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1. Introduction

In this section, we introduce in an informal way the key concepts studied in this paper. Formally precise characterizations
follow later on.

1.1. Normative conflicts and normative gaps

Ideally, sets of norms issued by agents, authorities, legislators, etc. are both consistent and complete. In our everyday
practice, however, such sets often contain normative conflicts and normative gaps. A normative conflict occurs when two or
more norms are issued that are mutually unsatisfiable. The existence of such conflicts is motivated as follows by Alchourrén
and Bulygin:

Even one and the same authority may command that p and that not p at the same time, especially when a great number
of norms are enacted on the same occasion. This happens when the legislature enacts a very extensive statute, e.g. a Civil
Code, that usually contains four to six thousand dispositions. All of them are regarded as promulgated at the same time,
by the same authority, so that there is no wonder that they sometimes contain a certain amount of explicit or implicit
contradictions [3, pp. 112-113].

Normative conflicts do not always consist of conflicting commands or obligations. They also arise where both an obligation
to do something and a (positive) permission not to do it are promulgated [1,3,14,49].

The adaptive logics presented in this paper are able to adequately deal with both normative conflicts and normative gaps.
We say that a set of norms contains a normative gap with respect to A if A is neither positively permitted nor forbidden
nor obliged. For a defense of the existence of normative gaps, see e.g. [2, Chapters 7, 8], [15].
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Note that the formulation refers to positive permissions (also, strong permissions), i.e. permissions that are either explicitly
stated as such, or permissions that are derivable from other explicitly stated permissions or obligations. This is to be distin-
guished from so-called weak or negative permissions: A is weakly permitted in case A is not forbidden. Would we replace
“positive permission” by “weak permission” in the definition of normative gaps then the concept would be vacuous since
each A is either forbidden or not forbidden (and hence, weakly permitted).

The practical use of the distinction between positive and negative permission can be illustrated by means of the legal
principle nullum crimen sine lege. According to this principle anything which is not forbidden is permitted.! Alternatively,
the principle states that a negative permission to do A implies a positive permission to do A. Typically, the nullum crimen
principle is understood as a rule of closure permitting all the actions not prohibited by penal law [2, pp. 142-143]. We
return to this principle in Section 2.1.

We will in the remainder of the paper tacitly assume that in case A is obliged then A is positively permitted. In this
case, there is a normative gap with respect to A iff A is neither positively permitted nor forbidden.

Another way to think about normative gaps is in terms of normative determination: A is normatively determined if and
only if A is either positively permitted or forbidden, which is to say that there is no normative gap with respect to A.> We
say that a set of norms is normatively complete if all of its norms are normatively determined, i.e. if there are no gaps with
respect to any of its norms. From the existence of incomplete legal systems, Bulygin concludes that legal gaps are perfectly
possible:

It is not true that all legal systems are necessarily complete. The problem of completeness is an empirical, contingent,
question, whose truth depends on the contents of the system. So legal gaps due to the silence of the law (...) are
perfectly possible [15, p. 28].

1.2. Norm-propositions and their formal representation

In ordinary language, normative sentences exhibit a characteristic ambiguity. The very same words may be used to
enunciate a norm (give a prescription) and to make a normative statement (description) [47, pp. 104-106]. In deontic logic,
it is important to carefully distinguish between this prescriptive and descriptive use of norms.

When interpreted prescriptively, a formula of the form "OA™ means something like “you ought to do "A™, or “it ought to
be that "A™", and a formula of the form "PA™ means something like “you may do "A™, or “it is permitted that "A™".> When
interpreted descriptively, a formula of the form "OA™ [TPA] means something like “there is a norm to the effect that "A™
is obligatory [permitted]”. Thus, in our descriptive reading a formula "PA™ always denotes a strong permission. Following
[47], we take the term norm to denote the prescriptive, and norm-proposition to denote the descriptive interpretation of
normative statements.*

According to Alchourrén and Bulygin [1-3], any perceived harmony between norms and norm-propositions in deontic
logic is merely apparent. Instead of using the same calculus of deontic logic for reasoning with both norms and norm-
propositions, we need two separate logics: a logic of norms and a logic of norm-propositions. This paper is concerned with
the characterization of a logic of norm-propositions.

In formal language normative conflicts are expressed by formulas such as "OAAO not A™ in case two obligations conflict,
and "TOA AP not A in case an obligation conflicts with a permission. We call a conflict of the former kind an OO-conflict,
and a conflict of the latter kind an OP-conflict.

Normative gaps occur if neither "PA™ nor "O not A" is the case. A full formal characterization of normative gaps
is presented after the definition of our formal language. As pointed out above, the permission in question is a strong
permission. Weak permissions may be simply defined as the modal dual to O: by "not O not A™. The latter expresses
that “there is no norm to the effect that "not A7 is obliged” and hence it expresses the descriptive meaning of a weak
permission. However, we need an independent permission operator P in order to express strong permissions. From "PA™
we cannot infer "not O not A due to the possible existence of an OP-conflict. Similarly we cannot, vice versa, infer "PA™
from "not O not A™ since, despite the absence of a norm that expresses that "not A™ is obliged, "A™ may not be positively
permitted.’

In the remainder we show how each of the concepts presented in this introductory section is formalized and treated by
the logics defined later on in this paper.

Legal philosophers also refer to this principle as the sealing legal principle. We thank an anonymous referee for pointing this out.
The notion of normative determination is adopted from [48].
Until our formal language is defined, we use brackets “r” and “7” for denoting formulas.
Von Wright [47] and Aqvist [6] cite Ingemar Hedenius as the first philosopher to note the distinction between norms and norm-propositions. According
to Hedenius, norms are “genuine”, and norm-propositions are “spurious” deontic sentences [25]. The distinction between norms and norm-propositions was
later also drawn - among others - by Wedberg [50], Stenius [41], Alchourrén [1], and Hansson [23] (see also [6]).

5 See [2,47] for further arguments against the equivalence of "PA™ and "not O not A7 in a descriptive setting.
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1.3. The structure of the paper

This paper is structured as follows. In Section 2 we define the Logic of Norm-Propositions LNP. This logic is sufficiently
expressive to formalize both normative conflicts and normative gaps without having to resort to the meta-language. Inside
the scope of its deontic operators, LNP makes use of a paraconsistent and paracomplete negation connective for dealing
with normative conflicts and normative gaps.

As a result of the weakness of this negation connective, LNP is not powerful enough for capturing many intuitive nor-
mative inferences. We deal with this problem in Section 3, where we strengthen LNP within the adaptive logics framework
for non-monotonic reasoning. This results in two adaptive logics which interpret a given premise set ‘as consistently and as
completely as possible’.

In Section 4 we equip the logics defined in Section 3 with a proof theory, and prove some further meta-theoretical
results. In Section 5, we compare our logics to other approaches taken up in the literature on norm-propositions and on
conflicting norms.

As the scope of our analysis is entirely conceptual/philosophical, and as space is limited, we illustrate the workings of
the logics presented in this paper by abstract examples rather than by ‘real-life’ cases.

2. A negation-weakened foundation: the logic LNP
2.1. Syntax

In the setting of norm-propositions, negation behaves differently depending on whether it occurs inside or outside the
scope of an operator O or P. Outside the scope of a deontic operator, negation behaves classically. A formula "not Op™
is read as “it is not the case that there is a norm to the effect that p is obligatory”. Under this reading, "not Op™ is
incompatible with "Op™: "Op™ and "not Op™ cannot both be the case. Moreover, one of "Op™ or "not Op™ must hold:
either there is a norm to the effect that p is obligatory, or there is not.

Things change when we turn to negations inside the scope of O or P. Here, both "Op™ and "O not p are verified by the
same set of norm-propositions if this set contains an OO-conflict with respect to p. Moreover, neither "Pp™ nor "O not p~
are verified by a given set of norm-propositions that contains a normative gap with respect to p. Given the standard
characterizations of O and P, this means that - inside the scope of O or P - both the consistency and the completeness
constraint for negation fail in some instances: "P(p Anot p) is true in the case of a normative conflict, and "O(p Vv not p)~
is false in the case of a normative gap.

The logic LNP is defined in such a way that it respects this distinction: outside the scope of a deontic operator, only
the classical negation connective “—" occurs. Inside the scope of a deontic operator, LNP makes use of the connective “~”,
which is a paraconsistent and paracomplete “negation” connective, i.e. it invalidates both "(A A ~A) D B™ (Ex Contradictione
Quodlibet) and "A v ~A™ (Excluded Middle).5

Where W = {p,q,r,...} is a denumerable set of atomic propositions, we define W™ as the (—, v, A, D, =)-closure of
W% and W™ as the (~, Vv, A, D, =)-closure of W7, Let:

WO = OV} [ POV | =(WO) [ (W) v p2) [ (2] A (W) [ (W) 5 (AP} [ (W°) = (1)

Note that we do not allow for nested occurrences of the modal operators in our language. The set WW of well-formed
formulas of LNP is defined as the (—, v, A, D, =)-closure of YW~ U WO,

Since the denotation of formulas is no longer ambiguous now that our language W is defined, we skip the " '-marks in
the remainder of the paper. For future reference, we also define the set W! = {A, ~A | A € W%} of ~-literals.

Both normative conflicts and normative gaps are expressible in the object language V. A normative conflict occurs
relating to a formula A € W™ whenever we can derive one of OA A O~A or OA A P~A. A normative gap occurs relating to
A whenever we can derive =PA A —=O~A, i.e. whenever there is no norm to the effect that A is permitted or forbidden.

The P-operator functions as an operator for positive permission. A proposition A is said to be negatively permitted if
there is no obligation to the contrary, i.e. if =O~A. The nullum crimen principle can be formalized as an axiom schema:

(NC) —O~ADPA

Clearly, (NC) a priori excludes the possibility of normative gaps. That is why it is invalidated by any gap-tolerant logic of
norm-propositions.

6 “~" as defined below is actually a “dummy” connective rather than a negation connective: it has no properties at all, except that it validates de

Morgan’s laws. However, in Sections 3 and 4 we show that “~” functions as a negation connective in the adaptive extensions of the logic LNP.
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2.2. Semantics

LNP is characterizable within a Kripke-style semantics with a set of worlds or points W and a designated or ‘actual’
world wg € W. In wg, negation is defined classically by means of the connective “—=". In the other worlds, negation is
defined by the paraconsistent and paracomplete connective “~".

An LNP-model is a tuple (W, wo, R, vp, v), where R = {wg} x (W \ {wp}) is a non-empty accessibility relation, and
vo: WY x {wg} — {0,1} and v : W! x (W \ {wg}) — {0, 1} are assignment functions. v assigns truth values to atomic
propositions at the actual world wy. Since all logical connectives (including negation) behave classically at this world, truth
values for complex formulas can be defined in terms of a valuation function in the usual way. The situation is slightly
different for other worlds. In the latter, the ~-connective does not behave classically and truth values are assigned to all
~-literals, i.e. all atomic propositions p and their ~-negation ~p.

