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ABSTRACT 

Cancer research is experiencing ‘paradigm instability’, since there are two rival theories of carcinogenesis 

which confront themselves, namely the Somatic Mutation Theory and the Tissue Organization Field 

Theory. Despite this theoretical uncertainty, a huge quantity of data is available thanks to the 

improvement of genome sequencing techniques. Some authors think that the development of new 

statistical tools will be able to overcome the lack of a shared theoretical perspective on cancer by 

amalgamating as many data as possible. We think instead that a deeper understanding of cancer can be 

achieved by means of more theoretical work, rather than by merely accumulating more data. To support 

our thesis, we introduce the analytic view of theory development, which rests on the concept of 

plausibility, and make clear in what sense plausibility and probability are distinct concepts. Then, the 

concept of plausibility is used to point out the ineliminable role played by the epistemic subject in the 

development of statistical tools and in the process of theory assessment. We then move to address a 

central issue in cancer research, namely the relevance of computational tools developed by 

bioinformaticists to detect driver mutations in the debate between the two main rival theories of 

carcinogenesis. Finally, we briefly extend our considerations on the role that plausibility plays in 

evidence amalgamation from cancer research to the more general issue of the divergences between 

frequentists and Bayesians in the philosophy of medicine and statistics. We argue that taking into account 

plausibility-based considerations can lead to clarify some epistemological shortcomings that afflict both 

these perspectives. 
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1. Introduction 

 

Cancer research is experiencing what has been defined a period of ‘paradigm instability’ (Baker 

2014), since there are two main rival theories of carcinogenesis which confront themselves, 

namely the Somatic Mutation Theory (SMT) and the Tissue Organization Field Theory (TOFT) 

(see below, section 3.1). Despite this theoretical uncertainty, the huge quantity of data that 

became available thanks to the improvement of genome sequencing techniques led to the 

development of new statistical tools. These tools, some authors think, will be able to overcome 

the lack of a shared theoretical perspective on cancer by amalgamating as many data as possible 

in order to give us the ‘right’ answers as outputs.  

We think instead that a deeper scientific understanding of cancer may come by means of 

more theoretical work, rather than by merely accumulating more data to be statistically 

analyzed. Indeed, the main thesis of this article is that the role played by plausibility-based 

considerations in the development of statistical models across scientific disciplines has been 

underestimated or even neglected. This led to underappreciate the ineliminable contribution of 

the epistemic subject to the development of statistical tools, and to the process of evidence 

amalgamation. Cancer research is a clear example of it. In this field, the relations between rival 

theoretical hypotheses on carcinogenesis and the recent development of sophisticated statistical 

tools form an intricated tangle. We think that our proposal can be fruitfully tested in such a 

context, and that it can contribute to identify some of the epistemological shortcomings that 

afflict the debate in this field. 

This article is divided into three parts. In the first part (section 2), we draw some 

consequences from the usually underappreciated platitude that statistics is developed in 

precisely the same way in which all other scientific disciplines are developed (section 2.1). We 

consider some criticisms that have recently been moved to the so-called big data revolution to 

point out that the relevance of the knowing subject has not to be overlooked in accounting for 

statistics from an epistemological point of view (section 2.2). Then, in order to better illustrate 

the role played by the epistemic subject in the context of statistical research, the analytic view of 

scientific theories development is presented (section 2.3). The concept of plausibility is 

especially analyzed, in order to make clear the difference between that concept and the concept 

of probability (section 2.4, 2.5, and 2.6), and to disentangle the concept of subjectivity from that 

of arbitrariness (section 2.7). A brief digression on the relation between the concept of 
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probability and the concept of randomness concludes this part (section 2.8). In the second part 

of the paper (section 3), after having briefly illustrated the main rival conceptions of 

carcinogenesis (section 3.1), the notion of personalized cancer medicine (section 3.2), and the 

concept of driver mutations (section 3.3), we address some issues in cancer research to test the 

adequacy and fertility of the theoretical framework presented in the first part. More precisely, 

we focus on some of the computational tools that have been developed by bioinformaticists for 

searching driver mutations in cancer specimens (sections 3.4. and 3.5), in order to highlight the 

role played by plausibility-based considerations in the development of statistical tools and in the 

assessment of theoretical hypotheses (section 3.6). Finally, in the third part, we put the 

conclusions that can be drawn from our analysis in a broader context (section 4). We think that 

our proposal may be of use to address a more general issue, which characterizes both the 

philosophy of medicine and the philosophy of statistics, and which is also crucial for the 

epistemological investigations of cancer research, namely the confrontation between 

frequentists and Bayesians on what is the more adequate way to conceive of evidence 

amalgamation (sections 4.1, 4.2, and 4.3). 

 

 

2. Statistics and Uncertainty  

 

Several definitions of statistics can be found in the philosophical literature (see for a survey 

Bandyopadhyay, Forster 2011; Romeijn 2017). One of the most interesting way to conceive of 

statistics is the one advocated, among others, by Lindley (2000), according to which statistics is 

the study of uncertainty and statisticians are experts in handling uncertainty, who “developed 

tools, like standard errors and significance levels, that measure the uncertainties that we might 

reasonably feel” (Lindley 2000, p. 294). 

Although it may appear very general and quite uninformative, this way of defining statistics 

points out with immediacy the reason why statistics is nowadays so central in almost every 

science. Indeed, since scientific knowledge is usually regarded by scientists and philosophers as 

fallible, and so not certain, dealing with uncertainty in order to develop fallible knowledge is 

what scientists routinely do. Computational devices that may be of help in such an enterprise, as 

those developed by statisticians, are obviously deemed to be of great value and widely adopted 

by researchers and practitioners of many fields. 

But, since uncertainty is related to fallibility, this way of defining statistics underlines also 

the fact that statistics has to face the same epistemological difficulties that are often thought to 

be of exclusively concern of other scientific disciplines. Indeed, there is a widespread 

perspective that takes “as given the statistical models we impose on data, and treats the 
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estimated parameters of such models as direct mirrors of reality rather than as highly filtered 

and potentially distorted views” (Goodman 2001, p. 295). Contrary to this perspective, statistics 

itself provides fallible knowledge, since it is the result of human efforts aimed at knowing and 

managing the world, as any other scientific discipline is. So, it cannot be regarded as a mere 

repository of reliable mathematical tools from which researchers of other disciplines can safely 

choose the most adequate tool in order to produce genuine and objective knowledge in their 

fields.  

 

 

2.1. Statistics and the Method of Science 

 

In order to stress the analogies between statistics and other scientific disciplines, it may be of 

use to consider also the definition of statistics given by Romeijn, according to which statistics 

“investigates and develops specific methods for evaluating hypotheses in the light of empirical 

facts” (Romeijn 2017). In this view, a method is called statistical “if it relates facts and 

hypotheses of a particular kind: the empirical facts must be codified and structured into data 

sets, and the hypotheses must be formulated in terms of probability distributions over possible 

data sets” (Ibidem). It is important to underline that in this line of reasoning statistics is not a 

merely mathematical discipline, since it concerns the relationship between facts and hypotheses 

which (usually at least) are not mathematical in character. On the other hand, it is undeniable 

that statistics is a throughout mathematized discipline, since it relies on a specific branch of 

mathematics, namely probability theory, in order to estimate whether a given hypothesis is 

confirmed by the facts. This makes the commonness between statistics and other scientific 

disciplines even more transparent: every scientific discipline develops models, which rely in 

some way or another on mathematics, in order to better understand its object of inquiry. 

Statisticians, relying on probability theory, develop models to better understand how hypotheses 

relate to facts in uncertain contexts, models that in their turn can be used to construct models in 

other disciplines. 

To sum up: there are two crucial steps that have to be performed in order to develop 

statistical models that may help us in dealing with uncertainty: (1) empirical facts must be 

codified into data sets, and (2) hypotheses must be formulated in terms of probability 

distributions. These two steps are what makes mathematics applicable to worldly facts in the 

context of statistical research. In what follows, we will argue that these steps involve the human 

knowing subject in an ineliminable way, in the sense that these steps cannot be made human-

independent in any relevant sense.  
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2.2. The Big Data Approach 

 

To better see this point, i.e. that model-building cannot be made (or regarded as) human-

independent, even in the case of statistics, or in the case of those disciplines whose models 

strongly rely on statistics, consider the so-called big data revolution. Supporters of this 

revolution usually maintain the view that constructing theories is an unnecessary effort, since it 

may be replaced by big data analysis. For example, according to Anderson, we are at “the end of 

theory,” because “the data deluge makes the scientific method obsolete” (Anderson 2008). The 

“new availability of huge amounts of data, along with the statistical tools to crunch these 

numbers, offers a whole new way of understanding the world” (Ibidem). In this perspective, we 

“can analyze the data without hypotheses about what it might show. We can throw the numbers 

into the biggest computing clusters the world has ever seen and let statistical algorithms find 

pattern where science cannot” (Ibidem). So, Anderson concludes, the old “approach to science – 

hypothesize, model, test – is becoming obsolete” (Ibidem). 

There are at least two main problems with this approach.1 The first problem is how to 

discriminate among the huge number of correlations that data analysis may pick out in the vast 

sea of available data. In other words, the question is: How can we evaluate the significance of 

those correlations? Even granting that statistical algorithms may reliably find patterns or 

correlations, this does not guarantee that those patterns or correlations are significant. If we do 

not possess some theory to identify a criterion to discriminate among those correlations, we will 

be unable to determine whether or not the finding of any new correlation represents a genuine 

instance of scientific progress, i.e. an ampliation of our knowledge. This is the problem of 

spurious correlations.2 And it is a big problem for big data supporters. Indeed, they claim that 

the more data we have, the more theory is unnecessary to produce new knowledge. But it has 

been demonstrated in a paper recently published by Calude and Longo (2016b), that the more 

data we have, the more spurious correlations we may find among our data. And so, the more we 

                                                 
1 For a survey of the challenges that the big data approach has to face, see Fan, Han, Liu (2014). 

2 On what spurious correlations are, cf., e.g., Dellsén 2016, p. 78: “Suppose we have two variables V1 

and V2 that are known on independent grounds to be unrelated, causally and nomologically. Let us 

further suppose that we learn, i.e. come to know, that there is some specific statistical correlation between 

V1 and V2 – e.g. such that a greater value for V1 is correlated with a greater value for V2.” The latter 

correlation represents an instance of spurious correlation, i.e. a correlation between two variables which is 

not due to any real relation between them. Such a correlation does not convey any information on the 

correlated variables, nor on some other relevant aspect of the world, so it is useless, irrelevant, or worse, it 

may be lead us astray, if we do not correctly identify it as spurious. 
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need a theory to discriminate the significant correlations among all the correlations individuated 

by our algorithms. In a nutshell, they base their argument, among other things, on Ramsey 

theory, i.e. the branch of combinatorics which investigates the conditions under which order 

must appear. If we restrict our attention to mathematical series, more precisely to arithmetic 

progressions, Ramsey theory investigates the conditions under which an arithmetic progression 

must appear in a string of numbers. 

Calude’s and Longo’s analysis hinges on Van der Waerden’s theorem, according to which 

for any “positive integers k and c there is a positive integer γ such that every string, made out of 

c digits or colours, of length more than γ contains an arithmetic progression with k occurrences 

of the same digit or colour, i.e. a monochromatic arithmetic progression of length k” (Calude, 

Longo 2016b, p. 11). 

For example, if we take a binary string of x digits, digits can be either ‘0’ or ‘1’. Take ‘0’ and 

‘1’ to be the possible colours of those x digits, i.e. c = 2. From Ramsey theory, we know that 

there will be a number γ such that, if x is bigger than γ, that string will contain an arithmetic 

progression of length k such that all k digits of that progression are of the same colour, i.e. either 

all the k digits are ‘0’ or all the k digits are ‘1’.3 

Consider now a database D, where some kind of acquired information about some 

phenomenon P is stored. We want to investigate the correlations among the data stored in D in 

order to increase our knowledge of P:  

 

In full generality, we may consider that a correlation of variables in D is a set B of size b whose 

sets of n elements form the correlation […]. In other words, when a correlation function […] 

selects a set of n-sets, whose elements form a set of cardinality b, then they become correlated. 

Thus, the process of selection may be viewed as a colouring of the chosen set of b elements with 

the same colour—out of c possible ones. […]. Then Ramsey theorem shows that, given any 

correlation function and any b, n and c, there always exists a large enough number γ such that any 

                                                 
3 In this case (i.e. c = 2), if we have k = 3, then γ = 8. To see this, consider the following sequence of 

binary digits of length 8: 01100110. This string contains no arithmetic progression of length 3, because 

the positions 1, 4, 5, 8 (which are all ‘0’) and 2, 3, 6, 7 (which are all ‘1’) do not contain an arithmetic 

progression of length 3. However, if we add just one bit more to that string (i.e. if we add either ‘1’ or 

‘0’), we obtain the following two strings: 011001100 and 011001101. Both these strings contain a 

monochromatic arithmetic progression of length 3. Consider 011001100: positions 1, 5, 9 are all ‘0’. 

