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Abstract

Andreas & Günther have recently proposed a difference-making defi-

nition of actual causation. In this paper I show that there exist conclusive

counterexamples to their definition, by which I mean examples that are

unacceptable to everyone, including AG. Concretely, I show that their

definition allows c to cause e even when c is not a causal ancestor of e.

I then proceed to identify their non-standard definition of causal models

as the source of the problem, and argue that there is no viable strategy

open to AG to fixing it. I conclude that their definition of causation is

damaged beyond repair.

1 Introduction

Andreas & Günther (AG from now on) have recently proposed a difference-

making definition of actual causation, which is the relation that takes place

when one token event causes another event, such as when someone throws a

rock and breaks a window (Andreas and Günther, 2021a). Similar to many
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recent proposals, their definition is formulated using causal models and is built

on a counterfactual condition. Contrary to existing proposals, AG offer their

own non-standard definition of causal models. They do so because they want to

formulate their counterfactual condition in terms of a model being uninformative

on some variable e, which is not something that standard causal models allow.

The primary aim of this paper is to show that there exist conclusive coun-

terexamples to their definition, meaning examples that are unacceptable to ev-

eryone, including AG. Concretely, I show that according to their definition, c

can cause e even when c is not a causal ancestor of e. The secondary aim is to

identify the source of the problem, and to argue that there is no viable strategy

open to AG to fixing it. If they modify their notion of uninformativeness to

avoid said counterexamples, novel conclusive counterexamples ensue. If they

modify their definition of causal models to bring it closer to the standard def-

inition, they end up with verdicts of causation that contradict what AG take

to be the main advantage of their definition. I conclude that their definition is

damaged beyond repair.

Elsewhere AG have proposed two other definitions of causation using causal

models, but neither of them forms an alternative to the present definition, be-

cause neither belongs to Lewis (1973)’s counterfactual tradition that AG here

explicitly espouse (Andreas and Günther, 2020, 2021b). (From now on Andreas

and Günther (2020) is AG1, Andreas and Günther (2021a) is AG2, and Andreas

and Günther (2021b) is AG3.) In addition, AG3 disagrees with AG2 on those

verdicts that AG use precisely to motivate the superiority of AG2.

The paper proceeds as follows. The next section presents AG’s general moti-

vation for defining causation as AG2. Section 3 analyzes AG2 and its relation to

other counterfactual definitions of causation. With this understanding in hand,

Section 4 dives into the problems that plague AG2 and Section 5 explains why
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Figure 1: Early Preemption

they cannot be resolved by modifying AG’s definitions, be it their definition of

causal models or AG2 itself.

2 Motivating AG2

AG motivate AG2 by the claim that it is the only counterfactual-based defini-

tion on offer which arrives at the correct verdicts for two important examples,

labelled Early Preemption and Switch, namely that c = 1 is a cause of e = 1

in Early Preemption but not in Switch. Here Early Preemption and

Switch are nothing but the labels that AG – following Hall (2007) – give to the

causal structures depicted in Figures 1 and 2, respectively. Strictly speaking

AG’s claim is false, for Hall’s definition also arrives at these verdicts. However,

as AG point out, Hitchcock (2009) has identified several fundamental problems

with Hall’s definition and hence they do not consider it.

The graphs in Figures 1 and 2 are examples of so-called “neuron diagrams”,

which are often used in the literature on causation to visually represent causal

models. The nodes represent binary variables, and a node is gray iff the variable

takes on the value 1. The edges represent causal influence in the following

manner: the receiving node takes on the value 1 whenever any of the edges with

an arrowhead comes from a node that has value 1 and there is no edge with a

circlehead coming from a node that has value 1. For Early Preemption this
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means that the values of the variables are determined by the following equations:

c = 1, a = 1, d = c, b = ¬c∧ a, and lastly, e = d∨ b. For Switch the equations are:

c = 1, d = c, b = ¬c, and e = d ∨ b. We call the leftmost variables of a diagram

root variables, as their values are not determined by other variables.

Note that in Switch the value of e always comes out as 1, regardless of the

value of c. Furthermore, the upper structure is entirely symmetric to the lower

one: either we have c leading to e via d, or we have ¬c leading to e via b, all c

does it to act as a “switch” that determines whether we follow the upper path

or the lower path. It is because of this symmetry that AG claim c does not

make enough of a difference to be considered a cause of e.