Let w € W, w' € W\ {wg}. Then the valuation vy : WV x {wo)UW™ x W\ {wg}) — {0, 1}, associated with the model M,
is defined by

(Co) where A e W9, vy (A, wo) = 1iff vg(A, wp) =1

() where A e W!, vy (A, W) =1iff v(A, w) =1

(C=)  vm(=A, wo)=1iff vy (A, wo) =0

(C~~) vy(~~A,w)=1iffvy(A, w)=1

(C~>) vm(~(ADB),w)=1iffviy(AA~B,w)=1

(C~A) vm(~(AAB),w)=1iffvy(~Av~B,w)=1

(C~Vv) vm(~(AVB),w)=1iffvyy(~AA~B,w)=1

(C~=) vy(~(A=B),w)=1iffvyy((AVB)A(~AV~B),w)=1
(€D2) vm(ADB,w)=1Iiffvyy(A,w)=0o0rvy(B,w)=1

(CA) vM(AAB,w)=1iffvy(A,w)=vy(B,w)=1

(CVv) vm(Av B, w)=1iff viy(A,w)=1orvy(B,w)=1

(C=) vm(A=B,w)=1iff viy(A, w) = vy (B, w)

(CO) vm(OA, wp) = 1iff vy (A, w') = 1 for every w’ such that Rwow’
(CP) vm(PA, wp) = 1iff vy (A, w') = 1 for some w’ such that Rwow’

(Co) and (C;) simply take over the values of the assignment functions vg and v respectively. (C—) determines truth values
for the classical negation connective “=” in wq. (C~~)-(C~=) guarantee that de Morgan’s laws hold for “~” in accessible
worlds. Where A € W?, the interpretation of ~A is provided directly by the assignment function v. Where A is a complex
formula, its negation ~A can be reduced to simpler constituents in view of (C~~)-(C~=). (CD)-(C=) determine truth
values for the other classical connectives D, A, Vv, and = in all worlds, and (CO) and (CP) define the deontic operators O
and P in the usual way.

A semantic consequence relation for LNP is defined in terms of truth preservation at the actual world. An LNP-model M
verifies A (M I A) iff v (A, wo) = 1. Where I" € W, M is an LNP-model of I" iff M is an LNP-model and M I+ A for all
A e I'. Ernp A iff all LNP-models verify A, and I' =pnp A iff all LNP-models of I verify A.

In Section 2.4, we discuss the workings of LNP in more detail and provide some illustrations. But first we define its
syntactic consequence relation.

2.3. Axiomatization and meta-theory

Inside the scope of O and P, we want to allow for the consistent possibility of contradictions and gaps. In order to do
so, we make use of the propositional fragment of the logic CLoNs (cf. footnote 7). CLoNs is defined by adding de Morgan’s
laws for “~” to the positive fragment of classical (propositional) logic CLS:

(A~~) ~~A=A
(A~>) ~(ADB)=(AA~B)

(A~A) ~(AAB)=(~AV~B)

(A~V) ~(AV B)=(~AA~B)

(A~=) ~(A=B)=((AV B)A (~AV ~B))

7 The semantic clauses for accessible worlds are inspired by those for (the propositional fragment of) Batens’ paraconsistent and paracomplete logic
CLoNs, a variation on the paraconsistent logic CLuNs as found in e.g. [10]. CLoNs is defined in Appendix A.
8 An axiomatization of the positive fragment of CL (i.e. CL without negation) is contained in Appendix A. Note that it validates full Modus Ponens.
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Except for de Morgan’s laws, “~” has no properties at all. The logic LNP is fully axiomatized by CL (with the classical

“w_»

negation connective “=") plus:

(K) O(AD>B)D>(0OADOB)

(D) OADPA

(NEC™) If Fcrons A then OA

(KP) O(ADB)D>(PADPB)

(0OD) O(AV B) D> (0OAVPB)

(PD) P(AvV B) D (PAVPB)
We write I' Finp A to denote that A is LNP-derivable from I”, and Finp A to denote that A is LNP-derivable from the
empty premise set.

LNP resembles SDL in the sense that it contains (K), (D), and a necessitation rule. However, it is non-standard in the sense

that its necessitation rule (NEC™) is defined in terms of theoremhood in CLoNs instead of theoremhood in CL. Moreover, in
LNP the permission operator P is not definable in terms of the obligation operator O. Instead, the P-operator is characterized

by the axiom schemata (KP), (OD), and (PD), all of which also hold in SDL.
The axiom schemata (O-AND) and (P-AND) are derivable in LNP (their derivability is shown in Fact 1 in Appendix B):

(O-AND) OA,OBHFinp O(A A B)
(P-AND) OA,PBtinp P(A A B)

Theorem 1 (Soundness of LNP). If I" np A, then I =1np A.
Theorem 2 (Strong completeness of LNP). If I =ynp A, then I Fynp A.

Proofs of Theorems 1 and 2 are contained in Appendix C.
2.4. Discussion

LNP allows for the consistent possibility of normative conflicts and normative gaps, and invalidates deontic explosion:

Op A O~p ¥ine Oq (1)
Op A P~p Fine Oq (2)
—Pp A =O~p ¥ine Oq (3)

In accordance with the discussion in Section 1.2, the following interdependencies between the O- and P-operators are
invalid in LNP:

Pp ¥inp —O~p (4)
—PpFine O~p (5)
Op ¥inp —P~p (6)
—Op Fine P~p (7)

(4)-(7) correspond to the characterization of the P-operator as an operator for positive permission. (4) fails in the presence
of an OP-conflict Pp A O~p. (5) fails in the presence of a gap —Pp A —=O~p. (6) fails in the presence of a conflict Op A P~p,
and (7) fails in the presence of a gap —=P~p A —Op.

The conflict- and gap-tolerance of LNP, as well as the non-interdefinability of its O- and P-operators, all depend crucially
on the paraconsistency and paracompleteness of the “~"-connective. However, the very weak characterization of “~” also
causes the LNP-invalidity of the following inferences:

O(p v q), 0O~q¥np Op (8)
O(p Vv q),0(~pVq) ¥ine Oq 9)
O(p > q),0~q¥np O~p (10)

Indeed, except for de Morgan’s laws LNP invalidates all classically valid inferences that somehow depend on the properties
of the ~-connective, e.g. the Disjunctive Syllogism or Contraposition rules. (8) is invalid because the possibility of an OO-
conflict Og A O~q cannot be excluded. In that case, Op need not follow from the premises O(p Vv q) and O~q. Likewise,
(9) is invalid since Oq need not follow from O(p v q) and O(~p Vv q) in the presence of an OO-conflict Op A O~p.
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(10) fails (i) in the case of a normative conflict relating to q or (ii) in the case of a normative gap relating to p. Suppose
that O(p D q) and O~q are true at the actual world. Then p D q and ~q are true at all accessible worlds. In case (i), both
q and ~q are true in at least one accessible world. In this world, p D g is automatically true in view of (CD), and ~p need
not be true. In case ~p is false at an accessible world, we have a model in which O~p is false at the actual world. In
case (ii), both p and ~p will be false in at least one accessible world. Again we have a model in which O~p is false at the
actual world.

For similar reasons all of the following ‘variants’ of (8)-(10) are invalid in LNP:

O(p Vv ¢q), P~q¥inp Pp (11)

P(p Vv @q), O~q¥ine Pp (12)

O(p v ), P(~pVq) ¥ine Pq (13)
P(pVv@q), O(~pVq) ¥inp Pq (14)
O(p O q), P~q¥inp P~p (15)

P(p D q), O~qFine P~p (16)

O(p D q) ¥ne O(~q D ~p) (17)

P(p D q) ¥ine P(~q D ~p) (18)

In spite of the rationale behind their invalidity (i.e. the possibility of normative conflicts/gaps), all of (8)-(18) have some
intuitive appeal. In real life, we tend to assume that norms behave consistently and that propositions are normatively regu-
lated. Normative conflicts and normative gaps are anomalies. We rely on inferences like (8)-(18) in our everyday reasoning
processes, albeit in a defeasible way.

It seems then, that LNP is too weak to account for our normative reasoning. Inferences like (8)-(18) should only be
blocked once we can reasonably assume that one of the norm-propositions needed in the inference behaves abnormally, i.e.
that there might be a conflict or gap relating to this norm-proposition. Note that this reasoning process is non-monotonic:
new premises may provide the information that there is a conflict or gap relating to some norm-proposition that was
previously deemed to behave normally. Consider, for instance, the inference from O(p v q) and O~p to Ogq. This inference
is intuitive assuming that there is no normative conflict relating to p. If, however, we obtain the new information that
there is a normative conflict relating to p, then the inference should be blocked, since we do not want to rely on conflicted
norm-propositions in deriving new information.

In the next section, we strengthen LNP in a non-monotonic fashion in order to overcome the problems mentioned here,
and to make formally precise the idea of ‘assuming’ norm-propositions to behave ‘normally’.

3. Two adaptive extensions

For any A € W9, the classical negation connective “—" satisfies the following semantic conditions at the actual world:

(M) If vir(A, wo) =1, then vy (—A, wg) =0,
(1) If vy (A, wo) =0, then vy (—A, wo) =1.

(T) guarantees the consistency of A: A and —A cannot both be true at wy. (f) imposes a completeness condition on A: at
least one of A and —A is true at wy.

As is clear from the LNP-semantics, () and (1) fail for “~” at accessible worlds. Instead of (7) and (}), only the weaker
conditions (") and (}") hold for “~" at a world w e W \ {wg}:

() If v (A, w) =1, then either vy (~A, w) =0 or viy(AA~A,w)=1,
@) If vy (A, w) =0, then either vy (~A, w)=1or vyy(AV ~A, w) =0.

In view of the semantic clauses for LNP it is easily checked that whenever a normative conflict occurs relating to a propo-
sition p, the formula p A ~p is true at some accessible world. In the case of an OP-conflict Op A P~p or O~p A Pp, this
follows in view of (CO), (CP), and (CA). In the case of an OO-conflict Op A O~p, it follows in view of (CO), (CA) and the
non-emptiness of the accessibility relation.

In a similar fashion, we can check that whenever a normative gap occurs relating to p, the formula p v ~p is false at
some accessible world. Suppose, for instance, that =Op A —=P~p is true at wg. Then by (C—), both Op and P~p are false at
wo. By (CO), there is a world w such that Rwow and vy (p, w) = 0. By (CP), ~p too is false at this world: vy (~p, w) =0.
By (CV), vm(p v ~p,w) =0.
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Normative conflicts create truth-value gluts, whereas normative gaps create truth-value gaps at accessible worlds.? Sup-
pose now that we label such gluts and gaps as abnormal, and that we try to interpret our worlds as normally as possible.
Then, in view of (") and (f'), normal behavior corresponds to the satisfaction of the consistency and completeness demands
(T) and (%) for “~” at accessible worlds.