Consider 011001101: positions 3, 6, 9 are all ‘1’. More generally, it can be proved that if a string contains 

more than 8 digits, it will contain a monochromatic arithmetic progression of length 3. 
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set A of size greater than γ contains a set B of size b whose subsets of n elements are all correlated. 

(Calude, Longo 2016b, p. 12).4 

 

Calude and Longo prove that the larger is D, the more spurious correlations will be found in 

it. In other words, when our stock of available data increases, most of the correlations that we 

can identify in it are spurious. Since large databases have to contain arbitrary correlations, 

owing to the size of data, not to the nature of data, the larger the databases are, the more the 

correlations in such databases are spurious. Thus, the more data we have, the more difficult is to 

extract meaningful knowledge from them.5 

The second problem that afflicts the ‘big data revolution’ view is that it overlooks the fact 

that data are not abstracted from the world in neutral and objective ways. There is always “a 

theory or hypothesis which guides observation and experiment, and generally data-finding” 

(Cellucci forthcoming, section 1). The big data revolution view overlooks also the fact that the 

very algorithms used for data analysis are based on some theory or another. Theories and 

previous knowledge are in some sense incorporated in the design of algorithms when they are 

developed. Thus, “it is illusory to think that statistical strategies may automatically discover 

insights without presupposing any theory” (Ibidem). 

 

 

2.3. Statistics and the Logic of Discovery 

 

Let us now briefly address the issue of the identity of the method used in statistics and in other 

sciences. At this regard, we think that it is important to untangle some issues that are usually 

conflated. Indeed, usually statistics is used to confirm hypotheses, i.e. statistics is primarily used 

in the context of justification, not in the context of discovery. The distinction between those two 

contexts may confound our reflections on statistics, since it may lead us not to take into due 

consideration, in some sense to ‘hide’, the process of discovery that led to the development of 

statistical theories. And this may affect our ideas on what statistics is. 

                                                 
4 It is important to stress that the nature of the correlation function is irrelevant: it can be completely 

arbitrary, i.e. in no way related to the nature of the data stored in the database. 

5 Cf. Calude, Longo 2016b, p. 6: “it is exactly the size of the data that allows our result: the more data, 

the more arbitrary, meaningless and useless […] correlations will be found in them.” It may be interesting 

to note that, in order to derive their result, Calude and Longo define ‘spurious’ in a more restrictive way 

than usually is done. According to them, “a correlation is spurious if it appears in a ‘randomly’ generated 

database” (p. 13). Details can be found in Calude, Longo (2016b). In any case, this does not impinge on 

the considerations that follow. 



PENULTIMATE DRAFT – PLEASE CITE THE PUBLISHED VERSION 

Synthese, DOI 10.1007/s11229-017-1591-9. 

 

8 

 

So, even if we use some statistical tool (s) to confirm some hypothesis (h) in a given 

scientific domain (D), we have to keep in mind that s has been developed through a process of 

discovery in its turn. In other words, even if in a justificatory context with respect to the 

hypothesis h in the domain D we use s, we have not to forget that s in its turn has been produced 

and assessed in a different scientific domain (S), namely the statistical field, where it played the 

role that h plays in D. 

Taking into account the process of discovery is relevant in order to understand the 

ineliminable role played by the knowing subject in the development of science. Thus, taking 

into account the process of discovery of statistical theories may help us to recognize the 

ineliminable human epistemic ‘coefficient’ that the statistical tools we use introduce in our 

research. 

Unfortunately, according to many authors, while there may be a logic of confirmation, since 

confirmation can be formalized, there cannot be a logic of discovery, since discovery processes 

cannot instead be formalized (for a survey, see Schickore 2014). For example, Popper states that 

“there is no such thing as a logical method of having new ideas, or a logical reconstruction of 

this process” (Popper 2005, p. 8). The problem with this view is that it equates the intelligibility 

of a given reasoning process with the possibility of formalizing that process, i.e. the possibility 

of making that process algorithmically reproducible, and thus mechanizable. This approach 

leaves out from the perimeter of rational analysis and understanding both (1) the inferential 

paths of discovery that are not algorithmically describable (e.g. the process of hypotheses 

production through non-deductive inferences); and (2) the non-algorithmic constituents of those 

processes that are thought to be algorithmically describable (think of the indispensable role that 

emotional circuits and subconscious inferences play in making us able to experience the ‘sense 

of certainty’ that we associate with valid deductive reasonings, see Rigo-Lemini, Martínez-

Navarro 2017). But the fact that those elements cannot be formalized does not mean that they 

are irrational, nor that they cannot be analyzed at all. 

Moreover, the asymmetry between discovery and confirmation is unjustified. As Putnam 

states, if we follow Popper and claim that there is no logic of discovery, because observations 

do not lead to theories “in a mechanical or algorithmic sense,” then, “in that sense, there is no 

logic of testing, either” (Putnam 1975, p. 268). The idea that there can be a logic of 

confirmation because, since confirmation can be described in purely deductive terms, there can 

be an algorithmic method for confirmation, is unjustified.6 Indeed, algorithms do not 

exhaustively account for all that is relevant to the process of hypotheses confirmation. Just as 

                                                 
6 Cf. Cellucci 2017, p. 142: “Methods can be divided into algorithmic and heuristic. An algorithmic 

method is a method that guarantees to always produce a correct solution to a problem. Conversely, a 

heuristic method is a method that does not guarantee to always produce a correct solution to a problem.” 
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“there is no algorithmic method of discovery, there is no algorithmic method of testing. Indeed, 

by the undecidability theorem, there is not even an algorithmic method for testing whether a 

formula is logically valid or not” (Cellucci 2017, p. 144). So, either one admits that there cannot 

even be a logic of confirmation, or one should accept the idea that there can also be a logic of 

discovery.  

In the last decades, the idea of developing a logic of discovery has been mainly conceived as 

the attempt to develop a logic of inductive inferences in terms of probability calculus (Howson, 

Urbach 2006). The main problem of this approach is that it is mainly aimed at showing the 

validity and consistency of probabilistic inductive inferences in the face of classical deductive 

logic. But in so doing, the probabilistic view of the logic of discovery becomes analogous to the 

deductivist view: it cannot take into account (and say something relevant about) some 

characteristic features of the process of discovery, namely how we produce and appraise new 

hypotheses. Those features cannot be straightforwardly formalized, nor can they adequately be 

described in probabilistic terms (more on this below). In this view, hypotheses production is just 

taken as a datum, something prior and external to a logic of discovery, precisely in the same 

way the process of hypotheses production is regarded as external to a logic of confirmation by 

those who deny that there can be a logic of discovery.  

Underlying these points does not mean to deny the theoretical relevance and practical 

usefulness of formal approaches to confirmation or induction. It is only meant to stress that 

there may be some relevant theoretical insights in considering the role of non-formalizable 

components of reasoning when addressing the issue of whether knowledge ampliation can be 

regarded as (or made) human-independent. 

At this regard, an interesting proposal aimed at modeling the process of scientific 

development is the analytic view of theory development (see Cellucci 2013, 2016, 2017), 

according to which knowledge is increased through the analytic method.7 In this view, “to solve 

a problem one looks for some hypothesis that is a sufficient condition for solving it. The 

hypothesis is obtained from the problem, and possibly other data already available, by some 

non-deductive rule, and must be plausible […]. But the hypothesis is in its turn a problem that 

must be solved, and is solved in the same way” (Cellucci 2013, p. 55).8 

                                                 
7 For the differences that exist among the analytic method, the analytic-synthetic method, and the 

axiomatic method, see Cellucci 2013. 

8 The origin of the analytic method may be traced back to the works of the mathematician Hippocrates 

of Chios and the physician Hippocrates of Cos, and was firstly explicitly formulated by Plato in Meno, 

Phaedo and the Republic. As an example of the analytic method, consider the solution to the problem of 

the quadrature of certain lunules provided by Hippocrates of Chios: 
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Assessing the plausibility of any given hypothesis is crucial in this perspective. But how 

plausibility has to be conceived? The interesting suggestion made by the analytic view is that, in 

the ultimate analysis, the plausibility of a hypothesis is assessed by a careful examination of the 

arguments (or reasons) for and against it.  

Let’s try to better illustrate this point. According to this view, in order to judge over the 

plausibility of a hypothesis, the following ‘plausibility test procedure’ has to be performed: (1) 

“deduce conclusions from the hypothesis”; (2) “compare the conclusions with each other, in 

order to see that the hypothesis does not lead to contradictions”; (3) “compare the conclusions 

with other hypotheses already known to be plausible, and with results of observations or 

experiments, in order to see that the arguments for the hypothesis are stronger than those against 

it on the basis of experience” (Ibidem, p. 56). If a hypothesis passes the plausibility test 

procedure, it can be temporarily accepted. If, on the contrary, a hypothesis does not pass the 

plausibility test, it is put on a ‘waiting list’, since new data may always emerge, and a discarded 

hypothesis may successively be re-evaluated.9 Thus, according to the analytic view of method, 

what in the ultimate analysis we really do in the process of scientific knowledge ampliation, is 

producing hypotheses, assessing the arguments/reasons for and the arguments/reasons against 

each hypothesis, and provisionally accept or refute such hypotheses. 

                                                                                                                                               

Show that, if PQR is a right isosceles triangle and PRQ, PTR are semicircles on PQ, PR, 

respectively, then the lunule PTRU is equal to the right isosceles triangle PRS. 

 

To solve this problem, Hippocrates of Chios states the following hypothesis: 

(B) Circles are as the squares on their diameters. 

Hypothesis (B) is a sufficient condition for solving the problem. For, by the Pythagorean 

theorem, the square on PQ is twice the square on PR. Then, by (B), the semicircle on PQ, 

that is, PRQ, is twice the semicircle on PR, that is, PTR, and hence the quarter of circle PRS 

is equal to the semicircle PTR. Subtracting the same circular segment, PUR, from both the 

quarter of circle PRS and the semicircle PTR, we obtain the lunule PTRU and the triangle 

PRS, respectively. Therefore, “the lunule” PTRU “is equal to the triangle.” [Simplicius, In 

Aristotelis Physicorum libros Commentaria, A 2, 61]. This solves the problem. But 

hypothesis (B) is in its turn a problem that must be solved. (Cellucci 2013, p. 61). 

9 For a more detailed confrontation of the concept of plausibility with some related (but distinct) 

concepts, such as truth, probability, and warranted assertibility, see Cellucci 2017, chapter 9. 
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It is important to stress here the difference between the concept of probability and the 

concept of plausibility. Indeed, as Kant points out, “plausibility is concerned with whether, in 

the cognition, there are more grounds for the thing than against it” (Kant 1992, p. 331), while 

probability measures the relation between the winning cases and possible cases. This means that 

plausibility involves a comparison between the arguments for and the arguments against, so it is 

not a mathematical concept. Conversely, probability is a mathematical concept (see Cellucci 

2013, section 4.4).  

This distinction is relevant here because it allows us to better illustrate the epistemological 

import of statistics. As we have already noted, when a statistician develops a statistical model s 

of some worldly domain D, she formulates the relevant empirical D-facts in terms of a data set 

e, and the hypotheses relative to those facts in terms of probabilities distributions hi over e. This 

account may give us the impression that a statistician deals only with probabilities, and 

probabilities may well be interpreted in a robust objective way, independent of the knowing 

subject who develops s.10 In other words, since probability distributions may be claimed to be 

fully determined by the way the world is, and statistics deals mainly with probabilities and 

empirical facts, it may seem that statistics does nothing more than ‘translating’ in terms of 

probabilities what the world dictates to us. And so that nothing which is relevantly dependent on 

the human knowing subject is added by the statistical tools to what we model through them. 

But the fact is that, independently of what interpretation of probability one prefers, this is not 

the all story. Indeed, as we have already stressed above, the theories that a statistician uses in 

order to build s (e.g. the theories she relies on when she translates empirical facts into data sets, 

or she derives a probability distribution for rival hypotheses from our knowledge of D, or she 

decides what inferences can be legitimately drawn from the amalgamated evidences for any h), 

are instances of human scientific knowledge, and so they have been produced in their turn in the 

way described by the analytic model of theory development. That is, every statistical theory or 

technique can be regarded as a hypothesis that has been produced in order to solve a problem in 

the statistical field of inquiry. This hypothesis may have been retained and accepted by 

statisticians since it passed the plausibility test procedure. This means that conclusions have 

been deduced from the hypothesis and have been compared with each other, in order to see that 

they do not lead to contradictions, and then that conclusions have been compared with other 

statistical hypotheses already known to be plausible, in order to see that the arguments for the 

                                                 
10 On the possible interpretations of probabilities, see Gillies 2000. Basically, probabilities may be 

regarded as ‘objective’ or ‘subjective’. Cf. e.g. Djulbegovic, Hozo, Greenland 2011, p. 309: “‘objective 

probability’ is believed to reflect the characteristics of the real world, i.e., the probability somehow relates 

to the physical property of the world or a mechanism generating sequences of events […]. On the other 

hand, ‘subjective probability’ is believed to represent a state of mind and not a state of objects […].” 
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hypothesis are stronger than the arguments against it. In this kind of evaluative process, 

hypotheses are assessed referring to their plausibility, which is not just a matter of probabilities, 

and this makes the role played by the human knowing subject epistemologically ineliminable.  

