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Nominalism and Immutability
Daniel Berntson

Can we do science without numbers? Quine (1961) says no. Numbers and other
mathematical entities are indispensible. Field (1980) says yes. Numbers may be useful,
but are not essential. With enough time and patience, we can do science without them.

Now consider a seemingly unrelated question: How much contingency is there?
Spinoza says none. Whatever is true is necessary. Williamson (2013) says none with
respect to what exists, but some with respect to how things are. The ordinary view,
perhaps, is that there is some with respect to what exists, and some with respect to how
things are.

These seemingly unrelated questions—one in the philosophy of math and science
and the other in metaphysics—share an unexpectedly close connection. For as it turns
out, a radical answer to the second leads to a breakthrough on the first.

The radical answer is immutabilism, a viewfirst endorsed byLeibniz. Immutabilism
says that there is some contingency with respect to what exists, but none with respect
to how things are. Immutabilism is thus a sort of converse of necessitism, which is the
view endorsed byWilliamson.

The breakthrough is a new strategy for doing science without numbers. Field
shows how to do science without numbers in classical mechanics. His strategy, though,
requires the existence of spacetime points. This is fine, so far it goes. But there are
reasons you might want an alternative: You might be a relationalist, and so reject
the existence of spacetime points. You might be concerned that the strategy will not
generalize, especially to theories formulated in terms of state space. Or youmight simply
wonder whether we can get by with less. I think that we can, and immutabilism is the
way to do it.

1 Nominalism

Wecan distinguish two views about scientific theories. Scientific nominalism says that
the best scientific theories include a nominalist theory. A theory is nominalist when
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it quantifies over only concrete particulars.1 Concrete particulars include things like
particles.

Scientific Platonism, on the other hand, is the view that all of the best scientific
theories are Platonist. A theory is Platonist when it is not nominalist. Thus, a Platonist
theory will quantify over things like numbers or universals in addition to things like
particles.2

Why might you be a scientific nominalist? Suppose that you are ametaphysical
nominalist. You say that the only things that exists, fundamentally speaking, are
concrete particulars. Suppose that you are also a scientific fundamentalist. You
thus claim that fundamental reality is best described by at least one of the best scientific
theories. In that case, scientific nominalism will follow.

Metaphysical nominalism, then, is one road to scientific nominalism. But there
are others as well. For example, you might think that numbers exist, and that their
existence is fundamental. Still, you might think that their role in science is merely
representational. But if the role of numbers is merely representational, then we should
be able to do science without them, given enough time and patience.3

Similarly, youmight think that nominalist theories have certain virtues thatPlatonist
theories lack. For example the most direct objects of scientific inquiry are concrete
particulars—things like meter sticks and scales and particle accelerators. Nominalist
theories are thus intrinsic in a way that Platonist theories are not. For nominalist
theories explain the behavior of concrete particulars without appealing to anything
other than concrete particulars. As such, you might think that nominalist theories
are both more satisfying and more illuminating.4 This in turn suggests that the best
scientific theories may include nominalist theories, since they have a unique profile

1. This is only a rough characterization. What it means for a theory to be nominalist depends on
the background ideology. For example, a theory stated in terms of a feature-placing language of the sort
suggested by Quine (1971) has no quantification, and so thereby has no quantification over things like
numbers or properties. But a theory written in a feature placing language could fail to be nominalist. It
might, for example, place mathematical features (like being an integer) alongside physical features (like
having mass). Thus, I prefer to adopt a “we know them when we see them” approach to identifying
nominalist theories.

2. The views described here are weak scientific nominalism and strong scientific Platonism. Alter-
natively, you could be a strong scientific nominalist who thinks that all of the best physical theories are
nominalist. You could also be a weak scientific Platonist who merely holds that some of the best physical
theories are Platonist.

3. Field (1984) makes a similar point. He calls this view moderate Platonism.
4. For example, synthetic geometries, like those proposed by Tarski (1952), would seem to be both

more satisfying and more illuminating than the corresponding analytic geometries.
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when it comes to theoretical virtues.5

You can be a scientific nominalist, then, without being a metaphysical nominalist.
The converse is also true: You can be a metaphysical nominalist without being a
scientific nominalist.

For example, suppose you are a logical atomist, and so hold that they only funda-
mental facts are atomic facts. The best scientific theories, though, have strong and
simple laws, which necessarily involve generality. Thus, scientific fundamentalism fails.
But in that case, you could also think that the necessary generality requiresmathematics,
even if the the only fundamental things are concrete particulars. Thus, you could be a
metaphysical nominalist without being a scientific nominalist.

For my own part, I am both a scientific nominalist and a metaphysical nominalist,
though my commitment to the first is stronger than my commitment to the second.

Our focus in this paper will be scientific nominalism. What we want to know is:
Can we build scientific theories while quantifying over nothing more than concrete
particles? Canwe do sciencewithout numbers? Thus, by nominalism, wewill generally
mean scientific nominalism. Likewise, by Platonism, we will generally mean scientific
Platonism. Questions about metaphysical nominalism and metaphysical Platonism are
also important, but will remain in the background, for the most part.

1.1 Quantities

The physical world is built using physical quantities like mass, charge, and distance. To
fix on an example, suppose we perform a series of experiments and discover that the
movement of particles is governed byNewton’s laws. These laws require distance ratios
between particles.6 Thus, in order to state the laws, we need a language that can describe
such things.

What are distance ratios? Suppose we use a meter stick to determine that 𝑎 and 𝑏
are two meters apart and 𝑐 and 𝑑 are one meter apart. Thus, 𝑎 and 𝑏 are twice as far
apart as 𝑐 and 𝑑. This is a distance ratio. Others include being three times as far apart,
being half as far apart, and so on.

A Platonist can easily describe distance ratios. She could, for example, use a distance

5. That one might prefer nominalist theories because they are more intrinsic is a point originally made
by Field (1984).

6. Here is a simple case: Suppose the world is Newtonian with gravity the only force. There are three
particles 𝑎, 𝑏, and 𝑐 with 𝑏 between 𝑎 and 𝑐. The particles are at rest relative to one another and 𝑎 is as
massive as 𝑏 and 𝑐 put together. In that case, by the law of universal gravitation, the collision of 𝑎 and 𝑏
will be simultaneous with the collision of 𝑏 and 𝑐 just in case the distance ratio of 𝑎 and 𝑏 to 𝑏 and 𝑐 is√

2. But if there is no determinate distance ratio, the laws will fail to determine whether the collisions will
be simultaneous. We thus get an unwanted failure of determinism.
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ratio function from particles to real numbers. Thus, to say that 𝑎 and 𝑏 are twice as far
apart as 𝑐 and 𝑑, she would write:

𝛿(𝑎, 𝑏, 𝑐, 𝑑) = 2 (1)

If you like, you might think of this as a definite description:

The distance ratio of 𝑎 and 𝑏 to 𝑐 and 𝑑 = 2.

Such descriptions let the Platonist describe particle configurations, apply the dynamical
laws, and predict how particles move.

Suppose, though, that we are scientific nominalists. We are thus committed to
theorizing about the physical world without using things like distance functions. In
that case, how are we going to express facts involving distance ratios? This problem,
as applied to physical quantities in general, is what Field (1984) calls the problem of
quantities.

One strategy for solving the problem is simple nominalism. In the case of distance
ratios, simple nominalism requires nothing more than particles and the relations of
congruence and betweenness.

Cong(𝑎, 𝑏, 𝑐, 𝑑) 𝑎 and 𝑏 are the same distance apart as 𝑐 and 𝑑
Bet(𝑎, 𝑏, 𝑐) 𝑏 is on a straight line between 𝑎 and 𝑐

In each case, the gloss on the right is merely intuitive. The congruence relation is natu-
rally described by quantifying over distances and the between relations by quantifying
over lines. But these are both just basic relations, so come with no commitment to the
existence of things like distances or lines.

To see how a simple nominalismmight account for distance ratios, consider a world
with exactly four point particles arranged as follows:

a x b c

The betweenness and congruence relations are as illustrated, with the particles 𝑎 and 𝑏
twice as far apart as 𝑏 and 𝑐. This distance ratio is the one that we want to explain.

The strategy, in this case, is straightforward. The simple nominalist says that 𝑎 and
𝑏 are twice as far apart as 𝑏 and 𝑐, in the sense that there is an 𝑥 between 𝑎 and 𝑏 such
that 𝑎 and 𝑐 are congruent with 𝑥 and 𝑏, and 𝑥 and 𝑏 are congruent with 𝑏 and 𝑐.

More generally, we can define the notion of an equally spaced line of particles using
betweenness and congruence.7 This gives us a defined polyadic predicate.

