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Plan of the talk

• Introduction.

• Review of traditional set theory.

• Summing up the traditional set theory’s results.

• Starting anew.

• Philosophical context.

• New foundations of set theory.

• References.
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Introduction: the main points of the talk

• The central theme of the talk. 
• A brief, suggestive review of traditional set theory and its failure to find a proper 

place for the Continuum.
• Formalism for reviewing the veracity of traditional set theory.
• Metaphysical considerations, old and new.
• The role of “experimental physics” in processes of definition, understanding, 

study, and exploitation of the Continuum. 
• What next ? Enters quantum mechanics of light.
• The original purpose of the present study, started with a preprint «On the 

Probable Failure of the Uncountable Power Set Axiom», 1988, is to save from 
the transfinite deadlock of higher set theory the jewel of mathematical 
Continuum — this genuine, even if mostly forgotten today raison d’être of all 
traditional set-theoretical enterprises to Infinity and beyond, from Georg 
Cantor to David Hilbert to Kurt Gödel to W. Hugh Woodin to Buzz Lightyear.
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History of traditional set theory

• Georg Cantor’s set theory and its metaphysical ambition, the Continuum Hypothesis, 
CH:   2!° = !1  (1874-1877). 

• David Hilbert’s public recognition of the importance of Cantorian set theory: 1900.
• Bertrand Russel’s paradox and the crisis of mathematics: 1901.
• Ernst Zermelo’s set-theoretical axioms, ZFC: 1908.
• David Hilbert’s  program of recovering the consistency of math: 1922.
• Gerhard Gentzen proved the consistency of Peano axioms: 1936.
• Kurt Gödel, 1938:  ZFC consistent ! there is no proof of ¬ CH from ZFC.
• Paul Cohen, 1963: ZFC consistent ! there is no proof of CH from ZFC.
• Emergence of large cardinals: from Felix Hausdorff’s weakly inaccessible cardinals, 

1908, to Stefan Banach’s measurable cardinals, 1920, to William N. Reinhard’s 
cardinal, 1967-74 (ZF set theory, not compatible with ZFC).

• W. Hugh Woodin’s conjecture: 1999. Every set theory, compatible with the existence of 
large cardinals and preserving under forcing invariant properties of sets with hereditary 
cardinality at most !1 , implies that the CH be false. Implication of Woodin’s 
conjecture: 2!° = !2 (2010). Gödel had a similar idea: 1947.
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Georg Cantor’s set theory

Georg Cantor’s discoveries:
 • The idea of set: elements of a well-known mathematical structure (natural numbers, continuum, 

etc.), deprived of all their mathematical attributes and connections, are put in a “bag” called set.
 • Mappings as the basic relationship between sets.
 • The set of real numbers is “bigger” than the set of integers. The diagonal method used in this 

theorem implies that the set P(A) of all subsets of the set A is “bigger” than A. 
 • Transfinite numbers as the set-theoretical generalization of counting and the procedures of their 

infinite extension: power-set axiom, infinity, replacement

Georg Cantor’s expectations:
 • Ordinal transfinite numbers are called ordinals, cardinal numbers – cardinals: 

 • The “universe” ! of transfinite numbers, which is not a set but a “class”, covers all sets. In 
particular, the transfinite “counting” permits to reproduce the Continuum c.

 • Where is the place of c in ! ? Cantor Continuum Hypothesis (1877), CH:  c = !1 
 (!1 being the first uncountable cardinal).

5



Theme: the recovery of the Continuum

• What is so special and mysterious about the Continuum, this ancient, always 
topical, and alongside the concept of integers, most intuitively transparent and 
omnipresent conceptual and formal medium for mathematical constructions ? 

• And why it resists the more than century long siege by best mathematical minds 
of all times committed to penetrate once and for all its (traditional) set-
theoretical enigma ?

• The answer comes from the quantum reality, especially from its quantum 
computing experience and formalisms.