 

 

2.4. Probability and Plausibility 

 

It is important to better explain why the process of knowledge ampliation cannot simply be 

accounted for in terms of probabilities, and so the reason why relying on the analytic view of 

scientific progress may be of use in this context.  

When we produce a hypothesis to solve a problem, we do it by some non-deductive 

inference rules (e.g. induction, analogy, etc.). Non-deductive inference rules are indeed fallible, 

i.e. they are not truth-preserving, since they may lead us to incorrect conclusions, even if the 

premises are regarded as true. But they are also ampliative, i.e. they add something to what is 

already known that may be necessary in order to solve the problem we want to solve (Goodman 

1999).  

Why not to use only deductive rules, which are truth-preserving, in the process of knowledge 

ampliation? Because deductive rules are non-ampliative, i.e. they lead us to conclusions that are 

correct, but which are in some sense already contained in the premises (Ibidem). So, in many 

cases, and certainly in the most interesting and difficult ones, non-deductive rules would not 

allow us to solve the problem we need to solve. Thus, in the problem-solving process, we 

tentatively produce new hypotheses applying some non-deductive rules to our data and 

background knowledge. Now the question is: Why we do not deal with such hypotheses 

assigning them probabilities in some objective way, instead of referring to their plausibility in 

order to accept or refute them?  

The problem is the same that spans across many debates in the philosophy of science, e.g. in 

the debate over scientific realism. In order to assign a probability p with some degree of 

objectivity to the hypothesis h that we produced to solve some problem A, we should know the 

space of all the other possible hypotheses that may be formulated in order to solve A.11 But 

knowing such space is normally impossible. If we could be able to know with certainty the 

space of all the possible solutions to A, we could systematically examine all of them and pick 

out the best one. There could be no more doubt about the hypothesis we selected, and this would 

make our knowledge certain, i.e. forever unrevisable. Indeed, if we can know the space of all 

the possible solutions to a given problem, we can also know whether we have exhausted the 

                                                 
11 This is the problem of the unconceived alternatives, see below section 2.6. 
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space of all the possible alternatives to a given solution. And this implies that no other 

alternative could ever appear, not even in the future. So, our hypothesis could be safely said to 

be unrevisable. Unfortunately, there is no way to construct the space of all the possible 

alternatives to any given hypothesis. Since probability is “a fraction whose numerator is the 

number of favorable cases and whose denominator is the number of all the cases possible” 

(Laplace 1951, p. 7), in order to effectively calculate the probability of a hypothesis, we have to 

know the denominator, i.e. the number of all the cases possible. But in many cases, we do not 

know (and perhaps we cannot know) the number of all the cases possible. Thus, if plausibility 

were to be understood in terms of probability, we could not be able to evaluate the plausibility 

of all those hypotheses for which we are unable to determine the set of all the possible rival 

alternatives. But we routinely evaluate the plausibility of that kind of hypotheses, so it cannot be 

the case that probability is equivalent to plausibility. 

Moreover, that plausibility has to be distinguished from probability clearly appears by 

considering the fact that there are hypotheses that are plausible, but which, according to 

probability theory, have zero probability, while there are hypotheses that are implausible, but 

which have non-zero probability.12 Thus, contrary to Pólya (1941), we should conclude that the 

calculus of plausibilities does not obey the same rules as the calculus of probabilities, and that 

plausibility has to be distinguished from probability. 

 

 

2.5. Plausibility and the Role of the Knowing Subject 

 

We think it is important to better point out why what we said so far leads us to conclude that the 

role played by the human knowing subject is ineliminable even in a context such as statistics. 

The point is that if it were possible to produce new hypotheses through some deductive method, 

                                                 
12 See Cellucci 2013, chapter 20. An example of plausible hypotheses that have zero probability are all 

the plausible hypotheses derived by an Induction from a Single Case (ISC). On the classical concept of 

probability as ratio between favorable and possible cases, a conclusion obtained by (ISC) has zero 

probability when the number of possible cases is infinite. An example of implausible hypotheses that 

have non-zero probability are implausible hypotheses that have been obtained by Induction from Multiple 

Cases (IMC). Think to the hypothesis that all swans are white. Until the end of the seventeenth century, 

“all swans observed were white. From this, by (IMC), it was inferred that all swans are white. But in 1697 

black swans were discovered in Western Australia.” Since then, the hypothesis that all swans are white is 

highly implausible. But, this contrasts with the fact that, “on the classical concept of probability, a 

conclusion obtained by (IMC) has non-zero probability when the number of possible cases is not 

infinite”, and such “is the case of the hypothesis that all swans are white” (Cellucci 2013, p. 335). 
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and assign to these hypotheses an objective probability value, then our method could be 

regarded as an algorithmic method and could be mechanized. In this way, the ampliation of 

knowledge could be made human-independent in a relevant sense.  

Indeed, if it were possible to produce new knowledge through some deductive method 

applied to already established knowledge, knowledge ampliation would be a trivial and routine 

task.13 In fact, there is an algorithm for enumerating all deductions from given premises. The 

algorithm “can be said ‘to proceed like Swift’s scholar, whom Gulliver visits in Balnibarbi, 

namely, to develop in systematic order, say according to the required number of inferential 

steps, all consequences and discard the uninteresting ones’ (Weyl 1949, 24). Given enough time 

and space, the algorithm will enumerate all deductions, from given premises” (Cellucci 2017, p. 

138). Thus, knowledge ampliation would be a routine task. But there is a wide consensus that 

this is not the way in which knowledge is really ampliated in scientific practice, and that 

knowledge ampliation is not a routine, nor a trivial task. Indeed, while there is an algorithm to 

enumerate all deducible consequences from given premises, there is no algorithm for 

discovering new hypotheses through non-deductive inferences. Moreover, if it were possible to 

extend our knowledge by applying a deductive method to some given premises already 

established, given that deduction is non-ampliative, this would amount to say that those given 

premises will never be modified, and that all our current and future knowledge will rest on the 

very same set of prime premises. But this view is not really able to account for all the cases of 

knowledge ampliation in which our already established knowledge is insufficient to solve a 

problem, and so new hypotheses (i.e. premises) need to be introduced. For example, “when 

Cantor demonstrated that to every transfinite cardinal there exist still greater cardinals, he did 

not deduce this result from truths already known […], because it could not be demonstrated 

within the bounds of traditional mathematics. Demonstrating it required formulating new 

concepts and new hypotheses about them” (Ibidem, p. 310). So, even in the case of 

mathematical knowledge, which is usually regarded as the paradigm of certain knowledge, new 

knowledge is not acquired by merely deductive methods from already established results. A 

fortiori, these considerations can be applied to the case of natural sciences. 

Consider now the possibility of knowing the space of all possible alternatives to a given 

hypothesis. If it were possible to know the space of all possible alternatives to any given 

hypothesis h, we could assign objective probabilities to each alternative hypothesis hi. This 

would amount to say that the procedure of hypotheses evaluation can always be performed 

through an algorithmic method and could be mechanized. Indeed, we can develop an algorithm 

that enumerates all the possible alternative hypotheses to a given hypothesis h, assigns to each 

                                                 
13 For an opposite view, see Musgrave 2011. For a criticism of Musgrave’s view, see Cellucci 2017. 
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of them the relative objective probability, calculates the likelihood of each hypothesis, and then 

picks out the one which displays the higher likelihood. This would render the process of 

hypotheses evaluation a trivial task, in the sense that this process could be made human-

independent in a relevant sense. Indeed, if probabilities are regarded as objective, i.e. they 

reflect the way the world is, and knowledge ampliation can be pursued through an algorithmic 

method, i.e. a mechanizable one, the role played by the human knowing subject in the 

development of scientific knowledge may well be said to be deniable. 

 

 

2.6. Probability and the Problem of the Unconceived Alternatives  

 

It is important to clarify the reason why it is usually impossible to know the space of all possible 

alternatives to a given hypothesis in the process of knowledge ampliation. Indeed, knowing the 

space of all possible alternatives is necessary in order to assign objective probabilities to each 

hypothesis, i.e. to consider the value of those probabilities as determined by the way the world 

really is. Consider a standard six-faces dice. We know that there are precisely six possible 

outcomes for one throw of that dice. The space of possibilities is completely determined in 

advance by the symmetries of the system, and this allows us to assign probabilities to the 

possible outcomes. But usually in science when we try to solve a problem and produce new 

knowledge we are not in such a position. We do not know in advance the space of relevant 

possibilities for the given phenomenon we want to explain. Nor we know the exact 

configuration of the space of all the possible alternative hypotheses that can be formulated in 

order to explain that phenomenon. If the space of possible theoretical alternatives to a given 

hypothesis h is not determinable in advance, we cannot safely claim to have exhaustively 

searched that space, found that h is the hypothesis that best explains the phenomenon under 

investigation, and so that we should trust h, because it is confirmed by the eliminative 

inferential procedure we performed. This is the problem of the unconceived alternatives.  

This problem has been in recent years fiercely stressed by Stanford (2006), in his defense of 

the instrumentalist attitude towards science, according to which we should refrain to commit 

ourselves to the existence of theoretical entities, because historical record of science shows us 

that we humans routinely failed to conceive all the possible alternatives to a given theoretical 

hypothesis h at any given time t.14 Before Stanford’s proposal, analogous concerns were made 

                                                 
14 Many replies have been elaborated in the last decade to Stanford (2006) (see, e.g., Magnus (2006), 

Saatsi et al. (2009), Ruhmkorff (2011); see Saatsi et al. (2009) for Stanford’s rejoinder to some criticisms; 

see Rowbottom (2016) for an interesting extension of Stanford’s line of reasoning). Here we will focus on 

Mizrahi’s (2016) attack to Stanford’s view, because, as a reviewer suggested, it puts into question the 
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by van Fraassen,15 in his criticism of the inference to the best explanation (van Fraassen 1989), 

and by Sklar (1981), who considered both the case of the inference to the best explanation and 

the case of confirmation theories. 

Here, for the sake of brevity, we will consider just the case of confirmation theories, which 

are usually developed in terms of probabilities. A clear formulation of the problem of the 

unconceived alternatives in this context can be found in Sklar (1981): 

 

Consider Bayesian strategies for confirmation theory. Here we must distribute a priori 

probabilities over all the alternative hypotheses to be considered. If there is only a finite set 

of hypotheses we have in mind, this is easy to do [...]. But if we must keep in mind the 

                                                                                                                                               
very coherence of Stanford’s position, so it risks questioning the validity of all those positions which 

similarly rely on the problem of the unconceived alternatives, as the one we advocate for in this paper. 

Mizrahi (2016) develops an argument against Stanford’s view according to which, if (1) one accepts 

Stanford’s argument against scientific realism, and (2) it is possible to adopt Stanford’s own line of 

reasoning in the field of philosophy, then Stanford’s position is self-debunking. Indeed, according to 

Mizrahi (2014), it is possible to construct an argument, which is analogous to Stanford’s argument against 

scientific realism, and so it is not easily refutable by those who accept Stanford’s argument, according to 

which we should not believe our current philosophical theories, because history of philosophy shows that 

philosophers routinely failed to conceive of serious objections to their theories. Call Mizrahi’s Stanford-

like argument for philosophy MA. Now, according to Mizrahi’s argument against Stanford, if Stanford’s 

position is a philosophical position, then we should not trust it, precisely because it is a philosophical 

position, given that according to MA we should not trust philosophical theories. Many criticisms can be 

raised to Mizrahi’s approach, but we cannot analyze them all here for reason of space. What can be 

briefly pointed out is that Mizrahi’s argument against Stanford crucially relies on MA. Now, it is MA 

which is a self-defeating argument. Indeed, if one maintains MA, one is clearly advocating for a 

philosophical position, i.e. one is committing oneself to a given philosophical theory. But, according to 

MA itself, we should not trust philosophical theories. So, MA is self-defeating. If we consider now 

Mizrahi’s argument against Stanford’s position, it is easy to see that also this argument falls victim of 

MA’s self-defeatingness. Indeed, Mizrahi’s argument against Stanford conveys in its turn a philosophical 

position, which implies a commitment to a given philosophical theory. But, according to MA, we should 

not trust philosophical theories. Thus, since Mizrahi’s argument against Stanford crucially rests on MA, if 

(1) one takes MA to be a cogent argument, then one should not trust Mizrahi’s argument against Stanford, 

because Mizrahi’s argument against Stanford rests on a philosophical theory, and according to MA we 

should not trust any philosophical theory; if (2) one takes MA to be a self-defeating argument, i.e. a non-

cogent argument, then Mizrahi’s argument against Stanford cannot even take off the ground, since it rests 

on a self-defeating argument. 

15 Cf. Schupbach 2011, p. 119, fn. 2: “Such scenarios correspond to van Franssen’s best of a bad lot 

objection as well as what Kyle Stanford (2006) calls ‘the problem of unconceived alternatives’.” 
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infinite and indeterminate class of all possible hypotheses, known and unknown, how can 

we even begin to assign a priori probabilities to those few hypotheses [...] we do have in 

mind [...]? (Sklar 1981, p. 19). 