7. Particles 𝑎 and 𝑏 are colocated when there is some 𝑥 such that Cong(𝑎, 𝑏, 𝑥, 𝑥). The particles

4



Line(𝑥1, … , 𝑥𝑛) 𝑥1, … , 𝑥𝑛 form an equally spaced line

We then express the claim that 𝑎 and 𝑏 are twice as far apart as 𝑏 and 𝑐 using:

∃𝑥 Line(𝑎, 𝑥, 𝑏, 𝑐) (2)

Looking at the previous diagram, you can see why this is adequate, at an intuitive level.
Since we have an equally spaced line, the distance between each pair can be thought of
as a unit. There are two units between 𝑎 and 𝑏, but there is only one unit between 𝑏
and 𝑐. So 𝑎 and 𝑏 are twice as far apart as 𝑏 and 𝑐.

The problem is that simple nominalism only works if there happens to be enough
particles and they happen to be in the right place. For consider a world just like the last,
except that the second particle from the left has been deleted.

a b c

This is a world in which 𝑎 and 𝑏 are twice as far apart as 𝑏 and 𝑐. There is, however, no
way to fix this distance ratio using betweenness and congruence. After all, consider a
world in which 𝑎 and 𝑏 are half as far apart as 𝑏 and 𝑐 instead.

a b c

These two worlds have exactly the same betweenness and congruence relations, but
different distance ratios. Thus, there is no way to fix the relevant distance ratios using
betweenness and congruence. Such worlds are sparse.

Field’s solution is to accept the existence of spacetime points. Spacetime points, like
particles, can stand in betweenness and congruence relations. Unlike particles, though,
spacetime points are always numerous and well-organized. You can always count on
them being exactly where they need to be.

For example, suppose that we have laws guaranteeing that whenever there are two
things, there is a spacetime point halfway between them. Thus, in the first of our two
sparse worlds, there will be a spacetime point 𝑥 halfway between 𝑎 and 𝑏.

a x b c

But now, since there is once again something halfway between 𝑎 and 𝑏, we can explain

𝑎1, … , 𝑎𝑛 form a line when no two of them are colocated and 𝑎𝑘 is between 𝑎𝑗 and 𝑎ℎ whenever
𝑗 ≤ 𝑘 ≤ ℎ. The line is equally spaced if 𝑎𝑗 and 𝑎𝑗+1 are congruent with 𝑎𝑘 and 𝑎𝑘+1 for all 𝑗 and 𝑘
such that 0 ≤ 𝑗 < 𝑛 and 0 ≤ 𝑘 < 𝑛.
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the necessary distance ratio the sameway as before. That is, 𝑎 and 𝑏 are twice as far apart
as 𝑏 and 𝑐 because:

∃𝑥 Line(𝑎, 𝑥, 𝑏, 𝑐) (3)

The only difference is that now, 𝑥 is a spacetime point instead of a particle. But the
basic structure of the explanation is exactly the same.8

There is much to like about the substantivalist strategy. Spacetime points are
concrete particulars, and so accepting their existence is consistent with nominalism.
Fields are also naturally thought of as properties of spacetime points, and so there is
some reason to think that we will need spacetime points anyway to account for fields.
In that case, using spacetime points to explain distance ratios is no further cost.

On the other hand, there are also reasons to be wary. After all, spacetime faces its
own slate of challenges, ranging from shift arguments to hole arguments.9 There is
also the concern that the strategy will not generalize. Some of our best science describes
quantities usingmore exotic spaces like state space. But while it is reasonably clear that a
nominalist can accept the points of ordinary spacetime as concrete particulars, it at best
unclear whether a nominalist can accept the points of state space as concrete particulars.
But in that case, how is a nominalist going to nominalize state space theories? Thus, we
have good reason to wonder if there might be an alternative.10

Another strategy for expressing distance ratios is to accept distances rather than
spacetime points. What are distances? Brent Mundy (1987) suggests a view on
which distances are binary relations between particles. Particles thus have distances by
instantiating them. Axioms governing distance relations are then given using second-
order quantification into predicate position and a pair of second-order predicates.

𝑋 ≥ 𝑌 𝑋 is at least as great as 𝑌
Sum(𝑋, 𝑌 , 𝑍) 𝑋 and 𝑌 sum to 𝑍

With appropriate axioms in place, we can then explain distance ratios, even in sparse
worlds. For example, here is our three-particle world again.

a b c𝑅 𝑆

8. Early axiomatizations of Euclidean space in terms of congruence and betweenness include (Veblen
1904) and (Pieri 1908). The project was later advanced by Alfred Tarski and his students, who gave
increasingly simple axioms in (Tarski 1952), (Tarski 1959), and (Gupta 1965).

9. See for example Dasgupta (2016).
10. This objection was originally raised byMalament (1982).
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The particles 𝑎 and 𝑏 are then twice as far apart as 𝑏 and 𝑐 because:

𝑅(𝑎, 𝑏) ∧ 𝑆(𝑏, 𝑐) ∧ Sum(𝑆, 𝑆, 𝑅) (4)

This says that 𝑎 and 𝑏 have distance 𝑅 and 𝑏 and 𝑐 have distance 𝑆. Moreover, 𝑆 and
𝑆 sums to 𝑅. This solution, though, is not available to nominalists, since it requires
higher-order quantification over relations.11

Mundy can explain distance ratios in sparse worlds because he is a Platonist. Thus,
even if the particles are sparse, he can still explain distance ratios because his distance
relations are plentiful.12 Like spacetime points, they are numerous and well-organized.
You can always count on them being where they need to be.

On the other hand, if there are distance relations, but they are not plentiful, we
will once again find ourselves unable to express the needed distance ratios. For example,
suppose you are an Aristotelian. You thus deny that distance relations exist when not
instantiated. Now consider the following sparse world. There are exactly three particles.
This time, the particles 𝑎 and 𝑏 are three times as far apart as 𝑏 and 𝑐.

a b c𝑅 𝑆

Mundy will say that the distance ratio can be expressed with:

∃𝑋(𝑅(𝑎, 𝑏) ∧ 𝑆(𝑏, 𝑐) ∧ Sum(𝑆, 𝑆, 𝑋) ∧ Sum(𝑆, 𝑋, 𝑅)) (5)

This says that 𝑎 and 𝑏 stand in distance relation𝑅 and 𝑏 and 𝑐 stand in distance relation
𝑆. Moreover, there is a distance relation 𝑋 such that 𝑆 and 𝑆 sum to 𝑋, and 𝑆 and
𝑋 sum to 𝑅. The problem for the Aristotelian is that this requires the existence of a
distance relation 𝑋 that is the sum of 𝑆 and 𝑆. But if the only distance relations that
exist are the ones that are instantiated, there is no such 𝑋. So the necessary distance
ratio is once again inexpressible.

1.2 Modality and Uniqueness

We can give a theory of distance ratios without numbers, then, if we quantify over
spacetime points or distance relations. But are there other options?

A natural thought is that perhaps we could give a theory of distance ratios using

11. A view that youmight call easygoing nominalism accepts higher-order quantification into predicate
position while rejecting first-order quantification over universals. In contrast, serious nominalism rejects
both sorts of quantification. There is an ongoing dispute about whether easygoing nominalism is
compatible with nominalism. Arthur Prior (1971) says yes. I am inclined to say no. For present purposes,
we can just stipulate that our interest is in the question of whether we can do science as serious nominalists.
12. In particular, Mundy’s axioms guarantee the distance relations form an ordered semigroup.
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modality. For example, you might think that 𝑎 and 𝑏 are twice as far apart as 𝑏 and 𝑐 in
a sparse world, not because there is actually a particle 𝑥 halfway between 𝑎 and 𝑏, but
because there could have been.

As natural as this thought might be, modal strategies face a serious challenge, which
we will call the problem of uniqueness. For suppose that the actual world 𝑤1 is as
illustrated below. The particles 𝑎 and 𝑏 are twice as far apart as 𝑏 and 𝑐, and so this is the
distance ratio wewant to explain. Themodal proposal, then, is that this is because there

a

a

a x y b c

x b c

b c𝑤1

𝑤2

𝑤3

is a possible world𝑤2 in which 𝑎, 𝑏, and 𝑐 are exactly the same, but in which there is an
additional particle 𝑥 halfway between 𝑎 an 𝑏, with the resulting four particles standing
in the illustrated betweenness and congruence relations.

So far so good. The question is: What does it mean for 𝑎, 𝑏, and 𝑐 to be exactly the
same in worlds 𝑤1 and 𝑤2?

We could say that particles are exactly the same when they are intrinsically the same.
Thus, the three particles in𝑤1 are exactly the same in𝑤2 because they stand in the same
betweenness and congruence relations in 𝑤2 that they do in 𝑤1.

