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Abstract

In this article I examine two mathematical definitions of observational equiv-

alence, one proposed by Charlotte Werndl and based on manifest isomor-

phism, and the other based on Ornstein and Weiss’s ε-congruence. I argue,

for two related reasons, that neither can function as a purely mathemati-

cal definition of observational equivalence. First, each definition permits of

counterexamples; second, overcoming these counterexamples will introduce

non-mathematical premises about the systems in question. Accordingly, the

prospects for a broadly applicable and purely mathematical definition of ob-

servational equivalence are unpromising. Despite this critique, I suggest that

Werndl’s proposals are valuable because they clarify the distinction between

provable and unprovable elements in arguments for observational equivalence.
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1. Introduction

1.1. Background and Outline

Observational equivalence is a fraught topic in the philosophy of science,

and there is little agreement as to when—if at all—it holds between scientific

models. If the observational equivalence of distinct models could be reduced

to a provable mathematical relation, this would be an important development

in the epistemology of science. Charlotte Werndl has recently argued that

two such relations, to be introduced shortly, could be useful in mathematical

definitions of observational equivalence (Werndl, 2009a). In this paper I will

consider whether these two relations can be considered purely mathematical

definitions of observational equivalence, and argue that this is unlikely.

The definitions to be considered apply to deterministic dynamical sys-

tems and to stochastic processes, and so I will begin with a brief introduc-

tion to the relevant mathematics. Next, Werndl’s two proposed definitions

will be considered in turn. The first is based on manifest isomorphism and

is, to my knowledge, original to Werndl (2009a). The second is based on

ε-congruence, which was introduced in Ornstein and Weiss (1991). I will

present two main arguments for the position that neither of these relations

is an acceptable condition for observational equivalence. First, I will present

counterexamples which demonstrate that each definition can hold between

models which are easily distinguishable, and so each proposal is insufficient

as stated. Second, I will consider whether these counterexamples could be

avoided by making the definitions more restrictive. I will argue that, while

this is the case, these restrictions will take the form of physical hypotheses

about the systems in question. This undermines the idea of a purely math-
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ematical definition of observational equivalence, and limits any application

of such modified definitions to a given theoretical context. Accordingly, I

suggest that the prospects for a non-contextual, provable, and purely math-

ematical definition of observational equivalence are dim. In closing, I will

suggest that a strength of Werndl’s analysis is that it can deepen our under-

standing of observational equivalence by clarifying this distinction between

the provable and unprovable elements of our scientific judgements.

1.2. Deterministic Dynamical Systems

In the broadest terms, dynamical systems are mathematical representa-

tions of how values change over time.1 Often these values are given physical

interpretations, and the dynamical system can be said to model some part

of the real world. The framework here is that of ergodic theory, and as such

a measure-preserving dynamical system is a quadruple (M , ΣM , µ, T). M is

a non-empty set, called the phase space, whose members represent the pos-

sible states of the system. ΣM is a σ-algebra on M , which is a set of subsets

of M that must be nonempty, closed under complementation, closed under

countable unions, and must contain ∅ and M .

µ is the probability measure, a function whose domain is the elements

of ΣM and whose codomain is [0, 1]. Intuitively, µ gives the “size” of the

regions of M contained in ΣM , and we make the controversial but common

assumption here that µ(m) is the probability that the system will be found

in a region m of M . µ is defined such that µ(M) = 1, and is closed under

countable additions. Any set assigned measure zero is called a null set, but

1For an accessible introduction to measurable dynamical systems, see Silva (2008).
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note that a set of measure zero need not be small in any intuitive sense.

The transformation T moves points and regions of M to other points and

regions ofM , and is interpreted as the dynamical system’s evolution operator.

The present paper is concerned with discrete-time dynamical systems, and

so if a system’s state is initially m ∈ M , then T (m) is the new state of

the system after one time step. This process can be iterated, and T n(m)

denotes the state of the system after n time steps. Repeated iteration of T

generates a sequence of points called an orbit or trajectory of the system. The

types of dynamical systems considered here are both invertible and measure-

preserving, and so µ(T−1(m)) = µ(T (m)) for all m ∈ ΣM .

A deterministic system (M,ΣM , µ, T ) is called Bernoulli if it meets two

conditions. First, and most relevantly for our purposes here, there must ex-

ist a partition α of M such that µ(T nαi ∩ Tmαj) = µ(T nαi)µ(T
mαj), where

−∞ < m,n < ∞ and αi and αj range over all the atoms of α. Second, the

T iα must generate the full σ-algebra of M (Ornstein, 1970, 337). Setting

aside this second condition, which does not bear directly on the arguments

of this paper, note that the first condition states that the past and future

states of a Bernoulli system exhibit a kind of statistical independence. In a

well-defined sense Bernoulli systems are the most unpredictable of all deter-

ministic systems (Berkovitz et al., 2006, 677). The KS-entropy of a Bernoulli

system is defined as the following sum over its transition probabilities pi:

−
n∑

i=1

pi ln pi (1)

Ornstein famously demonstrated that Bernoulli systems are isomorphic if

and only if they have the same KS-entropy, and this result will be useful in

a later section (Ornstein, 1970).
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1.3. Stochastic Processes

Stochastic processes have irreducibly probabilistic state transitions, and

so their evolutions cannot be predicted with certainty even given precise

knowledge of their dynamics and current state. Despite stochasticity’s in-

tuitive connection to ‘chancy’ or indeterministic processes, the fact that a

physical system can be modelled by a stochastic process must not be taken

as proof that it is indeterministic in some ontological sense.2 Epistemic limi-

tations, for example, will sometimes require us to use stochastic models even

when we believe the systems under study are deterministic.