 

We will follow (and simplify a bit) Rowbottom (2016) to better illustrate this point. In 

Bayesian theories of confirmation, the confirmation of a given hypothesis h is equal to its 

conditional probability given some evidence e: 

 

P(h, e) = P(h)P(e, h)/P(e) 

 

where P(h, e) is the conditional probability, P(h) and P(e) are the prior probabilities 

respectively of h and e, and P(e, h) is the likelihood. In this approach, the prior probability of e 

must be determined considering all the alternatives to h. Indeed, P(e) decomposes as follows: 

 

P(e) = P(h)P(e, h) + P(~h)P(e, ~h) 

 

and P(~h)P(e, ~h) in its turn decomposes in:  

 

P(~h1)P(e, ~h1) + … + P(~hn)P(e, ~hn) 

 

where the set of all the possible alternatives to h is {~h1, … , ~hn}.  

Theories are considered to be highly confirmed provided that P(~h)P(e, ~h) is low, i.e. when 

the probability assigned to the negation of the proposed hypothesis is low. Confirmation 

theorists call ~h the ‘catchall hypothesis’, i.e. the hypothesis that incorporates all the alternatives 

to h. 

To sum up, to confirm a hypothesis h, we have to assign P(e); to assign P(e), we have to be 

able to estimate P(e, ~h); and to estimate P(e, ~h), we have to be able to construct the set of all 

the alternatives to h and assign a prior probability to each of those alternatives.  

The impossibility to actually construct the set of all the possible alternatives to a given 

hypothesis has been clearly stated by Salmon: 

 

At any given stage of scientific investigation, the catchall is the disjunction of all of the 

hypotheses we have not yet conceived. What is the likelihood of any given piece of 

evidence with respect to the catchall? This question strikes me as utterly intractable; to 

answer it we would have to predict the future course of the history of science. (Salmon 

1990, p. 329) 
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Salmon’s solution to the problem of unconceived alternatives for confirmation theory is to 

consider, when evaluating the confirmation of a given hypothesis h, only the actually conceived 

alternatives to h.  

This is clearly an example of a plausible (and pragmatic) theoretical choice, since it allows 

us to produce an estimation of the confirmation of a hypothesis, although a provisional and 

revisable estimation. But this choice certainly cannot be justified by making reference to its 

probability. This kind of theoretical choices can be proposed, evaluated and accepted by 

pondering the arguments for and against it, i.e. by assessing their plausibility. This is just an 

example of the fact that in the process of theory construction and knowledge ampliation we do 

not deal merely with probability-based considerations. Rather, we have to resort to plausibility-

based considerations. The process by which we evaluate this kind of considerations cannot be 

made algorithmic, and so the process of knowledge ampliation cannot be mechanized. 

 

 

2.7. Subjectivity and Arbitrariness 

 

We are aware of the possibility that many would be unwilling to concede a role to the concept 

of plausibility in knowledge ampliation, since this concept is subjective in character. Indeed, 

there has been the tendency in the last decades to equate ‘subjectivity’ and ‘arbitrariness’, and 

many scholars tried to avoid the latter by denying any role to the former (Gelman, Hennig 

forthcoming). Obviously, there is a sense in which the attempt to avoid subjectivity in pursuing 

knowledge has a positive meaning, namely when it means avoiding personal biases. For 

example, as Bird (2017) clearly points out, the adoption of systematic methodologies allowed 

clinical medicine to become a science, exactly because systematic methodologies allowed to 

eliminate (or at least minimize) personal biases from medical practice. But not any subjective 

element in the process of knowledge production can be regarded as a bias-producer. The risk is 

that in some circumstances the quest for objectivity ends in merely hiding some of the 

subjective components of the process of knowledge ampliation. 

We think that the analytic view of theories, by making reference to the notion of plausibility 

as defined above, may be of help in the attempt to counter this tendency and untangle the notion 

of subjectivity from that of arbitrariness. Indeed, some authors seem to think that if knowledge 

were not objective (i.e. if it does not leave out any subjective element), then knowledge would 

be arbitrary, and so there would be no real knowledge at all. Contrary to this perspective, in the 

analytic view the presence of some subjective components cannot be avoided, since the process 

of plausibility evaluation of the hypotheses cannot be made algorithmic, nor can it be ruled out. 

In this perspective, there would be no knowledge only if the hypotheses we deal with in the 
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process of knowledge ampliation were arbitrary. But they need not be arbitrary, they must be 

plausible, i.e. the arguments for them have to be stronger than the arguments against them. If the 

plausibility evaluation of hypotheses is carefully conducted, even if this process cannot be 

formalized, it nevertheless cannot be regarded as arbitrary, since it is constrained in several 

rational ways (e.g. by the need of checking whether contradictions can be derived from a given 

hypothesis, and whether conclusions that can be derived from a given hypothesis are consistent 

with other hypotheses already judged to be plausible, etc.). Thus, knowledge may well be 

possible, even if some subjective elements enter the process of knowledge production. 

We propose that not any aspect of reasoning is reducible to probability calculus, and that this 

does not imply that those aspects which are not captured by the rules of probability are 

irrational. In this perspective, some aspects of our reasoning remain argumentative and 

inferential in character.16 

 

 

2.8. Probability and Randomness 

 

A brief digression on the relation between the concept of probability and the concept of 

randomness may be useful to conclude this section by recapitulating some of the issues we 

addressed. Moreover, the analysis of such relation will allow us to provide an argument to 

support our thesis. Indeed, the claim that the process of knowledge ampliation cannot be 

adequately accounted for in terms of probabilities can be clarified by reflecting on the relation 

between the concept of probability and the concept of randomness.  

                                                 
16 On this issue see Pollock 1983. Although his approach is distant from the view advocated here, there 

is nevertheless some similarity between the two. For instance, Pollock points out the impossibility of 

equating what he calls ‘epistemic probability’ and ‘statistical probability’. His conception of ‘epistemic 

probability’ is more akin to what we call ‘plausibility’ than to what is usually meant with ‘probability’. 

According to him, ‘statistical probability’ is that kind of probability “about which we can learn by 

discovering relative frequencies, counting cases” (Pollock 1983, p. 236). On the contrary, the “epistemic 

probability of a proposition is the degree to which it is warranted” (Ibidem). In this view, a proposition is 

deemed warranted by a careful examination of the reasons for and against it: “a person is justified in 

believing P just in case he has adequate reason to believe P […], and he does not have any defeaters for it 

at his immediate disposal” (p. 233). Moreover, Pollock clearly denies that arguments evaluation can be 

represented in probabilistic terms. Indeed, Pollock also explicitly denies the possibility of equating 

‘epistemic probability’ and ‘subjective probability’. In his view, even if we follow the Bayesians and 

consider probability as expressing a person’s ‘degree of belief’ on the truth of a given proposition, we 

cannot equate probability assignment and arguments evaluation, mainly because we cannot reasonably 

impose on arguments evaluation the rules of probability calculus. 
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As we said, statistics deals with uncertainty. Randomness can informally be conceived of as 

unpredictability, i.e. a lack of those correlations which are able to guide our predictions, so 

randomness can be regarded as a source of uncertainty. Probability is the tool we use to manage 

uncertainty. Thus, randomness and probability are deeply related. Our point is the following: if 

randomness is theory-dependent, and probability can be regarded as a measurement of 

randomness, the process by which we select a given theory in the first place cannot adequately 

be accounted for in terms of probability-based considerations. Let’s unpack this claim a bit.  

According to Calude and Longo (2106a), randomness is “unpredictability with respect to the 

intended theory and measurement” (p. 266). In this view, probability is a measurement of 

randomness,17 and randomness is unpredictability deriving from theoretical assumptions. So, the 

probability values that we assign to the set of possible outcomes of an event in a given domain 

are dependent on our theoretical commitments. Thus, in order to assign probability values, we 

have to previously make a theoretical choice. Since the choice of the theoretical framework we 

decide to deal with is indispensable in order to assign probability values, this choice cannot in 

its turn be made by relying on probability-based considerations. Otherwise a regression is 

lurking. Indeed, if we commit to a given theoretical framework, say Ta, in order to assign 

probability values in the A-domain, and, if in order to pick out Ta from the set T of similar but 

not equivalent theoretical frameworks, i.e. Ta, Ta*, Ta**, etc., we rely on probability-based 

considerations, this means that we can assign a probability value to every member of T, i.e. Ta, 

Ta*, Ta**, etc. This also means that we can do that because we have already chosen another 

theoretical framework, say Ft, which allows us to assign probability values in the T domain. 

Now we have to account for how we chose Ft among similar but not equivalent theories in set F. 

And so on.  

Thus, we have to choose a theoretical framework, which will allow us to assign probability 

values in the domain of interest, in some different way, i.e. without relying on probability-based 

considerations. This choice, we claim, is made by relying on plausibility-based considerations. 

Indeed, reasons and arguments that support different theoretical frameworks can be assessed 

even if we are unable to coherently assign probability values to rival theoretical frameworks. 

And evaluations made by relying on plausibility-based considerations are fallible and revisable. 

It is important to underline this point, because it stresses that our proposal is able to account for 

certain cases in a more satisfying way than the rival hypothesis, i.e. that the choice of the 

relevant theoretical framework is made by relying on probability-based considerations. Consider 

theory change, or information update. Since when we deal with plausibility, we evaluate 

                                                 
17 Cf. Calude, Longo 2016a, p. 273: “Randomness plays an essential role in probability theory, the 

mathematical calculus of random events. Kolmogorov axiomatic probability theory assigns probabilities 

to sets of outcomes and shows how to calculate with such probabilities.” 
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whether the arguments for are stronger than the arguments against a given hypothesis, we may 

form judgments which can be revised if new relevant information is provided, since new 

arguments for or against a given hypothesis may be elaborated in the light of this new 

information, and thus our plausibility-based judgement about that given hypothesis may change. 

On the contrary, if the theoretical choice were made on probability-based considerations, and 

probability is deemed objective, how could we account for the phenomenon of theory change, 

which may lead to changes in the probability values assigned to a given domain? 

It is also important to stress that, once the theoretical choice is made, probability values can 

be assigned and computed in rigorous way. In this sense, probability may well be regarded as 

‘objective’, i.e. non-arbitrary. Two distinct epistemic subjects, if they take the same theoretical 

framework, will obtain the same probability values for any given domain. This accounts for the 

reliability and ‘objectivity’ of probabilistic and statistical reasoning in scientific inquiry. 

Finally, the adoption of our perspective may be of help in accounting for the case in which 

two epistemic subjects, relying on plausibility-based considerations, make different theoretical 

choices. To explain this, it is not necessary to search for some arbitrary factors which prevent 

their reasoning from being rational.18 It may often suffice to consider the different problems that 

they have in mind when assessing the arguments for and against a given theory. In a given 

context, the arguments for the choice of a given theory may be stronger than the arguments for 

the choice of that theory in another context of inquiry. If, on the contrary, theoretical 

frameworks were chosen by means of probability-based considerations, and probability is 

objective, i.e. it is determined by the way the world is, how could we account for the possibility 

that different theories may be chosen in different context to solve different problems? 

Crucial to this defense of our thesis is the assumption that randomness is not absolute, that 

“it depends on (and is relative to) the particular theory one is working on” (Calude, Longo 

2016a, p. 263). But, why should we think that randomness is theory-dependent? This point is 

crucial, because if randomness is absolute, and probability is regarded as an objective 

measurement of randomness, it may be claimed that plausibility-based considerations are 

irrelevant for the process of knowledge ampliation. Rather, we should prefer probability-based 

considerations.  

Thus, one may be tempted to search for an abstract and theory-independent definition of 

randomness. Mathematics is a good candidate as the place where to search for, since dealing 

with mathematics allows one to avoid the issue of measurement, which, in principle, introduces 

a degree of epistemic uncertainty that may be regarded as a cause of the theory-dependence of 

                                                 
18 It is important to note that we are not denying that external factors may relevantly affect theoretical 

choices, we are just stressing that our perspective is able to account for relevant non-arbitrary epistemic 

factors that may lead to theoretical divergence or theory change in a rational way. 
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randomness (Calude, Longo 2016a). The search for randomness in mathematics is usually 

conducted by analyzing binary sequences, the simplest infinite mathematical objects. So, in this 

line of reasoning, in order to prove that there is theory-independent randomness, one has to 

investigate whether there are true random infinite sequences. The problem is that such a kind of 

‘pure’ randomness cannot be proved to exist in mathematics. Calude and Longo (2016a) clearly 

illustrates this point. If we confine “to just one intuitive meaning of randomness—the lack of 

correlations—the question becomes: Are there binary infinite sequences with no correlations?” 