But now observe: World 𝑤3 is possible. Moreover, the particles in 𝑤1 stand in
the same betweenness and congruence relations with each other in 𝑤3 that they do in
𝑤1. Thus, they are intrinsically the same and so, on the present proposal, exactly the
same. The problem is that 𝑎 and 𝑏 are three times as far apart as 𝑏 and 𝑐 in 𝑤3. So if
the possibility of 𝑤2 is enough to make 𝑎 and 𝑏 twice as far apart as 𝑏 and 𝑐 in 𝑤1 then,
by parallel reasoning, the possibility of 𝑤3 is enough to make 𝑎 and 𝑏 three times as far
apart as 𝑏 and 𝑐 in 𝑤1. But in that case, the very same particles in the very same world
are both twice as far apart and three times as far apart. This is absurd. So the proposal
fails.

For the modal strategy to work, there has to be a relevant difference between world
𝑤2 and world 𝑤3. But if we only have congruence and betweenness relations within
worlds, there is no relevant difference. This because the three particles from world 𝑤1
stand in exactly the same betweenness and congruence within each world.

This leads to a natural suggestion. Maybe the worlds can be distinguished if we
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allow for relations not only withinworlds, but across worlds.
Looking back at the above diagram, suppose that the congruence relations across

worlds are as they appear. Thus, 𝑎 and 𝑏 at 𝑤1 are congruent with 𝑎 and 𝑏 at 𝑤2, but
not congruent with 𝑎 and 𝑏 at𝑤3. In that case, we do have a relevant difference between
𝑤2 and 𝑤3. Thus, congruence comparison across worlds give us a natural strategy for
solving the problem.

The question is: Can a nominalist appeal to such comparisons across worlds? This
will be the topic of the next section.

1.3 Cross-Modal Comparisons

Weordinarily think that Socrates couldhavebeen taller thanhe is and that theAthenians
could have been happier than they are. In the first case, we are saying that there is a
possible world in which Socrates is taller than he is in the actual world. And in the
second, we are saying that there is a possible world in which the Athenians are happier
than they are in the actual world. Such comparisons are cross-modal comparisons.

How should a nominalist understand cross-modal comparisons? There are a variety
of approaches to the metaphysics of modality. For our purposes, we can focus on two,
which will be used to illustrate the general challenge.

The modal realist says that modal facts are ultimately explained in terms of
quantification over a pluriverse of island universes that are just as real and concrete
as our own. The modalist, on the other hand, says that modal facts are basic and
should be understood in terms of modal operators. The modalist, unlike the modal
realist, is at best agnostic about whether there are universes other than our own.

Now consider how each might express cross-modal comparisons. Suppose that our
universe contains a single particle named Alice. What we would like to say is:

Alice could have been more massive than she actually is. (6)

A modal realist can do this using a pair of relations Ctp(𝑥, 𝑦) and Mass(𝑥, 𝑦). The
first says that 𝑥 is a counterpart of 𝑦. The second says that 𝑥 is more massive than 𝑦.
The target sentence is then expressed with:

∃𝑥(Ctp(𝑥, 𝑎) ∧ Mass(𝑥, 𝑎)) (7)

Thus, according to the modal realist, Alice could have been more massive than she
actually is because there is a particle, somewhere in the pluriverse, that is both a
counterpart of Alice and more massive than Alice.

The question is whether the modalist can do the same. She could try expressing (6)
by writing:

3(Mass(𝑎, 𝑎)) (8)

But this says that it could have been that Alice was more massive than herself, not that
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it could have been that Alice was more massive than she actually is. A modalist could
try adding an actuality operator, which would let her write:

3@(Mass(𝑎, 𝑎)) (9)

But this says that Alice could have actually been more massive than herself, which is
also incorrect. These exhaust the most obvious syntactic possibilities. So the modalist
has no clear strategy for expressing cross-modal comparisons. Call this the problem of
cross-modal comparisons.13

The standard solution is to use quantification over universals. In the case of
mass comparisons, this means quantifying over mass properties. On this approach,
a modalist will express (6) with:

∃𝑋(𝑋(𝑠) ∧ 3(∃𝑌 (𝑌 (𝑠) ∧ 𝑌 > 𝑋))) (10)

This says that there is a mass that Alice has, and it could have been that there was a mass
that Alice had that was greater than the one she actually has.14

Now return to the question of nominalism. The nominalist would like to give
a theory of distance ratios by using cross-modal comparisons. She could try being
a modalist. But the standard solution for expressing cross-modal comparisons as a
modalist is to use quantification over universals, which is not available to a nominalist.15

Could a nominalist be a modal realist? This question deserves some care. Suppose
you are a nominalist and one day, you visit the oracle. You ask her whether there is a
pluriverse. She says yes. Moreover, she tells you that the pluriverse is built entirely out
of concrete particulars. There are no numbers, universals, or any other such things.

Should you give up your nominalism? Clearly not, or so it seems tome. How could
learning that there are more concrete particulars be inconsistent with the view that
everything is a concrete particular? Giving up nominalism, on the grounds that there
are many concrete universes, would be like giving up theism, on the grounds that there
are many gods.

Nominalism and modal realism, then, are broadly consistent. The question is
whether there are coherent grounds for being both a nominalist and a modal realist,
given our actual evidence. I say no. For as Lewis points out, insofar as we have reasons to

13. For further discussion, seeWilliams (1984), Wehmeier (2012), Mackay (2013), Kocurek (2016) and
Berntson (2019).
14. Variations of the standard solution have been endorsed by a number of authors, including Morton

(1984), Cresswell (1990), Milne (1992), and Kemp (2000).
15. If the nominalist can be an easygoing nominalist, then she can use the standard solution. Whether

easygoingnominalism is compatiblewithnominalism is an interestingquestion. As in footnote 11, though,
we can just stipulate that our interest here is in solutions that do not use higher-order quantification.
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accept the pluriverse, those reasons are broadly similar to the ones we have for accepting
numbers.16 But the nominalist denies that we have good reason to accept numbers.
Thus, she must deny that we have good reasons to accept the pluriverse. Thus, a
nominalist cannot coherently be a modal realist, given our actual evidence.

2 Compossible Immutabilism

We saw in §1 that, in order to do science without numbers, the nominalist needs to give
a theory of quantities. One natural strategy is to use modality. But for this to work, she
needs to ensure that distance ratios are unique. This can be done if the nominalist has
cross-modal comparisons. The problem, though, is that there is no clear strategy for
expressing cross-modal comparisons as a nominalist.

In this section, we are going to describe a new view about modality called compos-
sible immutabilism. This new view will let nominalists make cross-modal comparisons
which, in turn, will give them a new strategy for doing science without numbers.

2.1 Immutability

We ordinarily think that things are mutable, in the sense that they could have had
different properties and could have stood in different relations. For example: My coffee
mug is blue and sitting onmy desk. But while thatmay be, it could have been a different
color. It could have been green instead of blue. It also could have had stood in different
spatial relations. Instead of being on my right, for example, it could have been on my
left. Thus, my coffee mug would seem to be mutable.

Things that are not mutable are immutable. Whether there are any immutable
things is a matter of controversy, so there are no uncontroversial examples. Maybe God
is immutable. Maybe numbers are.

Immutabalism is the view that necessarily, everything is immutable. Thus, while
there may be contingency with respect to what exists, there is no contingency with
respect to how things are. When things have properties and stand in relations, they
have those properties and stand in those relations necessarily. The opposing view is
mutabilism, which says that possibly, something is mutable.

Immutabilism has some precedence in the history of philosophy. Leibniz held that
necessarily, everything is worldbound. An individual is worldbound when necessarily,
had anything been any different, that individual would not have existed.17

16. See (Lewis 2001, Chapter 1).
17. Whether Leibniz himself accepted worldbound individuals is controversial. The standard view,

though, is that he did. SeeMates (1989), Adams (1994), Cover andHawthorne (1990, 1999), and Garber
(2009).
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One need not be a Leibnizian immutabilist, though, to be an immutabilist. In what
follows, we are going to present a new view called compossible immutabilism. Unlike
Leibnizian immutabilism, compossible immutabilism rejects the idea that as a matter
of necessity, individuals are always worldbound.

Suppose that we have two possible worlds 𝑤1 and 𝑤2 as illustrated below. Each
world contains a single universe, and each universes contain a number of particles. The

𝑢1

𝑢2

𝑢1

𝑢2

𝑤1 𝑤2 𝑤3

compossible immutabilist says that the particles in each universe have all of their basic
properties necessarily. They also stand in basic relations necessarily. On this much, she
agrees with the Leibnizian.

The compossible immutabilist, though, parts ways with the Leibnizian when it
comes to compossibility. For the compossible immutabilist claims that pairs of possible
worlds can always be composed. In the present case, this means that given that we have
worlds 𝑤1 and 𝑤2, there is a third world 𝑤3 in which everything from world 𝑤1 exists
and everything from world 𝑤2 exists. A Leibnizian, though, denies that there is any
such world 𝑤3, on the grounds that individuals are necessarily worldbound.

What we are going to do now ismake all of this more precise. Thus, we will describe
the language of immutabilism in §2.2. We will then say more about various principles
that the compossible immutabilist might accept in §2.3.