The adaptive logics LNP* and LNP™ defined in this section exploit the above idea in making the assumption that norm-
propositions behave ‘normally’ unless and until we find out that they are involved in some normative conflict or gap.

3.1. Semantic characterization of LNP* and LNP™
Adaptive logics in the so-called standard format from [7] are characterized as triples, consisting of:

(1) A lower limit logic (LLL): a compact, reflexive, transitive, and monotonic logic that contains CL and has a characteristic
semantics.

(2) A set of abnormalities £2: a set of formulas, characterized by a (possibly restricted) logical form F; or a union of such
sets.

(3) An adaptive strategy: reliability or minimal abnormality.

The LLL of an adaptive logic (AL) in standard format is its monotonic base; everything derivable by means of the LLL
is derivable by means of the AL. The AL extends the LLL by interpreting abnormalities as false “as much as possible”. The
formal disambiguation of this idea is relative to the adaptive strategy used by the AL. At the moment, two adaptive strategies
are included in the standard format: the reliability strategy and the minimal abnormality strategy.

We use LNP* as a generic name for the logics LNP" and LNP™. The former uses the reliability strategy, whereas the latter
uses minimal abnormality (hence the superscripts r and m). Both of these logics have LNP as their LLL. Moreover, LNP' and
LNP™ share the same set of abnormalities £2 = £21 U £23, where 21 = {P(AA~A) | A€ WY} and 2, = {(—O(A Vv ~A) |
AeWl.

£21 is the set of atomic gluts true at some accessible world. Note that, in view of the validity of de Morgan'’s laws for “~”,
more complex gluts can be reduced to (disjunctions of) atomic gluts by the LLL, e.g. if viy((p Vq@) A ~(p VvV q), w) =1, then
v ((p A~p) V (@ A~q), w) = 1. Consequently, whenever some LNP-model verifies an OO- or OP-conflict, it also validates
an abnormality in the set £21.

In view of the LNP-semantics, p vV ~p is false at some accessible world whenever —O(p Vv ~p) is true at the actual world.
Thus £2; is the set of atomic gaps true at some accessible world. Again, complex instances of gaps are LNP-reducible to a
(disjunction of) atomic gap(s), e.g. if vy ((p Vq) V~(p Vv q),w) =0, then vy ((p vV ~p) A(qV ~q), w) =0. Hence whenever
some LNP-model verifies a normative gap, it also validates an abnormality in the set £2;.

For any atomic proposition p, the $2;-abnormality —O(p Vv ~p) expresses that there is an accessible world in which
neither p nor ~p is verified, whereas the §21-abnormality P(p A ~p) expresses that there is an accessible world in which
both p and ~p are verified. Thus, in LNP both gluts and gaps in accessible worlds constitute abnormalities. In view of
the discussion at the beginning of this section, this means that both normative conflicts and normative gaps constitute
abnormalities in LNP.

Semantically, adaptive logics proceed by selecting a subset of their LLL-models.!? This selection makes use of the abnor-
mal part of an LNP-model, i.e. the set of all abnormalities verified by it. The abnormal part of an LNP-model M is defined
as Ab(M) ={A e 2 | M Iknp A}

The minimal abnormality strategy selects all LNP-models of a premise set I" which have a minimal abnormal part (with
respect to set-inclusion).

Definition 1. An LNP-model M of I" is minimally abnormal iff there is no LNP-model M’ of I" such that Ab(M") C Ab(M).
The semantic consequence relation of the logic LNP™ is defined by selecting the minimally abnormal LNP-models:
Definition 2. I" = npm A iff A is verified by all minimally abnormal LNP-models of I".

Before we can define the semantic consequence relation for LNP", we need some more terminology. Where A is a finite,
non-empty set of abnormalities, the disjunction \/ A is called a Dab-formula and is written as Dab(A). A Dab-formula
Dab(A) is a Dab-consequence of I' if it is LNP-derivable from I"; Dab(A) is a minimal Dab-consequence of I' if it is a
Dab-consequence of I" and there is no A’ such that Dab(A’) is a Dab-consequence of I" and A’ C A.

The set of formulas that are unreliable with respect to I", denoted by U(I"), is defined by

9 A truth-value glut for p occurs when both p and ~p are assigned the value 1; a truth-value gap for p occurs when neither p nor ~p are assigned the
value 1.

10 Besides adaptive logics many other formal frameworks make use of semantic selections. Logics that make use of such semantic selection functions are
said to have a preferential semantics, e.g. [30,40].
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Table 1
Accessible worlds for Iy and I3. Grey cells indicate propositions that
behave abnormally in w.

(a) Accessible worlds for Iy (b) Accessible worlds for I3
w p ~p q ~q w p ~p q ~q
(1) 1 0 1 0 (1) 0 0 0 1
(2) 1 0 1 1 (2) 0 0 1 1
(3) 1 1 0 0 (3) 0 1 0 1
(4) 1 1 0 1 (4) 0 1 1 1
(5) 1 1 1 0 (5) 1 0 1 1
(6) 1 1 1 1 (6) 1 1 1 1

Definition 3. Where Dab(A1), Dab(A5), ... are the minimal Dab-consequences of I, U(I') = A1 U Ay U--- is the set of
formulas that are unreliable with respect to I'.

Where Ab(M) is defined as above, we can now select the reliable models and define the semantic consequence relation
for LNP:

Definition 4. An LNP-model M of I" is reliable iff Ab(M) C U(I'").
Definition 5. I" =npr A iff A is verified by all reliable models of I".

The fact that the set of LNP*-models of I" is a subset of the set of LNP-models of I" immediately ensures that LNP*
strengthens LNP.

Theorem 3. If I" =np A, then I' E=pnpx A.

Where MNP, ?, and M} denote the set of LNP-models, minimally abnormal LNP-models, resp. reliable LNP-models
of I', we also know that:

Theorem 4 (Strong reassurance). If M € MNP — M™. then there is an M’ € M™ such that Ab(M') C Ab(M).If M € MNP — A1
then there is an M" € M. such that Ab(M’') C Ab(M).

Theorem 4 is shown generically for adaptive logics in standard format as Corollary 1 in [7].
3.2. Some illustrations

In this section, we illustrate the semantics of LNP" and LNP™. We begin with a simple example and expand it for
illustrating the non-monotonicity of LNP* and LNP™. We end with an example that illustrates the difference between both
logics.

Example 1. Let I7 = {Op, O(~p Vv q)}. Then, for all LNP-models M of I'j, M, wg =0Op and M, wg = O(~p V q). By (CO),
M,w = p and M, w = ~p Vv q for all worlds w such that Rwow. The possible truth values for p, ~p, q, and ~q at accessible
worlds in M are depicted in Table 1(a). Let R(wg) abbreviate the set of worlds w € W \ {wg} such that Rwgow. Then each
w € R(wy) is of one of types (1)-(6).

If at least one w € R(wy) is of one of types (3)-(6), then, by (CA) and (CP), M, wo =P(p A~p), and P(p A ~p) € Ab(M).
Similarly, if at least one w € R(wy) is of type (2) or type (6), then P(q A ~q) € Ab(M). Moreover, if some w € R(wg) is of
type (3), then, by (CVv), (CO) and (C=), M, wg =—0(q Vv ~q), and —=O(q V ~q) € Ab(M).

If, however, all worlds w € R(wgp) are of type (1), then M verifies no abnormalities relating to p or q. In view of
Definition 1, only models for which all worlds w € R(wg) are of type (1) qualify as minimally abnormal LNP-models of I7.
Note that, for all type (1)-worlds w € R(wg), M, w |=q. By (CO), M, wqg = Oq. By Definition 2, I'} =rnpm Og.

Since It has LNP-models M of which all accessible worlds w € R(wq) are such that, for all A€ W% M, w = AA~A
and M, w = A v ~A, we can conclude that Iy has LNP-models M such that Ab(M) = . It follows that Iy has no minimal
Dab-consequences. In view of Definition 3, U(I7) = ¢. By Definition 4, Ab(M) = ¢ for all reliable LNP-models M of I7.
Again, only models for which all worlds w € R(wg) are of type (1) qualify as reliable LNP-models of I'y. By Definition 5,

It =iner Og.

Example 2. Let I = {Op, O(~p Vv q), O~p}. It is easily checked that I =inp P(p A ~p). Consequently, all LNP-models verify
this abnormality, including the minimally abnormal and reliable ones. Hence all accessible worlds in all LNP-models of I
are of one of types (3)-(6) in Table 1(a). Since P(p A ~p) is the only Dab-consequence of I, the selected LNP*-models for
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Table 2

Accessible worlds for Iy.
w p ~p q ~q r ~r
1) 1 0 1 0 1 0
2) 1 0 1 0 1 1
(3) 1 0 1 1 1 0
(4) 1 0 1 1 1 1
(5) 1 1 1 0 1 0
(6) 1 1 1 0 1 1
(7) 1 1 1 1 0 o0
(8) 1 1 1 1 0 1
(9) 1 1 1 1 1 0
1o 1 1 1 1 1 1

both strategies are those which verify exactly this abnormality, i.e. models of which all accessible worlds are of type (4)
or (5). In all of these models, p, ~p Vv q, and ~p are true at all accessible worlds. Since g need not be true at some of these
worlds, I, has LNP*-models in which Ogq is false. Hence I fpnpx Oq.

Note that Examples 1 and 2 illustrate the non-monotonicity of LNP*: adding the premise O~p to I blocks the derivation
of Oq.

Example 3. Let I3 = {O(p D q),0~q}, and let M be an LNP-model of I3. The possible truth values for p,~p, q, and ~q at
accessible worlds in M are depicted in Table 1(b).

If at least one w € R(wy) is of one of types (1) or (2), then —=O(p v ~p) € Ab(M). If at least one w € R(wy) is of one
of types (2), (4), (5) or (6), then P(q A ~q) € Ab(M). Only if all w € R(wg) are of type (3) it is possible that Ab(M) =@. In
view of Definition 1, only models of which all w € R(wg) are of type (3) qualify as minimally abnormal models. But then
M, wg = O~p, and, by Definition 2, I'3 E=pnpm O~p. It is safely left to the reader to check that, in view of Definitions 4
and 5, I3 ':LNP" O~p

Example 4. Let I ={O(p Aq),O(~(pV q) Vvr),P(~pV ~q)}, and let M be an LNP-model of 4. By (CO) we know that, for
all w e R(wg) in M, M,wE=pAqand M,w =~(p Vv q) Vr. Hence every w € R(wy) is of one of types (1)-(10) depicted in
Table 2.

