   if   somewhat   troubling,   example.  
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with  this  assumption  is  that,  if  we  tweak  it,  we  can  derive  a  wildly  different                
verdict  from  the  case.  If  we  stipulate  that  each  voter’s  chance  of  voting  for  Daisy                
is  exactly  50%,  instead  of  50.5%,  something  strange  happens.  The  expected            
benefit   of   one’s   vote   skyrockets   to   over   one   million   dollars.   What   is   going   on?  29

As  we  discussed  earlier,  this  example  employs  the binomial  model .  In  effect,             
we’re  thinking  of  each  voter’s  decision  as  a  ‘coin  toss,’  with  certain  probabilities              
of  producing  a  vote  for  each  candidate.  A  notable  feature  of  coin  tosses  is  that,                
the  more  of  them  there  are,  the  more  tightly  the  results  will  tend  to  cluster                
around  the  most  likely  outcome.  For  example,  if  you  flip  six  fair  coins,  the  chance                
of  obtaining  an  outcome  that  heavily  favors  one  side  (e.g.  5  to  1)  is  relatively                
high;  if  you  flip  a  million  fair  coins,  you  can  be  virtually  certain  that  the  final                 
outcome   will   not   be   so   skewed.  

As  it  turns  out,  this  tight  clustering  renders  the  binomial  model  a  poor  way               
to  model  real-world  elections.  Suppose  we’re  wondering  how  likely  it  is  that             
Daisy  (who  is  polling  at  50.5%,  we’ll  imagine)  will  end  up  earning  between  50.4%               
and  50.6%  of  the  vote.  Since  pre-election  forecasts  are  imperfect,  there  ought  to              
be  a  decently  high  chance  that  Daisy’s  share  of  the  vote  lands  outside  of  this  very                 
narrow  range.  But  not  according  to  the  binomial  model.  On  the  binomial  model,              
the  probability  that  Daisy’s  share  of  the  vote  falls  within  the  narrowly  specified              
range  is  greater  than  99.999999999999999999999999999999999999%.  It  seems  fair         30

to   call   this   something   of   an   overestimate.  
But  the  inadequacy  of  the  binomial  model  is  illustrated  most  vividly  by             

considering  what  it  says  about  the  probability  of  an  upset.  Given  Daisy’s             
advantage  in  the  polls,  we  might  ask:  How  likely  is  it  that  Donald  will  win  or  tie?                  
Since  Daisy’s  polling  advantage  is  relatively  slight,  we’d  expect  that  Donald  has  a              
meaningful,  non-negligible  chance  of  winning.  But  according  to  the  binomial           
model,  the  chance  that  Donald  wins  or  ties  is  less  than  8.84  × 10 —2653 .  This  is                
roughly   the   chance   of   a   one-in-a-million   event   happening   442   times   in   a   row.  31

The  eye-popping  figure  Brennan’s  example  generates  is  not  proof  of  the            
futility  of  voting  to  change  the  outcome;  it  is  a  consequence  of  the  example’s  use                
of  the  binomial  model,  which  is  a  very  poor  way  to  model  real-world  elections.               
Which  model  should  we  use  instead?  That’s  a  complex  and  substantial  question,             
which  will  require  detailed  work  by  economists,  political  scientists,  and           
statisticians  to  se�le.  But  as  we’ve  seen,  even  without  relying  on  any             
controversial  modeling  assumptions,  it  can  be  argued  that  the  probability  of            
casting  the  deciding  vote  is  very  often  greater  than  1/ N ,  sometimes  considerably             

29 See   Appendix   B   for   proof.  
30 See   Appendix   B   for   proof.  
31 See   Appendix   B   for   proof.  
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so.  If  we  return  to  Brennan’s  example  with  this  observation  in  mind,  the  expected               
contribution  to  the  public  good  of  a  vote  for  Daisy  is  nothing  like  a  millionth  of  a                  
penny—it’s  at  least  +$134.92,  and  probably  much  greater.  All  things  considered,            32

then,   voting   seems   well   worth   the   cost.  33

 
 
 
Appendix   A:   Estimating   the   Chance   of   Casting   a   Decisive   Vote  
In  §4.4,  we  saw  that  when N  =  1,000,001,  the  conclusion  that d  ≥  1/ N  can  be                  
derived  from  our  modeling  assumptions,  so  long  as  the  underdog  candidate  has             
at  least  a  10%  chance  of  winning.  Below,  I’ll  offer  a  more  general  version  of  the                 
argument,  discussed  briefly  at  the  end  of  §4.4,  which  establishes  a  lower  bound              
on d  in  terms  of u ,  the  probability  of  an  electoral  upset.  Specifically,  we’ll  see  that,                 
given  generalized  versions  of  our  two  modeling  assumptions, d  ≥  10 u / N ,  which             
implies   that    d    ≥   1/ N    in   a   wide   class   of   cases.  