At first sight AG’s claim is in agreement with the literature, which (for the

most part) likewise believes that switches are not causes. However, there is

substantial disagreement on whether or not Switch is an appropriate repre-

sentation for the kind of informal story that characterizes switching behavior

(Beckers and Vennekens, 2017; Halpern and Pearl, 2005). If it is not, then it

does not speak against a definition that it treats Switch similarly to Early

Preemption and calls c a cause of e in both.

In fact, treating Switch differently to Early Preemption is the source of

one of the fundamental problems that Hitchcock (2009) identifies to criticize Hall

(2007)’s definition. Concretely, he shows that by making what appears to be

an innocuous modification to Switch, Hall’s definition changes its verdict from

c not being a cause to c being a cause.1 Importantly, AG2 delivers the same

verdicts for these examples. Given that, as mentioned earlier, AG explicitly

invoke Hitchcock’s criticism of Hall’s definition, it is surprising that AG fail to

notice this. Moreover, AG2 agrees with Hall’s definition on all of the examples

that AG discuss. Hence it is not at all clear why AG consider their definition

an improvement over that of Hall’s.

4



c

d

b

e

Figure 2: Switch

For the present purposes I set this discussion aside entirely, and simply

accept AG’s claim that c is not a cause of e in Switch whereas it is in Early

Preemption.

3 Defining Causation using Causal Models

3.1 The Counterfactual Tradition

AG subscribe to the counterfactual tradition of defining actual causation, and

they follow the recent trend within this tradition that embraces causal models,

a rich formalism that enables a compact representation of the causal relations

between variables (Halpern, 2016; Pearl, 2009). Causal models are widely used

to define actual causation by filling in the following schema in various manners.

Definition 3.1: [Actual Causation Schema] c is a cause of e relative to

causal model M iff

• (C1) M satisfies c and e, and

• (C2) there is a causal model M ′ that meets conditions Con such that

M ′
{¬c} satisfies ¬e.

Here M ′
{¬c} is the causal model that results from M ′ after applying the

intervention ¬c.
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Filling in this schema requires two elements: a definition of causal models

(including a definition of interventions), and a specification of the conditions

Con. Existing definitions in the literature all use (essentially) the same standard

definition of causal models and differ only with regards to the conditions Con

that they impose.2 Roughly speaking, the standard definition of a causal model

M is simply the set of equations that describes the behavior of structures such as

the neuron diagrams in Switch and Early Preemption, and the corresponding

standard definition of an intervention that sets some variable x to a value i is

the operation on M that replaces the existing equation for x with x = i.

The well-known recent definition of causation by Halpern (2016) is helpful

to illustrate the second element. It specifies Con as the requirement that M ′ is

the result of an intervention on M that holds fixed some variables at their actual

values (meaning the values obtaining in M). Applied to Early Preemption,

we see that c causes e by observing that if we hold fixed ¬b and then intervene

to get ¬c, the resulting equations tell us that ¬e holds. The same reasoning

applies to Switch, and hence Halpern’s definition likewise considers c a cause

of e there.

AG introduce a non-standard definition of causal models that allows the

formulation of a condition Con in terms of a model being uninformative on

c and e. This notion of uninformativeness is unique to their framework, and

it is the key ingredient that allows them to distinguish Switch from Early

Preemption.

3.2 The AG2 Definition

On AG’s view a causal model <M,V > consists of a set M of structural equations

of the form x = ϕ for some propositional formula ϕ and a consistent set of literals

V . They also implicitly assume there to be a fixed set of propositional variables
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P out of which the literals in V and the formulas ϕ can be constructed. If there

is a single literal l for each variable p, then the set V describes a unique state of

the world. Such a set is called complete. Although AG allow for a causal model

to consist of a set V that is not complete, unless otherwise noted we assume

that V is complete. The structural equations describe how the values of some

variables in P are determined by the values of other variables. AG implicitly

assume that for each variable in P there is at most one equation.

The semantics of a causal model are given by combining M with V in the

following manner. If the truth values of V are consistent with all elements

of M , then V is said to satisfy M . < M,V > satisfies a formula ϕ iff ϕ is

true in V or V does not satisfy M . In case V is not complete, satisfaction is

defined by requiring satisfaction in all consistent complete extensions V c of V

that satisfy M . By allowing for V not to be complete, AG can introduce the

idea that a causal model is uninformative regarding some formula ϕ, namely as

the condition that the model satisfies none of ϕ and ¬ϕ.