By (CP), we also know that there is at least one world w such that w € R(wg) and M, w = ~p Vv ~q. Thus, w cannot
be of type (1) or type (2). If w is of type (3), then P(q A ~q) € Ab(M). If w is of type (5), then P(p A ~p) € Ab(M). It is
easily checked that if w is of type (4), (6), (7), (8), (9), or (10), then M validates more than one abnormality, i.e. either
{P(p A~p)} C Ab(M) or {P(g A ~q)} C Ab(M).

In general, it follows by Definition 1 that M only qualifies as a minimally abnormal LNP-model of Iy if either w is of
type (3) and all w’ € R(wyg) \ {w} are of type (1) or type (3), or w is of type (5) and all w’ € R(wp) \ {w} are of type (1) or
type (5). Hence if M is minimally abnormal, then all accessible worlds in M are of type (1), type (3), or type (5). But then,
by (CO), M, wg = Or and, by Definition 2, I’y E=ynpm Or.

Since at least one accessible world w in M is of types (3)-(10), it follows by (CA), (CP), and (Cv) that M, wq &=
P(p A~p)VP(gA~q) (for any model M of I'y). On the other hand, there exist models M of I'y such that M, wq = P(p A~p),
and there exist models M of Iy such that M, wq [~ P(q A ~q). Thus, it follows that P(p A ~p) v P(q A ~q) is a minimal
Dab-consequence of I'y. By Definition 3, P(p A ~p), P(q A ~q) € U(Iy).

Suppose now that all w € R(wyg) are of type (8), and that, for all A e W\ {p,q,r}, M,w: AA~A and M, w = AV ~A.
Then it is easily verified that the only abnormalities verified by M are P(p A ~p) and P(q A ~q). Thus, Ab(M) C U(I4). By
Definition 4, M is reliable. However, M, wq [~ Or. Thus, by Definition 5, Iy j~npr OF.

Example 4 illustrates that there are premise sets I" € VV and formulas A € W such that I" &inpr A and I |=npm A. The
inverse does not hold: in Section 4.3 we show that in general the logic LNP™ is strictly stronger than LNP". We come back
to the intuitive differences between both strategies in Section 4.2.

4. Proof theory and meta-theory for LNP' and LNP™

In this section, we provide a proof theory for the logics LNP" (Section 4.1) and LNP™ (Section 4.2). We present the
proof theory by means of an example, the premise set /4 from Section 3.2. We end the section with some meta-theoretical
properties of both logics.

4.1. Proof theory for LNP*
A line in an annotated LNP*-proof consists of a line number, a formula, a justification and a condition. The justification

consists of a (possibly empty) list of line numbers (from which the formula is derived) and of the name of a rule. A condition
is a finite set of abnormalities. A line with formula A and condition @ is read as “A is derived on the assumption that none
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of the abnormalities in @ is true”. The presence of a condition is part of what makes an adaptive proof dynamic. As we
will explicate further below, the idea is that lines whose assumptions are not tenable are deactivated by means of marking
them. Similarly, new information may render an assumption of a marked line tenable in which case the line is reactivated
by means of removing the marking. The effect of the marking definition is that, at every stage!'! of the proof, certain lines
may be marked whereas others are unmarked. Whether or not a line is marked depends only on the condition of the line
and on the minimal Dab-formulas (cf. Definition 6) that have been derived in the proof.

The rules of inference of LNP* reduce to three generic rules. Where I' is a set of premises, and where

A A

abbreviates that A occurs in the proof on the condition A, the simplest inference rule is the premise introduction rule
PREM:

PREM IfAerl:

A9

PREM simply states that, at any line of a proof, a premise may be introduced on the empty condition. For instance, we
can start an LNP'-proof for I'y by entering the premises via PREM:

1 O(pAQ) PREM ¢
2 O(~(pVvq)Vvr) PREM ¢
3 P(~pVv~q) PREM ¢

The second rule of inference of LNP* is the unconditional rule RU:

RU IfAq,..., Ay FiNp B: Al A

AH An
B AjU---UA,

Whenever A1,...,Apne B and Aq, ..., Ay occur in the proof on the conditions A1, ..., A, respectively, then RU may
be used to derive B in the proof, on the condition AqU---U Ay. If for each i <n, A; is derived on the assumption that each
abnormality in A; is false, then B is derivable on the assumption that each abnormality in A1 U---U A, is false since its
derivation relies on each A; and hence also on the assumptions made in order to derive A;.

For instance, since O(p A q) Finp Op, we can derive Op in our example by applying RU to line 1:

4 Op 1; RU ¢
By (O-AND), we can aggregate lines 2 and 4. Hence line 5 follows via RU:

5 O((~(pva@)vr)Ap) 2,4RU ¢

As (~(pvq@ V) ApP)D (Vv (pA~p)) is a CLoNs-theorem, line 6 follows from line 5 by (NEC™) and (K). Thus, via RU:
6 O(rv(pa~p)) 5RU @
7 OrvP(pA~p) 6;RU ¢

Line 7 is obtained by applying (OD) to line 6. Note that at this line we have derived the formula Or in disjunction with
a member of £2. In interpreting a set of formulas ‘as normally as possible’ adaptive proofs feature a third rule of inference
that allows us to move abnormalities to the condition. This rule is called the conditional rule (RC). Intuitively, moving an
abnormality to the condition of a line corresponds to making the (defeasible) assumption that this abnormality is false.
RC is defined by

RC IfAq,...,Astine BV Dab(®) Al A
An Ap
B AiU---UAU®B

11 A stage of a proof is a sequence of lines and a proof is a sequence of stages. Every proof starts off with stage 1. Adding a line to a proof by applying
one of the rules of inference brings the proof to its next stage, which is the sequence of all lines written so far.
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If Aq,...,ApbFine BV Dab(®) and A4, ..., Ap occur in a proof on the conditions A1, ..., A, respectively, then by RC we
can infer B on the condition A{U---U A, U®. RC is the only rule that allows for the introduction of new conditions in an
adaptive proof.

We can now continue our proof as follows:

8 Or 7:RC {P(pA~p)}

At line 8, the abnormality derived in disjunction with Or at line 7 is moved to the condition by means of an application
of RC. At stage 8 of the proof, Or is considered derived. Intuitively, line 8 can be interpreted as “Or is derived on the
assumption that P(p A ~p) is false”.

In the proof so far, lines 4-7 serve a purely explanatory purpose; their aim is to show that Or v P(p A ~p) is an LNP-
consequence of lines 1 and 2. However, since indeed O(p A q), O(~(p VvV q) V1) Fine Or vV P(p A ~p), we could have skipped
these lines and applied RC immediately to lines 1 and 2.

In a fashion analogous to the derivation of Or v P(p A ~p) above, we can show that O(p A q),O(~(p vV q) V1) Finp
Or v P(q A ~q). Hence we can apply RC immediately to lines 1 and 2:

9 or 1,2, RC {P(gA~q)

Consider now the premises at lines 1 and 3. By (P-AND), we can derive P((p A @) A (~p V ~q)). Since Fcrons (P A Q) A
(~p VvV ~q) D ((pA~p)V(qA~q)), it follows by (NEC™) and (KP) that P((p A ~p) V (q A ~q)). By (PD), we obtain the
Dab-formula P(p A~p) Vv P(qA~q). In view of the derivability of this formula, it seems rather bold to assume that P(q A ~q)
is false, or to assume that P(p A ~p) is false. That is why, according to the marking definition for the reliability strategy,
all lines at which at least one of these assumptions was made will become marked once we have derived the disjunction
P(p A ~p) V P(q A ~q). Formulas occurring at lines that are marked are no longer considered to be derived.

The marking definition for the reliability strategy proceeds in terms of the minimal Dab-formulas derived at a stage of
the proof:

Definition 6. Dab(A) is a minimal Dab-formula at stage s iff, at stage s, Dab(A) is derived on the condition @, and no Dab(A’)
with A’ C A is derived on the condition @.

Using this terminology, we can define the set of unreliable formulas relative to a stage of the proof:
Definition 7. Where Dab(A1), Dab(A»), ... are the minimal Dab-formulas derived at stage s, Us(I') = AU A U---.
Definition 8 (Marking for reliability). Where A is the condition of line i, line i is marked at stage s iff AN Us(I") # 0.

Returning to our example, we can now continue the proof as follows (we repeat the proof from line 8 on):

8 or 6;:RC {P(pA~p) v
9 or 1,2; RC {P(@A~@}v™
10 P(pA~p)VP@A~q) 1,3; RU ¢

The formula P(p A ~p) vV P(@ A ~q) is a minimal Dab-formula at stage 10. Both its disjuncts are in the set of unreliable
formulas at this stage: U19(I'1) = {P(p A ~Dp), P(q A ~q)}. In view of Definition 8, this causes the marking of lines 8 and 9
at stage 10 (hence the checkmark sign). Consequently, the formula Or is no longer considered derived at stage 10 of the
proof.

The marking definition proceeds in terms of the minimal Dab-formulas that are derived at a certain stage. It is clear that
marking is a dynamic matter: a line may be unmarked at a stage s, marked at a later stage s’ and again unmarked at an
even later stage s”. This is why a more stable notion of derivability is needed than mere derivability at an unmarked line:

Definition 9. A is finally derived from I" at line i of a proof at finite stage s iff (i) A is the second element of line i, (ii) line i
is not marked at stage s, and (iii) every extension of the proof in which line i is marked can be further extended in such a
way that line i is unmarked.

This definition may be interpreted in terms of a two-person game where the task of the proponent is to finally derive A
and the opponent tries to prevent the latter (see [8]). First of all, our proponent needs to produce a finite proof in which A
is derived at an unmarked line I. Now our opponent has the chance to attack and hence to thwart the proponent’s intentions
by means of extending the proof in such a way that | is marked. However, our proponent has a chance to defend herself if
she is able to further extend the proof such that [ is unmarked again. The proponent has a winning strategy in case she has
a response to every possible attack by the opponent. In this case A is finally derivable.

The derivability relation of LNP* is defined with respect to the notion of final derivability:
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Definition 10. I" -npx A (A is finally LNP*-derivable from I") iff A is finally derived at a line of an LNP*-proof from I".

Theorem 5 (Proof invariance). If I Fnpx A, then every finite LNP*-proof from I' can be extended in such a way that A is finally
derived in it.

See [7] for the proof of Theorem 5.
Since Or is not derived at an unmarked line in our example, and since there is no way to extend the proof from 74 in
such a way that Or is derived on an unmarked line, we know by Definitions 9 and 10 that I'4 ¥ npr Or.

4.2. Proof theory for LNP™

An LNP™-proof in many ways resembles an LNP*-proof. The only difference between the proof theories of both logics is
that they make use of a different marking criterion.