The answer is in the negative, so the search for ‘theory-independent’ randomness is doomed to 

fail: “there is no true randomness” in this abstract sense (p. 272). It is interesting to note that to 

prove this statement, Calude and Longo rely on the very same result of combinatorics that we 

have illustrated above when dealing with spurious correlations. In this case, the point is that, by 

Van der Waerden’s Theorem, every infinite binary sequence contains arbitrarily long 

monochromatic arithmetic progressions. So, we know that there cannot exist binary infinite 

sequences with no correlations.19 Thus, there is no ‘true’ or absolute randomness, and 

randomness can well be regarded as unpredictability in the intended theory. We share Calude’s 

and Longo’s view on randomness (2016a), according to which “randomness is not in the world 

nor it is just in the eyes of the beholder, but it pops out at the interface between us and the world 

by theory and measurement” (p. 265). This view fits our idea that the epistemic role played by 

humans in the process of knowledge ampliation is ineliminable, and that, despite its being 

subjective in nature, it needs not be arbitrary. 

 

 

3. Uncertainty and Cancer Research 

 

Many of the issues discussed so far can be found combined together in cancer research. 

Moreover, in this field the issue of how conceiving of uncertainty is not only related to the 

debate on the statistical tools used in medical research, it is also related to the even more basic 

assumptions that one has about what role uncertainty plays in biology, and so about what are the 

very basic principles of biology (Longo, Montévil, Sonnenschein, Soto 2015; Longo 

manuscript; Zbilut, Giuliani 2008). We cannot fully address this topic here, but it may be 

interesting to look at cancer research in order to show that: 1) the way we use our statistical 

tools in medicine cannot be neutral with respect to our more basic theoretical commitments; 2) 

the more adequate way to account for how one chooses some basic theoretical commitments 

                                                 
19 For a demonstration that no infinite sequence passes all tests of randomness, so that ‘true randomness’ 

does not exist, see Calude (2002). 
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rather than some rival ones is by describing that choice in terms of plausibility. Given the 

vastness of this theme, here, for illustrative purpose, we will focus on the debate about what is 

the current theory that best explains carcinogenesis, and on few related issues which affect the 

development of the so-called personalized cancer medicine.  

 

 

3.1. The Somatic Mutation Theory and the Tissue Organization Field Theory 

  

First of all, let us briefly set the stage. Currently, there are two main competing views on 

carcinogenesis, namely the Somatic Mutation Theory (SMT) and the Tissue Organization Field 

Theory (TOFT) (Bertolaso 2016; Sonnenschein, Soto 2016; Baker 2015; Bedessem, Ruphy 

2015; Rosenfeld 2013; Soto, Sonnenschein 2011; Longo manuscript).  

SMT represents the mainstream view, and its main tenets can be summarized as follows: 1) 

cancer is derived from a single somatic cell that has accumulated DNA mutations; 2) cancer is a 

disease of cell proliferation; 3) quiescence should be actually considered the default cellular 

state (Baker 2015). Corollaries of SMT are: 1) mutations are needed for carcinogenesis; and 2) 

the analysis of genetic instability may be the key to individuate any cancer’s cause. On the 

contrary, according to TOFT, which is a minoritarian perspective, cancer is a tissue-based 

disease, not a cell disease. The main tenets of TOFT can be summarized as follows: 1) 

carcinogenesis represents a problem of tissue organization; 2) proliferation and motility are the 

default state of all cells; 3) cancer arises from the disruption of interactions among cells and 

adjacent tissue. Corollaries of TOFT are: 1) mutations are not needed for carcinogenesis; and so, 

2) genetic instability is mainly a byproduct of carcinogenesis (Baker 2015).20 

It is important to stress that in this paper we are mainly interested in using this debate as a 

case study to show the relevance of theoretical disagreement and plausibility-based 

considerations in the development of statistical tools and in the interpretation of their results, i.e. 

in processes of evidence amalgamation and science advancement. So, we are not concerned here 

                                                 
20 It may be objected that the existence of hereditary cancer is a strong evidence for SMT. Supporters of 

TOFT usually specify that “a distinction should be made about the types of cancers that appear in the 

clinic; there are ‘sporadic’ cancers and hereditary ones. ‘Sporadic’ cancers represent over 95% of the 

cancers in humans. On the other hand, inherited cancers (less than 5% of total cancers) are a discrete 

subclass, mediated by germline mutations that have a distinct natural history, mostly appearing in early 

childhood and/or young adults […]. While the DNA mutations in this latter type of cancers are present in 

all cells of the organism, tumors mostly appear in one or a few organs” (Soto, Sonnenschein 2011, p. 

333). Since, according to TOFT, cancer is ‘development gone awry’, in this view hereditary cancers are 

regarded as ‘inherited inborn errors of development’ (Soto, Sonnenschein 2011). 
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with taking sides in the SMT-TOFT debate, since this would require a wider and quite different 

analysis (see Bertolaso 2016).21 We will use the debate between SMT supporters and TOFT 

supporters to point out that often scientific disputes are driven by plausibility-based 

considerations, and so that they cannot be accounted for merely in terms of probability and 

empirical confirmation. 

 

 

3.2. Personalized Cancer Medicine22 

 

The majority of cancer patients is usually treated on the basis of large random clinical trials in 

the general population of a specific tumor type. As a result, “a considerable number of patients 

are exposed to often highly toxic treatment, with only a small subset of these patients having 

benefit” (Cirkel et al. 2014, p. 417). In the past years, new DNA sequencing techniques have 

revolutionized the identification of somatic mutations in genomes, and their decreasing costs 

made these techniques widely available. These advances “hold promise for precision medicine, 

                                                 
21 It may be objected that SMT and TOFT, despite their diversity, are not genuine rival theories, because 

they are not really incompatible. This issue is in fact strongly debated (see Bedessem, Ruphy 2017, 2015; 

Bizzarri, Cucina 2016; Bertolaso 2016; Rosenfeld 2013). However, this issue does not impinge on our 

argumentation. We observed the disputes that are going on in the field and tried to represent the situation. 

And, in fact, many of the participants in the SMT vs. TOFT debate do see those theories as really 

incompatible. For example, Bizzarri and Cucina (2016) state that SMT and TOFT are irreconcilable 

theories. According to them, “irreconcilability depends on radical divergence existing among basic 

premises […]. Copernican theory was irreconcilably different from the Ptolemaic one, given that the 

central place in the solar system was occupied by the Earth in the latter and the Sun in the former. It is 

obviously impossible to support at the same time these two opposing hypotheses by constraining them 

into a ‘unified’ cosmological model. By analogy, SMT and TOFT cannot be merged because the premises 

on which those frameworks rely are incompatible: the default state of the cell can be considered either 

quiescence (SMT), or proliferation (according to TOFT). The two default states cannot be operational at 

the same time” (Bizzarri, Cucina 2016, p. 232). Now, whether SMT and TOFT are really incompatible is 

not relevant here. Indeed, we do not aim at solving the dispute on which is the best theory between SMT 

and TOFT, nor we aim at solving the dispute on whether SMT and TOFT are really incompatible. We just 

try to highlight how this confrontations rest on theoretical commitments, whose adoption is better 

accounted for in terms of plausibility rather than probability. We thank an anonymous reviewer for 

having raised this issue. 

22 Some authors prefer to speak of ‘precision’ medicine rather than ‘personalized’ medicine. For a brief 

reconstruction of the opinions on this terminological issue, see Katsnelson 2013. Since this distinction 

does not impinge on our thesis, here we will use those terms as interchangeable. 
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or precision oncology, where a cancer treatment could be tailored to a patient’s mutational 

profile” (Raphael et al. 2014, p. 1). So, the progresses made in molecular biology and the 

ineffectiveness of traditional pharmacological treatments developed on the basis of random 

trials encouraged investments in personalized cancer medicine, although it was widely 

recognized that this approach may face serious challenges (Tannock, Hickman 2016; Ow, 

Kuznetsov 2016). 

Personalized cancer medicine can be regarded as laying at the intersection of (1) the big data 

approach and (2) traditional SMT-inspired therapeutic strategy. 

As regard to (2), as already noted, according to SMT, “tumors originate from a single cell. 

Cancer is initiated and subsequently evolves by inactivating tumor suppressor genes and 

acquiring multiple mutations that activate oncogenic pathways” (Cirkel et al. 2014, p. 418). In 

this view, the best way to pharmacologically attack cancer is by inhibiting the molecular paths 

that are responsible for cancer growth, which are specific for every cancer. The idea is that it is 

possible to discriminate the mutations that are responsible for the insurgence of a specific kind 

of cancer by individuating the presence of some specific biomarkers in cancer specimens, and 

then calibrate the most adequate therapy for that specific kind of cancer. The most adequate 

therapy will be those drugs that fare better in selectively inhibiting the essential metabolic and 

signaling paths associated to the crucial mutations of such cancer. In this way, the argument 

goes, we will be able to disrupt the molecular paths specific of cancer cells without affecting 

and disrupting those paths that are essential for normal cells. Personalized cancer medicine 

moves along this traditional line of reasoning, but aims at improving it by tailoring therapy to 

patient’s genetic specificity. 

As regard to (1), the crucial elements in recent development of personalized cancer medicine 

are usually considered to be (a) the availability of large amount of omics data, and (b) the 

availability of big data analytics to manage and interpret those data (Ow, Kuznetsov 2016; 

Raphael et al. 2014).23 For some authors, that personalized medicine relies on big data and big 

data analytics almost amounts to a paradigm shift in medicine (Chen, Snyder 2013). For 

example, Talukder states that genetic “data analysis is mostly hypothesis driven; whereas, 

genomic data analysis is always exploratory and hypothesis creating” (Talukder 2015, p. 203). 

In accordance with the big data approach, some scholars regard the possibility of statistically 

analyzing a huge amount of available data coming from a given domain as able to reduce the 

need for developing theoretical hypotheses in order to advance the research in that domain 

                                                 
23 Cf. Ow, Kuznetsov 2016, p. 1: “Big data analytics is the process of examining large data sets 

containing heterogeneous patient sub-populations and a wide variety of data types […]. Big data analytics 

aims to uncover hidden patterns, unknown correlations, complex trends, […], as well as other useful 

features.” 



PENULTIMATE DRAFT – PLEASE CITE THE PUBLISHED VERSION 

Synthese, DOI 10.1007/s11229-017-1591-9. 

 

26 

 

(Stevens 2013).24 In this view, by merely searching for correlations in databases through an 

exploratory algorithmic procedure, hypotheses can be ‘created’, and knowledge may be 

established (Gagneur et al. 2017). In this perspective, the use of data which derive from DNA 

sequencing techniques “introduced a component of data-driven […] science into evidence-based 

medicine” (Talukder 2015, p. 203). 

In what follows, we do not aim at criticizing personalized cancer medicine, nor 

bioinformatics. We just try to show that it may be epistemologically misleading to focus on data 

analytics when one deals with theoretical disagreement. In our view, the reliance on the big data 

approach can lead one to neglect the role of plausibility-based considerations in the 

development of scientific research, and so to overlook the fallibility and revisability of one’s 

assumptions. Indeed, the big data approach relies on data analytics techniques, which essentially 

work by searching databases for correlations through some given algorithms (Ow, Kuznetsov 

2016). The problem is that “big data approaches […] fail to provide conceptual accounts for the 

processes to which they are applied. No matter their ‘depth’ and the sophistication of data-

driven methods […], in the end they merely fit curves to existing data” (Coveney, Dougherty, 

Highfield 2016, p. 1). This way of conceiving of research as data-driven may also lead one to 

think that scientific advancement can be mechanized and made algorithmic.25 Moreover, 

conceiving of research as data-driven may lead one to think that one’s inquiry is independent 

from any specific theoretical hypothesis, and so that the data one produces and collects are 

model-independent.26 And regarding some data as model-independent may lead one to think that 

those data can safely be used to independently confirm some theoretical hypothesis over some 

rival hypothesis.  

Contrary to this view, we argue (and we will try to illustrate this point in the next sections) 

that hypotheses cannot be created, nor evaluated algorithmically. Nor can data be regarded as 

completely model-independent (Mazzocchi 2015; Allen 2001). If one neglects the role of 

                                                 
24 Cf. Stevens 2013, p. 65-66: “Bioinformatics can be understood […] as a kind of neo-Baconian science 

in which hypothesis-driven research is giving way to hypothesis-free experiments and data collection.” 

25 Cf. Stevens 2013, p. 69: “the computer becomes the crucial tool: efficiency is a product of 

bioinformatic statistical and data management techniques. It is the computer that must reduce instrument 

output to comprehensible and meaningful forms. The epistemological shift associated with data-driven 

biology is linked to a technological shift associated with the widespread use of computers.” 

26 On the idea of ‘hypothesis-free’ or ‘data-driven’ science, see Stevens 2013, chapter 2; see also Chen, 

Snyder 2013. On explanatory data analysis, cf. Bassett, Eisen, Boguski. 1999, p. 54: “Knowledge 

discovery by exploratory data analysis is a ‘bottom up’ approach in which the data are allowed to ‘speak 

for themselves’ after a statistical […] procedure is performed.” Cf. also Brown, Botstein 1999, p. 33: “this 

process is not driven by hypothesis and should be as model-independent as possible.” 
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plausibility-based considerations, one risks being not even aware of the possibility that one is 

not exploring alternative possible and (possibly) plausible research pathways (Baker 2017). 