An intervention I is a consistent set of literals that functions as an operator

on causal models. However, rather confusingly, AG define interventions as an

operator solely on the equations M of a causal model and in this context refer to

M itself as the causal model, thus ignoring V altogether. Concretely, they define

the result of an intervention I on M as MI = {(p = ϕ) ∈M ∣p /∈ I and ¬p /∈ I}∪ I.

When defining satisfaction of a formula in an intervened model, AG revert back

to interpreting a model as a pair <MI , V > and state that satisfaction is simply

defined identically as before.

This definition of an intervention needs to be slightly modified to make any

sense. Say we have a trivial model such as < {c = 1},{c} >. On the current

definition, intervening to set c to 0 results in < {c = 0},{c} >. Here V does

not satisfy M , and thus we get logical explosion: < {c = 0},{c} > satisfies
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all formulas. Clearly that is an undesirable way for interventions to behave.

Instead, we would expect that by intervening on c we also remove any literal

containing c from V . Thus, I propose to define an intervention I as an operator

on the entire model < M,V >, giving < MI , VI >, where MI is as before and

VI = {l ∈ V ∣l /∈ I}. This is a simple and unproblematic modification of AG’s

definition of an intervention. (Concretely, as will become clear, it does not

affect their definition of causation.)

The standard definition of a causal model can be retrieved as the special

case in which V = ∅ and M contains an equation for all variables. A standard

causal model induces a unique complete assignment V c: the values of the root

variables are given by their constant equations, and these values can be filled in

recursively into the equations of the other variables to determine their values.3

(For example, in Switch all values are determined by the value of c, whereas in

Early Preemption everything is determined by the values of both c and a.)

This implies that a standard causal model is informative regarding all formulas.

The fact that AG’s definition of a causal model does not require M to contain

an equation for each variable explains why on their account a model can be

uninformative regarding some formulas. AG2 builds on this property by spelling

out the condition Con as being uninformative regarding the putative cause and

effect, as follows. (AG also present a more general definition that allows for

complex causes and effects, but for our discussion this definition suffices.)

Definition 3.2: [Actual Causation] Let < M,V > be a causal model such

that V satisfies M . c is a cause of e relative to <M,V > iff

• (C1) <M,V > satisfies c and e, and

• (C2) there is a V ′ ⊂ V such that < M,V ′ > is uninformative on c and e,

while <M{¬c}, V ′
¬c > satisfies ¬e.

8



Recall that <M,V ′ > being uninformative on c and e means that <M,V ′ >

satisfies none of c, ¬c, e, and ¬e.

(Note that my modification to the definition of an intervention is irrelevant

to Definition 3.2, since satisfying (C2) requires that V ′
¬c = V ′ anyway.)

Before applying AG2 to the two examples, I should point out that there

are several ways of representing neuron diagrams as a causal model under AG’s

definition. Firstly, for each root variable x we can choose to store its value in M ,

namely as an equation of the form x = i (where i is 1 or 0), or we can choose to

store its value in V , namely as a literal (x or ¬x, respectively). Secondly, for each

non-root variable we can choose to store its inferred value in V or not. The two

simplest choices are to store all the root variables in M and let V be empty – call

this the M -representation – or to not store the root variables in M and let V be

complete – call this the V -representation. For example, the M -representation of

Early Preemption is < {c = 1, a = 1, d = c, b = ¬c∧ a, e = d∨ b},∅ >, whereas its

V -representation is < {d = c, b = ¬c ∧ a, e = d ∨ b},{c, a,¬b, d, e} >. Note that M -

representations are standard causal models, and therefore they are informative

on all formulas. Combine this with the fact that V = ∅ and we see that it makes

little sense to apply AG2 to M -representations. For this reason AG implicitly

follow the convention of always choosing the V -representation, i.e., they assume

that M never contains equations of the form x = i and V is complete.

Applying AG2 to Switch, it is easy to see why it fails to call c a cause of

e: no matter whether we assume c or ¬c, the equations determine that e holds,

and thus there does not exist any set V ′ so that < M,V ′ > is uninformative

regarding e.