To define a stochastic process, let M̄ = {m1,m2, ...,mn} be a set of states

identified as possible outcomes. In analogy to the way we constructed a

deterministic system, let Ω be a phase space, ΣΩ be a σ-algebra, and ν be

a probability measure. Intuitively, Ω represents all possible sequences of

outcomes, and each ω ∈ Ω represents one possible sequence of outcomes.

Let us also define a set of functions Zt from Ω to M̄ , which we call random

variables. Zt is interpreted as the outcome of ω at time t. Since we are

concerned with discrete processes, the time index will range over the integers.

Our focus here is on stationary stochastic processes, for which the transition

probabilities are constant through time. Putting these pieces together, a

stochastic process is a one-parameter family of such random variables:

{Zt; t ∈ Z} (2)

2This connection is often made in the physics literature, eg: “Observe, however, that

the system is still considered deterministic: only the model becomes stochastic ... this is

quite different from the common approach that assumes the system must be stochastic

too” (Judd and Smith, 2004, 232).
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where, again, the values given by Z0, Z1, and so on represent outcomes of

the process at times t = 0, 1, . . . . As long as the transition probability from

at least one state to another has a probability that is strictly between 0 and

1 we call the stochastic process non-trivial (Doob, 1953, 46–47).

There are several different types of stochastic behaviour, and in this paper

we will be concerned particularly with Bernoulli and Markov processes. A

Markov process’ transition probabilities depend only on its current state,

and on none of its past states. Bernoulli processes, on the other hand, have

‘no memory,’ and their transition probabilities are state independent. As

they are stochastic, Bernoulli processes are conceptually distinct from the

deterministic Bernoulli systems defined in the previous section.

1.4. Finite-valued observation function

In practice, our observations are always limited to some finite precision,

and we can represent this mathematically with an observation function Φ.

Let the observation space MO represent the values we can actually observe

in practice. MO is often generated by applying a partition to the full phase

space M , which divides M up into non-overlapping regions called atoms (see

figure 1). Each atom of the partition αi is associated with an observable

value, and the observation function Φ takes each point of the phase space M

to the value of its corresponding atom. This is often referred to as a ‘coarse-

graining’ of the phase space. The size of the atoms will depend on factors

like the resolution of our instruments, and upgrading our instruments would

correspond to using a ‘finer-grained’ partition, but as long as we impose a

finite partition we can never know the system’s precise state. Here we assume

MO has finitely many elements, and Φ is called a finite-valued observation
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Figure 1: An example of a finite partition dividing M into the five atoms α1 through α5.

An observation function Φ would then associate an observable value with each αi.

function.

1.5. Deterministic Representation of a Stochastic Process

The last piece of technical apparatus needed is called the deterministic

representation of a stochastic process. This is a method for ‘replacing’ any

stochastic process {Zt; t ∈ Z} from (Ω,ΣΩ, ν) to (M̄,ΣM̄) with a determinis-

tic system. Recall that each ω ∈ Ω represents an infinite sequence of possible

outcomes of the stochastic process, which is called the realization of ω. The

idea is to set up a deterministic left-shift system whose phase space consists

of all possible realizations, and gives the same probabilities as the stochastic

process. Let the phase space M of the deterministic system be the set of all

bi-infinite sequences (...m−1m0m1...) with each mi a member of the outcome

space M̄ . Let the transformation T : M → M be the left shift, which bumps

each element over one place by moving mi to mi−1. Only the 0th element

m0 can be observed, and this is represented mathematically by observation

function Φ : M → M̄,Φ(m) = m0. As we keep applying the left shift T , dif-

ferent elements of the sequence will be moved to m0 and become visible when

we observe the system through Φ. The finite realizations of {Zt; t ∈ Z} are

cylinder sets, and the probability assigned to these realizations forms a pre-
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measure which may be extended to the measure µ on ΣM . (M,ΣM , µ, T,Φ)

as so constructed is a deterministic system which reproduces the given real-

izations and probabilities of the stochastic process {Zt; t ∈ Z}, and is called

its deterministic representation (Werndl, 2009a, 236).

2. Two Mathematical Definitions of Observational Equivalence

2.1. Manifest Isomorphism

If two probabilistic models assigned (nearly) the same probabilities to

the same outcomes, we might want to call them observationally equivalent;

conversely, if the models assigned very different probabilities to the same

outcomes, it would be unintuitive to call them observationally equivalent.