The marking definition for minimal abnormality requires some more terminology. A choice set of ¥ = {A1, Ay,...} is a
set that contains one element out of each member of X'. A minimal choice set of X is a choice set of X' of which no proper
subset is a choice set of X. Where Dab(A1), Dab(A3), ... are the minimal Dab-formulas that are derived at stage s, ®s(I")
is the set of minimal choice sets of {A1, Ag,...}.

Definition 11 (Marking for minimal abnormality). Where A € WV is derived at line i of a proof from I" on a condition A, line i
is marked at stage s iff

(i) there is no A’ € @s(I") such that A’NA =@, or
(ii) for some A’ € &s(I), there is no line at which A is derived on a condition ® for which A’'N© =@.

We now return to our example but, instead of an LNP"-proof, we suppose that the proof we started in Section 4.1 is an
LNP™-proof from I'y. We repeat the proof from line 8 on:

8 Or 7:RC {P(pA~D)}
9 or 1,2; RC {P(@A~q)}
10 P(p A~p)VP@A~q) 1,3; RU ¢

In the LNP™-proof from Iy, the set @10(I4) of minimal choice sets of Iy at stage 10 consists of the sets {P(p A ~p)} and
{P(g A ~q)}. In view of Definition 11, lines 8 and 9 remain unmarked.

The different behavior of the logics LNP" and LNP™ for this example is explained by considering the intuitions behind
the reliability and minimal abnormality strategies. According to the reliability strategy, a formula is deemed ‘suspicious’ and
is subsequently marked whenever it is derived on a line of which the condition intersects with some disjunct of a minimal
Dab-formula. The minimal abnormality strategy is a tad less cautious. In this example, the latter strategy takes only one
of the disjuncts P(p A ~p) and P(q A ~q) to be true, although of course we do not know which one. If, on the one hand,
P(p A ~p) is true, then P(q A ~q) is safely considered false. Hence Or is derivable in view of line 9. If, on the other hand,
P(g A ~q) is true, then P(p A ~p) is safely considered false. Hence Or is derivable in view of line 8.

As for LNP", the notion of final derivability and the syntactic consequence relation of LNP™ are provided by Definitions 9
and 10. Thus, by these definitions, I'4 Fyypm Or.

4.3. Further (meta-)theoretical properties

Formulating adaptive logics in the standard format has the advantage that a rich meta-theory is immediately available
for this format. Generic proofs of Theorems 6-9 below can be found in [7].
Any adaptive logic in standard format is sound and complete with respect to its semantics:

Theorem 6. I” Finpx A lffF ':LNP" A.

Since LNP* is defined within the standard format for adaptive logics, the proof of Theorem 6 follows immediately by
Corollary 2 and Theorem 9 from [7].

In case no Dab-formulas are derivable from a premise set by means of the lower limit logic, it is safe to consider all
abnormalities as false. As a consequence, the adaptive logic will then yield the same consequence set as the logic that
interprets all abnormalities as false (or equivalently, as the logic that fully validates the inference rules whose application
the adaptive logic only allows conditionally). This logic is called the upper limit logic (ULL) of an adaptive logic. The ULL
of LNP* is obtained by adding to LNP the axiom schemata (U;) and (U,), which trivialize all members of £2; and £,
respectively:
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(U;) P(AA~A)DB
(Uz2) —O(Av~A)DB

ULL is related to LNP as set out by the Derivability Adjustment Theorem:
Theorem 7. I" Fypt A iff (thereisa A C 2 for which I' inp A vV Dab(A) or I Finp A).

The set of Dab-consequences derivable from the premise set determines the amount to which the LNP*-consequence set
will resemble the ULL-consequence set. This is why adaptive logicians say that LNP* adapts itself to a premise set. LNP*
will always be at least as strong as LNP and maximally as strong as ULL:

Theorem 8. Cnynp(I") C Cnynpx (I7) C Cnygp (D).

In view of Theorem 11 from [7], it follows immediately that:
Corollary 1. Cninp(I7) S Cnpnpr (I) € Cripnpm (I') € Crigre ().

If I" is normal, i.e. if I" has no Dab-consequences, then we can even prove a stronger result:
Theorem 9. If I" is normal, then Cnynpx (I") = Cnyrp ().

The reader may have noticed that ULL trivializes both gluts and gaps at accessible worlds, thus promoting “~” to a fully
classical negation connective. It should come as no surprise then, that ULL is just SDL in disguise. Where I" € WV, define
I'"” by replacing every A € I by m (A), where 7 (A) is the result of replacing every occurrence of “~” in A by “—". Then:

Theorem 10. I” FuL A lff I'" FspL T (A).

A proof outline for Theorem 10 is contained in Appendix D.

At this point, it is useful to come back to the nullum crimen principle (NC) as defined in Section 2.1. In LNP*-proofs, we
can derive the formula PA from the formula —=O~A on the condition that {—O(A Vv ~A)} is false. Suppose that this condition
is satisfied, i.e. that there is no normative gap relating to A. Then it follows by LNP* that PA, and we have derived a strong
or positive permission from a weak or negative one. As such, (NC) is conditionally applicable in LNP*: if A is not prohibited,
then it is permitted on the condition that there is no normative gap relating to A.

5. Related work
5.1. Alchourrén and Bulygin

In [1-4], Alchourrén and Bulygin present a logic of norm-propositions that is built ‘on top’ of a logic of norms.'> A norm-
proposition “there exists a norm to the effect that A is permitted” is formalized as NPA, where the operator N behaves like
a quantifier over the norm PA. The latter formula (without N) is read simply as “A is permitted”. Only obligations and
permissions can occur inside the scope of the N-operator; formulas of the form NA where A is not of the form OB or PB
are not well-formed formulas of NL.

Alchourrén and Bulygin’s logic of norms is just SDL. Their logic of norm-propositions NL extends SDL by adding to it the
axiom schema (NK) and the rule (NRM):

(NK) N(A D B) D (NA D NB)
(NRM)  If A > B then -NA D NB

In NL, OO-conflicts are formulas of the form NOA ANO—A. Similarly, OP-conflicts are formulas of the form NOA ANP—A.
As opposed to normative conflicts, normative gaps cannot be expressed in the object language of NL. Instead, Alchourrén
and Bulygin define a normative gap as a situation in which, for some CL-formula A, we cannot derive NPA nor NO—A,
i.e. ¥NL NPA v NO—A. Normative conflicts and gaps are treated consistently in NL. Where A and B are well-formed NL-
formulas'3:

12 Alchourrén and Bulygin's logic of norm-propositions is inspired by Rescher’s assertion logic from [37].
13" Alchourrén and Bulygin allow for iterated/nested deontic and normative operators. Nothing in principle prevents the occurrence of such nestings in
LNPX. This requires some modifications of the language W and of the sets §2; and £, such that e.g. PP(p A ~p) is also considered an abnormality.
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NOA A NO—A ¥ni B (19)
NOA A NP—A ¥nL B (20)
J’ANL NPA v NO—A (2])

However, the following variants of deontic explosion are valid in NL:

NOA A NO—A Fn. NOB (22)
NOA A NP—A -y NOB (23)

With Alchourrén, Bulygin, and von Wright, we agree that “experience seems to testify that mutually contradictory norms
may co-exist within one and the same legal order - and also that there are a good many “gaps” in any such order” [49,
p. 32]. But if conflicting normative propositions indeed often coexist within a normative order, then deontic explosion
should be avoided by any logic of normative propositions. No judge will agree that a normative order containing one or
more conflicts contains norms to the effect that anything whatsoever is obligatory. Hence (22) and (23) cause serious
problems for NL.

(22) and (23) follow by applications of (NRM) and (NK) to the SDL-theorems - 0OA D> (O~A D> OB) and F0OA D (P~AD
OB) respectively. This led von Wright to questioning the presupposition of SDL by NL [49, footnote 2].

As opposed to NL, LNP* is not built ‘on top’ of the CL-based logic SDL. Although LNP contains full CL, its ‘deontic’
formulas make use of the much weaker logic CLoNs inside the scope of the O- and P-operator. This way, LNP* avoids
deontic explosion.

Interestingly, Alchourrén and Bulygin point out that under the assumptions of consistency and completeness, the logic
of norm-propositions is ‘isomorphic’ to SDL: if we dismiss the possibility of normative conflicts and normative gaps, the
differences between both logics disappear [1,4]. In Section 4.3 we proved this isomorphism for LNP* by showing that for
normal (consistent and complete) premise sets, LNP* is just as strong as SDL.

5.2. Input/output logic

In input/output logic (I/O logic), norms are represented as ordered pairs of formulas (a, x), where each coordinate of
a pair is a CL-formula.'* The body of such a pair constitutes an input consisting of some condition or factual situation.
The head constitutes an output representing what the norm tells us to be desirable/obligatory/permitted in that situation.
A normative order or system is a set G of input/output pairs. G is seen as a ‘transformation device’ in which CL functions
as its ‘secretarial assistant’ [34, p. 2].

In [31], Makinson and van der Torre define various operations of the form out(G, A) for making up the output of G
given a set A containing factual information (input). In [32], the authors add constraints to these systems for dealing
with contrary-to-duty scenarios and conflicting norms. In [33], the framework is extended for dealing with permissions.
Constrained /O logics make use of maximally consistent subsets. In doing so, they avoid explosion when dealing with
conflicting conditional obligations, even if e.g. the norms (a, x) and (a, —x) tell us that both x and —x are obligatory under
the same circumstances.

The treatment of obligation—-permission conflicts by constrained I/O logics is less straightforward. In [42], Stolpe noted
that the constrained systems deontically explode when facing a conflict between an obligation (a,x) and a positive per-
mission (a, —x).!> Stolpe’s solution to this problem is to treat positive permissions as derogations: “a positive permission
suspends, annuls or obstructs a covering prohibition, thereby generating a corresponding set of liberties” [42, p. 99].

Stolpe’s solution creates an asymmetry between obligations and permissions. In obligation-obligation conflicts, both
norms may still be of equal importance. In obligation-permission conflicts however, the permission always overrides the
obligations it is in conflict with. Although certainly of interest in legal contexts, where the concept of derogation is a very
important one, we doubt that all obligation-permission conflicts can be dealt with in this way.

In the literature on I/O logic, normative gaps are left unmentioned. However, it seems possible to model gaps in this
framework. For instance, we could say that there is a normative gap relating to proposition x in circumstances a if neither
the obligations to do x or —x, nor the positive permissions to do x or —x are in the output of a given set of norms. One
drawback seems to be that, whichever I/O operation we pick, both the obligation to do x v —x and the positive permission
to do x v —x will always be in the output set. This is due to the closure of the output set under classical logic. Furthermore,
as with Alchourrén and Bulygin’s approach, normative gaps cannot be modeled at the object level in I/O logic.

Another difference between I/O logic and LNP* is that for 1/O operations the input is restricted to simple norm-bases,
i.e. sets of input-output pairs. More complex formulas such as disjunctions between norms or negated norms cannot be fed
into the system. LNP* is more flexible in this sense, since it can easily deal with premise sets containing formulas such as
—0p, Ogq V Pr, etc.