Applying AG2 to Early Preemption, we can choose V ′ = {¬b}, thereby

“forgetting” that we started out with c and a. Given the equations, there exist

three complete extensions of V ′: V1 = {¬b, c, d, e, a}, V2 = {¬b, c, d, e,¬a}, and
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V3 = {¬b,¬c,¬d,¬e,¬a}. Since all of c, ¬c, e, and ¬e appear in at least one of

these extensions, <M,V ′ > meets the requirement that it is uninformative on c

and e. Intervening with ¬c means to add c = 0 to the equations, from which it

follows that the only complete extension is V3. As ¬e ∈ V3, we get that c causes

e, as desired.

4 Counterexamples to AG2

4.1 Counterfactual Dependence

Before presenting the more fundamental problems with AG2, we warm up with

a problem that can be fixed. It can best be highlighted by observing a peculiar

property of AG2: certain events do not have any causes. To see why this

holds, note that a certain event e is a variable that comes out as true in all

complete settings < M,V >, and therefore it is impossible to find any V ′ that

is uninformative on e. The same reasoning also shows that certain events c

do not have any effects, even if the effect itself is uncertain. Both properties

already seem problematic in and of themselves for a definition of causation, but

one particularly undesirable consequence is that counterfactual dependence is

not sufficient for causation. It can be assumed that AG are unaware of this,

for they explicitly subscribe to the sufficiency of counterfactual dependence.4

Informally, e counterfactually depends on c if both c and e occurred, and if c

had not occurred then neither would have e. Formally, this is established by

applying our schema (Definition 3.1) with the trivial condition that M ′ =M .

Switch illustrates why counterfactual dependence does not suffice for AG2.

Due to the fact that e is certain, it is impossible to find a set V ′ so that <M,V ′ >

is uninformative on e. Therefore e has no causes according to AG2. Yet e does

counterfactually depend on d: setting d to 0 results in a model that satisfies ¬e.
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To see why, we first consider AG’s usual V -representation < {e = d ∨ b, d =

c, b = ¬c},{e, d,¬b, c} >. The intervention that sets d to 0 results in < {e =

d ∨ b, d = 0, b = ¬c},{e,¬b, c} >. Here V does not even satisfy M , because e ∈ V

is inconsistent with the combination of M and ¬b ∈ V , and thus all formulas

are satisfied, ¬e included. (Recall the definition of satisfaction from Section 3.)

We come back to this peculiar behavior in the next section and for now focus

on the M -representation of Switch, < {e = d ∨ b, d = c, b = ¬c, c = 1},∅ >. Now

the result of the intervention is < {e = d ∨ b, d = 0, b = ¬c, c = 1},∅ >, and this

model also satisfies ¬e.

We can slightly modify AG2 to fix this problem without altering any of

AG’s desired verdicts for the examples they discuss. The idea is to split up

being uninformative on c and e into two steps: first, we simply ensure that the

resulting model is uninformative on c by removing its equation from M (if it

has one) and by removing it from V (if it was in there), and only then do we

apply condition C2. (Note that if one uses V -representations, as AG do, this

change only affects candidate causes that are not root variables. Presumably

the fact that AG exclusively consider root variables as causes in all of their

papers explains why this problem went by unnoticed.)

With this modification, counterfactual dependence is sufficient for AG2. Say

<M∗, V ∗ > is the result of the first step. Then choosing V ′ = V ∗ does the job. If

e counterfactually depends on c, then <M,V > satisfies c and e and <M¬c, V¬c >

satisfies ¬e. From the former, it follows that < M∗
c , V

∗
c > satisfies e. From the

latter, since M∗
¬c = M¬c and V ∗ = V¬c, it follows that < M∗

¬c, V
∗
¬c > satisfies

¬e. This implies that < M∗, V ∗ > is uninformative on e (in addition to being

uninformative on c). Combining all these claims, the result follows.
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4.2 Unacceptable Counterexamples

Here is one example of a causal statement which does not leave room for dis-

agreement: for x to cause y, x has to be an ancestor of y in the causal graph

that represents the causal dependencies of a causal model. (Causal graphs are

standardly used to represent the causal dependencies of variables. In the case

of neuron diagrams, the causal graph is obtained by viewing all edges as regular

directed edges, independent of whether it contains an arrowhead or a circle-

head.) Now consider again the last paragraph preceding Section 4, but instead

of evaluating whether or not c causes e in Early Preemption, we want to

evaluate whether or not c causes a. The same reasoning applies as with e, and

we get the unacceptable verdict that c causes a...