Charlotte Werndl has suggested that in some cases manifest isomorphism, a

special case of general measure-theoretic isomorphism, could provide a rig-

orous justification of this kind of probabilistic, evidence-based observational

equivalence (Werndl, 2009a, 234). After outlining manifest isomorphism it-

self, I will present counterexamples to show that models can be manifestly

isomorphic but not observationally equivalent, and observationally equivalent

without being manifestly isomorphic. A strengthened version of manifest iso-

morphism might avoid these difficulties, but I will argue that this strength

comes at the cost of introducing contextual and defeasible assumptions. Such

a strengthened proposal could help us gain a better understanding of obser-

vational equivalence, but would not be a purely mathematical and provable

relation.

Two measure-preserving systems (M1,ΣM1 , µ1, T1) and (M2,ΣM2 , µ2, T2)

are isomorphic if there is an invertible measure-preserving map φ between
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them which takes orbits of T1 to orbits of T2 ‘almost everywhere’—that is,

except perhaps for a set of points of measure zero (Ornstein and Weiss, 1991,

15–16). The intuitive idea is that the systems are isomorphic if each orbit

of T1 has a corresponding orbit of T2 with identical probabilistic features,

and the map φ tells us how to translate between them. To make the “almost

everywhere” requirement explicit, we consider two subsets of M1 and M2, M̂1

and M̂2 respectively, which differ from the full sets by a set of measure zero,

and then demand that φ take orbits of T1 to orbits of T2 everywhere on M̂1

and M̂2. The systems are called manifestly isomorphic if identical subsets

M̂1 and M̂2 can be found.

If M̂1 and M̂2 are identical, then the two systems inhabit the same phase

space, which means that they have the same possible outcomes. Since the

systems are isomorphic, each trajectory in one system will have an analogue

in the other, and corresponding bundles of trajectories will have the same

probabilities. This sounds like the intuitive position, outlined above, that

two systems could be observationally equivalent if they assigned the same

probabilities to the same outcomes.

Along these lines, Werndl proposes the following definition of observa-

tional equivalence between deterministic and stochastic models. Suppose

we want to determine whether a deterministic system (M,ΣM , µ, T ) and a

stochastic process {Zt; t ∈ Z} are observationally equivalent. Recall our as-

sumption that we can only view the deterministic system through the finite-

valued observation function Φ, which coarse-grains the phase space into a

finite number of observable values. If our deterministic system is of the right

type, specifically if it is totally ergodic, then applying a finite-valued observa-
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tion function produces a non-trivial stochastic process (Werndl, 2009a, 235).3

In effect, when we coarse-grain the phase space with Φ we can no longer pre-

dict the system’s next state with certainty, and this yields the non-trivial

stochastic process {Φ(T t); t ∈ Z}. Since manifest isomorphism is defined for

deterministic systems, we consider the deterministic representation of these

two stochastic processes. If the deterministic representation of the derived

stochastic process {Φ(T t); t ∈ Z} is manifestly isomorphic to the determin-

istic representation of the original stochastic process {Zt; t ∈ Z}, then they

have the same set of possible outcomes, and all trajectories in one have prob-

abilistically equivalent analogues in the other. According to the proposal

being entertained, this is exactly what it means for the process {Zt; t ∈ Z}

and the system (M,ΣM , µ, T ) (observed with Φ) to be observationally equiv-

alent.

Formally, Werndl defines manifest isomorphic observational equivalence

of a deterministic system (M,ΣM , µ, T ) and a stochastic process {Zt; t ∈ Z}

as follows:

The stationary stochastic process {Zt; t ∈ Z} and the measure-

preserving deterministic system (M,ΣM , µ, T ), observed with Φ,

are observationally equivalent if and only if the deterministic rep-

resentation of {Φ(T t); t ∈ Z} is manifestly isomorphic to the de-

terministic representation of {Zt; t ∈ Z}. (Werndl, 2009a, 236)

3Ameasure-preserving transformation T is totally ergodic if Tn is ergodic for all integers

n > 0 (Silva, 2008, 101). For more on ergodicity and its connection to randomness and

chaos in deterministic systems, see Berkovitz et al. (2006) and Werndl (2009b)).
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Deterministic
System

S : (M1,ΣM1 , µ1, T1)

��

Observe with Φ
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Process

{Φ(T t
1); t ∈ Z}
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P : {Zt; t ∈ Z}

��

Generate
Deterministic
Representation

Deterministic
System

(M1,ΣM1 , µ1, T1,Φ)
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(M2,ΣM2 , µ2, T2,Φ)
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Manifestly isomorphic? If so,
S observed with Φ and P are
observationally equivalent.

Figure 2: Schematic representation of Werndl’s proposed method of determining observa-

tional equivalence of deterministic and stochastic models.

A minor problem with manifest isomorphism is that the “if and only if”

wording in Werndl’s definition rules out many model pairs that yield arbitrar-

ily similar probabilistic predictions, and so might actually be observationally

equivalent. Consider a deterministic Bernoulli system S1 and a stochastic

Bernoulli process P1 with the same two outcomes, A and B. Let S1 be

shorthand for the system (M,ΣM , µ, T ) where M is the set of all bi-infinite

sequences of A and B, let ΣM be the σ-algebra generated by the appropriate

cylinder sets on M , and let µ be the appropriate probability measure on ΣM .