• The original purpose of the present study, started with a preprint «On the 
Probable Failure of the Uncountable Power Set Axiom», 1988, is to save from 
the transfinite deadlock of higher set theory the jewel of mathematical 
Continuum – this genuine, even if mostly forgotten today raison d’être of all 
traditional set-theoretical enterprises to Infinity and beyond, from Georg 
Cantor to David Hilbert to Kurt Gödel to W. Hugh Woodin to Buzz Lightyear.
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David Hilbertʼs public recognition of the set theory: 1900

• David Hilbert formulated Cantor's Continuum Hypothesis, CH, at the 
International Congress of Mathematicians at Paris, in 1900: 

 «Every system of infinitely many real numbers, i.e., every assemblage of 
numbers, or points, is either equivalent to the assemblage of natural 
integers, 1, 2, 3, ..., or to the assemblage of all real numbers and 
therefore to the Continuum, that is, to the points of a line; as regards 
equivalence there are, therefore, only two assemblages of numbers, the 
countable assemblage and the continuum.»

• David Hilbert’s enthusiasm transformed the destiny of Cantorian set 
theory. He demanded Ernst Zermelo to construct its axiomatic:

 «This appears to me to be the most admirable flower of the 
mathematical intellect and in general one of the highest achievements of 
pure rational human activity. ... No one shall be able to drive us from the 
paradise that Cantor created for us.» David Hilbert 1925 
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Ernst Zermeloʼs set-theoretical axioms, ZFC: 1904-8

AXIOM I. Axiom of extensionality. Every set is determined by its elements.
AXIOM II. Axiom of elementary sets. There exists a set, the null set, ", that contains no element at 

all. If a is any object of the domain, there exists a set {a} containing a and only a as element. If a 
and b are any two such objects, there exists a set {a, b}.

AXIOM III. Axiom of separation. If the propositional function –(x) is definite for all elements of a 
set M, M possesses a subset M´ containing precisely those elements x of M for which –(x) is 
true.

AXIOM IV. Axiom of the power set. To every set T there corresponds a set T' , the power set of T, 
that contains as elements precisely all subsets of T.

AXIOM V. Axiom of the union. To every set T there corresponds a set #T, the union of T, that 
contains as elements precisely all elements of the elements of T.

AXIOM VI. Axiom of choice. If T is a set whose elements all are sets that are different from " and 
mutually disjoint, its union #T includes at least one subset S having one and only one element in 
common with each element of T.

AXIOM VII. Axiom of infinity. There exists in the domain at least one set Z that contains the null set 
as an element and is so constituted that to each of its elements a there corresponds a further 
element of the form {a}, in other words, that with each of its elements a it also contains the 
corresponding set {a} as element".
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… Ernst Zermeloʼs set-theoretical axioms, ZFC: 1904-8

• Compared, say, to Euclidian axiomatic, Zermelo’s one and the soon to follow, large cardinals 
definitions postulate “actions of somebody” infinitely more powerful than human beings. This 
was recognized by all participants:

• «Let us say that the assertion of a large cardinal property is a strong axiom of infinity. The 
adaptation of strong axioms of infinity is thus a theological venture, involving basic questions of 
belief concerning what is true about the universe.» (Akihiro Kanamori, Menachem Magidor 
1978)

• «Our point of view is to describe the mathematical operations that can be carried out by finite 
beings, man's mathematics for short. In contrast, classical mathematics concerns itself with 
operations that can be carried out by God.» (Errett Bishop 1985)

• «I came to the conclusion some years ago that CH is an inherently vague problem. This was based 
partly on the results from the meta-theory of set theory showing that CH is independent of all 
remotely plausible axioms extending ZFC, including all large cardinal axioms that have been 
proposed so far. In fact it is consistent with all such axioms (if they are consistent at all) that the 
cardinal number of the continuum can be "anything it ought to be", i.e. anything which is not 
excluded by König's theorem. The other basis for my view is philosophical: I believe there is no 
independent platonic reality that gives determinate meaning to the language of set theory in 
general, and to the supposed totality of arbitrary subsets of the natural numbers in particular, and 
hence not to its cardinal number.» (Solomon Feferman 2007)
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David Hilbert and the foundations of math: 1922

• Facing Russel’s paradox and the war on foundations, Hilbert's program had the goal to 
provide secure finitistic foundations for all mathematics: (1) A formalization of all 
mathematics. (2) Completeness. (3) Consistency: a “finitistic” proof that no 
contradiction can be obtained in the formalism of mathematics. (4) Conservation: a 
proof that any result about "real objects" obtained using reasoning about "ideal 
objects”, such as uncountable sets, can be proved without using ideal objects. (5) 
Decidability: there should be an algorithm for deciding the truth or falsity of any 
mathematical statement.