To get a sense of how absurd this result is let us apply it to a famous example

that AG discuss (Andreas and Günther, 2021a, p. 14):5

Billy and Suzy are throwing rocks at a bottle. ... Suzy throws her

rock (c) an instant earlier than Billy does (a). Suzy’s rock hits the

bottle (d), and so the bottle shatters (e). The shattering of the bottle

prevents Billy’s rock from hitting the bottle (¬b). The occurrence of

the effect e cuts off the backup process started by a.

AG represent this example very similarly to Early Preemption (as does

everyone else in the literature), and as a result the above causal verdict applies

here as well, which means that according to AG2 Suzy’s throw caused Billy’s

throw, even though their throws occured entirely independently of each other.6

What went wrong here? The problem arises due to the fact that in AG’s

causal models interventions allow for backtracking. Here is an illustration.

Say the equation for b is b = a, and assume b ∈ V whereas a /∈ V . By reading

b = a from left to right, we can infer that a holds. This inference is backtracking

because it reasons from an effect to its causes. If we now set b to 0 by an inter-
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vention, we replace b = a with b = 0, and in so doing we block this backtracking

inference. More generally, backtracking occurs whenever a variable x is used

to infer the values of a variable that is not a descendant of x. This is what

happened in Early Preemption: before the intervention, the value of a was

still open, after the intervention that set c = 0 we inferred that a = 0, and yet a

is not a descendant of c. In standard causal models all interventions block such

backtracking inferences, and thus this problem cannot arise.7

There are two strategies for AG that suggest themselves to avoid these kinds

of unacceptable counterexamples. The first strategy is to redefine an interven-

tion so that it is always non-backtracking, bringing their definition of causal

models closer to the standard definition. The second strategy is to leave inter-

ventions as they are and enforce a more stringent uninformativeness condition

in C2: if we can ensure that the set V ′ we used above no longer meets C2 when

applied to c and a, we obtain that c no longer causes a. The remainder of this

paper is dedicated to showing that both strategies lead to dead ends, because

they each give rise to novel unacceptable problems.

5 Two Strategies

5.1 Reformulating Condition C2

The second strategy takes inspiration from another one of AG’s definitions of

causation, AG3 (Andreas and Günther, 2021b). AG3 is formulated using stan-

dard causal models that are extended with epistemic concepts such as being

agnostic, which serves the same purpose as uninformativeness. Interestingly,

AG3 contains a different uninformativeness condition than AG2, namely that

the model is uninformative on the formula c∨e (instead of on c and e separately,

see Definition 3.2). (Other than that the definitions are quite dissimilar.)

13



Even though using this condition would be to no avail for our example, as

<M,V ′ > is also uninformative on c ∨ a (since this formula is true in V1 and V2

but false in V3), it does open the door to finding a different uninformativeness

condition. In particular, we need a condition such that it is satisfied for c and e

in Early Preemption (so that we keep c causing e), and is not satisfied for c

and a (so that we lose c causing a). Looking at V1, V2, and V3, there is exactly

one condition which achieves this: <M,V ′ > should be uninformative on c↔ e.

Unfortunately choosing this condition is not an option. Consider < {e =

c},{e, c} >, which is the most trivial example possible of c causing e. Clearly

we cannot find any V ′ here such that the model is uninformative on c ↔ e,

and thus we fail to reach the undeniable verdict that c causes e. Therefore the

second strategy is off the table, leading us to consider the first strategy.

5.2 Redefining Interventions

Recall that we slightly modified AG’s definition of an intervention I to ensure

that V is also updated to VI . This minor modification naturally suggests a

more substantial modification that sets us on the right path to following the

first strategy of solving the backtracking problem. When intervening to set

c to 0, we motivated the removal of c from V by the fact that V should be

updated to reflect the intended consequences of an intervention on c. But what

about the consequences this intervention has for the values of variables other

than c? Say we also have the equation e = c, and e ∈ V . Then the intervention

that sets c to 0 still results in logical explosion, despite our slight modification.