14 The framework of I/O logic was initially developed for dealing with conditional norms. We do not discuss its merits as a conditional logic here. Instead,
we focus on issues related to conflict- and gap-tolerance. For a discussion of the representation of conditional norms in I/O logic, see [51].

15 Translated to the /O setting, deontic explosion ensues from a given input if - under certain circumstances invoked by the input - everything becomes
obligatory in the output.
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5.3. SDL-weakened modal logics

The logics LNP and LNP* are SDL-weakened conflict-tolerant deontic logics. In the literature on conflicting norms in
deontic logic, many different weakenings of SDL have been proposed for dealing with conflicting norms.

The most popular approach for tolerating normative conflicts is to weaken SDL by invalidating the aggregation principle
(O-AND), e.g. [17,39,52,18]. Non-monotonic systems that validate only certain applications of (O-AND) were presented in
[28,26,22,35].16

An alternative approach for weakening SDL suggested by Goble in [19,20] restricts the modal inheritance principle (RM):

(RM) If HADBthen HOAD>OB

The result is a family of monotonic SDL-weakened systems capable of consistently accommodating OO-conflicts. Non-
monotonic adaptive extensions of this logic were presented in [43,45].
A third way of weakening SDL consists in giving up the Ex Contradictione Quodlibet schema:

(ECQQ (AA—-A)DB

The result is a paraconsistent deontic logic. This approach was taken up in [16,36]. Non-monotonic adaptive paraconsis-
tent deontic logics are presented in [13,12]. The systems defined in this paper are ‘paraconsistent’ in the sense that they
restrict (ECQ) for the negation connective “~”.

None of the SDL-weakened systems mentioned in this section were designed for reasoning in the presence of normative
gaps. Consequently, these logics do not provide a satisfactory treatment of normative gaps. Moreover, in systems in which a
permission operator is characterized, the latter is always treated as the dual of the obligation-operator, i.e. PA = —-0—A is

valid.
5.4. Strengthened SDL-based logics

In [29], Kooi and Tamminga deal with conflicting norms by enriching SDL so as to be capable of distinguishing between
various sources and interest groups in view of which norms arise. Moreover, following [27] they equip their system with
modal stit-operators for dealing with the difficult notion of (moral) agency. Similarly, we could try to deal with conflicting
norms by imposing a preference ordering on our obligations and permissions, e.g. [24].

Such extensions are very successful in increasing the expressive power of SDL, but they are unable to consistently allow
for all normative conflicts. Remember from Section 1.1 that conflicts may arise between norms promulgated at the same
time, by the same authority. It is not difficult to see how we could extend this type of reasoning to norms of the same
hierarchical foot, addressed at the same group of people, etc. so that in the end we need a logic that invalidates at least
some SDL-theorems if we want to deal with all instances of normative conflicts.

A weakness of the systems devised in this paper is that they are not very expressive. Relativizing the deontic operators
to individual/group operators is relatively straightforward (this can be done by defining a set of operators O' and P! where
I is an index set representing some (group of) agent(s)), but it is less clear how to extend LNP* in a way that it satisfactorily
treats e.g. conditional norms or the notion of agency.

Moreover, the strengthened SDL-based logics discussed here point to a trade-off between complexity and degrees of
conflict-tolerance in dealing with conflicts in deontic logic. On the one hand, many normative conflicts can be dealt with
by making explicit the different sources they arise from or the different levels of priority attributed to them. On the other
hand, if we want our logic to be fully conflict-tolerant we need to weaken SDL and allow only for the defeasible validity of
some of its inferences. The latter option is technically more involving and computationally more complex.!”

6. Conclusion and outlook

We presented two non-monotonic logics for reasoning with norm-propositions in the presence of normative conflicts
and normative gaps. The logics LNP" and LNP™ interpret a given premise set ‘as consistently and as completely as possible’.
LNP' uses a slightly more cautious strategy than LNP™.

LNP" and LNP™ are equipped with a well-defined semantics and proof theory. Due to their characterization within
the standard framework for adaptive logics, soundness and completeness properties are guaranteed, as are many of their
meta-theoretical properties.

As opposed to other systems devised for dealing with norm-propositions, the logics defined in this paper make use of a
formal language in which all necessary distinctions can be made already at the object level. This is realized by making use
of a classical negation connective outside, and a paraconsistent and paracomplete negation connective inside the scope of
the operators O and P.

16 Although the (constrained) I/O logics from Section 5.2 are presented in a non-modal framework, these too are non-monotonic non-aggregative systems
in the sense that for two obligations (a, x) and (a, y) fed to the logic, the output does not always contain x A y, e.g. if x and y are logically incompatible.
17 For some results and a discussion on the computational complexity of adaptive logics, see [11,46].
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Two possible drawbacks of the non-classical SDL-weakened approach taken up here are that (i) due to their non-
monotonicity the resulting logics are highly complex from the computational point of view; and (ii) the systems defined
in this paper are not very expressive. In response to (i), we conjecture that in order to model actual human reasoning,
a complex logic is what we need (see e.g. [11]). In response to (ii), we point to some existing work on more expressive
adaptive deontic logics [12,44,43] and hope to provide more results in the future.
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Appendix A. CLoNs and the positive fragment of CL
Syntactically, the positive fragment of CL is defined by Modus Ponens (MP) and the following axiom schemata:

(AD1) AD(BDA)
(AD2) (AD(BDC))D((ADB)D(AD0))
(AD3) ((ADB)DA)DA

(AA1) (AAB)DA

(AN2) (AAB)DB

(AA3) AD(BD(AAB))

(Avl) AD(AVB)

(AV2) BD(AVB)

(Av3) (ADC0)D((B>C)D((AVB)D())
(A=1) (A=B)D(ADB)

(A=2) (A=B)D(BDA)

(A=3) (ADB)D((BDA)D(A=B))

In order to obtain full CL, all one has to do is to add the axiom schemata (A—1) and (A—2) below to its positive fragment.

(A—-1) (AD—-A)D—A
(A—2) AD(—ADB)

CLoNs is defined by adding to the positive fragment of CL the axiom schemata (A~~)-(A~=) from Section 2.3. CLoNs-
derivability for a formula A € W™ from a set of formulas I" C W™ is denoted by I" Fcrons A. If A € W™ is CLoNs-derivable
from the empty set, then Fcrons A.

Semantically, CLoNs-models are associated with an assignment function v : W' — {0, 1}. The valuation function vy
for the CLoNs-model M is defined by adjusting clauses (C;) and (C~~)-(C=) so that references to accessible worlds are
dropped, e.g.

(C) where A e WL, v (A) = 1iff v(A) = 1

(C~~) vy(~~A)=1iffvy(A) =1
and so on. A CLoNs-model M verifies A (M I+ A) iff viyy(A) = 1. Where I" C W™, M is a CLoNs-model of I" iff M is a
CLoNs-model and M IF A for all A € I'. =crons A iff all CLoNs-models verify A, and I" =crons A iff all CLoNs-models of I
verify A.

CLoNs is similar to Anderson and Belnap’s logic of first-degree entailment (FDE) from [5] in the sense that its negation
connective has no properties except for de Morgan’s laws. Unlike FDE however, CLoNs validates full Modus Ponens.

Appendix B. Some facts about LNP and CLoNs

The following theorems will come in handy for the proof of Theorem 2. Let in the remainder L € {CLoNs, LNP}:

Theorem 11. L is reflexive, transitive and monotonic.'®

18 Where Cn (I") denotes the consequence set of some premise set I" for L, L is reflexive iff, for all premise sets I", I € Cn (I); it is transitive iff, for
all sets of wffs I" and I"’, if I € Cny (I") then Cny (I" UTI") € Cn(I"); and it is monotonic iff, for all sets of wffs I" and I'”, Cn (I") € Cn (I"UT™).
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Theorem 12. L is compact (if I" b A then I’ - A for some finite I’ € I').
Theorem 13.If ' -y Band A € I', then I' — {A} - A D B (Generalized Deduction Theorem for L).
The proofs of Theorems 11-13 are straightforward and safely left to the reader.
Fact 1.
(i) OA, OB inp O(A A B),
(ii) OA,PBtnp P(A A B),
(iii) Finp (OA A OB) D O(A A B),
(iv) Fine (OA APB) D P(A A B),
(v) Fine P(A D A),
(vi) If cLons A’ D A then A D B Fcrons A’ D B,
(vii) If cLons B D B/ then A D B crons A D B,
(viii) Fcrons (AV(ADB))=(((AV(ADB))DB)DB),
(ix) Fcrons (AD(AD B)) D(ADB),
(X) FcLons A V (A D B).

Proof. Ad (i). Suppose OA and OB. By (AA3), Fcrons A D (B D (A A B)). By (NEC™), it follows that Fynp O(A D (B D
(A A B))). By (K), Five OA D O(B O (A A B)). By (MP), O(B O (A A B)). By (K), OB D O(A A B). By (MP), O(A A B).

Ad (ii). Suppose OA and PB. By (AA3), Fcrons A D (B D (A A B)). By (NEC™), Finp O(A D (B D (A A B))). By (K), Finp
OA D O(B D (A A B)). By (MP), O(B O (A A B)). By (KP), PB D P(A A B). By (MP), P(A A B).

Ad (iii)-(iv). Immediate in view of (i), (ii), and Theorem 13.

Ad (v). Since A D A is a theorem of the positive fragment of CL, it is also a CLoNs-theorem. By (NEC™), Fynp O(A D A).
By (D), Finp P(A D A).

Ad (vi). Suppose Fcrons A’ D A. By (AD2), Fcrons (A’ D(A D B)) D((A' D A)D(A’ D B)). By (AD1) and (MP), AD B Fcions
A’ D(A D B). The rest follows by multiple applications of (MP).

Ad (vii). The proof is similar and left to the reader.

Ad (viii). Left-to-right: By (MP), (AV (A D B)) D B, AV (A D B) FcLons B. The rest follows by Theorem 13. Right-to-left:
By (AD1), (T) Fcrons B D (A D B). By (AV2), (1) Fcrons (A D B) D (A Vv (A D B)). Altogether, by (f), (I), (vii) and (MP),
Fcrons B D (A Vv (A D B)). Hence, by (vii), Fcrons ((AV(ADB)DB)DB)D((AV(ADB)DB)D(AV(ADB))). By (AD3),
Ferons ((AV (ADB)DB) D (AV (ADB)) D (AV (AD B)). Hence, again by (vii), (AV (ADB)DB)DB) D (AV (ADB)).

Ad (ix). By (MP), A, AD(AD B) Fcrons A D B. By (MP), A, AD(A D B) Fcrons B. By Theorem 13, A D(A D B) Fcrons A D B,
Fcrons (A D(AD B)) D(AD B).