2.2 Language

We are going to think of the immutabilist as having a fundamental language ℒ𝐼. This
language is a first-order plural language, which includes:

Singular variables 𝑥, 𝑦, 𝑧, …
Plural variables 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, …
Singular quantifiers ∃𝑥, ∀𝑥
Plural quantifiers ∃𝑥𝑥, ∀𝑥𝑥
Truth-functional operators ∧, ∨, ⊃, ¬
Modal operators 2,3

Singular variables range over individuals. Plural variables range over pluralities.
What are pluralities? A plurality is not a thing, like a particle or a spacetime point.

12



A plurality is simply things taken together.
To borrow an example from George Boolos (1984), suppose you have a bowl of

Cheerios. You consider each individually: Here is oneCheerio. Here is another. Besides
each individual Cheerio, though, you might also consider the Cheerios taken together.
For the Cheerios have properties that are not had by any Cheerio. The Cheerios fill the
bowl, but no Cheerio fills the bowl. The Cheerios weigh 50 grams, but no Cheerio
weighs 50 grams.

You might then wonder, what are the Cheerios? Maybe the Cheerios are a set.
Maybe the Cheerios are a fusion.

Maybe. But many of us think that Cheerios taken together are thin in a way that
sets and fusions are not. After all, if you accept that there is a set of Cheerios, then
you are ontologically committed to sets. And if you accept that there is a fusion of
Cheerios, then you are ontologically committed to fusions. But if you accept that there
are Cheerios taken together, you are ontologically committed to nothing more than
each of the Cheerios, taken individually. The Cheerios taken together are what we are
calling a plurality.

This point is worth belaboring because, in the present context, we want to ensure
that immutabilism is consistent with nominalism. Thus, it is important that pluralities
are not abstract things, like sets.

Predicates in the immutabilist language are sorted. Thus, each argument place
takes either terms for individuals or terms for pluralities, but not both.18 Predicates are
allowed to have any finite arity. The logical predicates are:

𝑥 =𝑠 𝑦 𝑥 is identical 𝑦
𝑥𝑥 =𝑝 𝑦𝑦 the 𝑥𝑥 are identical to the 𝑦𝑦
𝑥 ≺ 𝑦𝑦 𝑥 is among the 𝑦𝑦
𝑥 ∼ 𝑦 𝑥 is connected to 𝑦

The first is a singular identity predicate. The second is a plural identity predicate.19

The third is the among predicate. This lets us say which individuals are among with
pluralities. The fourth is a connectedness predicate. Two things are connected,
intuitively speaking, when they are in the same universe.

Once the immutabilist has a language, there is the question of what logic she should
accept. There are many systems that could be built. Our focus here will be on a system
called CI, which is the system that I in fact accept. It includes the core principles of

18. That is, there are no complex sorts, including disjunctive sorts. Complex sorts, though, could easily
be added.
19. Context will generally determine which identity predicate we have inmind and, so, we will generally

drop the subscripts.
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compossible immutabilism, along with others that help to fill out the view.20

CI includes a positive free logic, along with the propositional modal logic S5. That
CI is based on a free logic ensures individuals and pluralities can both exist contingently.
Names are only assigned to individual and pluralities that exist. There are also axioms
guaranteeing that pluralities are rigid and that connectedness is an equivalence relation.

CI is a plural logic, and so there is the question of which things form pluralities.
Compossible immutabilism as such is compatible with a wide variety of answers. Our
systemCI, though, will include all the instances of Plural Comprehension.21

Plural Comprehension ∃𝑥𝑥∀𝑦(𝑦 ≺ 𝑥𝑥 ≡ 𝜙(𝑦))

This is a schema, which tells us that for any condition, there is a plurality consisting of
precisely those things which satisfy that condition. Plural Comprehension also entails
two further principles:

Everything ∃𝑥𝑥∀𝑦(𝑦 ≺ 𝑥𝑥)
Nothing ∃𝑥𝑥∀𝑦(𝑦⊀𝑥𝑥)

Everything says that there are things such that everything is among them. Nothing says
that there are things such that nothing is among them. Thus, Nothing guarantees the
existence of an empty plurality.22

We can now define several useful notions. A plurality𝑥𝑥 is closed under conected-
nesswhen for all 𝑦 and 𝑧, if 𝑦 is among the 𝑥𝑥 and 𝑦 is connected to 𝑧, then 𝑧 is among
the 𝑥𝑥. A plurality 𝑥𝑥 is a subplurality of another plurality 𝑦𝑦 when every 𝑥 that is
among the 𝑥𝑥 is also among the 𝑦𝑦. A universe is a non-empty plurality that is closed
under connectedness and inwhich every pair of individuals is connected. Amultiverse
is a plurality that is closed under connectedness in which some pair of individuals is not
connected.

In what follows, it will be helpful to talk about pluralities of universes. This,
however, raises an immediate complication. For universes themselves are pluralities of
individuals, so pluralities of universes would have to be pluralities of pluralities. That is,
pluralities of universes would have to be plupluralities. But our immutabilist language

20. A full model-theoretic description ofCI is included in the appendix.
21. The formula𝜙 is allowed to be an open formula with with both individual and plural free variables,

though 𝑥𝑥 is not allowed to occur free in 𝜙.
22. CI does not include full plural logic. This is because accepting full plural logic is inconsistent with

some of my own reasons for being a nominalist. For example, one reason that I am a nominalist is that I
deny that there is any objective fact of the matter regarding the size of the continuum. But if we have full
plural logic, only one size of the continuum is logically consistent. Thus, there will be an objective fact of
the matter regarding the size the continuum would have had, had there been a continuum. CI does not
include full plural logic, so avoids this sort of unwanted objectivity.
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has no syntax for talking about plupluralities. So it would seem that we have no way to
talk about pluralities of universes.

Our solution will be to identify pluralities of universes with the plurality of individ-
uals in those universes. Thus, suppose that we have two universes 𝑢1 and 𝑢2. What we
are going to call the plurality of 𝑢1 and 𝑢2 is just the plurality of individuals that are
in either 𝑢1 or 𝑢2. Or putting it another way, what we are going to call a plurality of
universes is just a plurality of individuals closed under connectedness. Wewill then say
that a universe 𝑥𝑥 is among a plurality 𝑦𝑦 of universes when the 𝑥𝑥 are a subplurality
of the 𝑦𝑦.

2.3 Principles

There are many ways to be an immutabilist. What all immutabilist have in common,
though, is a commitment to the idea that necessarily, everything is immutable. This can
be expressed with a the following schema:

Immutability 2∀𝑥1 …2∀𝑥𝑛2(𝑅(𝑥1, … , 𝑥𝑛) ⊃ 2(Exists(𝑥1) ∧ … ∧
Exists(𝑥𝑛) ⊃ 𝑅(𝑥1, … , 𝑥𝑛)))

Immutability says that necessarily, if individuals stand in a relation then, necessarily,
they stand in that relation, so long as they all exist.

There is a sense in which Immutability, on its own, does not capture the full
immutabilist picture. For the immutabilist says that there is no contingency with
respect to how things are, only contingency with respect to what exists. The problem
is that while Immutability guarantees that existent things have the same properties and
stand in the same relations acrossworlds, it does not guarantee the same for non-existent
things.

My own preference is to solve the problem by accepting serious actualism. This is
the view that things have properties and stand in relations only when they exist.23

Actuality 2∀𝑥1 …2∀𝑥𝑛2(𝑅(𝑥1, … , 𝑥𝑛) ⊃ Exists(𝑥1) ∧ … ∧
Exists(𝑥𝑛))

Actuality guarantees that non-existing things never have properties nor stand in relation.
Thus, non-existent things cannot have different properties or stand in different relations

23. We are going to restrict the substitution instances of 𝑅 to non-logical predicates. Thus, things are
allowed to stand in logical relations, evenwhen they fail to exist. The view that things fail to stand in logical
relations when they fail to exists is a view that you might call very serious actualism. I have no opposition
to very serious actualism, but adopting it here would add unnecessary complexity that might distract from
the main discussion.
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in different worlds.
For thosewhoarenot serious actualists, another approachwouldbe to accept Strong

Immutability in place of Immutability.

Strong Immutability 2∀𝑥1 …2∀𝑥𝑛2(𝑅(𝑥1, … , 𝑥𝑛) ⊃
2(𝑅(𝑥1, … , 𝑥𝑛)))

Strong Immutability says that if things stand in a relation, then necessarily, they stand in
that relation regardless of whether they exist. In contrast, Immutability merely claims
that if things stand in a relation then, necessarily, they stand in that relation assuming
that they exist.

As noted earlier, a Leibnizian immutabilist accepts not only Immutability, but the
further claim that individuals are always worldbound.