Similarly, let P1 be shorthand for {Zt; t ∈ Z}. Let the probabilities of the

outcomes (A,B) in any individual trial be as follows:

S1 : (0.5, 0.5) (3)

P1 : (0.50001, 0.49999) (4)

Although not identical, intuitively, in many experimental situations the evo-

lutions of S1 and P1 would seem to be observationally equivalent. However,

since S1 and P1 have different KS-entropies, they cannot be manifestly iso-

morphic, and thus cannot be observationally equivalent according to the

proposal under consideration. All this shows, of course, is that manifest
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isomorphism will not do as a necessary condition for observational equiva-

lence between these sorts of models. Since it might well be the case that it

was never intended as such, we can avoid this problem by taking manifest

isomorphism as a sufficient condition.

Yet, this modified proposal is also not sufficient for observational equiv-

alence. Consider S2 and P2, which are again two-outcome deterministic and

stochastic Bernoulli models respectively, but this time set their probabilities

as follows:

S2 : (0.1, 0.9) (5)

P2 : (0.9, 0.1) (6)

In order to satisfy the requirements for the proposed definition of obser-

vational equivalence, we need a stationary stochastic process {Zt; t ∈ Z}; a

measure-preserving deterministic system (M,ΣM , µ, T ) observed with Φ; and

the deterministic representation of {Φ(T t); t ∈ Z} to be manifestly isomor-

phic to the deterministic representation of {Zt; t ∈ Z}.

The first condition is met by P2 = {Zt; t ∈ Z}. The second condition is

met by S2 observed with Φ, since Werndl’s proposition guarantees that this

gives a stationary stochastic process {Φ(T t); t ∈ Z}. For the third condition

we need to show that the deterministic representations of {Φ(T t); t ∈ Z}

and {Zt; t ∈ Z} are manifestly isomorphic. By construction these models are

isomorphic since they are Bernoulli and have the same KS-entropy. Their

phase spaces also both consist of the set of all bi-infinite sequences of A

and B. Since they are isomorphic and share the same phase space, these

two deterministic representations are manifestly isomorphic and therefore

observationally equivalent according to the proposal under consideration.
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Yet, also by construction, S2 and P2 are intuitively not observationally

equivalent since they assign very different probabilities to the same sequences

of outcomes. S2 and P2 therefore stand in different relations to any set of

evidence. In fact, by altering the probabilities of S2 and P2, we can devise

manifestly isomorphic models which assign arbitrarily different probabilities

to any given observation. If observational equivalence for probabilistic models

is supposed to be something like assigning the same (or similar) probabilities

to the same outcome sequences, then manifest isomorphism is not well suited

to the task.

A likely response to this counterexample would be to add the condition

that two systems are observationally equivalent if the isomorphism map is

the identity function φ(x) = x.4 Since φ takes orbits of one system to orbits

of the other almost everywhere, if φ is the identity function then almost

all trajectories of the two deterministic representations are identical—and

identity should certainly be sufficient for indistinguishability.

However, even if we do accept this modified definition, the inference from

manifest isomorphism to observational equivalence requires non-mathematical

assumptions, and so manifest isomorphism cannot be a purely mathematical

definition of observational equivalence. For example, whether a deterministic

model S and stochastic model P are manifestly isomorphic will depend in

general on the specific finite-valued observation function Φ which is applied

to S. But there are no mathematical facts which compel the choice of a par-

ticular Φ, and the selection of an appropriate Φ will be based on contextual

4Thanks to (Name redacted for blind review) for pointing this out to me.
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and defeasible factors such as our confidence in our data, or physical theories

about our measurement apparatus and the system under consideration. If we

choose a strange or inappropriate Φ, such as the function Φ6 which takes all

elements of S’s phase space to the value 6, then S will be manifestly isomor-

phic to systems it is certainly not observationally equivalent to. Of course

Φ6 will be excluded from serious consideration in most circumstances, but

this rejection is not a mathematical necessity. Rather, the decision to reject

Φ6 will be based on physical theories and beliefs about the system S, such as

our expectation that it will deliver values other than 6. What this demon-

strates is that the question of whether a manifestly isomorphic pair S and

P are truly observationally equivalent depends on whether an appropriate Φ

has been applied, but the appropriateness of a given Φ will vary depending

on the circumstances, and there may not be a single correct—or at least

undisputed—way of resolving this matter. While the manifest isomorphism

of two models may be provable, the further inference to their observational

equivalence will be based on contextual and defeasible factors.

To summarize, a purely mathematical definition of observational equiva-

lence based on manifest isomorphism is in trouble if we accept the intuition

that observational equivalence for probabilistic models should be something

like assigning the same or similar probabilities to the same outcomes. Since

manifestly isomorphic models can have radically different probability dis-

tributions, this definition picks out many wrong systems, and since non-

manifestly isomorphic models can have arbitrarily similar probability distri-

butions, it excludes many right ones. These problems can be avoided by re-

stricting the claim to sufficiency and adding the requirement that φ(x) = x.
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However, while this modified manifest isomorphism is a provable relation,

the inference to observational equivalence will only be as reliable as the non-

mathematical assumptions supporting it.