• Ten years later Hilbert’s program has been considerably weakened:
 With his incompleteness theorem, Kurt Gödel showed (1931) that most of the goals of 

Hilbert's program were impossible to achieve, already for Peano arithmetic: (1) It is not 
possible to formalize all of mathematics, as any attempt at such a formalism will omit 
some true mathematical statements. (2) There is no complete consistent extension of 
even Peano arithmetic with a recursively enumerable set of axioms. (3) A theory such 
as Peano arithmetic cannot even prove its own consistency, so a restricted "finitistic" 
subset of it certainly cannot prove the consistency of more powerful theories such as 
set theory. (4) There is no algorithm to decide the truth or provability of statements in 
any consistent extension of Peano arithmetic.
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Gerhard Gentzen and the Peano arithmetic: 1936

• Gerhard Gentzen’s pioneering work (1936) has laid down the foundations 
of the method of gauging the recursive proof-theoretical strength of 
finite mathematical theories and combinatorial problems by ordinals, 
starting with Peano arithmetics. With all uncontroversial cases involving 
only countable ordinals: from Cantor’s ordinal  "0,

  
  

 to the first non-predicative Feferman-Schutte ordinal #0 (1965).
• In a similar vein, Reuben L. Goldstein (1944) has constructed a truly 

elementary function whose arithmetic structure mimics Cantor's 
transfinite hierarchy up to "0, and whose iterates ultimately terminate at 
0 for any n. However, with n growing, it takes them to arrive at 0 so long 
indeed, that any proof of this fact necessary uses a mathematical 
induction through transfinite numbers up to to "0. 
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… Gerhard Gentzen, the Peano arithmetic, and beyond

• Then an original general interpretation of (explicitly defined 
denumerable) ordinals as succinct symbolic notations for algorithmic 
structures with multiple loops has been given by Alan Turing (1949), 
and his approach has substantially contributed to the development of 
the modern theory of program verification.

• And Harvey Friedman discovered a remarkably transparent, finitistic 
version, called FFF, of Kruskal's theorem concerning infinite 
sequences of finite trees. The proof of FFF demonstrably requires 
mathematical induction up to the first impredicative denumerable 
ordinal #0 (1986). The impredicativity of #0 signifies, in particular, 
that there exists no explicit transfinitely recursive formula for it, 
similar to those of 

"0, "1, … ""0.
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Kurt Gödel returns to the CH: 1938

• After refuting Hilbert’s idea of mathematics as pure syntax, Kurt Gödel 
turned his attention to the Continuum Conjecture, CH, the reality and 
truth verification point of the transfinite brunch of traditional set 
theory: 

 Gödel proved that, provided ZFC is not contradictory, there is no 
proof of ¬ CH from ZFC.

• From this moment on, Gödel has decided to stay with Cantorian set 
theory. Here is one of his explanation in what he believes after Paul 
Cohen’s 1963 discovery that CH is as independent of ZFC as ¬ CH: 

«But, despite their remoteness from sense experience, we do have 
something like a perception also of the objects of set theory, as is seen 
from the fact that the axioms force themselves upon us as being 
true.» (Kurt Gödel 1964)
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Paul Cohen:  There is no proof of CH from ZFC

• In 1963, Cohen proved that, similarly to Gödel’s result, ZFC doesn’t imply CH. His 
method of forcing became a powerful tool in investigation of set-theoretic axiomatic 
systems. Here is his appreciation of CH: 