Neglecting alternative hypotheses may lead one to mistake the ‘absence’ of alternatives for the 

confirmation that the path that one is actually exploring is directly dictated to one by the way 

the world really is, while this path is instead strongly dependent on one’s theoretical 

assumptions, which may be wrong. 

 

 

3.3. Driver Mutations and Passenger Mutations 

 

As noted above, SMT and TOFT support different hypotheses on carcinogenesis. Those 

hypotheses imply different consequences, which are relevant for the development of clinical 

approaches. For instance, according to SMT, cancer progression is a unidirectional and mostly 

irreversible process, i.e. once a cell has become a cancer cell it cannot reverse to a normal 

condition, while according to TOFT carcinogenesis is not a unidirectional process, rather it may 

be reversible (Rosenfeld 2013). Those discrepancies are due to the different role assigned to 

mutations in carcinogenesis. Since according to SMT mutations are responsible for cancer 

insurgence, and the very insurgence of cancer leads to increasing mutations rate because it 

disrupts the cell control mechanisms, so those mutations accumulate rapidly, once the ‘genetic 

program’ of tumor cells has been deteriorated in such a way, there is no way to remedy, reverse 

the process and ‘reprogramme’ the genome of tumor cells. In this view, the gene-level context is 

predominant in determining the fate of tumor cells. 

On the contrary, according to TOFT mutations in somatic cells are not the cause of cancer 

insurgency, they are consequences of the disruption of communicating and regulatory paths at 

the tissue level, e.g. among somatic cells, stroma cells, and extracellular matrix. In this view, 

mutations are regarded, on the one hand, as byproducts of carcinogenesis, and, on the other 

hand, as neutralizable in most cases by a well-functioning tissue. In other words, if cancer cells 

are put in the context of a normal tissue, in which communicating and regulatory paths are not 

disrupted, despite the accumulated mutations, those cells may stop being malignant.27 In this 

view, the tissue-level complex context is predominant in determining the fate of tumor cells. 

Obviously SMT and TOFT embrace two distinct perspectives on the role that genes play in 

biology, and so on the relevance of mutations to carcinogenesis (Longo, Montévil, 

Sonnenschein, Soto 2015; Longo manuscript).  

                                                 
27 This hypothesis has been empirically confirmed, see Soto, Sonnenschein 2011; Baker 2015; Bizzarri, 

Cucina 2016. 
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Since SMT and TOFT start from so divergent assumptions, from which so divergent 

empirical consequences can be drawn, one may be tempted to adjudicate between these two 

rival hypotheses on carcinogenesis on the basis of which theory is the most confirmed by 

evidences. Indeed, if they are genuine scientific hypotheses, their claims should be empirically 

verifiable (Soto, Sonnenschein 2011).  

But things are not so easy. The point is that the search for the empirical confirmation of a 

given theory is not always equivalent to the search for the confirmation of that theory over some 

rival theory. Indeed, the pursuit of empirical confirmation of a given theory is often not really 

independent from the theory itself. This means that data cannot safely be said to be model-

independent, so one cannot easily use data to independently confirm some theoretical 

hypothesis over some rival hypothesis. For instance, deciding whether or not some set of 

‘evidences’ genuinely confirms a given hypothesis can be dependent on whether one already 

accepted that very hypothesis among one’s theoretical commitments in the first place. Consider 

again personalized cancer medicine. According to SMT, personalized cancer medicine 

represents the future of cancer research. According to TOFT, this way of searching for cancer 

remedies will be ineffective as it is currently proposed. It may seem reasonable to someone to 

claim that, since SMT and TOFT are rival theories, and they support two radical different 

stances on the very same issue, namely personalized cancer medicine, we could empirically 

verify which stance on personalized cancer medicine is the correct one by examining 

empirically verifiable consequences of each stance’s assumptions. In this view, evaluating 

whether (some) central tenets of personalized cancer medicine are sound and empirically 

confirmed may give support to the claim that SMT is the right way of conceiving of 

carcinogenesis. 

Now, in the case of personalized cancer medicine, there is at least a central claim of this 

approach which may appear prima facie easily empirically verifiable: the existence of driver 

mutations and the possibility of identifying them in tumor specimens. Indeed, high-throughput 

“DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the 

somatic mutations that drive cancer development” (Raphael et al. 2014, p. 1). We will 

concentrate on this issue in the following. 

In a cancer genome, “there often exist hundreds or thousands of various types of mutations” 

(Zhang et al. 2013, p. 244). But, along the line of reasoning supported by SMT, only a small 

subset of these mutations can be regarded as responsible for carcinogenesis. Indeed, cancer is 

thought to undergo a process of Darwinian selection, in which mutations are usually neutral, 

and so do not confer any ‘advantage’. Only rarely some mutations confer some kind of 

‘advantage’, and so are selected for. 
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In cancer research, these selected mutations are called driver mutations (Stratton et al. 2009). 

A mutation is called a driver mutation if it is “directly implicated in carcinogenesis by its ability 

to confer a growth advantage to tumor cells”, while a mutation is called a passenger mutation if 

“it does not confer a growth advantage to tumor cells and, therefore, will not contribute to the 

development of cancer” (Zhang et al. 2013, p. 244-245). Thus, in this perspective identifying 

driver mutations from the “background of passenger mutations is critical for understanding the 

molecular mechanisms of carcinogenesis and for identifying prognostic and diagnostic markers 

as well as therapeutic targets” (Ibidem, p. 245).  

 

 

3.4. Computational Approaches for the Identification of Driver Mutations 

 

Unfortunately, distinguishing driver mutations from passenger mutations proved very 

challenging (Tokheim et al. 2016). Raphael and colleagues, for example, state that 

“distinguishing driver from passenger mutations solely from the resulting DNA-sequence 

change is extremely complicated, as the effect of most DNA-sequence changes is poorly 

understood, even in the simplest case of single nucleotide substitutions in coding regions of 

well-studied proteins” (Raphael et al. 2014, p. 7). Nevertheless, in recent years, thanks to the 

increasing availability and affordability of DNA sequencing techniques, different computational 

approaches to identify somatic mutations in cancer genome sequences and to distinguish driver 

mutations from random passenger mutations have been developed by bioinformaticists 

(Dimitrakopoulos, Beerenwinkel 2017; Tokheim et al. 2016; Merid et al. 2014; Raphael et al. 

2014; Zhang et al. 2014).  

Is it possible to reach some shared consensus on whether SMT is objectively confirmed by 

the statistical tools developed to identify driver mutations? As we have seen above, usually 

statistical tools are thought to allow us to calculate the degree of confirmation that some 

evidences confer to a given hypothesis. The main problem in the case of driver mutations is that 

if we closely inspect the computational tools developed to identify these mutations, things seem 

to go the other way around, i.e. it is the assumption of a given hypothesis on carcinogenesis that 

is necessary in order to make sense of a huge amount of messy data and select what data can be 

regarded as evidences for that hypothesis.  

Let’s try to clarify this point. There are mainly three different kinds of approaches to 

individuate driver mutations in DNA sequences: 1) identifying recurrent mutations; 2) 

predicting the functional impact of individual mutations; 3) assessing combinations of mutations 

using pathways, interaction networks, or statistical correlations (Dimitrakopoulos, Beerenwinkel 

2017; Merid et al. 2014; Raphael et al. 2014; Zhang et al. 2014). Since all these approaches 
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have to face the same theoretical difficulty that we aim to point out, here it will suffice to focus 

on just the first approach aimed at detecting driver mutations, namely identifying recurrent 

mutations. The rationale behind this approach is that, even if each cancer sample has undergone 

an independent evolutionary process, the mutations that drive the progression of the same tumor 

type should appear more frequently than expected by chance across patient samples.  

In this perspective, recurrence may be revealed at different levels of resolution, from 

individual nucleotide, or codon, to protein level, or to the whole gene, or even to a pathway 

(Raphael et al. 2014). For the sake of simplicity, and brevity, here it will suffice to focus on 

those approaches which deal with just one level of resolution, namely statistical tests for genes 

with recurrent single-nucleotide mutations.  

Several methods have been designed to find single-nucleotide recurrent mutations. But they 

all share the same core principle. Indeed, the fundamental calculation “in all these approaches is 

to determine whether the observed number of mutations in the gene is significantly greater than 

the number expected according to a background mutation rate (BMR)” (Raphael et al. 2014, p. 

7). It is not difficult to recognize here a standard way to statistically detect a significant 

deviation from expected results. But in this context, this is a key point. Indeed, the BMR “is the 

probability of observing a passenger mutation in a specific location of the genome” (Ibidem). 

From the BMR and the number of sequenced nucleotides within a gene, “a binomial model can 

be used to derive the probability of the observed number of mutations in a gene across a cohort 

of patients” (Ibidem).28 

The problem is: If we are searching for a way to identify driver mutations, i.e. to distinguish 

driver from passenger mutations, how can the BMR, i.e. the probability that a passenger 

mutation can be found in a specific location of the genome, be already estimable? In fact, it is 

estimated on the basis of previously acquired biological knowledge. Indeed, those who develop 

statistical models for detecting single-nucleotide recurrent mutations incorporate in their models 

some features of passenger mutations. For instance, they assume, among other things, that 

“BMR is not constant across the genome, but depends on the genomic context of a nucleotide 

[…] and the type of mutation”, that “the BMR of a gene is correlated with both its rate of 

                                                 
28 Cf. Raphael et al. 2014, p. 7: “Using the background mutation rate (BMR) and the number n of 

sequenced nucleotides within a gene (g), the probability (Pg) that a passenger mutation is observed in g is 

given by Pg = 1 - (1 - BMR). Since somatic mutations arise independently in each sample, the 

occurrences of passenger mutations in g are modeled by flipping a biased coin with probability pg of 

heads (mutation). Thus, if somatic mutations have been measured in m samples, the number of patients in 

which gene g is mutated is described by a binomial random variable B(m, Pg) with parameters m and Pg. 

From B(m, Pg), it is possible to compute the probability that the observed number or more samples 

contain passenger mutations; this is the P-value of the statistical test.” 
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transcription […] and replication timing”, and that the “BMR is also not constant across 

patients” (Ibidem). The estimated BMR greatly affects the identification of recurrent mutations, 

and so the identifications of driver mutations. This means that different methods for identifying 

recurrently mutated genes, since they may diverge in their estimation of the BMR, can (and in 

fact do) diverge in the identification of driver mutations (Ibidem; Tokheim et al. 2016). But this 

is not the problem we would like to focus on.  

The big epistemological problem, as hinted above, is that these methods for identifying 

driver mutations assume data relative to the expected frequency of passenger mutations, data 

which can be produced only by assuming that driver and passenger mutations actually exist and 

can be distinguished, an assumption that is based in its turn on the very hypothesis that should 

be confirmed, namely SMT. Indeed, driver mutations can be regarded as such only by assuming 

SMT.29 If one tries to detect driver mutations in order to confirm SMT, it would be circular to 

incorporate in one’s method for detecting driver mutations a frequency distribution which is 

developed relying on the assumed existence of driver mutations. 

On the contrary, computational methods for detecting driver mutations, in order to confirm 

SMT over TOFT, should be able to show us that the set of all detectable mutations in a cancer 

genome can be unambiguously assigned to two distinct subsets, namely the sets of driver and 

passenger mutations, in a principled way independent of the way driver mutations are defined 

by SMT. If instead driver mutations are identified because in the set of all the detected 

mutations in a cancer genome they are the most recurrent, and, according to SMT, the most 

recurrent mutations cannot but be driver mutations, we have no independent reason to claim that 

SMT is confirmed by the computational methods developed to identify driver mutations. 

Similar problems afflict the other main strategies that have been developed by 

bioinformaticists for detecting driver mutations, namely predicting the functional impact of 

individual mutations, and assessing combinations of mutations. Indeed, all these approaches 

“assume that a priori information […] will help to distinguish passenger from driver mutations” 

(Ibidem, p. 9). But “one important bias in the methods that predict cancer genes is” precisely 

“the direct or indirect incorporation of prior knowledge” (Dimitrakopoulos, Beerenwinkel 2017, 

                                                 
29 The fact that some data can be regarded as relevant to the estimation of the frequency distribution of 

passenger and driver mutations only if one assumes SMT can be clearly seen by considering that if one 

assumes TOFT, then the very same data (i.e. the detected mutations in a given cancer genome) cannot be 

regarded as instances of ‘driver’ mutations, simply because according to TOFT somatic mutations are not 

the cause of cancer. If one does not assume SMT, by searching for mutations one can at most display 

correlations of recurrent mutations in cancer cells, but one cannot prove that those mutations are the cause 

of carcinogenesis, and so one cannot disconfirm TOFT. Indeed, TOFT does not deny the existence of 

mutations in the genome of cancer cells. It denies that these mutations are the cause of cancer insurgence. 
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p. 12).30 Such already available information is often constituted and interpreted assuming SMT, 

and so assuming the distinction between driver and passenger mutations. At this regard, Baker 

maintains that current bioinformatic methods identify driver mutations “in terms of their 

likelihood of being driver mutations, but do not prove the existence of driver mutations […]. 