2.2. ε-Congruence

In 1991 the mathematicians Ornstein and Weiss introduced ε-congruence,

which was presented as a well-defined notion of observational equivalence

(Ornstein and Weiss, 1991, 23). ε-congruence has been an influential con-

cept, and some have argued that, since it entails observational equivalence,

it has important implications for the metaphysical thesis of determinism

(Suppes, 1993; Suppes and de Barros, 1996). In this section I will begin by

outlining ε-congruence and the arguments purporting to establish it as obser-

vational equivalence. I will then argue that this view is untenable, since two

dynamical systems can be ε-congruent yet observationally distinguishable.

ε-congruence plus some extra conditions may be more feasible as a defini-

tion of observational equivalence, but, as with manifest isomorphism, these

additional conditions will generally be fallible physical hypotheses, and the

inference to observational equivalence will no longer be deductively certain.

Take two deterministic measure-preserving dynamical systems, associated

with transformations T1 and T2 respectively, that act on the same phase

space M . We introduce a metric, which is a function that gives the distance

between any two points in M . Recall that T1 and T2 are isomorphic if there

is a measure-preserving map φ which takes orbits of T1 to orbits of T2 almost

everywhere. ε-congruence requires that two systems be isomorphic but also

puts restrictions on their geometrical and statistical properties. Ornstein and

Weiss give the following definition of ε-congruence for two systems inhabiting
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the same phase space M :

We say that two measure-preserving [transformations] ... on

the same compact metric space M are [ε]-congruent if they are

isomorphic and the map φ from M to M that implements the

isomorphism moves the points in M by < [ε] except for a set of

points in M of measure < [ε].5 (Ornstein and Weiss, 1991, 22–3)

More generally, let ft and f̄t be flows on abstract measure spaces X and X̄,

and g and ḡ be functions from X and X̄ respectively to a metric space. Then

we say that (ft, X, g) and (f̄t, X̄, ḡ) are ε-congruent if there is an invertible

measure-preserving function φ such that φft(x) = f̄tφ(x) almost everywhere,

and, letting d denote distance in the metric space, we have d(g(x), ḡ(φx)) < ε

everywhere except for in a set of measure less than ε (Ornstein and Weiss,

1991, 23).

Given the time-average interpretation of probability, the second part of

this definition stipulates, roughly, that corresponding orbits are allowed to

have at most distance ε between them ‘most of the time,’ but ‘ε of the time’

they are allowed to be farther apart. ε is a parameter that ranges between

zero and one, and the smaller ε is the more alike the two flows must be. If we

set ε small but not too small, then we get an interesting notion of close-but-

not-too-close: the corresponding trajectories of the two system are within

some small distance ε of each other most of the time, but a proportionately

small ε of the time they are allowed to differ by more.

Ornstein and Weiss thought this looked suggestive. They wrote:

5Notation changed for consistency.
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If we agree that we cannot distinguish points in M that have

distance < [ε], and if we are willing to ignore events of probability

less than [ε] (experimental error), then [ε]-congruent flows are

indistinguishable. (Ornstein and Weiss, 1991, 23)

ε-congruence does seem promising as a mathematical definition of observa-

tional equivalence. For example, two Bernoulli systems with radically differ-

ent probability distributions—such as those that gave rise to the counterex-

amples in section 2.1—could scarcely be ε-congruent for any small value of

ε, since for the most part their trajectories will not be close to each other.

ε-congruence has attracted philosophical attention due to a theorem,

proved by Ornstein and Weiss, which establishes that any deterministic

Bernoulli system is, for all ε > 0, ε-congruent to some (generally ε-dependent)

stochastic process (Ornstein and Weiss, 1991, 39). If to be ε-congruent is to

be observationally equivalent, and if we accept Ornstein and Weiss’s inter-

pretation of ε-congruence, then this theorem entails that there are classical

deterministic models which are indistinguishable from stochastic models at

all observation levels.6

The ε-congruence theorem concerns deterministic Bernoulli systems and

stochastic semi-Markov processes. A Bernoulli system, recall, is a determin-

istic measure-preserving system whose behaviour is chaotic and extremely

unpredictable. A semi-Markov process is a stochastic process which remains

in one of a finite number of states for a period of time and then jumps to

6Ornstein and Weiss’s result has been philosophically influential, but other authors

have argued for similar conclusions (e.g. Werndl (2011)).
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a new state, where both the time between jumps and the transition prob-

abilities are state dependent. Since the process is stochastic, the result of

this jump cannot be predicted with certainty. Ornstein and Weiss’s theorem

proves that every deterministic Bernoulli system on a manifold M is, for ev-

ery ε > 0, ε-congruent to some stochastic semi-Markov process on M , where

this stochastic process will in general depend on the value of ε (Ornstein and

Weiss, 1991, 39).

We might expect deterministic and stochastic models to behave very dif-

ferently, yet the ε-congruence result appears to imply arbitrarily similar be-

haviour in some cases. This is surprising, to say the least, and Ornstein and

Weiss suggested the following interpretation:

This may mean that there is no philosophical distinction be-

tween processes governed by roulette wheels and processes gov-

erned by Newton’s laws ... we are comparing, in a strong sense,

Newton’s laws and coin flipping. (Ornstein and Weiss, 1991, 39)

Ornstein and Weiss did not develop this idea any further, but several philoso-

phers have explored its implications. Patrick Suppes accepted that ε-congruence

implies observational equivalence, and argued that this leads to a strong form

of underdetermination wherein any thesis concerning the deterministic or in-

deterministic nature of the world must necessarily “transcend experience”

(Suppes, 1993; Suppes and de Barros, 1996). In a reply to Suppes, John

Winnie conceded that while the ε-congruence results show that determinis-

tic Bernoulli and stochastic Markov models are observationally equivalent,

there are inductive reasons for preferring the deterministic model, since it

“outstrips any single Markov model in its conceptual and predictive power”
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(Winnie, 1998, 317). Entering this debate here would take us far afield, but

both authors accept as a starting premise that ε-congruence implies obser-

vational equivalence.