Ad (x). By (AVv1), Fcrons A D (A V (A D B)). By (vi), (AV (A D B)) D Btcrons A DO B. By Theorem 13, Fcrons ((A V
(AD B)) D B) D (ADB). By (Av2), Fcrons (A D B) D (A V (A D B)). Hence, by (vii), Fcrons (AV (ADB) DB)D(AV
(A D B)). By (viii), Fcrons (A V (A D B)) = (((AV (A D B)) D B) D B). Thus, by (vii), Fcrons ((AV (A D B)) DB) D (((AV
(A D B)) D B) D B). By (ix) and (MP), Fcrons ((A Vv (A D B)) D B) D B. By (viii), (A=2), and (MP), crons AV (AD B). O

Appendix C. Proofs of Theorems 1 and 2
In order to simplify the notation in the following meta-proofs we define R(w) = {w’ | Rww'}.

Proof of Theorem 1. Let in the following M = (W, wq, R, vg, v) be an LNP-model.

It is easy to check that all CL-axiom schemata hold at wg in M due to (Cp), (C—), and (CD)-(C=). Similarly, (f) where
w e W \ {wp}, all CLoNs-axiom schemata hold at w in M due to (C;) and (C~~)-(C=).

Ad (NEC™). Let =crons A. By (CO), () and the definition of R, vy (OA, wp) =1.

Ad (K). Suppose M I O(A D B). By (CO) and (CD), for all w € R(wg), vy (A, w) =0 or vy (B, w) =1. Suppose M I OA,
then for all w € R(wg), vpm(A, w) = 1. Hence, for all w € R(wg), vy (B, w) = 1. Thus by (CO), M I OB. Hence, by (CD),
M I- OA D OB. Altogether, by (CD), M I- O(A D B) D (OA D OB).
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Ad (D). Suppose M IF OA. Hence for all w € R(wg), vm(A, w) =1 (by (CO)). By the non-emptiness of R, there is a
w € R(wyp) for which vy(A, w) =1. By (CP), M I+ PA. By (CD), M I OA D PA.

Ad (KP). Suppose M I- O(A D B). By (CO) and (CD), (1) for all w € R(wg), vm(A, w) =0 or vy (B, w) = 1. Suppose
M I PA. Then, by (CP) there is a w € R(wg) for which vy (A, w) = 1. Hence, by (I), there is a w € R(wg) such that
vy (B, w) =1. Thus, by (CP) M I PB and, by (CD), M I PA D PB. Altogether, by (CD), M I O(A D> B) D (PA D PB).

Ad (OD). Suppose M I O(A v B). By (CO) and (Cv), (x) for all w € R(wg), vm(A, w) =1 or vy (B, w) = 1. Suppose
M ¥ PB. By (CP), for all w € R(wg), vm(B, w) =0. By (%), for all w € R(wyg), vy (A, w) =1. Thus, by (CO), M I- OA. Hence,
by (CV), M I OA v PB. Altogether, by (CD), M I O(A Vv B) D (OA v PB).

Ad (PD). This is similar to the previous case and is left to the reader.

We now know that all axiom schemata and rules of LNP are semantically valid. That I" Fynp A implies I =pnp A can
now be shown via the usual induction on the length of the proof of A. This is safely left to the reader. O

Let in the remainder W, be the LNP-deductively closed and maximally LNP-non-trivial subsets of W.!1° Moreover, let
W be the CLoNs-deductively closed subsets I" of YW~ where I" is prime, i.e. for each Av B eI either AeI"or BeT.
For the completeness proof of LNP, we make use of the following lemmas?°

Lemma 1. If A € W, then A is prime.

Proof. Suppose that, fora Ae W,, AVBe A and A ¢ A and B ¢ A. Then, since A is maximally LNP-non-trivial, A U{A} is
trivial and A U {B} is trivial. Then, for any C € W, A U {A}Finp C and A U {B} Fnp C. Then, by Theorem 13, Agnp AD C
and A Fpnp B D C. But then, by (MP) and (Av3), A np (AV B) D C. Since AV B € A, since by (MP) A kinp C, and since
A is LNP-deductively closed, C € A. This contradicts the supposition. Hence if AV B e A, then Ac Aor BeEA. O

Where I' € W, and A € W™, we will use the following abbreviations: I'c = {B |OB e I'}, I’ = I'o U{A}, I'» = {B |
PB¢ T}, YIp={\/®|O CTIp,0O is finite} and VI"B {\VO©|©® CI'pU{B},O is finite}.

Lemma 2. Let I" € W¢.

(i) If C e Cngons(T0) then OC e I
(ii) Where PA € I, if C € Cngy g (I0) then PC € T.

Proof. Ad (i). Suppose that I'o Fcrons C. Then I'" -cons C for some finite I'' C I'p (given the compactness of CLoNs). Hence,
FcLons (A\ I"’) D C by Theorem 13. Thus, I—._Np O((AT") D C) by (NEC™). By (K), FcLons O /A T"" D OC. By the deductive
closure of I', the fact that I’ C I' and Fact 1(i), OA T’ € I'. By (MP), OC € I'.

Ad (ii). Suppose that 1“5“ FcLons C. Then I’ F—cu;Ns C for some finite I’ C FA (given the compactness of CLoNs). Then
I'" U{A} FcLons C by the monotonicity of CLoNs. Then Fcrons (/\ I A A) D C by Theorem 13. Then Finp O((A TV A A) D C)
by (NEC™). Then Fynp P(A\I" A A) D PC by (KP) and (MP). By the supposition, {OB | B I’} C I and PA € I". Given the
deductive closure of I and Finp (O(A\I'') APA)DP(A\ T’ A A) (which follows from Fact 1(ii)), it follows that P(A\ I’ A
A) € I'. Hence PC € I', since I' is deductively closed and Finp P(A T’ A A) DPC. O

Lemma3. et ' € W,.

(i) Where PA € I', Y I'p N Cngy ons (TF) = 2.
(ii) Where B ¢ I'o, VI'B N Cngons(T0) =9

Proof. Ad (i). Let C =\/ ® where ® ={Cy,...,Cy} C I'p. Suppose C € CnCLoNs(F(’;‘) then by Lemma 2(ii), P\/ © € I". Hence,
by (PD), \/',7:1 PC; € I'. Hence, since I" is prime, there is an i € {1, ...,n} for which PC; € I and hence C; ¢ I'p, - a contra-
diction.

Ad (ii). Let C =)/ ® where ® ={Cy, ..., Cy} S (I'p U{B}). Suppose C € Cngons(I0). By Lemma 2(i), O\/ @ € I'. Assume
that, where i € {1,...,n}, all G; € I'p. By (D), P\/® € I'". By (PD), \/]_; PC; € I'. Hence, since I" is prime, there is an
ie{l,...,n} such that PC; € I and hence C; ¢ I'p, - a contradiction. Hence there is a non-empty J C {1,...,n} such that
for each j€ ], Cj=B. Hence, by (OD) OBV P\/{1 npyj Ci € I'. Thus, by (PD), OB v \/“ !!!! npy PG el Smce B ¢ I'o and
since I" is prime, there is an i € {1,...,n}\ J such that PC; € I' and hence C; ¢ I'p, - a contradlctlon O

Lemmad4.let " € We.

19 Where W is the set of wffs of L, I' is L-trivial iff Cn(I") = WY, I is L-deductively closed iff Cny(I") = I, and I" is maximally L-non-trivial iff it is
L-non-trivial and all supersets I’ D I" are L-trivial.
20 The proof of Lemma 4 is inspired by the proof of Lemma 1.7.1 from [9].
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1. Where PA € T, thereisa A C W™ for which
(i) Iy <A,
(ii) VI'p N A =@, and
(iii) Ae W_.
2. Where B ¢ I'p, thereisa A € W™ for which
(i) I'o S A,
(ii) VFIF N A=, and
(iii) Ae W_.

Proof. Let (I'o, I'p) € {(I'Y.Y I'p), (I'n,” T'E)}. Where (B1, B, ...) is a list of the members of W™, define Ag = Cngyons(I0)
and A =AgU AqU--- where

Cngpons(Ai U {Big1})  if I'p N Cngpong(Aj U {Big1}) =0

Aip1 =
a {Ai otherwise

Ad (i). This holds by the construction and the reflexivity of CLoNs.

Ad (ii). By Lemma 3 Ag N I'p = @. The rest follows by the construction.

Ad (iii). We first show that A is CLoNs-deductively closed. Suppose there is a B; ¢ A such that A Fcrons B;. Then,
by the construction of A, there is a D € I'p such that A U {B;} Fcrons D and hence by Theorem 13, A Fcrons Bi O D.
However, by (MP) also A Fcrons D. By the compactness of CLoNs there is a A; for which A;j Fcrons D. By the construction
Aj =Cngons (A1) and whence D € A;. Hence, D € A, - a contradiction with (ii).

We now show that A is prime. Suppose Ai VvV Ay € A. Assume A1, Az ¢ A. Hence, by the construction of A,
AU{A1}crons D1 and AU{A>} Fcrons D2 for some D1, Dy € I'p. By Theorem 13, A Fcrons A1 D D1 and A Fcrons A2 D Do.
By some simple propositional manipulations, A Fcrons (A1 V A2) D (D1 Vv D3). By (MP), A Fcons D1 vV Dy and hence
D1 Vv Dy € A. However, by the definition of I'p, D1 Vv D, € I'p, — a contradiction with (ii). O

Definition 12. The binary relation R € (W, x W) is defined as follows: RI"A iff the following two conditions are met:

(a) if OA eI then A € A, and
(b)if Ac A then PAeT.

In view of the definition of R, the following holds:
Lemma 5. Where I" € W, PA € I' iff thereisa A € W[ such that RI'A and A € A.

Proof. Left-right: Suppose PA € I". Then, by Lemma 4.1, there is a A € W™ such that (i) I’g CA, (ii)forall CeTIp, C¢A,

(iii) A € W.". We now show that RI"A. Ad (a): if, for some D, OD € I" then D € 1"5“, hence D € A by (i). Ad (b): suppose
PE ¢ I" for some E € W™. Then E € I'p, hence E ¢ A by (ii).
Right-left: Follows directly by Definition 12. O

Lemma 6. For every I € W¢, thereisa A € W such that RI" A (i.e. R is non-empty).

Proof. By Fact 1(v), Finp P(A D A). Hence, P(A D A) e I" for every I € W. But then, by Lemma 5, there is a A € W such
that RI"A and A D A € A. Hence R is non-empty as required. 0O

Lemma 7. Where I' € W, OA € I' iff, forall A € W such that RI"A, A € A.

Proof. Left-right: This is an immediate consequence of Definition 12.