Worldbound 2∀𝑥1 …2∀𝑥𝑛(𝜙(𝑥1, … , 𝑥𝑛) ⊃ 2(Exists(𝑥𝑛) ⊃
𝜙(𝑥1, … , 𝑥𝑛)))

This can be read as saying that necessarily, every individual is such that necessarily,
had anything been different, it would not have existed. Worldbound clearly entails
Immutability. Thus, Leibnizian immutabilism is a genuine form of immutabilism.

What we are going to call compossible immutabilism is another form of im-
mutabilism. Like Leibnizian immutabilism, it accepts Immutability. However, unlike
Leibnizian immutability, it accepts Compossibility in place of Worldbound.

Compossibility 2∀𝑥𝑥2∀𝑦𝑦3(Exists(𝑥𝑥) ∧ Exists(𝑦𝑦))

Compossibility says that given any two possible pluralities, it could have been that those
pluralities existed together. Given that that Everything is not just true, but necessary,
it follows that given any two possible worlds, there is a third possible world in which
everything from the first two exists together. Compossibility and Worldbound are
inconsistent, so long as there are distinct possible worlds that are non-empty.24

Immutability is a schema. Thus, 𝑅 can be replaced by any basic predicate in the
language. These predicates may include predicates with argument places taking plural
terms. In that case, the singular variables and singular quantifierswill need tobe replaced
with plural variables and plural quantifiers.25

The restriction of Immutability to basic predicates is important. What this re-
striction means is that the immutabilist is not committed to the view that things are
immutable with respect to arbitrary conditions or arbitrary complex predicates. Rather,

24. That is, so long as3∃𝑥3∃𝑦(¬Exists(𝑥)).
25. The same will apply for any other schemas given throughout the rest of this paper.
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she only committed to things being immutable with respect to a sparse collection of
basic predicates.

To illustrate the importance of the restriction to basic predicates, suppose that
we were to add lambda abstraction to our language. Thus, for every condition 𝜙,
there is a corresponding complex predicate 𝜆𝑥(𝜙). Suppose furthermore that we
allow these complex predicates as substitution instances for Immutability. In that case,
Immutability will entails Worldbound. But in that case, Immutability will entail that
Compossibility fails, so long as their are distinct non-empty possible worlds.

There are various apparent counterexample to Compossibility. For example, Fritz
and Goodman (2017) consider the following: Suppose there is a knife factory in which
there is a single handle ℎ and two blades 𝑏1 and 𝑏2. It could have been that the handle
and the first blade were put together and, in that case, there would have been a knife
𝑎. It also could have been that the handle and the second blade were put together and,
in that case, there would have been a knife 𝑏. But now, assuming that as a matter of
necessity, a knife exists only when its blade and handle are put together, it follows that
𝑎 and 𝑏 could not have existed together. Thus, Compossibility fails.

Such apparent counterexamples, though, depend on the denial of Immutability.
For suppose that we treat ‘put together’ as a basic predicate. In that case, Immutability
and the background modal logic will entail that ℎ and 𝑏1 could have been put together
only if they are actually put together. Likewise for ℎ and 𝑏2. But ℎ is actually put
together with at most one blade. So there are not two such possible knives 𝑎 and 𝑏 and,
therefore, we do not have a counterexample to Compossibility.

Compossibility tells us that two possible worlds can always be pasted together.
There is still the question, though, of when worlds can be cut apart. For my own
part, I accept the following two principles:

Coexistence 2∀𝑥2∀𝑦2(𝑥 ∼ 𝑦 ≡ 2(Exists(𝑥) ≡ Exists(𝑦)))
Separability 2∀𝑥𝑥3(Exists(𝑥𝑥) ∧ ∀𝑦∃𝑥(𝑥 ≺ 𝑥𝑥 ∧ 𝑥 ∼ 𝑦))

Coexistence says that necessarily, if things are in the same universe, then they are
necessarily coexistent. Thus, existence is a holistic matter. Entire universes stand or
fall together. Given Coexistence, Separability tells us that necessarily, for any plurality
of universes, those universes could have existed without any others.

Note that given Coexistence, the immutabilist has the option of dropping connect-
edness as a basic predicate. This because she can define connectedness with:

𝑥 ∼ 𝑦 ≡𝑑𝑒𝑓 2(Exists(𝑥) ≡ Exists(𝑦)) (11)

On this approach, what it is for two things to be in the same universe is for them
to be necessarily coexistent. Defining connectedness in terms of coexistence has the
further benefit of simplifying the immutabilist logic. If connectedness is taken as basic,
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the immutabilist needs basic axioms ensuring that it is an equivalence relation. But
if connectedness is defined in terms of coexistence, this can be derived, given that the
background modal logic is normal.

The full systemCI that I accept includes Immutability, Compossibility, Actuality,
Coexistence, and Separability. It represents what you might think of as a cut-and-paste
theory of modality. For example, suppose that we start with world 𝑤1 below, with the
hexes being universes. Coexistence and Separability then tells us that we can cut 𝑤1

𝑤1 𝑤2 𝑤3

apart, so long as we are careful to cut around universes, and not through them. Thus,
the possibility of 𝑤1 entails the possibility of 𝑤2 and 𝑤3. On the other hand, suppose
thatwe startwith𝑤2 and𝑤3. Compossibility then tells us thatwe canpaste theseworlds
together to get𝑤1. Immutability andCoexistence ensure thatwhenworlds are cut apart
or pasted together, universes remain the same intrinsically. Actuality ensures that there
are no changes with respect to non-existing universes. Finally, the background modal
logic ensures that themodal properties of universes remain the same after worlds are
cut apart or pasted together. Thus, the only differences across worlds are with respect
to which universes exist.

Compossibility says that two worlds can always be pasted together. Alternatively,
though, you could accept something stronger. Namely:

Possible Pluriverse 3∃𝑥𝑥2∀𝑥(𝑥 ≺ 𝑥𝑥)

This says that there could have been a pluriverse, where a pluriverse is a plurality that
includes every possible individual. Thus, where Compossibility says that two worlds
can always be pasted together, Possible Pluriverse says that all the worldswhatsoever can
be pasted together.

I am undecided about Possible Pluriverse, but am somewhat inclined to deny it.
Denying Possible Pluriverse is equivalent to accepting:

Extensibility 2∀𝑥𝑥3∃𝑥(𝑥⊀𝑥𝑥)

This says that necessarily, given any plurality of things, there could have been something
that was not among them. Thus, the domain of possible individuals turns out to be
indefinitely extensible.

Now that we have immutabilism fully on the table, it can be distinguished from
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two other views in the literature.

Necessitarianism 2∀𝑥1 …2∀𝑥𝑛2(𝜙(𝑥1, … , 𝑥𝑛) ⊃ 2(𝜙(𝑥1, … , 𝑥𝑛)))
Necessitism 2∀𝑥2(Exists(𝑥))

The first is necessitarianism. This says that necessarily, whenever a condition is satisfied,
it is necessarily satisfied. There is thus no contingency whatsoever. The second is
necessitism. This says that necessarily, everything necessarily exists. There is thus no
contingency with respect to what exists, though there may be contingency with respect
to how things are.

An immutabilist can accept that there is contingency with respect to what exists.
Thus, an immutabilist need not be a necessitist. But necessitarianism is equivalent to
the conjunction of necessitism and immutabilism. Thus, an immutabilist need not be
a necessitarian either.

In fact, our own system CI is committed to a maximally strong form of contin-
gentism. After all, Plural Comprehension entails Nothing. But in that case, given
Separability, there could have been nothing. Given the rest of the background logic, we
then have:

Strong Contingentism 2∀𝑥3(¬Exists(𝑥))

Necessarily, everything is contingent. Thus, there are no necessarily existing things, nor
could there have been.

2.4 De Re Contingency

The most obvious objection to immutabilism is that it simply gets the modal facts
wrong. The mug onmy desk is blue, but could have been a different color. Socrates is a
philosopher, but could have been a mathematician. Thus, immutabilism fails because
it is simply false that things always have their properties and relations necessarily.

There are various responses an immutabilist could make. One would be to restrict
her immutabilism to fundamental things. On this approach, the view is that necessarily,
fundamental things are immutable with respect to fundamental properties and funda-
mental relations. Thus, the world is built on top of an immutabilist base. This leaves
open the question of whether ordinary things, like coffee mugs, are immutable with
respect to ordinary properties, like being blue.

You might object that this still gets the modal facts wrong. For example, suppose
that particles are fundamental individuals and that spatial relations are fundamental
relations. Immutabilismwill thus entail that if particles stand in certain spatial relations,
they necessarily stand in those spatial relations. But the very same particles could have
stood in different spatial relations. Thus, immutabilism fails, even when restricted to
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the fundamental.
We do, perhaps, ordinarily think that particles stand in spatial relations contingently.