It is surprising, given the potentially far-reaching ramifications of Sup-

pes and Winnie’s debate, that very little attention has been given to the

question of whether ε-congruence is in fact a sufficient condition for obser-

vational equivalence. In the remainder of this section I will consider the two

main justifications of this claim in the literature, the first from Ornstein and

Weiss’s original paper, and a more recent and thorough treatment by Char-

lotte Werndl. I will argue that these justifications are problematic, and that

ε-congruence, like manifest isomorphism, is susceptible to counterexamples

which show that it cannot be sufficient for observational equivalence. I will

close by suggesting that ε-congruence can be made more adequate by im-

posing additional conditions; however, as with manifest isomorphism, these

conditions will in general be based on defeasible physical hypotheses.

To begin, Ornstein and Weiss’s interpretation of ε-congruence risks in-

appropriately conflating an experiment’s precision with its accuracy. Their

interpretation, recall, is that if we cannot distinguish measurements within

ε of each other, and if we ignore events of probability less than ε, then ε-

congruence is observational equivalence. However, using the same parameter

ε to quantify both precision and accuracy is difficult to motivate since we

expect these factors to vary independently, and sometimes to differ quite

greatly. If we use only one variable to account for both types of inexactitude,

we seem committed to accepting greater uncertainty in each measurement if

we eliminate more measurements as outliers. This will often be unwarranted.
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If we use a precision instrument in a noisy environment, each measurement

may be quite exact even if we choose to disregard a great many measurements

as due to external noise factors. A delicate acoustical experiment, for exam-

ple, will detect a great deal of outliers if it is located in a bowling alley; but

even if we ignore a large proportion ε of its results, it would be unwarranted

to consider each individual measurement correspondingly inexact. In cases

where precision and accuracy differ, Ornstein and Weiss’s interpretation of

ε-congruence seems not to apply.

Werndl’s explication of ε-congruence overcomes this difficulty by making

ε dependent on two other quantities. First, she says, let ε1 be the minimum

distance at which states of the deterministic system can be distinguished.

Then, note that “in practice, for sufficiently small ε2, one will not be able

to observe differences in probabilities of less than ε2” (Werndl, 2009a, 238).

Presumably ε1 and ε2 will be determined on an experiment-by-experiment

basis, depending on the situation at hand. Now let ε be smaller than ε1 and

ε2. Then, claims Werndl, two models “give the same predictions at obser-

vation level ε” if their solutions can be put into one-to-one correspondence

in such a way that at each time point they are less than ε apart, except for

a set whose probability is smaller than ε. In other words, ε-congruence is

indistinguishability at observation level ε.

Werndl’s finer-grained approach is an improvement, but problems still

arise when we try to set ε based one ε1 and ε2. If we set ε greater than

both ε1 and ε2, the ε-congruence requirement will be less restrictive than the

most restrictive condition imposed by the details of the experiment. This can

result in systems being ε-congruent, and thus mislabelled as observationally
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equivalent, even if they are quite clearly discriminable. Werndl prudently

guards against this, and advises us instead to choose ε smaller than both

ε1 and ε2. Any variations between the two models must then occur below

both thresholds of detectability. However, ε is more restrictive than the least

restrictive condition imposed by the actual experiment, and consequently

this condition will fail to identify some intuitively indistinguishable systems

as observationally equivalent. Werndl’s conservative choice of ε will avoid

misclassifying distinguishable systems as observationally equivalent, but only

at the cost of denying ε-congruence the status of a necessary condition for

observational equivalence.

It might be objected that picking on ε’s relation to ε1 and ε2 is unfair,

since arguably these finer-grained quantities underlie the mathematical dis-

cussion, but using a coarser-grained ε makes the proofs easier. Furthermore,

in the specific case of the Orenstein-Weiss theorem, setting ε = min(ε1, ε2)

may actually be an acceptable heuristic.7 This is fine and well, but the

present concern is interpreting this move in the light of a general notion of

observational equivalence. If ε-congruence based on Werndl’s finer-grained

ε1 and ε2 is not necessary for observational equivalence, then in order to be

generally applicable it must at least be sufficient. Unfortunately, as I will

now argue, this is not the case.