Generalized   Argument  
The  usual  assumptions  are  in  effect:  There  are N  citizens,  all  of  whom  will  vote                
for   one   of   the   two   candidates.  

Let    N –    stand   for   the   number   of   citizens,    not   including   you .  

Let L  stand  for  the  number  of  votes,  from  that  group  of N –  citizens,  earned  by  the                  
leading   candidate.  

Let t stand  for  what  might  be  called  a triggering  number —that  is,  the  number  of                
votes  the  leading  candidate  would  have  to  earn,  from  your  fellow  citizens,  in              
order  for your  vote  to  be  decisive.  (When  you’re  voting for  the  leading  candidate,               
t   =    ⌊ N –    /   2⌋;   when   you’re   voting    against    the   leading   candidate,    t    =   ⌈ N –    /   2⌉.)  

Let S  stand  for  the  set:  { s ∈  ℕ  | t – ⌊ N –  /  20⌋  < s  ≤ t }.  (When L ∈ S,  the  leading                            

32  EB vote     =   (½)( B )( d )   =   (½)(+   $33   bil.)(1     /    N )   =   (½)(+   $33   bil.)(1   /   122,293,322)   ≈   +$134.92.  
33 For  helpful  comments  and  suggestions,  I’d  like  to  acknowledge  Nomy  Arpaly,  Bob             

Beddor,  Ben  Blumson,  Jason  Brennan,  Anna  Brinkerhoff,  David  Builes,  Nevin           
Climenhaga,  Jamie  Dreier,  Stephanie  van  Fossen,  Simon  Goldstein,  Preston  Greene,  John            
Hawthorne,  Al  Hájek,  Brian  Hedden,  Qu  Hsueh,  Ethan  Jerzak,  Han  Li,  Jowen  Lim,  Chad               
Marxen,  Daniel  Muñoz,  Julia  Nefsky,  Mike  Pelczar,  Abelard  Podgorski,  Gerard  Rothfus,            
Josh  Schechter,  Neil  Sinhababu,  Louanne  Sungaimin,  Teoh  Tai  Ker,  Margot  Wi�e,  Patrick             
Wu,  the  Faculty  Reading  Group  at  NUS,  audiences  at  Nanyang  Technological  University,             
the  Probability  in  Philosophy  Workshop  at  Australian  Catholic  University,  and  the            
editors  of  Philosophy  &  Public  Affairs.  Special  thanks  to  David  Christensen  and  Dave              
Estlund.  
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candidate   has   earned   roughly   between   45%   and   50%   of   the   vote.)   

Let u  stand  for  the ex  ante probability  that  the  leading  candidate  earns  the               
triggering  amount  or  fewer  votes  from  your  fellow  citizens.  The  more            
competitive   the   election,   the   greater    u    will   be.  

Here   are   generalized   versions   of   our   two   modeling   assumptions.   

Partial   Unimodality    (generalized): Ɐ n   <   t    [ Pr (    L    =    t    )    ≥     Pr (    L    =    n    )]  
Narrow   Upsets    (generalized):  Pr (    L     ∈     S    |    L     ≤    t     )    ≥    ½  

When N  is  large,  these  assumptions  assert  almost  exactly  what  the  original  ones              
did.  (When N  is  small,  they  do  not;  for  example,  when N ≤ 20,  generalized                
Narrow  Upsets  is  automatically  false,  for S  is  empty.)  They  are  formulated  in  a               
more  general  manner  so  that  they  can  be  true  whether N  is  even  or  odd,  and  no                  
ma�er   which   candidate   you   are   voting   for.  

Given   these   assumptions,   the   claim   that    d    ≥   10 u    /    N    can   be   proven   as   follows.  

d  
Pr (    L    =    t    )  

Pr (    L    =    t    |    L    ∈     S    )   ×    Pr (    L    ∈    S    )  
Pr (    L    =    t    |    L    ∈     S    )   ×    Pr (    L    ∈    S    |    L    ≤    t    )   ×    Pr (    L    ≤    t    )  

Pr (    L    =    t    |    L    ∈     S    )   ×   ½   ×    Pr (    L    ≤    t    )   
(20   /    N – )×   ½   ×    u  

10 u    /    N –  

10 u    /    N  

=  
=  
=  
≥ i  
≥ ii  
=  
>  

(inequality    i    follows   from   generalized   Narrow   Upsets;   inequality    ii    follows   from  
generalized   Partial   Unimodality,   together   with   the   observation   that   | S |   ≤    N – /20.)  