«A point of view which the author [Cohen] feels may eventually come to be accepted is 
that CH is obviously false. The main reason one accepts the Axiom of Infinity is 
probably that we feel it absurd to think that the process of adding only one set at a time 
can exhaust the entire universe. Similarly with the higher axioms of infinity. Now 
aleph1 is the set of countable ordinals and this is merely a special and the simplest way 
of generating a higher cardinal. The set C is, in contrast, generated by a totally new and 
more powerful principle, namely the Power Set Axiom. It is unreasonable to expect 
that any description of a larger cardinal which attempts to build up that cardinal from 
ideas deriving from the Replacement Axiom can ever reach C. Thus C is greater than 
aleph-n, aleph-w, aleph-a, where a=aleph-w, etc. This point of view regards C as an 
incredibly rich set given to us by one bold new axiom, which can never be approached 
by any piecemeal process of construction. Perhaps later generations will see the 
problem more clearly and express themselves more eloquently.» Paul Cohen 1966
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Large cardinal axioms

 • «Large cardinal axioms are generalizations of the axioms of extent 
of ZFC—Infinity and Replacement—in that they assert that there are 
large levels of the universe of sets. Examples of such axioms are 
those asserting the existence of strongly inaccessible cardinals, 
Woodin cardinals, and supercompact cardinals. Axioms of definable 
determinacy can also be seen as generalizations of a principle 
inherent in ZFC, namely, Borel determinacy, which was shown to be 
a theorem of ZFC by Martin. Examples of such axioms are PD (the 
statement that all projective sets are determined) and ADL(R) (the 
statement that all sets of reals in L(R) are determined). Large cardinal 
axioms and axioms of definable determinacy are intrinsically 
plausible but the strongest case for their justification comes through 
their fruitful consequences, their connections with each other, and an 
intricate network of theorems relating them to other axioms.» Peter 
Koellner and W. Hugh Wooding (2009)
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W. Hugh Woodinʼs conjecture: 1999

In his papers and books, from 1999 to 2010, Woodin developed the 
methods and proved theorems, approaching, as he believes, an 
eventual solution of the Continuum Hypothesis:

 «There is a tendency to claim that the Continuum Hypothesis is 
inherently vague and that this is simply the end of the story. But 
any legitimate claim that CH is inherently vague must have a 
mathematical basis, at the very least a theorem or a collection of 
theorems. My own view is that the independence of CH from ZFC, 
and from ZFC together with large cardinal axioms, does not 
provide this basis. I would hope this is the minimum meta-
mathematical assessment of the solution to CH that I have 
presented. Indeed, for me , the independence results for CH simply 
show that CH is a difficult problem.» W. Hugh Woodin 2001.

16



Summing up

• Traditional set theory had an enormous and uniquely inspirational impact on the 
development of mathematics, mathematical logic, proof theory, computer science, 
etc. However, it didn’t and, today, doesn’t succeed to unite or even to fruitfully 
relate its transfinite counting procedure (important by itself as interesting 
mathematics, but also in proof theory, computer science, etc.) with traditional and 
new mathematics on, and related to the Continuum. 

• However, it is even more and really disheartening that the different mathematical 
schools prefer to ignore the challenge of such a fundamental failure, with the 
traditional set-theoretical schools slowly losing their erstwhile importance (Clay 
Mathematics Institute Millennium Prizes forgot about CH) and with the “outside” 
mathematics just (and sometimes happily) ignoring the problem.

• The only serious and systematic plan to face this challenge was that of Harvey 
Friedman (with his paper “Necessary Uses of Abstract Set Theory in Finite 
Mathematics”, 1986) and, later, Stephen G. Simpson, with their “Reverse 
Mathematics and Degrees of Unsolvability“ program (1986-2005). Unfortunately, 
this didn’t alter the general picture. 
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Starting anew
• New spiritual, intellectual, and social context:
 «Some years ago word reached me concerning your proficiency, of which everybody constantly spoke. 

At that time I began to have a very high regard for you... For I had learned that you had not merely 
mastered the discoveries of the ancient astronomers uncommonly well but had also formulated a new 
cosmology. In it you maintain that the earth moves; that the sun occupies the lowest, and thus the 
central, place in the universe... Therefore with the utmost earnestness I entreat you, most learned sir, 
unless I inconvenience you, to communicate this discovery of yours to scholars, and at the earliest 
possible moment to send me your writings on the sphere of the universe together with the tables and 
whatever else you have that is relevant to this subject …» Cardinal Nikolaus von Schönberg, 
Archbishop of Capua, to Nicolas Copernicus, 1536.