Right-left: Suppose OA ¢ I'. Hence, A ¢ I'p. By Lemma 4.2, there is a A € W™ for which (i) I'op C A, (ii) ([ pU{A)NA =
¢, and (iii) A € W_". We now show that RI"A. Ad (a): if, for some D, OD € I" then D € I'p, hence D € A by (i). Ad (b):
suppose PE ¢ I for some E € W™. Then E € I'p, hence E ¢ A by (ii). O

Lemma 8. Where A € W¢, there is an LNP-model M such that M IF A forall A€ A and MW A forall Ae W\ A.
Proof. Let A € W.. We construct an LNP-model M = ({A}U W[, wo, R, vg, v) such that:
(i) wo=A,

(ii) for all A € W9, vo(A, wp) =1 iff A € wy,
(iii) for all Ae W! and all w € WZ, v(A,w)=1iff Ae w.
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By Lemma 6, R is non-empty. We now show that:

(%) (a)forall AeW, vy(A,wo)=1iff A€ wy,
(b)forall Ae W™ and all we W, vy(A,w)=1iff Aew.

The proof proceeds as usual by an induction on the complexity of A. Let w € {wo} U W[, and A € W If w = wy, then,
by (ii), vo(A, wo) =1 iff A € wg. By (Cp), it follows that vy (A, w) =1 iff A € w. If w #£ wy, then, by (iii), v(A, w) =1 iff
A € w. By (), it follows that vy (A, w) =1 iff A € w. Hence, for all w € {wo} UW_, vy(A,w)=1iff Aew and (x) is
valid for all A e W4,

Depending on the logical form of A, we distinguish 8 cases (6 for the connectives ~, —, v, A, D, =, and 2 for the modal
operators O and P) and show for each of them that vy (A, w) =1 iff A e w.

Case 1. Let w € W_. We show that vy (~A, w) =1 iff ~A € w. Either ~A W!, or A has one of the forms ~B, BV C,
BAC, BDC, or B=C (note that, since w # wg, A cannot have the form OB or PB).

If ~A e W! then, by (C;), vm(~A, w) =1 iff v(~A, w) = 1. By (iii), it follows that vy (~A, w) =1 iff ~A € w.

If A has the form ~B, then, by (C~~), vy;(~~B, w) =1 iff vy (B, w) = 1. By the induction hypothesis, vj;(~~B, w) =1
iff B e w. By (A~~), vy(~A,w) =1 iff ~A e w.

If A has the form B Vv C, then, by (C~V), vy (~(BV C),w) =1 iff vyy(~B A~C, w) =1 iff [by (CA)] vy (~B,w) =1 and
vm(~C,w) =1 iff [by the induction hypothesis] ~B € w and ~C € w iff [by (AA1), (AA2), and (AA3)] ~B A ~C € w iff
[by (A~V)] ~A € w.

The cases where A is of one of the forms B A C, B> C, or B=C are similar and left to the reader.

Case 2. Let w = wy. Suppose vy (—A, w) =1. By (C—), v (A, w) = 0. By the induction hypothesis, A ¢ w. Then, since w
is maximally LNP-non-trivial, w U {A} is LNP-trivial and w U {A} np —A. By Theorem 13, it follows that w inp A D —A.
Then, since w is LNP-deductively closed, A D —A € w and, by (A—1) and (MP), —A € w.

Suppose —A € w. We show via reductio that A ¢ w. Suppose thus that A € w. Then, by (A—2), (MP), and since w is LNP-
deductively closed, B € w for any B € W. This contradicts the non-triviality of w, hence A ¢ w. But then, by the induction
hypothesis vy (A, w) =0 and, by (C—), vy (—A, w) =1.

Case 3. Let w € {wo} U W_". Suppose vy (A V B, w) = 1. Then, by (CV), vu(A, w) =1 or vu(B, w) = 1. By the induction
hypothesis, A € w or B € w. Hence, by (Av1), (Av2), (MP), and the fact that w is LNP-(in case w = wy)/CLoNs-(in case
w e W )-deductively closed, AV B e w.

Suppose AV B € w. If w # wo, then, by the definition of W', Ae w or B e w. If w= wy, then, by Lemma 1, Ae w or
B € w. By the induction hypothesis, vy;(A, w) =1 or vy (B, w) = 1. Hence, by (CV), vy(AV B, w) =1.

Case 4. Let w € {wo} U W_". Suppose vy (A D B, w) = 1. Then by (CD), vm(A, w) =0 or vy (B, w) = 1. By the induction
hypothesis, A ¢ w or Be w. Let now w € W_. If A ¢ w, then, since Fcrons A V (A D B) by Fact 1(x) and since w is prime,
also A D B e w. If B e w, then since by (AD1) Fcrons B D (A D B) and by (MP), also A D B € w. The same argument applies
to w = wy since also Fynp A V (A D B), and (AD1) and (MP) are also valid in LNP.

Suppose A D B € w. By (MP), if A € w then B € w. By the induction hypothesis, if vy (A, w) =1 then vy (B, w) =1.
Hence, by (CD), vM(AD B, w) =1.

The proof for the other classical connectives (cases 4-6) is similar and left to the reader. We proceed with the cases for
O and P.

Case 7. Let w = wg. By Lemma 7, OA € wy iff A € w for all w such that Rwow. Hence, by the induction hypothesis,
OA € wy iff vy (A, w) =1 for all w such that Rwow. But then, by (CO), OA € wy iff v (OA, wp) =1.

Case 8. Let w = wq. By Lemma 5, PA € wy iff A € w for some w such that Rwow. Hence, by the induction hypothesis,
PA € wy iff vjy(A, w) =1 for some w such that Rwow. But then, by (CP), PA € wy iff vy (PA, wg) =1.

The rest follows by (i) and (x). O

Lemma9. Let I' C W and I" ¥inp A. Thereis a A C W such that:

(i) I' €A,
(ii) A¢ A, and
(iii) A e We.

Proof. Where (B1, B, ...) is a list of the members of W, define Ag =Cnyyp(/") and A = AgU A1 U--- where

Cnpnp(AiU{Biy1}) if A ¢ Cnpnp(Ai U{Biy1})

Aiy1 =
ak {A,- else

Ad (i). This holds by the construction of A and the reflexivity of LNP.

Ad (ii). This holds by the construction and since A ¢ Cnyyp(1).

Ad (iii). Assume that B ¢ A and A Finp B. Hence, by the construction of A, AU {B}Fnp A and whence by Theorem 13,
A tnp B D A. But then by (MP), A pnp A. Thus, by the compactness of LNP and since each A; = Cnpyp(A;), there is a A;
such that A € A;, - a contradiction to (ii).



M. Beirlaen, C. StrafSer / Journal of Applied Logic 11 (2013) 147-168 167

Suppose B ¢ A. Assume that —B ¢ A. By the construction of A and the monotonicity of LNP, A U {—B} np A and
whence by Theorem 13, A Fgnp =B D A. Analogously, A Finp B D A. By (Av3), A Finp (B VvV —B) D A. Since ¢ B v —B, also
A Fine BV —B. By (MP), A Finp A, - a contradiction to (ii). Hence, =B € A. Thus, A U {B} is CL-trivial and hence also
LNP-trivial. O

Proof of Theorem 2. Suppose I" ¥inp A. Then, by Lemma 9, there is a A D I" such that A ¢ A and A € W,. Then, by
Lemma 8, there is an LNP-model M such that M I B for all Be I and M ¥ A. Hence I (.inp A. O

Appendix D. Proof of Theorem 10

SDL is fully axiomatized by adding to CL the axiom schemata (K), (D), (PO), and (NEC™):

(PO) PA=-0-A
(NEC™) IffcL A then - OA

Lemma 10. If I" Fyp A then I'™ Fspr T (A).

Proof. It easily checked that, under the transformation given in Section 4.3, all of (K), (D), (KP), (OD), (PD), (U1), and (U,) are
SDL-valid. Moreover, since CLoNSs is a proper fragment of CL, (NEC™) too is valid in SDL (assuming again the transformation
from Section 4.3). O

Lemma 11. If I'™ Fspr 7w (A) then I" by A.

Proof. By the definition, ULL verifies (K) and (D). It remains to show that ULL verifies (i) all instances of PA = —-0O~A and
(ii) the rule “If ¢~ A then Fyp OA”, where CL™ is classical propositional logic with the negation symbol ~.

Ad (i). Left-right: By (AA3), PA D (O~A D (PA A O~A)). By Fact 1(iv), (PA A O~A) D P(A A ~A). Thus, by some propo-
sitional manipulations in CL, PA D (O~A D P(A A ~A)), which is CL-equivalent to () PA D (-O~A v P(A A ~A)). Suppose
now that PA. By (7), =O~A Vv P(A A ~A). Moreover, by (U;), P(A A ~A) D =O~A. Thus, by (MP) and some simple CL-
manipulations, we obtain —O~A.

Right-left: By CL, O(A Vv ~A) v —O(A v ~A). By (OD), O(A v ~A) D (O~A v PA). Thus, by some propositional manipula-
tions in CL, (O~A Vv PA) v =O(A Vv ~A). The latter formula is CL-equivalent to =O~A > (PA v —=O(A Vv ~A)). Suppose now
that =O~A. By (MP), PA v =O(A Vv ~A). By (Uy), =O(A v ~A) D PA. Thus, by (MP) and some simple CL-manipulations, PA.

Ad (ii). Note that A € W™ iff w(A) € W™. Thus, where

(A~1) (AD~A)D~A
(A~2) AD(~ADB)

it follows by the definitions of CLoNs and CL that Fcrensuga~1),(a~2)} A iff FcL 77 (A). We show that (i) if Fcrons A, then
FuL A, (11) FurL O((A D ~A) D ~A), and (lll) FuL O(A D (~A D B)).

(i) In case A is a CLoNs-theorem, OA follows immediately in view of (NEC™).

(ii) (A v ~A) D ((A D ~A) D ~A) is an instance of the theorem (A Vv B) D ((A D B) D B) of positive CL, thus it is a
CLoNs-theorem. By (NEC™), by O((A v ~A) D ((A D ~A) D ~A)). By (K), FurL O(A v ~A) D O((A D ~A) D ~A). By CL,
(1) FuL O((A D ~A) D ~A) v =O(A v ~A). We know by (Uy) that =O(A v ~A) D O((A D ~A) D ~A). Hence, by (7) and
CL, FyL O((A D ~A) D ~A).

(iii) (AD (~AD B)) V(A A~A) is an instance of the theorem (A O (B O C)) V (A A B) of positive CL, thus it is a CLONs-
theorem. By (NEC™), FyrL O((A D (~A D B)) v (A A~A)). By (OD), (1) FurL O(A D (~A D B)) Vv P(A A ~A). We know by
(Uq) that P(A A~A) D O(A D (~A D B)). Hence, by (f) and CL, Fyr O(AD (~ADB)). O

Theorem 10 follows immediately by Lemmas 10 and 11.
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