But there is no reason to think that common sense is reliable with respect to such
matters. The history of science, after all, is the history of common sense failing as
a guide to fundamental physical reality. Common sense would have us believe that
every particle has both a determinate location and a determinate momentum. But in
fact, we know that no particle can have both a determinate location and a determinate
momentum, given Heisenberg uncertainty. Similarly, common sense would have us
believe that events sometimes happen simultaneously. But if general relativity is to be
believed, there is no such thing as events happening simultaneously. Thus, if particles
are in fact immutable, this is just one more way in which common sense fails as a guide
to fundamental physical reality.

More broadly: Fundamental theories should be judged on the basis of various
theoretical virtues, like simplicity and explanatory power. Whether a fundamental
theory conforms to common sense counts for little. But in that case immutabilism—
as a theory of the fundamental—cannot be rejected on the basis that it conflicts with
common sense. Its success will have to be judged holistically on the basis of its ability
to secure various theoretical virtues.

A second kind of immutabilist response would be to distinguish between two kinds
of modality. On the one hand, there is fundamental modality, which is what the
immutabilist uses when doing physics. On the other hand, there is ordinary modality,
which is the stuff of common sense.

The immutabilist, then, might claim that her immutabilism is restricted to fun-
damental modality. Thus, her view is that necessarily (in the fundamental sense), if
individuals stand in a relation, it is necessary (in the fundamental sense) that they stand
in that relation, assuming they exist. But this is compatible with the view that there are
individuals that could (in the ordinary sense) have stood in different relations.

The challenge for the immutabilist, then, is to show that she can explain the ordinary
modal facts, which are mutabilist, in terms of the fundamental modal facts, which are
immutabilist. One way to do this would be to use counterpart theory. Giving a full
immutabilist counterpart theory is somewhat involved, and so this project will be left
for another time.26 That said, the role that counterpart theory might play in explaining
ordinary de re contingency will be illustrated in the next section.

26. See my (2021b).
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3 Immutabilist Cross-Modal Comparisons

We are now going to present a compossible immutabilist strategy for expressing cross-
modal comparisons.

Suppose that as before, the actual world contains exactly one universe, and that this
universe contains exactly one particle named Alice. What we want to show is that an
immutabilist can express the claim that Alice could have been more massive than she
actually is.

To do this, we are going to use an immutabilist language that has two non-logical
predicates Cpt(𝑥, 𝑦) and Mass(𝑥, 𝑦). These are the same predicates that were used by
the modal realist in §1.3.

Thinking in terms ofworlds, here is the basic strategy. Suppose that the actualworld
is 𝑤1, which is illustrated below. The only universe in this world is 𝑢1 and the only
particle in that universe is Alice. What the immutabilist would like to say is that Alice

𝑢1

𝑢2

𝑢1

𝑢2

𝑤1 𝑤2 𝑤3

could have been taller than she actually is because there is a world 𝑤2 with a universe
𝑢2 that contains a particle (call her Margaux) such that Margaux at 𝑤2 is a counterpart
of Alice at 𝑤1 andMargaux at 𝑤2 is more massive than Alice at 𝑤1.

The problem, of course, is that in order to do this, an immutabilist needs relations
across worlds. But how are such relations to be understood?

Our solution will be to define relations across worlds in terms of relations within
worlds. In the present case, we claim that what it is for Margaux in 𝑤2 to be more
massive than Alice in 𝑤1 is for there to be some 𝑤3 such that Margaux in 𝑤3 is more
massive than Alice in 𝑤3. Similarly, what it is for Margaux in 𝑤2 to be a counterpart
of Alice in 𝑤1 is for there to be some 𝑤3 such that Margaux in 𝑤3 is a counterpart of
Alice in 𝑤3. Since the relevant relations within worlds can be expressed, the relevant
relations across worlds can also be expressed.

Putting this into the official immutabilist language, suppose that wewant to express
(6). This, the immutabilist claims, can be done with:

3(∃𝑥(Cpt(x, a) ∧ Mass(x, a))) (12)

This says that it could have been that there was a particle that was both a counterpart
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of Alice and more massive than Alice.
Now hold on, youmight say. This definition of the mass relation across𝑤1 and𝑤2

in terms of the mass relation within 𝑤3 only works if Alice andMargaux each have the
samemass across worlds. But they could have had different masses across worlds and,
in that case, the proposed definition fails.

For example: Suppose that Alice in 𝑤1 is two grams, Margaux in 𝑤2 is one gram,
Alice in 𝑤3 is two grams, andMargaux in 𝑤3 is three grams. In that case, Margaux in
𝑤3 is moremassive thanAlice in𝑤3. ButMargaux in𝑤2 is notmoremassive thanAlice
in 𝑤1. Thus, the proposed definition fails.

The first observation is that our official immutabilist language has only a single
comparative mass predicate. Thus, there is no way to say that Alice in 𝑤1 is two grams,
that Margaux in 𝑤2 is one gram, and so on. Strictly speaking, then, there is no way to
state the counterexample. But of course, this can be easily fixed: We can just add an
appropriate family of basic monadic predicates. Thus, for all rational numbers 𝑟, our
language will have a basic monadic predicate saying that 𝑥 is exactly 𝑟 grams.

Now that we can properly state the counterexample, the immutabilist has a ready
response. Since being two grams is a basic predicate, it follows by Immutability that if
Margaux is two grams in 𝑤2, she is also two grams in 𝑤3. But as a matter of necessity,
nothing is both two grams and three grams. Thus, since Margaux is two grams in 𝑤3,
she is not three grams in 𝑤3, as the counterexample requires. So the objection fails.

Alternatively, the objection could be raise from what you might think of as the
external perspective. From the external perspective, we start with a language that can
directly express relations across worlds.27 We then consider whether relations within
worlds are enough to fix the relevant relations across worlds.

The answer would seem to be no. For suppose that Margaux in 𝑤3 is more massive
than Alice in 𝑤3. Still, there are two logical possibilities. One is that Margaux in 𝑤2
is more massive than Alice in 𝑤1. The other is that Alice in 𝑤1 is more massive than
Margaux in 𝑤2. Thus, settling the mass relations within 𝑤3 is not enough to settle the
mass relations across 𝑤1 and 𝑤2.

The immutabilist, though, will insist that her proposal does settle the relevant mass
relations across worlds. After all, her view is that by definitionMargaux in 𝑤2 is more
massive than Alice in 𝑤1 iff there is some world 𝑤3 in whichMargaux is more massive
than Alice. So, given that Margaux is more massive than Alice in world 𝑤3, that settles

27. This might be a two-sorted language with a sort for worlds and a sort for individuals. Predicate
would then be indexed with an appropriate number of argument places for worlds. Thus, we would be
able to write Mass(𝑚, 𝑤2, 𝑎, 𝑤1) to say that Margaux at 𝑤2 is more massive than Alice at 𝑤1. For
more on this sort of world-indexed language, see my Berntson (2019).
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the question of whether Margaux in 𝑤2 is more massive than Alice in 𝑤1.
By way of analogy, suppose that you are a Platonist. You say that Margaux at 𝑤2 is

more massive than Alice at 𝑤1 because Margaux has the property of being two grams
at 𝑤2 and Alice has the property of being one gram at 𝑤1. Moreover, at every world,
being two grams is greater than being one gram.

While most consider this sort of Platonist view to be fully adequate, we can raise the
same sort of objections from the external perspective. For even if two grams is greater
than one gram within every world, it does not follow—from the external perspective—
that two grams at 𝑤2 is greater than one gram at 𝑤1. It could be that one gram at 𝑤1
is greater than two grams at 𝑤2. But in that case, it could be that Alice at 𝑤1 is more
massive thanMargaux at 𝑤2, even though Alice at 𝑤1 is one gram andMargaux at 𝑤2
is two grams.

The lesson, I think, is not that the Platonist cannot account for mass relations
across worlds. The lesson is that objections posed from the external perspective are not
legitimate. From the Platonist perspective, what it is for two grams at 𝑤2 to be greater
than one gram at 𝑤1 is for two grams to be greater than one gram within every world.
The fact that higher-order comparisons of masses within worlds do not fix higher-order
comparisons of masses across worlds, from the external perspective, is neither here nor
there. The same, though, goes for immutabilism.

Thus, if we are going to raise objections to the immutabilist proposal, they should
be from the internal perspective. From the internal perspective, we grant that the
immutabilist can fix relations across worlds in the way proposed. Still, we might object
that the resulting relations across worlds are incoherent.

For example: Suppose there is a world 𝑤3 in whichMargaux is more massive than
Alice. Suppose there is also a world 𝑤4 in which Alice is more massive thanMargaux.
In that case, given the proposed reduction of mass relations across worlds, it follows
that Alice in 𝑤1 is more massive thanMargaux in 𝑤2, and that Margaux in 𝑤2 is more
massive than Alice in 𝑤1. Thus, we have a failure of anti-symmetry.

This sort of counterexample, though, is ruled out by Immutability. For suppose
that themore massive than is necessarily anti-symmetric. In that case, since Margaux
is more massive than Alice in 𝑤3, Alice is not more massive thanMargaux in 𝑤3. But
then by Immutability and the background modal logic, Alice is not more massive than
Margaux in 𝑤4.