Gold standards for evaluating bioinformatics predictions of driver mutations […] are based on 

postulated driver mutations and not on unambiguously established driver mutations” (Baker 

2015b, p. 1). 

The case of the search for the identification of driver mutations seems to conform to the 

above proposed distinction between plausibility and probability. Relying on statistical tools we 

can well estimate the probability that a given mutation is a driver mutation. And we may also 

claim that such probability is objective, because it is calculated by relying on empirical reliable 

findings. But, for instance, the theoretical decision of considering some mutations as instances 

of driver or passenger mutations in order to estimate the BMR, i.e. to interpret these findings in 

accordance to SMT, cannot be accounted for in terms of probability, it may instead be 

                                                 
30 It may be objected that the so called de novo approaches, which aim at the identification of driver 

mutations by statistically analyzing combinations of mutations in networks and pathways (this method 

belongs to the third kind of approaches to individuate driver mutations listed above) are less prone to this 

criticism, because they do not incorporate previous knowledge about genes associated with well-studied 

cancer pathways. But this objection is inadequate. Indeed, even de novo approaches are not independent 

from crucial assumptions that are not neutral with respect to what hypothesis on carcinogenesis is 

adopted. In order to identify novel combinations of mutations or mutated genes, “it would be ideal to test 

all possible combinations for recurrent mutations across a cohort of cancer patients, but such a de novo 

approach is impractical. For example, there are more than 1029 possible sets of eight genes in the human 

genome, which is both too many to evaluate computationally and too many hypotheses to test while 

retaining statistical power” (Raphael et al. 2014, p. 12). In order to overcome this difficulty, de novo 

approaches try to identify driver mutations by searching for genetic aberrations which are both 1) highly 

recurrent, and 2) mutually exclusive, i.e. they do not compare in different pathways. So, only if one 

accepts the “hypotheses that each tumor has relatively few driver mutations […] and these driver 

mutations perturb multiple cellular functions in different pathways […], one can conclude that a tumor 

rarely possesses more than one driver mutation per pathway”, and so that “when examining data across 

cancer samples, driver pathways […] correspond to mutually exclusive sets of genes” (Ibidem). But these 

assumptions are not independent from prior knowledge. Indeed, they relies on SMT, since they 

presuppose the existence of driver mutations, and even a precise hypothesis about their frequency, 

presuppositions which cannot be based on nothing but some kind of prior knowledge. Thus, de novo 

approaches do not really differ from other kinds of approaches developed to identify driver mutations, 

and cannot be said to be independent from previous knowledge. So, this objection is inadequate. 
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accounted for in terms of plausibility, i.e. in terms of the assessment of the arguments for and 

against this hypothesis.  

 

 

3.5. The Search for Driver Mutations and Big Data 

 

The confidence on the possibility of developing effective treatments based on personalized 

cancer medicine is driven in part by an optimistic attitude towards the increasing availability of 

large amount of data. Many thought that, despite the divergences between our current theories 

of carcinogenesis, conflating in some statistical algorithm the ‘deluge of data’ coming from 

‘omics’ researches would have allowed us to derive the right diagnoses and prognoses. On the 

contrary, as we have seen above (section 2.2), an enormous quantity of data may put pressure on 

the theoretical assumptions that currently dominate a research field. In other words, unless we 

possess a powerful and adequate theoretical perspective on the phenomenon we are analyzing, 

the deluge of data will probably not improve our understanding of that phenomenon. The risk is 

to be confused. 

As we have already noted above, when the stock of data increases, even the number of 

spurious correlations increases. This is what happens in the case of the search for the 

identification of driver mutations. Lawrence and colleagues describe the situation as follows: 

many “international projects are aimed at creating a comprehensive catalogue of all the genes 

responsible for the initiation and progression of cancer”; these studies “involve the sequencing 

of matched tumour-normal samples followed by mathematical analysis to identify those genes 

in which mutations occur more frequently than expected by random chance”; but the 

fundamental problem with cancer genome studies is that “as the sample size increases, the list of 

putatively significant genes produced by current analytical methods burgeons into the 

hundreds”, and the list “includes many implausible genes […], suggesting extensive false 

positive findings that overshadow true driver events” (Lawrence et al. 2013, p. 214).  

In our view, this means that in order to achieve a deeper understanding of a given 

phenomenon, what is really needed is more theoretical work and the production of more 

plausible hypotheses to be tested, rather than the mere production of more data. The process of 

evidence amalgamation necessarily requires some theoretical hypotheses to work properly, and 

those hypotheses are produced and accepted on the basis of plausibility-based considerations. 

At this regard, Weinberg, one of the most influential authors of SMT, seems to have an 

ambiguous position. Indeed, if, on the one hand, he claims that the “data that we now generate 

overwhelm our abilities of interpretation”, and we “lack the conceptual paradigms and 

computational strategies for dealing with” these data, on the other hand, he seems to think, as 
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supporters of big data usually think, that the key for the advancement of our understanding is 

the development of more powerful statistical models, i.e. the development of new tools to 

amalgamate the biggest quantity possible of evidences, models which will give us the right 

answers. He states that “we don’t know how to integrate individual data sets, such as those 

deriving from cancer genome analyses, with other, equally important data sets, such as 

proteomics”, and that this is frustrating, because it is “becoming increasingly apparent that a 

precise and truly useful understanding of the behavior of individual cancer cells and the tumors 

that they form will only come once we are able to integrate and then distill these data” 

(Weinberg 2014, p. 271).  

We think instead that the development of new theoretical hypotheses to be assessed both by 

means of plausibility-based considerations and empirical confirmation, is still the key issue in 

the advancement of science. We also think, as we hope to have made clear, that also the so often 

invoked development of new statistical tools proceeds in this way, and so that it is not 

independent from human theoretical efforts and plausibility-based considerations.  

 

 

3.6. Plausibility and the Debate between SMT and TOFT 

 

We would like to conclude this section with some more general considerations. It may be 

objected that even if there is some difficulty in adjudicating between SMT and TOFT by merely 

relying on computational tools for identifying driver mutations, if we consider all the evidences 

available, we should be able to reach a shared conclusion. But it seems not to be the case. 

Indeed, if it were possible to objectively collect and amalgamate all relevant evidences available 

from cancer research, put data in some statistical model for theory confirmation, and objectively 

assign some probability distribution to the rival hypotheses, we would be able to clearly assess 

what theory is empirically more confirmed between SMT and TOFT.  

But, again, things are more complicated than that. Recently, there have been some important 

confrontations on what is the best hypothesis on carcinogenesis between SMT and TOFT (see 

e.g. Bedessem, Ruphy 2015, 2017; Bizzarri, Cucina 2016; Baker 2015a, 2015b; Kaye 2015; 

Soto, Sonnenschein 2011; Sonnenschein, Soto 2011; Vaux 2011a, 2011b). Although they often 

consider the very same set of evidences, different scholars draw almost opposite conclusions on 

which hypothesis is the most confirmed by those evidences.  

For example, Bizzarri and Cucina (2016) think that SMT is not indirectly confirmed by the 

results of the therapeutic strategy aimed at targeting specific relevant mutations in the treatment 

of chronic myelogenous leukemia: 
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Evidence arguing for the irrelevance of mutations as a target for therapeutic management comes 

from studies performed on chronic myelogenous leukemia. It has been claimed that the abnormal 

fusion tyrosine kinase BCR-ABL acts as an ‘oncogene’ and is deemed the key-initiating factor in 

myelogenous neoplastic transformation. Inhibition of the corresponding oncoproteins by means of 

tyrosine kinase inhibitor (TKI) has indeed lead to significant short-term beneficial responses, yet 

without achieving any benefit in terms of long-term survival. This latter failure has been ascribed 

to the fact that a reservoir of cancer stem cells still proliferates because they lack the alleged 

targeted-mutated gene and they are therefore insensitive to the TKI […]. Thus, accordingly to this 

rationale, myeloid cells would become transformed by an oncogene that curiously is absent among 

the cancer stem cell population from which cancer is thought to arise. (Bizzarri, Cucina 2016, p. 

223). 

 

On the opposite side, Vaux (2011a) think that precisely the same clinical example provides 

the best empirical support currently available to SMT: 

 

the most dramatic support [to SMT] comes from the clinic. CML [i.e. chronic myelogenous 

leukemia] is caused by a chromosomal translocation that generates the Philadelphia chromosome 

and activates the BCR-ABL fusion oncoprotein. If CML were instead due to changes in tissue 

organization, it ought not respond to imatinib, an inhibitor of the ABL kinase, yet CML responds 

extraordinarily well to imatinib […]. Furthermore, in cases that develop resistance to the drug, 

additional mutations are found to the bcr-abl gene in sub-clones of the leukemia cells […], 

indicating that not only development of CML, but also drug resistance, is due to sequential DNA 

mutations arising in somatic cells, in accordance with SMT. (Vaux 2011a, p. 343). 

 

As already stated, we do not aim at solving the dispute between SMT supporters and TOFT 

supporters here. What we aim at pointing out by focusing on such a theoretical disagreement is 

that this kind of theory/hypothesis assessment may be better accounted for in terms of 

plausibility-based considerations rather than in terms of probability-based considerations. Given 

that often the authors that diverge on such theoretical issues consider almost the same empirical 

data, if they should have adopted a theoretical stance relying on probability-based 

considerations, and probability were objective and simply dictated to us by the way the world is, 

these authors should have arrived at the same conclusions. 

But authors do not arrive at the same conclusions. Nor they justify the theoretical stance they 

adopt by making reference to probability-based considerations. Rather, these authors provide 

arguments and reasons to support their favored hypothesis, they do not merely provide a 

probability-based estimation of the degree of empirical confirmation of that hypothesis. It may 

be objected that conclusions diverge because theory assessment follows a Bayesian path, and 

given that different authors start from different prior probabilities assigned to rival hypotheses, 
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they arrive at different conclusions. But even accepting such a Bayesian framework, the point 

now is: Why different authors assign different prior probabilities to rival hypotheses? Again, if 

it were possible to objectively assign these probability values, conclusions should not be 

divergent. But conclusions do diverge. This means that priors probabilities are not objectively 

assigned, i.e. they are not assigned by means of a (potentially mechanizable) procedure which 

can univocally determine each prior in an uncontroversial way. Thus, it seems fair to suppose 

that scholars assign prior probabilities to rival hypotheses by relying on plausibility-based 

considerations.  

Probability and plausibility do not stand opposed, they are not rival concepts, yet they are 

distinct concepts, and we think that understanding how they are related may allow us to better 

understand how evidences are produced and amalgamated in scientific research. 

 

 

4. Plausibility and Evidence Amalgamation in Medicine 

 

Let us conclude this article by considering our proposal from a broader perspective. 

Philosophical investigations on cancer research are nested in the philosophy of medicine. So, we 

would like to address some more general epistemological issues that are nevertheless central for 

the philosophical analysis of cancer research. In what follows, we briefly put the thesis we 

argued for in this article in this broader context.  

There are at least two main conceptions of statistics, namely classical statistics and Bayesian 

statistics.31 These two ways of conceiving of statistics are also often associated to two distinct 

ways of conceiving of probabilities: supporters of classical statistics usually adopt a frequentist 

perspective on probability, while supporters of Bayesian statistics usually adopt a conception of 

probability as degree of belief. The conception of probability one adopts may affect the 

evaluation of one’s inquiry. We argue that, despite their divergences, neither frequentists nor 

Bayesians give a complete representation of how evidences are amalgamated in medicine, and 

that considering the role that plausibility-based considerations play in the process of evidence 

amalgamation can give some insights on this issue. 

 

 

4.1. Random Clinical Trials 

 

                                                 
31 For a detailed illustration of the main views of statistics, see Romeijn (2017). 



PENULTIMATE DRAFT – PLEASE CITE THE PUBLISHED VERSION 

Synthese, DOI 10.1007/s11229-017-1591-9. 

 

37 

 

To better see this point, consider one of the most important issues in which statistics and 

medicine intersect each other, namely the validation of the efficacy of drugs and treatments. On 

this issue, scholars are divided into two main positions: on the one hand, there is the dominant 

position, inspired by the ideas of the Evidence Based Medicine (EBM),32 according to which the 

gold standard of confirmation in medical research are Random Clinical Trials (RCTs) (see e.g. 

Papineau 1994); on the other hand, there is the position advocated by those who criticize RCTs 

from a Bayesian perspective (see e.g. Worrall 2007b). 

These two ways of conceiving of clinical trials rest on two different conceptions of 

probability. Indeed, supporters of RCTs usually adopt a frequentist interpretation of probability, 

while Bayesians usually adopt an interpretation of probability as degree of belief. The 

differences between these two conceptions of probability are reflected in the way these 

approaches to clinical trials consider evidences be amalgamable. Some authors speak of 

‘evidence elitism’ with regard to the supporters of RCTs, and of ‘methodological pluralism’ 

with regard to the Bayesians (Osimani, Landes forthcoming). According to EBM, randomized 

trials are the only truly reliable source of evidence in clinical testing. Other sources of evidences 

may well be taken into consideration in order to decide how to act in the absence (or in the 

impossibility of performing) RCTs. But this does not mean that evidences coming from other 

sources can be amalgamated with those deriving from RCTs in order to draw a conclusion on 

the drug (or treatment) we are evaluating through a RCT. In this case, evidences coming from 

the RCT have to be preferred (Worrall 2007a).  