ε-congruence cannot be a sufficient condition for observational equiva-

lence because the set of points where two systems differ by more than ε

(hereafter called the ε-set, for brevity’s sake) is restricted only in its mea-

7Thanks to (Name redacted for blind review) for stressing this point.
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sure, and not in its distribution. This means that two ε-congruent models

can have ε-sets that differ in empirically meaningful ways. If the trajectories

of two systems always remain within ε of each other they will be indistin-

guishable, and so observationally equivalent. If two systems do have an ε-set,

then their trajectories differ at some points by more than ε, but we can still

call them observationally equivalent if we write these variations off as ran-

dom error. But if the trajectories of two systems differ at extremely regular

intervals by extremely large amounts, then it is hard to see how they could

be observationally equivalent. Two audio recordings of gently hissing white

noise may reasonably be regarded as indistinguishable even if they are not

identical. However, if one recording also includes the distinct and regular

ticking of a clock while the other does not, any claim of their observational

equivalence becomes very suspect.

This intuitive argument can be made more precise, and I will now con-

struct two systems S1 and S2 that are distinguishable despite meeting all

the technical requirements for ε-congruence. Let M be the section of the

Cartesian plane (0, 1] × (0, 1] with opposite edges identified, let ΣM be all

Lebesgue-measurable subsets of M , and let µ be the Lebesgue measure. For

simplicity, S1 is a very boring system whose trajectories are straight lines

moving constantly to the right. The trajectories of S2 also move constantly

rightward, but are permitted to deviate smoothly from straight lines. Let all

the trajectories of S2 be the same but shifted up or down on the y-axis, so

the phase space of S2 is filled with a stack of similar trajectories. Let S1 be

the system (M,ΣM , µ, T1) with horizontal trajectories given by the following
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Figure 3: The bump function x = e
− 1

1−x2 .

transformation T1:

T1(x, y) = ((x+ τ) mod 1, y) (7)

where τ is a parameter that determines the ‘speed’ with which trajectories

of S1 move across the phase space. Let P (x) be a perturbing function.

Many options present themselves, but here we will use a bump function, a

continuous curve with continuous derivatives of all orders. A standard bump

function is defined as follows:

B(x) =

e
− 1

1−x2 if |x| < 1

0 otherwise.

(8)

In appearance B(x) is reminiscent of a Gaussian curve, except it smoothly

approaches and meets the line y = 0 at x = ±1 (see fig. 3). Here we will

use the custom bump function P (x). Since ε1 and ε2 can be quite different,

to generate a counterexample we need two systems whose ε-set has measure

smaller than the minimum of ε1 and ε2, but whose largest deviations are

greater than the detectability threshold ε1. Following Werndl, we choose a

conservative value for ε, and set ε = min(ε1, ε2). P (x) is then defined as
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Figure 4: Graph of P (x) when ε = 0.4 and ε1 = 0.5. P (x) is below the dotted line y = 0.4

most of the time, but climbs above the dashed threshold of detectability y = 0.5 on an

interval of width strictly less than 0.4.

follows:

P (x) =

ε(1− ε) + ε1e

(
1− ε2

ε2−4(x−0.5)2

)
if |x− 0.5| < ε

2
,

ε(1− ε) otherwise.

(9)

P (x) provides a ‘bump’ of width ε and height ε(1− ε) + ε1 centred around

x = 0.5. Outside this interval the curve connects smoothly to a horizontal

line of height ε(1− ε). We can generate a system S2, given by the quadruple

(M,ΣM , µ, T2), by perturbing the transformation operator of S1 with P (x)

as follows:

T2(x, y) = ((x+ τ) mod 1, (y − P (x) + P ((x+ τ) mod 1)) mod 1) (10)

Trajectories of S1 are mapped to trajectories of S2 by the following φ:

φ(x, y) = (x, (y + P (x)) mod 1) (11)

Conversely, φ−1 takes trajectories of S2 back to S1:

φ−1(x, y) = (x, (y − P (x)) mod 1) (12)
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The determinants of the Jacobians of φ(x, y) and its inverse are 1 and do

not depend on x, y, ε1, or ε2, so φ(x, y) and its inverse are measure-preserving

at all points and for all values of ε1 and ε2. S1 and S2 are therefore isomorphic.

To establish ε-congruence, we need to show that φ(x, y) moves trajec-

tories by less than ε, except for in a region of measure less than ε, where

ε = min(ε1, ε2). Since the situation will be the same for all trajectories

modulo a vertical translation in the phase space, consider the trajectory of

S1 that moves uniformly across the phase space along the line y = 0. The

corresponding trajectory of S2 spends most of its time moving along the hor-

izontal line y = ε(1 − ε), and so lies within ε of S1. Within the bump of

width ε, the trajectory increases to a height of ε(1− ε)+ ε1, which is greater

than ε1, and so represents a detectable deviation from the trajectory of S1.

Since the bump began slightly below y = ε, the portion of the bump above

this line, which is this trajectory’s contribution to the ε-set, will be of width

strictly less than ε. Similar considerations apply for all trajectories, and so

the total ε-set has measure less than ε. Therefore, no matter which of ε1 and

ε2 is smaller, S1 and S2 are isomorphic, inhabit the same phase space, and

the measure-preserving map φ(x, y) that takes trajectories of S1 to trajecto-

ries of S2 moves orbits by less than ε except for a set of measure less than

ε. S1 and S2 are therefore ε-congruent, but have a regular and detectable

difference.

The function P (x) is not terribly exciting as it stands, but it can be

modified to generate a more pathological perturbation P ∗(x) (see fig 5).