• New working philosophy of world and science:
 Georg Cantor’s philosophical and religious motivations were formed in the XIXth century context, 

with the radical mode of founding scientific disciplines on “humanly comprehensible” measures and 
methods of “creation”, from Pierre—Simon de Laplace’s mechanical universe to Charles Darwin’s 
natural selection as the motor of the evolution, to Karl Marx’ socio-political theory of Marxism and 
dialectical materialism whose practical applications are driven by class struggles, to Sigismund 
Freud’s psychological theory and its unique libido motor, etc.:

 «We must not be surprised, therefore, that, so to speak, all physicists of the last [XIXth] century saw in 
classical mechanics a firm and final foundation for all physics, yes, indeed, for all natural science, and 
that they never grew tired in their attempts to base Maxwell’s theory of electromagnetism, which, in 
the meantime, was slowly beginning to win out, upon mechanics as well.» Albert Einstein, 1970   

18



Metaphysical context …

• «A lot of our knowledge derives from sense experience: from what we see, hear, 
touch, etc. Other things we know — about mathematics and logic, for example 
— seem quite independent of sense experience: we know them simply by 
thinking — about, for example, the definition of a triangle or the meaning of 
the term "implies." Philosophers have long recognized this fact by a distinction 
between knowledge that is a posterori (derived from sense experience) and 
knowledge that is a priori (derived from mere thinking, independent of sense 
experience). This distinction concerns the ways in which we know.» Gary 
Gutting, 2009.

• «There might exist axioms so abundant in their verifiable consequences, 
shedding so much light upon a whole discipline, and furnishing such powerful 
methods for solving given problems (and even solving them, as far as that is 
possible, in a constructivist way) that quite irrespective of their intrinsic 
necessity they would have to be assumed at least in the same sense as any well 
established physical theory.» Kurt Gödel 1947
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… Metaphysical context …

«Mathematics is a part of physics. Physics is an experimental science, a 
part of natural science. Mathematics is the part of physics where 
experiments are cheap. The Jacobi identity (which forces the heights 
of a triangle to cross at one point) is an experimental fact in the same 
way as that the Earth is round (that is, homeomorphic to a ball). But it 
can be discovered with less expense. In the middle of the twentieth 
century it was attempted to divide physics and mathematics. The 
consequences turned out to be catastrophic. Whole generations of 
mathematicians grew up without knowing half of their science and, of 
course, in total ignorance of any other sciences. They first began 
teaching their ugly scholastic pseudo-mathematics to their students, 
then to schoolchildren — forgetting Hardy's warning that ugly 
mathematics has no permanent place under the Sun.» 

 Vladimir I. Arnold. Address on teaching of mathematics Palais de 
Découverte, Paris, 1997. 
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… Metaphysical context

• Thomas Aquinas sought to make a distinction between philosophy (which at his time 
was also including the knowledge referred today as science) and theology: 
«The theologian and the philosopher consider creatures differently. The 
philosopher considers what belongs to their proper natures, while the theologian 
considers only what is true of creatures insofar as they are related to 
God.» (Summa contra gentiles, Book II, chap. 4)

• Johannes Kepler, 350 years later, was a scientist theologically motivated and 
inspired: he believed that the number and trajectories of planets were chosen by 
God according to His principles. Kepler has tried three of them, known to him: 
music, perfect three-dimensional bodies, and then, correctly, some properties of the 
trajectories of planets. Here are the final words of his scientific treaty Harmonice 
Mundi: «If I have been allured into brashness by the wonderful beauty of Thy 
works, or if I have loved my own glory among men, while advancing in work 
destined for Thy glory, gently and mercifully pardon me: and finally, deign 
graciously to cause that these demonstrations may lead to Thy glory and to the 
salvation of souls, and nowhere be an obstacle to that. Amen»
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New foundations of set theory …

• We accept and highly appreciate Zermelo’s axiomatic ZFC. For us, it does not concern 
the Continuum – with its rich theories of transcendent numbers (from Joseph Liouville, 
1844, to David Hilbert, 1900, to Alexandr Gelfond, 1934, to Barbara Margolis, 2003), 
or diophanitine approximations, or analysis, etc. – but it lays ground for the theory of 
transitive numbers, with beautiful and effective applications in proof theory, program 
verification, etc.