 

 

4.2. Frequentist Approaches to Clinical Trials 

 

But how exactly the way probability is conceived affects the way clinical trials are conceived? 

Consider RCTs. As already noted, supporters of RCTs adopt frequentism, and in frequentism 

probabilities are relative frequencies of empirical events.  

In this view, probability of an event e is defined as the limit of the proportion, as n increases, 

of 

 

f = k/n 

 

“where f is the frequency of occurrence of the relevant event, k is the number of times the 

event occurs in n repetitions of the experiment” (Djulbegovic, Hozo, Greenland 2011, p. 309). 

                                                 
32 For a survey on EBM, see Bluhm and Borgerson (2011). 
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Ideally, when n goes to infinite, f gives us the objective probability of e. In other words, in this 

perspective probability is equivalent to the frequency of an event, and this frequency is 

determined by the way the world is. This is clearly an objective view of probability, which may 

seem perfectly suitable for all those who aim at an objective knowledge of the world.  

But the devil is in the details, and things are not so easy for frequentists as they may prima 

facie appear. The main problem with this conception of probability is precisely that it equates 

probabilities and frequencies. This idea leads to several difficulties, which all derive from the 

same theoretical problem: if probabilities are frequencies, then in order to calculate the objective 

probability of a given event e, we should try to replicate the very same experiment as many 

times as possible, and see how many times e occurs. Indeed, if probabilities are frequencies, in 

order to estimate the probability of e, we should estimate the frequency of e. Obviously, even 

granting that probability is objective, if we deal with very limited sets of trials, our estimation of 

the frequency of e may strongly diverge from the real value of such frequency. Thus, according 

to the law of large numbers, in order to secure our confidence in the objectivity of the 

probability assigned to e, we should be able to perform a huge number of replications of the 

same trial to better estimate the frequency of e.  

Consider a fair coin. If you toss it ten times, there is a high probability that you will not 

obtain a score of 5 heads and 5 tails, i.e. the probability values that probability theory predicts in 

this case. Frequencies approximate theoretical probability values only if replications tend to 

infinity. So, if we try to test the equiprobability of heads and tails empirically, we will 

approximate the theoretical value only in the (very) long run. In the coin example, we will 

probably do better if we toss the coin 10.000 times. And even better if we toss the coin 

100.000.000 times.  

Consider now RCTs. The rationale behind this experimental design is that random 

assignment of patients may neutralize biases and confounders (Teira 2011). This would allow us 

to derive the objective probability of the hypothesis we are testing.  

There are two main (and related) epistemological problems with this perspective. The first is 

how to determine whether the sample of population we select in our trial is sufficiently similar 

to the target population. As we have seen, in a small sub-set of occurrences, our estimation of 

the frequency of an event may strongly diverge from the frequency of that event relative to the 

whole set. In clinical trials, this divergence may be due to relevant differences in the 

distributions of the relevant factors in the study population and the target population.33 An 

analogous issue is establishing whether the populations assigned to the different arms of the trial 

                                                 
33 This is the so-called problem of the external validity, see Worrall 2010. 
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are equivalent.34 Indeed, a trial is biased “if (whether or not we know it) there is some difference 

between the experimental and control groups” (Worrall 2007a, p. 993). 

Randomization and replication should be the keys here (Howson, Urbach 2006). If there are 

say n factors that may be relevant and lead to biases or confounders in evaluating the efficacy of 

a drug, a random assignment of patients is thought to be able to distribute those n factors so that 

the frequencies of those n factors in the study population approximate the frequencies of those n 

factors in the target population. Indeed, it is known that non-random assignment of patients to 

the distinct arms of a trial may induce bias and confounding (Osimani, Landes forthcoming).  

The problem is that even random assignment may well produce a study population which is 

significantly divergent from the target population (Worrall 2010). To balance all the possible 

biases and confounders we have to add replication to randomization, i.e. we need to increase the 

number of study sub-populations selected through random assignment. When the number of 

random sub-populations grows, the probability that the mean value of the n factors in those 

populations will approximate the value of the n factors in the target population increases. But n 

may be constituted by known factors as well as unknown ones. This means that we could safely 

claim that the target population is well represented in our study population and relevant factors 

are well balanced, so that biases and confounders are prevented and neutralized, only in two 

cases: 1) if we already know with certainty all the relevant factors that should be considered for 

evaluating a given drug or treatment; 2) if the number of members of the target population and 

the number of sub-populations go to infinity. Both conditions usually do not obtain. The same 

reasoning applies to the issue of establishing whether the trial is biased in the sense that there is 

some difference between the experimental and control groups. How can we compare those 

groups and safely claim that they are equivalent if there may be some unknown factors that may 

be not equivalently distributed among them?  

The point is that, as well as there is no way to claim that it is not possible that some 

unconceived alternative to a given hypothesis will appear, there is no way to rule out the 

possibility that there may be some not yet known relevant factors for the case under 

investigation.35 Since our knowledge of what are the relevant factors is limited and fallible, even 

if those factors are actually of a finite number, in order to claim with certainty that all possible 

biases and confounders have been neutralized, we should be able to managing infinite 

populations and replications. But managing actual infinity in empirical domains is prevented to 

                                                 
34 Cf. Howson, Urbach 2006, p. 183: “Clinical trials typically involve two groups of subjects, all of 

whom are currently suffering from a particular medical condition; one of the groups, the test group, is 

administered the experimental therapy, while the other, the control group, is not […].” 

35 Cf. e.g. Worrall 2007b, p. 472: “there can be no estimate of how closely balanced a particular real trial 

is with respect to any unknown factor—this is so by definition, since the unknown factor is unknown!” 
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us humans. So, we cannot know with certainty whether the frequency of event e that we 

estimated in our trial is really objective, i.e. whether or not it approximates the frequency value 

of e in the whole population.  

The second main epistemological problem with RTCs is more straightforwardly connected 

with the issue of replicability. As we have seen, in frequentism it is the number of replications 

that give us reasons to think that the observed frequency approximates the objective probability 

of a given event. Unfortunately, RCTs usually cannot be too large for economical and ethical 

reasons (Worrall 2007b, 2007a). But there is also a theoretical difficulty. A randomized clinical 

trial can never be really replicated. This is due to the fact that we cannot take our sample of 

patients, and after a first round of treatment, re-randomize it and start the trial again (Worrall 

2007b).36  

This analysis of the epistemological difficulties that afflict RCTs is intended to point out 

how the objectivity of the results obtained through RCTs, which is usually invoked as the main 

reason to adopt RCTs, can be maintained only if some epistemic decisions are taken on how and 

(to what extent) less idealized conditions can be accepted for a trial in a certain context. We 

maintain that these decisions are taken by performing a plausibility-based analysis of the 

context under investigation, and are informed by previous knowledge of relevant facts.37 

 

 

4.3. Bayesian Approaches to Clinical Trials 

 

As we have already noted, Bayesians make several criticisms of RCTs. The most relevant are: 

(1) the claim that RCTs deal with objective probabilities hides many epistemic decisions that 

are instead taken in the actual development of RCTs; (2) RCTs do not accept relevant kinds of 

evidences that should instead be taken into consideration in the process of evaluation of a drug 

or treatment.  

                                                 
36 Cf. Worrall 2007b, p. 472: “there is also an epistemological issue about whether any repeated random 

trial would be comparable to the initial one. If a particular patient in the study receives, say, the ‘active 

drug’ on the first round, then, since this is expected to have some effect on his or her condition, the 

second randomization would not be rigorously a true repetition of the first. The second trial population, 

though consisting of the same individuals, would, in a possibly epistemically significant sense, not be the 

same population as took part in the initial trial.” 

37 Cf. Worrall 2007a, p. 1000-1001: “randomisation does not free us from having to think about 

alternative explanations for particular trial outcomes and from assessing the plausibility of these in the 

light of ‘background knowledge’.” 
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Those criticisms have their roots in the different way of conceiving of probability that 

Bayesians adopt. Indeed, they usually regard probability as a measure of degree of belief, rather 

than a frequency. In this view, probabilities are in the ultimate analysis related to states of mind 

and not (directly, at least) to states of objects. According to many Bayesians, adopting a 

Bayesian strategy in the evaluation of drugs and treatments would allow us to validate the 

efficacy of a drug or treatment in minor time and at a minor cost.  

Let’s briefly consider the epistemological difficulties that the Bayesians have to face. 

Roughly, they can be reduced to the main one: the issue of prior probabilities assignment.38 

This is a crucial issue, because the assignment of different priors leads to different results in the 

calculation of conditional probabilities. 

There is a huge amount of literature on this issue (see Howson, Urbach 2006; Williamson 

2010). What is undeniable is that there is not a principled way to assign prior probabilities 

which is widely accepted and may be really deemed to be objective. Indeed, since we are 

dealing here with a ‘degree of belief’ conception of probability, we cannot rule out the 

possibility that different priors may be assigned by different subjects to the very same 

hypothesis. According to critics of the Bayesian approach, such a subjective view of probability 

would introduce an unacceptable degree of subjectivity in our evaluative process, and this 

would make this process arbitrary. 

Moreover, in this view priors reflect current knowledge, so they do not reflect the way the 

world really is, but the degree of our knowledge of it. Thus, even if we put aside the role of 

subjectivity in prior probabilities assignment, and adopt objective Bayesianism (Williamson 

2010), according to which prior degrees of belief are fully determined by the evidence, the 

problem of the unconceived alternatives is still there. This means that the problem of 

subjectively assigning some prior degree of belief is just moved one step back. Indeed, prior 

probabilities can be assigned in an objective way only if we could affirm to know all the 

possible outcomes. But since our current knowledge is contingent and fallible, we cannot 

exclude that there may be other possible outcomes that we do not know yet. Thus, we cannot 

calculate the probability of each possible outcome in a truly objective way. As we have seen 

                                                 
38 On the different Bayesian perspectives on prior probabilities, cf. Williamson 2010, p. 2: “All Bayesian 

epistemologists hold that rational degrees of belief are probabilities, consistent with total available 

evidence, and updated in the light of new evidence by Bayesian conditionalization. Strict subjectivists 

(e.g. Bruno de Finetti) hold that initial or prior degrees of belief are largely a question of personal choice. 

Empirically based subjectivists (e.g. Howson and Urbach […]) hold that prior degrees of belief should not 

only be consistent with total evidence, but should also be calibrated with physical probabilities to the 

extent that they are known. Objectivists (e.g. Edwin Jaynes) hold that prior degrees of belief are fully 

determined by the evidence.” 
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above, we can proceed by making plausibility-based considerations on the relevant data and our 

previous knowledge, and assigning prior probabilities accordingly. This means that the 

objective Bayesian may well assign a prior probability value p to a given hypothesis h on the 

basis of the set e of empirical evidences for p that are currently available. She may also claim 

that p is fully determined by e. But what is the prior degree of belief p1 that we should assign to 

the hypothesis h1 that evidences collected in e are reliable, and so that we can safely rely on 

them in order to determine p? If we think that p1 may be fully determined in its turn by another 

set of evidences e1, we risk ending in a regress. So, at some point at least, some prior 

probabilities assignment cannot be maintained to be objectively and fully determined by 

evidences alone. 

In other words, since prior probabilities assignment cannot avoid resorting to plausibility-

based considerations, even if Bayesian strategies of testing can account for all the relevant 

evidences that enter the evaluative process of practitioners, they are nevertheless unable to 

dictate an uncontroversial way of assigning values to the prior probabilities relative to such 

evidences.  

To sum up, plausibility-based considerations play a relevant role both in frequentist and 

Bayesian approaches to clinical trials (although this role is neglected by both these approaches), 

because these approaches deal with a context afflicted by the problem of the unconceived 

alternatives. We think that taking into account the role of plausibility-based considerations can 

contribute to clarify some epistemological shortcomings that afflict both frequentist and 

Bayesian perspectives. 

 

 

5. Conclusion 

 

In this article, we firstly introduced the analytic view of theory development and illustrated the 

concept of plausibility to some extent in order to make clear in what sense plausibility and 

probability are distinct concepts. We used the concept of plausibility to point out the 

ineliminable role played by the epistemic subject in the process of evidence amalgamation and 

in the process of theory assessment. Then, we moved to address a central issue in current cancer 

research, namely the relevance of computational tools developed by bioinformaticists to detect 

driver mutations in the debate between the two main rival theories of carcinogenesis, namely 

SMT and TOFT. Finally, we briefly extended our considerations on the role that plausibility 

plays in evidence amalgamation from cancer research to the more general issue of the 

divergences between frequentists and Bayesians in the philosophy of medicine and statistics. 
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We argued that considering the role played by plausibility-based considerations may lead to 

clarify some of the epistemological shortcomings that afflict both these perspectives. 
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