 
As  we  saw  in  the  text,  this  lower  bound  on d  implies  that d  ≥  1/ N  under  a  wide                    
variety   of   electoral   circumstances.  

 
Appendix   B:   Trouble   for   the   Binomial   Model  34

In  §5,  we  discussed  difficulties  associated  with  the  binomial  model,  which            
models  an N -voter  election  as,  in  effect,  a  series  of N  independent  coin  tosses.               
The bias  of  the  coin  can  be  varied  to  fit  the  specifics  of  the  case.  So  if  both                   
candidates  are  equally  likely  to  win,  the  imagined  coin  would  be  a  fair  one,               

34 Thanks  to  an  Associate  Editor  at Philosophy  &  Public  Affairs  whose  suggestions             
improved   the   readability   of   this   section.  
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equally  likely  to  produce  a  vote  for  either  candidate  on  any  given  toss.  But  if  a                 
given  candidate  is  favored,  a biased  coin  is  used  instead.  We’ll  let r  stand  for  the                 
coin’s  bias  toward  the  favored  candidate  (that  is,  for  the  probability  that  the              
imagined   coin   produces   a   vote   for   the   favorite   on   a   given   toss).  

According  to  the  binomial  model,  the  probability  that  the  leading  candidate            
receives   exactly    X    votes,    Pr ( L X ) ,   is   given   by   the   following   expression.  

 

The  term ,  typically  read  as  “ N choose X, ”  stands  for  the  number  of  different  ( )X
N              

sets   of   size    X    which   can   be   chosen   from   a   set   of   size    N .   It   is   defined   as   follows.  

 

In  the  present  context,  the  ‘ N  choose X ’  term  represents  the  number  of  different               
combinations  of X  voters  (chosen  from  our N -voter  population)  that  could            
conceivably   team   up   to   vote   for   the   favored   candidate.  

For  illustration,  let’s  consider  an  election  with  five  hundred  thousand  voters            
( N =  500,000).  The  two  candidates  are  equally  likely  to  win  ( r  =  0 .5) .  On  the                 
binomial  model,  how  likely  it  is  that  the  election  ends  in  an  exact  tie?  In  other                 
words,   what’s    Pr ( L 250,000 )?  

 

The  likelihood  of  such  an  outcome  turns  out  to  be  about  1  in  1,250.  The                
calculation  above  (as  well  as  those  that  follow)  cannot  realistically  be  carried  out              
by  hand.  Computational  software  can  be  used  to  approximate  the  value  of  the              
desired  expression(s).  For  this  example,  the  reader  can  obtain  the  result  stated             
above   with   the   following   input   query   using    WolframAlpha :   

(500000   choose   250000)((1/2)^250000)((1-1/2)^250000)    [ link ]  

So  in  a  nutshell,  that’s  how  the  binomial  model  can  be  used  to  estimate  the                
probabilities   of   certain   electoral   outcomes.   

In  the  text,  we  saw  that  this  model  makes  some  peculiar  predictions.  Before              
we  return  to  those,  I  want  to  consider  a  smaller-scale  example,  which  will              
illustrate  the  inadequacy  of  the  binomial  model  more  easily,  and  in  a  way  that               
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will   be   easy   for   readers   to   verify   for   themselves.  35

( Smaller-scale  Example ) Suppose  that  there  are  five  hundred  thousand  voters  ( N =             
500,000)  and,  as  is  in  Brennan’s  example,  the  chance  of  a  given  voter’s  voting  for                
Daisy  is  50.5%  ( r  =  0.505).  Using  the  binomial  model,  let’s  estimate  the  probability               
that   the   underdog   candidate,   Donald,   wins   or   ties.  

 

The  approximation  step  can  be  obtained  via  the  following  input  query  using             
WolframAlpha :  

sum   i=0   to   250000   (500,000   choose   i)(.505^i)(.495^(500,000-i))    [ link ]  

According  to  the  binomial  model,  then  Donald’s  chance  of  winning  (or  tying)  in              
this  small-scale  version  of  Brennan’s  example,  is  less  than one  in  a  trillion .  One               
doesn’t  have  to  be  intimately  acquainted  with  election  data  to  see  that  this  is  not                
a   realistic   estimate.  