Another concern you might have is that while the immutabilist can express some
cross-modal comparisons, she cannot express those in which the existence of a multi-
verse is explicitly denied. For example:

Alice could have been more massive than she actually is without
having been in a multiverse.

(13)

An immutabilist, though, can express such claims by using an additional possibility
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operator:

3∃𝑥(∀𝑦(𝑥 ∼ 𝑦) ∧ 3(Cpt(𝑥, 𝑠) ∧ Mass(𝑥, 𝑠))) (14)

Thus, (13) is expressed by saying that there could have been someone, who was not in
a multiverse, who could have been both a counterpart of Alice and more massive than
Alice.

Finally, youmight object to our immutabilist theory of cross-modal comparisons on
the grounds that counterpart relations across worlds cannot be reduced to counterpart
relations within worlds. Maybe Margaux in 𝑤3 can be a counterpart of Alice in 𝑤3
without Margaux in 𝑤2 being a counterpart of Alice in 𝑤1.

For present purposes, we are going to set these concerns aside. There are three
reasons for this. First, in the present context, we can use a liberal counterpart relation
such that every particle in every world is a counterpart of every particle in every world.
Maybe there are other counterpart relations that are useful for various purposes, but
they are not needed for present purposes.

Second, we will give an immutabilist theory of distance ratios in §5.2 without using
a counterpart relation. Thus, while counterpart theory may be useful for reconciling
immutabilism with ordinary language and common sense, it is not needed for doing
science without numbers.

Third, asmentioned at the end of the last section, giving a fully general immutabilist
counterpart theory is somewhat involve. Thus, this is a project that we will pursue
elsewhere.28

4 Fictionalism

We described compossible immutabilism in §2. This lets the nominalist solve the
problem of cross-modal comparisons, which was posed in §1.3. We are now going
to move towards solving the problem of quantities in §5.

Doing that will be easier if we have an additional tool. That tool is pluriverse
fictionalism. According to the pluriverse fiction, there is vast plurality of concrete
universes that includes every possible universe. Becausewe are interested in nominalism,
our pluriverse fiction will be a nominalist pluriverse fiction. Thus, according to the
fiction, there are no numbers or universals or other things of that sort.

What we are going to show in the appendix is that fictionalist talk about the
pluriverse is structurally equivalent to immutabilist talk in terms of modal operators.

28. Namely, in my (2021b).

24



Thus, any fictionalist theory 𝑇𝐹 can be directly translated into an immutabilist theory
𝑇𝐼 with the same logical structure.

This suggests a natural approach to building immutabilist scientific theories. First,
we build a physical theory 𝑇𝐹 in the pluriverse fiction. To show that this theory is
empirically adequate, we expand the fiction to include set theory. This gives us a
combined fiction inwhichwe can prove the necessary representation and conservativity
theorems. This establishes that 𝑇𝐹 is empirically adequate. We then translate the
fictionalist theory 𝑇𝐹 into the immutabilist theory 𝑇𝐼. 𝑇𝐼 is structurally equivalent to
𝑇𝐹. Structural equivalence preserves empirical adequacy. Thus, since 𝑇𝐹 is empirically
adequate, so is 𝑇𝐼.

The advantage of this procedure is that as an immutabilist, you cando sciencewithin
the pluriverse fiction. You can also build immutabilist theory directly for my own part,
I find it easier to work in the pluriverse fiction, and then translate the results. Thus, in
the rest of this section, we are going to build a fictionalist language and logic that an
immutabilist can use to build scientific theories.

4.1 Language

We are going to think of the fictionalist as having a plural language ℒ𝐹. The syntax is
similar to that of the immutabilist language from §2.2.

Singular variables 𝑥, 𝑦, 𝑧, …
Plural variables 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, …
Singular quantifiers ∃𝑥, ∀𝑥
Plural quantifiers ∃𝑥𝑥, ∀𝑥𝑥
Truth-functional operators ∧, ∨, ⊃, ¬
Logical predicates =𝑠, =𝑝, ≺, ∼

There are also important differences. Unlike the immutabilist language, the fictionalist
language does not have modal operators. Instead, it has a singular actuality predicate,
which can be used to define a plural actuality predicate.29

Act(𝑥) 𝑥 is actual
Act(𝑥𝑥) the 𝑥𝑥 are actual

Thus, the fictionalist draws a basic distinction between actual and non-actual individu-
als. The immutabilist, on the other hand, has no need for such distinctions, since her

29. Act(𝑥𝑥) ≡𝑑𝑒𝑓 ∀𝑥(𝑥 ≺ 𝑥𝑥 ⊃ Act(𝑥))
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quantifiers only range over actual individuals.

4.2 Pluralism about Worlds

We have a fictionalist language then. That language has the resources for talking about
a vast pluriverse of island universes. The question is: What are possible worlds?

The most common view is singularism, which says that only individual universes
areworld. This is the view endorsed byLewis (2001). The competing view ispluralism.
The pluralist says that a world need not be a single universe. Rather, a world is any
plurality of universes.

In visual terms, consider the diagram below. The singularist says that the pluriverse
is as illustrated on the left. The hexes are universes and the boxes are worlds. The

pluralist says that the pluriverse is as illustrated on the right. For the pluralist, any
plurality of universes whatsoever counts as a world. Since worlds can overlap, this is
hard to illustrate. So we have included only a selection of non-overlapping worlds.
Some have only one universe. Some have many.

Following Lewis, fictionalists and modal realists have generally been singularists.
But singularism faces two serious problems. The first is that there is no world in which
there is a multiverse. The second is that there is no world in which there is nothing. But
there could have been a multiverse and there could have been nothing. So singularism
would seem to be materially inadequate.30

Pluralism solves both problems. There can be pluralities of universes that contain
many universes. Hence, there can be worlds in which there is a multiverse. Given
Nothing, there is an empty plurality. The empty plurality is trivially closed under
connectedness. So there is a world in which there is nothing.

Our fictionalismwill adopt pluralism aboutworlds. Thismeans that itwill be useful

30. Lewis raises both objections himself on pp. 72-3 of his (2001). For further discussion, and other
possible solutions, see Yablo (1999), Sider (2003), and Parsons (2007).
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to have a defined plural world predicate.31

World(𝑥𝑥) the 𝑥𝑥 are a possible world

Thus, when the fictionalist says that there is a possible world, what she really means is
that there are things that together form a possible world.

4.3 Principles

We have both a fictionalist language and a view about possible worlds. What we want
to do now is find principles that guarantee that fictionalist talk can always be translated
as immutabilist talk, and visa-versa.

More precisely: Wewant to identify aminimal immutabilist system I and aminimal
fictionalist system F such that any sentence in the immutabilist language ℒ𝐼 can be
translated as a sentence of the fictionalist language ℒ𝐹, and visa-versa, with these
translations preserving logical entailment. Two such systems are fully specified in the
appendix. It will be useful, though, to say bit about how these systems work in general
terms.

The immutabilist system I is strictly weaker than the systemCIwe built earlier. As
compared to that system, there are two important differences: One is that Separability
and Compossibility are dropped. The other is that Plural Comprehension is replaced
with Everything. Thus, as a plural logic, I is quite weak. The only plurality whose
existence it guarantees is the universal plurality.

The matching fictionalist system F has classical rules for the quantifiers and the
truth functional connectives. It also has axioms guaranteeing the connectedness is an
equivalence relation. Other principles include:

Actual World ∃𝑥𝑥∀𝑦(𝑦 ≺ 𝑥𝑥 ≡ Act(𝑦))
Actual Closure ∀𝑥∀𝑦(Act(𝑥) ∧ 𝑥 ∼ 𝑦 ⊃ Act(𝑦))
Actual Names Act(𝑡) when 𝑡 is a name

The first says that there is a plurality of everything actual. The second says that if
something in a universe is actual, then everything in that universe is actual. The third
says that names are only assigned to individuals and pluralities that are actual.

Importantly, F includes a basic principle governing how relations interact with
worlds. This is easiest to state if we have a defined subplurality predicate.32

𝑥𝑥 ⊂ 𝑦𝑦 the 𝑥𝑥 are a subplurality of the 𝑦𝑦

31. World(𝑥𝑥) ≡𝑑𝑒𝑓 ∀𝑥(𝑥 ≺ 𝑥𝑥 ⊃ ∀𝑦(𝑥 ∼ 𝑦 ⊃ 𝑦 ≺ 𝑥𝑥)
32. 𝑥𝑥 ⊂ 𝑦𝑦 ≡𝑑𝑒𝑓 ∀𝑧(𝑧 ≺ 𝑥𝑥 ⊃ 𝑧 ≺ 𝑦𝑦)
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When thinking in terms of individuals, the principle says that whenever things stand
in basic relations, there is some possible world in which they all exist.