On the other hand, if the equation instead were c = e, then e ∈ V does not pose

a problem at all, as the intervention on c removes this equation from M .

The difference between both of these scenarios gets at the difference between

forwardtracking and backtracking inferences: in the first we use the value of a
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variable to infer the value of one of its descendants, which is what interventions

are supposed to allow us to do, whereas in the second we go from a variable to

one of its parents, which is precisely what interventions are supposed to prevent

(and do prevent under AG’s definition). Therefore a natural proposal to avoid

the explosion from the first scenario is to redefine an intervention on c such that

we remove all literals containing descendants of c from V , thereby preventing

any possible conflict that arises between the pre-intervention literals that were

stored in V and the literals that result from forwardtracking inferences after the

intervention. Adopting this proposal solves the backtracking problem.

Let us illustrate this for the problem case at hand: in Early Preemption

we inferred ¬a from ¬c by using the fact that ¬b ∈ V ′. Under the modified

definition that we are considering, the intervention that sets c to 0 forces the

removal of ¬b from V ′, and thus this inference is blocked. The resulting model

is uninformative on a, and thus c does not cause a. Unfortunately, in the same

stroke we get that neither does c cause e, which is precisely the result that AG

wanted to avoid in the first place. Alas, we have again reached a dead end.

6 Conclusion

AG’s approach to actual causation using causal models is original in that it

explores non-standard definitions of causal models and thereby allows for def-

initions of causation that are qualitatively distinct from existing definitions in

the literature. In the case of AG2, however, this approach fails to deliver an

acceptable definition of causation. Although AG have two other proposals to

rely on, abandoning AG2 does come at a cost for them. Choosing AG1 means to

abandon the counterfactual approach to causation (while still being susceptible

to Hitchcock’s criticism). Choosing AG3 means to abandon the counterfactual

approach and to give up on the distinction between Early Preemption and
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Switch.

It is important to note that the argument in this paper did not proceed

as is standard in the literature on causation. Usually one argues against a

definition of causation by constructing examples for which the definition offers

what are alleged to be counterintuitive verdicts. Such arguments leave room

for disagreement, because intuitions vary considerably, and so do views on the

importance of intuitions for judging definitions of actual causation (Beckers,

2021a; Glymour et al, 2010). The argument here presented does not leave room

for disagreement, for it does not rely on challenging AG’s desired causal verdicts

on Early Preemption and Switch, nor does it rely on accepting or challenging

intuitions on any other disputable example. Therefore the conclusion is that

AG2 is damaged beyond repair, even when judged by AG’s own light.

Notes

1The example is the result of changing the equations from d = c and b = ¬c

to d = c∧ f and b = ¬c∧ g, where f and g represent some background conditions

that are actually fulfilled. This change preserves the symmetry between the

upper and the lower structures as well as c’s role in acting as a switch between

these two structures, and thus one would expect the same causal verdict as for

Switch.

2To be clear, there do exist definitions of causation that are formulated using

an extension of standard causal models. The most notable example is the use

of a normality ranking to deal with the problem of structural isomorphisms

(Halpern and Hitchcock, 2010). Beckers and Vennekens (2018) extend standard

causal models with temporal information to define causation, although I have
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subsequently developed a modification of that definition that no longer does so

in Beckers (2021b).

3Here we are assuming that the equations are acyclic, which is typical when

studying actual causation.

4Concretely, they state that “dependence between distinct occurring events

is taken to be sufficient for causation” (Andreas and Günther, 2021a, p.1-2).

For sake of completeness we add that AG3 also suffers from this problem.

5This example is a causation classic in the literature called Late Preemption.

6For sake of completeness it should be pointed out that the first causal model

AG suggest for modelling Late Preemption is inconsistent. According to their

model (which is cyclic), if Suzy had not thrown then there is no solution to the

equations. This is clearly unintentional, for it is obvious that if Suzy had not

thrown then Billy’s rock would have hit the bottle and broken it instead. The

representation to which we here refer is a second (and unproblematic) model

that AG consider.

7An alternative, complementary, description of the problem here is that AG’s

approach allows for conditioning on a collider: the reason we can infer a = 0 is

that a and c become dependent once we condition on their common effect b. I

thank an anonymous reviewer for this suggestion.
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