In  the  text,  three  other  untrustworthy  estimates  were  identified  (fn.  29,  fn.             
30,  fn.  31),  in  the  context  of  Brennan’s  original  example.  The  mathematical  work              
justifying  those  claims  is  below.  In  each  case,  let N  =  122,293,322  (the  number  of                
voters   in   Brennan’s   example).  

( fn.  29 )  Brennan’s  example  assumes  that  each  voter  has  a  50.5%  chance  of  voting               
for  the  leading  candidate.  Earlier,  we  considered  modifying  the  example  so  that             
each  voter  has  a  50%  of  voting  for  each  candidate  instead  ( r =  0.5).  I  asserted  that                  
the  expected  benefit  of  a  vote  for  Daisy  in  such  a  case,  according  to  the  binomial                 

35 The  sheer  magnitude  of  the  electorate  in  Brennan’s  example  ( N =122,293,222)           
makes  calculation  significantly  more  cumbersome,  even  with  the  aid  of  a  computer.  To              
justify  the  claims  made  in  the  text,  we  will  need  to  use  algebraic  tricks  and  properties  of                  
inequalities  to  make  the  expressions  more  manageable—and  even  then,  specialized           
software  is  needed  for  the  computational  part.  But  I  thought  it  advisable  to  include  at                
least  one  example  which  could  be  easily  verified  (e.g.  using  WolframAlpha)  so  that  the               
inadequacy   of   the   binomial   model   would   be   apparent   to   all   readers.  
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model,   was   over   one   million   dollars.   That   figure   was   obtained   as   follows.  36

 

( fn.  30 )  Returning  to  Brennan’s  original  example  ( r  =  0.505),  I  asserted  that,  on  the                
binomial  model,  the  probability  that  Daisy  receives  between  50.4%  and  50.6%  of             
the   vote   exceeds    99.999999999999999999999999999999999999%.  

We  want  to  find  the  probability  that  Daisy  receives  between  50.4%  and             
50.6%  of  the  vote,  or  in  other  words,  that  she  receives  between  61,635,834  and               
61,880,421   votes   (exclusive).   Let    y    and    z    stand   for   those   respective   bounds.  

 

The  expression  on  the  third  line  is  too  hard  to  approximate  directly.  So  we               
proceed,  on  the  fourth  line,  with  something  which  is  both  smaller  and  easier  to               
approximate?  How  do  we  know  it’s  smaller?  This  inequality  follows  from  the             
unimodality  of  the  binomial  model,  together  with  the  fact  that  the  sum  of  a  set’s                
elements  is  always  less  than  the  product  of  the  set’s  maximal  element  and  the               
size  of  the  set.  (Suppose  I’m  buying  wrapping  paper  to  wrap  thirty  gifts  of               
varying  sizes.  To  ensure  I’ll  have  more  than  I  need,  I  can  find  how  much  paper                 
the  biggest  item  requires  and  then  multiply  that  amount  by  thirty.  The  move              

36 This  approximation  and  those  that  follow  are  beyond  the  limits  of  the             
computational  engines  freely  available  online.  The  figures  provided  were  obtained  using            
Wolfram   Mathematica.  
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from   the   third   line   to   the   fourth   employs   the   same   concept.)  

( fn.  31 )  Finally,  I  asserted  that,  in  Brennan’s  example,  the  probability  that  the              
trailing  candidate  wins  or  ties,  per  the  binomial  model,  is  less  than  8.84  × 10 —2653 .               
Here   is   the   reasoning.  

We  want  to  find  the  chance  of  an  upset—or  in  other  words,  the  chance  that                
Daisy   receives   61,146,661   votes   or   fewer.   Let    t    stand   for   that   bound.  

 

(The  move  from  the  second  line  to  the  third  uses  parallel  reasoning  to  that               
discussed   in   the   previous   example.)  

We  were  supposed  to  be  estimating  the  underdog’s  chances  of  winning  in  a              
relatively  close  race.  But  8.84×10 -2653  is  a  preposterously  low  estimate.  If  the             
binomial  model  were  to  be  trusted,  we  could  predict  with  virtual  certainty  the              
results  of  almost  all  elections  before  they  were  ever  held.  But  obviously,  things              
are   not   remotely   like   this   in   the   actual   world.  
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