• The reason of our prudence is that Zermelo’s most important axioms are discrete and 
performative, compared to Euclidian axioms – which are continuously infinite and  
contemplative. This is why we feel necessary to attach to Zermelo’s axiomatic the post-
Turingian halting barrier, modeled on the well-known halting problem phenomenon  : 

 There exists neither general metamathematical principle, nor logical criterion, nor 
verifiably terminating computational procedure to establish the objective and 
substantial “truth” of a performative set-theoretical axiom of iterative nature which 
postulates the existence of a transfinite object outside the already existing (say, ZF-
based) transfinite scale – otherwise that is than “to run” the theory completed with the 
new axiom until it would be discovered some independent “necessary uses” of the 
object in question.
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… New foundations of set theory …

• Example: «The first uncountable ordinal $1. It is the smallest ordinal number 
that, considered as a set, is uncountable. It is the supremum of all countable 
ordinals. The elements of $1 are the countable ordinals, of which there are 
uncountably many. Like any ordinal number, $1 is a well-ordered set, with 
set membership ("$") serving as the order relation. $1 is a limit ordinal, i.e. 
there is no ordinal % with % + 1 = $1. The cardinality of the set $1 is the 
first uncountable cardinal number, !1 (aleph-one). The ordinal $1 is thus 
the initial ordinal of !1. Indeed, in most constructions $1 and !1 are equal 
as sets. To generalize: if % is an arbitrary ordinal we define $% as the initial 
ordinal of the cardinal !% .» (Wiki)

• The existence of !1 is implied by Zermelo’s axioms. The post-Turingian 
halting barrier guarantees only that !1 is a class.
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… New foundations of set theory …

• Our dissatisfaction with Zermelo’s axiomatic in the context of the reality 
of the Continuum is rooted in the fundamental sequentiality of its 
constructions, the sequentiality which implies the sequential causality of 
all what could be said about transfinites. The advanced principles of 
transfinite set theory are designed to overcome this sequentiality 
obstruction, but they cannot eliminate it. 

• Ultimately, all modern transfinite set theory is represents only a well 
designed fantasy founded on Zermelo’s axiomatic, the fantasy which 
pushes to their limits the rich constructionist faculties of this system. All 
adaptations of these fantasies to even very modest aspects of the 
Continuum realities remain absolutely unsatisfactory.

• This is because, as we claim, the origins of the Continuum are outside all 
set-theoretical “explanations”.  
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… New foundations of set theory …

• More generally, the rich theory of large cardinals and beyond cannot be assumed on the 
basis of today’s criteria, for example, those of the new monograph of S. Hugh Woodin 
(2010): «The starting point for this monograph is the previously unknown connection 
between the Continuum Hypothesis and the saturation of the non-stationary ideal on 
$1; and the principle result of this monograph is the identification of a canonical model 
in which the Continuum Hypothesis is false.»

• This is because of the following Post-Gödelian Incompleteness thesis:
 Any conceptually sufficiently rich and logically/axiomatically sufficiently sophisticated 

mathematical system allows a huge, super-exponentially expanding “mathematical sci-
fi novelization” – the creation of a multitude of “mathematical sci-fi novels”, i.e., fully 
consistent mathematical theories with unlimitedly extending axiomatic bases – “forced 
themselves upon us”, as it were, not only “as being true”, according to Kurt Gödel, but 
being also intellectually compelling and esthetically attractive – and yet which do not 
have in their (more than) overwhelming majority, either at this juncture or whenever in 
future, any objectively verifiable mathematical and/or substantial extra-mathematical 
meaning outside the proper, self-absorbed scene of formal deductions inside the system 
in question.  
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… New foundations of set theory …

• Armed with these novel non-transfinite insights and arguments, we shall 
abandon for good both the framework of the classical set-theoretical reasoning 
firmly rooted, all protestations to the contrary notwithstanding, in the XIXth 
century’s reductionist paradigm of mechanistic causality and the closely related 
to it – in fact, implicitly underlying, even if postdating it – classical theory of 
computation, formalized by Alfonso Church and Alan Turing:

• «Only the first few levels of the cumulative hierarchy bear any resemblance to 
external reality. The rest are a huge extrapolation based on a crude model of 
abstract thought processes. Gödel himself comes close to admitting as much.» 
Stephen G. Simpson, 1988.