First, the size of the bump can be made arbitrarily large by increasing the

coefficient of the exponential term. ε1 was chosen here because it ensures
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Figure 5: Graph of P ∗(x) with five peaks, again with ε = 0.4 (dotted line) and ε1 = 0.5

(dashed line).

detectability and seems to fit with the general spirit of the proposal, but

the systems will remain ε-congruent under a perturbation by an arbitrarily

large bump. Second, while P (x) consists of only one bump, the number of

bumps in P ∗(x) can be made an arbitrarily large number n by compressing

the original function P (x) to a width of 1/n and repeating it n times. Since

the width of the observable portion of the original bump is less than ε, the

width of the observable portions of each shrunken bump will be less than

ε/n, and the combined width of all n observable bumps will still be less than

ε. If we perturb S1 with such a P ∗(x), the result will be an ε-congruent S2

with arbitrarily many arbitrarily large deviations.8

Therefore no matter which of ε1 or ε2 is smaller, two systems can be ε-

congruent and yet differ in empirically meaningful, observationally detectable

ways. Since in both cases the trajectories of S2 are those of S1 perturbed

8Although not proved here, this result should generalize to an arbitrary S1, further

problematizing any contextless interpretation of the ε-congruence of two mathematical

models.
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by a regular function, the trajectories of S2 will vary measurably from those

of S1 at regular intervals. Since both the number and size of the bumps

in the perturbing function P ∗(x) can be made arbitrarily large, the number

and size of the of detectable variations between S1 and S2 can be made

arbitrarily large. It is highly counter intuitive to say that, in the absence of

any other considerations, two mathematical models could be observationally

equivalent when they diverge detectably and systematically. Some contextual

or theoretical explanation would need to be given for why these observations

differ systematically yet still count as observationally equivalent, but any

explanation will necessarily go beyond the mathematics. The conclusion is

that ε-congruence alone cannot be sufficient for observational equivalence,

since it will, at least in some cases, need to be supplemented with a physical

theory, model, or hypothesis about the systems in question.

Perhaps for a sufficiently small ε we can expect not to observe any mem-

bers of the ε-set, and so it can be safely ignored. However, this cannot be

guaranteed. In many cases, and particularly in particle physics, the num-

ber of measurements performed may be quite enormous, making it highly

probable that a member of the ε-set will be observed. Furthermore, these

improbable outlying events may be important. This is, in fact, often the

point, and many experiments are designed specifically to detect such low-

frequency events.

Perhaps ε-congruence could be strengthened with the requirement that

the ε-set be distributed randomly in some sense, to match our expectations

about experimental noise. Indeed, since the systems considered by Ornstein

and Weiss are Bernoulli, and therefore strongly chaotic, it already seems
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implausible, although not impossible, that the outliers in the ε-set will be

distributed irregularly. This may be feasible, but there are two possible prob-

lems. First, an explicit randomness requirement on the ε-set would compli-

cate the mathematics, and there is no guarantee that any of the interesting

results about deterministic and stochastic processes—which, recall, are what

sparked philosophical interest in the subject in the first place—would still

hold with this modified definition. Second, there are many different defini-

tions of randomness, and the justification of any choice would likely have to

take into account the theoretical characteristics of the system and the exper-

imental context at hand. This would introduce a large amount of context

sensitivity into the definition, once again eliminating its purely mathematical

and general nature.

Given these considerations, the prospects for using ε-congruence as a

purely mathematical definition of observational equivalence seem dim. Strict

ε-congruence permits of counterexamples, and resolving these counterexam-

ples will introduce non-mathematical considerations. The mere ε-congruence

of two models therefore does not entail their observational equivalence. For

ε-congruence to be an adequate criterion of observational equivalence, it must

be supplemented by hypotheses about the physical systems under study, the

assumptions embedded in our models, and the kinds of data discrepancies

we are willing to attribute to chance error events.

3. Conclusion

Deterministic and stochastic models can be manifestly isomorphic and

ε-congruent, but these relations alone are not adequate formalizations of ob-
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servational equivalence since the strict mathematical requirements of each

can be met by distinguishable systems. Nor can either relation easily be

made into purely mathematical sufficient conditions, since natural attempts

to strengthen them will introduce non-mathematical physical hypotheses.

Thus, it seems that whether two models are observationally equivalent or

not will be a context-sensitive judgement based on physical hypotheses, and

neither manifest isomorphism nor ε-congruence can deal with these sorts of

experimental vagaries in a strict, axiomatic way. Plausibly, any purely algo-

rithmic approach to observational equivalence will risk ignoring contextual

subtleties.

This only goes to show that Werndl’s purely mathematical definitions are

incomplete, not that they are wrong, and indeed I believe manifest isomor-

phism and ε-congruence can guide us towards a more nuanced understanding

of observational equivalence between certain types of mathematical models.

By making it clear which parts of our arguments for observational equiv-

alence are provable, Werndl’s definitions can likewise help us to determine

which parts are not. Armed with this knowledge, anyone wishing to advance,

or to dispute, an argument for observational equivalence on the basis of man-

ifest isomorphism or ε-congruence can do so in a more productive way. If

these arguments also contain non-mathematical components, then our judge-

ments of observational equivalence will only be as strong as the theoretical

assumptions underpinning them; but this seems appropriate for a scientific

concept.
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