• «When modern set theory is applied to conventional mathematical problems, it 
has a disconcerting tendency to produce independence results rather than 
theorems in the usual sense. The resulting preoccupation with "consistency" 
rather than "truth" may be felt to give the subject an air of unreality.» Saharon 
Shelah, 1992.
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… New foundations of set theory …

The Continuum: analysis of traditional backgrounds.
  — In general, the insufficiency of both traditional foundations and motivated by it 

unnecessary complexity and bizarreness of mathematical theory is a well-known 
phenomenon in the history of our science. In some cases, such difficulties are 
resolved immediately or even before they become observed (Albert Einstein’s 
relativity theory). Sometimes, however, the difficulty persists, as in the case of 
Ptolemy astronomy: the main obstacle to a correct understanding could be rooted 
in metaphysical, if not religious perceptions.

  — Traditional understanding and usage of the Continuum comes from geometry, 
Euclidian and before.    

 — The abstractness and logical perfection of Euclidian axioms is coming as the 
result of many hundred years of observations and occupations with light and land 
and house measurements.

 — In other words, abstract Euclidian geometry and the related perception, 
definition, and treatment of the Continuum are physically founded and motivated 
abstractions.

27



… New foundations of set theory …

The Continuum: new foundations.
 — About hundred fifty years before Euclid (300 BC), the Greek philosopher Zeno (450 

BC) exposed the the cleavage between the discrete, or Pythagoreanas, as Ronald 
Jensen has chosen to call it (1995) and, continuous, or Newtonian according to Jensen,  
accounts of the world: Achilles and Tortoise paradox. Two thousand five hundred years 
later, the paradox remains actual: Henri Bergson 1959, Belaga 2009.  

 — However, it was only quantum mechanics that opened really new windows of 
opportunity in a better understanding of the Continuum:

   (1) on the one hand, the uncertainty principle of Werner Heisenberg, 1927, 
could be seen as a sort of physical re-interpretation of Zeno’s paradox;

   (2) on the other hand, the entaglement phenomenon involving light (or 
electrons), discovered by Albert Einstein, 1935, John Stewart Bell, 1964, and Alain 
Aspect, 1982, demonstrates that the Continuum of light is interiorly somehow “tightly 
interlaced”, so that the distance, even enormous, between its “entangled” points 
becomes unimportant;

   (3) this signifies that the Continuum is not a set, a “bag of points”, but that 
the points on it appear as the consequence of our activities.    
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… New foundations of set theory …

Zeno’s Achilles and Tortoise paradox:

  Speed of Achilles               
                                                                                                                                               

                    Speed of Tortoise
                         
  

                                                 

First jump of Achilles        First swim of Tortoise                                                          
                                                                                                                                                                                                  

                 
                                                                            Second jump of Achilles
                                                                                                                                                                   

                 Second swim of Tortoise 
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… New foundations of set theory

• Outline of the metaphysical foundations of a new axiomatic:   
 — Axiomatically, quantum mechanical Hilbertian space H is at least as important 

as the Continuum. It is, in fact, more fundamental and primary: human beings 
observe and act in their Hilbertian spaces, with the parameter field, theoretically, 
an arbitrary filed K, added in the process. 

 — The field of real numbers R epitomizes the Continuum. 
 — Thus, the primary notion of the new axiomatic, similar to the notion of line in 

Euclidian geometry, should be not the Continuum but a Hilbertian space, at the 
beginning — without a precise qualification of the accompanying field.

• The Continuum C (or the field R) appears as a numerical approximation to a 
complex reality of observations.

 — It is not a set in the original sense of traditional set theory. In particular, the 
power set axiom cannot be applied to it.

 — More generally, the power set operation acts on finite “sets” (this might be 
formulated as axiom). But its application to the countable set $ which gives an 
approximation to the Continuum, is a uniquely observable phenomenon.
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