Relation World ∀𝑥1 … ∀𝑥𝑛(𝑅(𝑥1, … , 𝑥𝑛) ⊃ ∃𝑦𝑦(World(𝑦𝑦) ∧
(𝑥1 ≺ 𝑦𝑦 ∧ ⋯ ∧ 𝑥𝑛 ≺ 𝑦𝑦))

Predicates with plural arguments are allowed as substitution instances. When substi-
tuting such predicates, the corresponding variables and quantifiers are replaced with
plural variables and plural quantifiers. The corresponding ≺ predicates are replaced
with ⊂ predicates.

Two further principles follow from Relation World. Individuals and pluralities
always stand in identity relations to themselves. Thus, RelationWorld gives us :

Possible Individuals ∀𝑥∃𝑦𝑦(World(𝑦𝑦) ∧ 𝑥 ≺ 𝑦𝑦)
Possible Pluralities ∀𝑥𝑥∃𝑦𝑦(World(𝑦𝑦) ∧ 𝑥𝑥 ⊂ 𝑦𝑦))

The first says that every possible individual is in a world. The second says that every
possible plurality is in a world.

This gives us the systems we wanted. Any fictionalist theory in F can be translated
as an immutabilist theory in I, and visa-versa. The translations are provided in the
appendix. The basic idea, though, is that fictional quantification over the pluriverse is
translated as modalized quantification.

∃𝑥(𝜙) ↦ 3∃𝑥(𝜙)
∀𝑥(𝜙) ↦ 2∀𝑥(𝜙)

Going the other way, modal operators are translated using plural quantifiers.

3(𝜙) ↦ ∃𝑥𝑥(World(𝑥𝑥) ∧ 𝜙)
2(𝜙) ↦ ∀𝑥𝑥(World(𝑥𝑥) ⊃ 𝜙)

Quantifiers are then translated as restricted quantifiers.
Once we have our translations, there are certain striking connections between the

principle we might accept on the fictionalist side and the principles we might accept
on the immutabilist side. For example, suppose we accept full Plural Comprehension
on the fictionalist side. When translated, this corresponds to accepting not just Plural
Comprehension, but also Possible Pluriverse and Separability on the immutabilist side.
Going the other way, suppose we accept Possible Pluriverse on the immutabilist side.
This corresponds to accepting Everything on the fictionalist side.

Finally, it should be pointed that the variety of modal fictionalism that I support is
rather different than the modal fictionalism suggested by Rosen (1990). Rosen aims to
reduce modal facts to categorical facts about what is true in the fiction. It could have
been that 𝜙 because, according to the fiction, there is a possible world at which 𝜙. My
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own view is exactly the reverse: What is true in the fiction is true in the fiction because
it appropriately represents the modal facts.33 Thus, I think of the pluriverse fiction as a
useful tool for reasoning about themodal facts, not a strategy for reducing or otherwise
eliminating them.

5 Distance Ratios

We are now going to give a compossible immutabilist theory of distance ratios. The
general strategy generalizes to other quantities, and so solves the problem of quantities
raised in §1.

Our basic approachwill be the one suggested at the beginning of §4. That is, wewill
start by sketching a fictionalist theory of distance ratios in §5.1. We will then translate
this fictionalist theory as an immutabilist theory in §5.2.

5.1 Fictionalist Distance Ratios

Our fictionalist theory will use the fictionalist language from §4.1, extended to include
betweenness and congruence predicates.34 There are different ways to go here, but we
will think of the fictionalist as accepting a pluriverse of all physically possible universes,
rather than a pluriverse of all metaphysically possible universes.

The general strategy will be to give a theory of distance ratios using congruence
relations across universes. But this means that our fictionalist will be departing from
Lewis’s modal realism in yet another important respect.

Lewis says two things about spatiotemporal relations and universes. First, he says
that things are in the same universe when there is some distance between them. Second,
he says that things are in the same universe when there are spatiotemporal relations
between them.35 The second condition is problematic because it rules out congruence
relations across universes.

Lewis treats his two conditions as equivalent. But in fact, the second is much
stronger than the first. Our strategy, then, will be to accept the first while rejecting
the second. Thus, two things are in the same universe when there is some distance
between them. But two things can stand in spatiotemporal relations without being in

33. Thus, the brand of fictionalism I support has more in common with the non-proxy reduction
strategy from Fine (2005) or the ersatz pluriverse from Sider (2002).
34. In fact, to give a full theory of distance ratios, we need some sort of device for saying there are finitely

many. My preferred approach is to use a monadic plural predicate Fin(𝑥𝑥) saying that the 𝑥𝑥 are finite.
This predicate is then treated as logical. For present purposes, this complication can be ignored.
35. Lewis (2001, p.2).
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the same universe. This will allow for congruence relations across universes.
Filling in the details, say that𝑎 and 𝑏 are self-congruentwhen𝑎 and 𝑏 are congruent

with 𝑎 and 𝑏. We then claim that:

∀𝑎∀𝑏(𝑎 ∼ 𝑏 ≡ Cong(𝑎, 𝑏, 𝑎, 𝑏)) (15)

There is some distance between two things if and only if they are self-congruent. So
(15) can be read as saying that two things are in the same universe if and only if there is
some distance between them.

This allows for congruence relations across universes. For example, consider the
two universes illustrated below. Particles 𝑎 and 𝑏 are in the same universe because they
are self-congruent. Likewise for 𝑐 and 𝑑. Particles 𝑎 and 𝑏 are also congruent with 𝑐 and
𝑑. We can thus use congruence to compare two particles in the first universe with two
particles in the second. What we cannot do is use congruence to relate two particles

a b

c d

𝑢1

𝑢2

in different universes with any other two particles. For example, 𝑎 and 𝑐 cannot be
congruent with 𝑏 and 𝑑, nor can 𝑎 and 𝑐 be congruent with 𝑐 and 𝑑.36 Thus, we are
allowing certain kinds of congruence relations across worlds, but not others.

Next, we want to rule out betweenness relations across universes. These are not
needed and, moreover, would be problematic.37

∀𝑎∀𝑏∀𝑐(Bet(𝑎, 𝑏, 𝑐) ⊃ Cong(𝑎, 𝑏, 𝑎, 𝑏) ∧ Cong(𝑏, 𝑐, 𝑏, 𝑐)) (16)

This says that 𝑏 is between 𝑎 and 𝑐 only if there is some distance between 𝑎 and 𝑏 and
some distance between 𝑏 and 𝑐. Given (15), this entails that if 𝑏 is between 𝑎 and 𝑐, then

36. Suppose for reduction that 𝑎 and 𝑏 are in different universes, but that 𝑎 and 𝑏 are congruent
with some 𝑥 and 𝑦. By Cong-Symmetry and Cong-Transitivity (which are given below), 𝑎 and 𝑏 are
then congruent with 𝑎 and 𝑏. But then by (15), 𝑎 and 𝑏 are in the same universe, which is contrary to
assumption.
37. This because they would leave the fictionalist vulnerable to shift arguments. For example, suppose

that 𝑢1 has exactly two particles 𝑎 and 𝑏 and that these particles are one foot apart. If we have cross-
universe betweenness relations, we can define cross-universe colocation relations. We can thus describe
one universe 𝑢2 that contains exactly one particle 𝑐 and another universe 𝑢3 that contains exactly one
particle 𝑑, with 𝑐 colocated with 𝑎 and 𝑑 colocated with 𝑏. Thus, 𝑢2 is just like 𝑢3, except that the
location of everything is shifted by a foot.
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all three particles are in the same universe. There are thus no betweenness relations
across universes.

Putting these things together, the basic picture is one on which there is a pluriverse
in which universes are pluralities of spatiotemporally connected particles. For the most
part, there are no basic relations across universes. The only exceptions are certain kinds
of congruence relations.

When giving a substantivalist theory of distance ratios, there are twokinds of axioms.
There are existence axioms, which entail that certain spacetime points exist. There are
also restriction axioms, which restrict how spacetime points can be arranged.

Our fictionalist theory will also have both existence and restriction axioms. The
difference is that where a substantivalist uses existence axioms to fill spacetime with
points, a fictionalist uses existence axioms to fill the pluriverse with universes.

We are not going to give a full slate of axioms here.38 What we are going to do,
though, is show that a fictionalist can solve the uniqueness problem. And for that, we
need three restriction axioms:

Cong-Symmetry: ∀𝑎∀𝑏∀𝑐∀𝑑(Cong(𝑎, 𝑏, 𝑐, 𝑑) ⊃ Cong(𝑐, 𝑑, 𝑎, 𝑏)
Cong-Transitivity: ∀𝑎∀𝑏∀𝑐∀𝑑∀𝑒∀𝑓(Cong(𝑎, 𝑏, 𝑐, 𝑑) ∧ Cong(𝑐, 𝑑, 𝑒, 𝑓)

⊃ Cong(𝑎, 𝑏, 𝑒, 𝑓))
Three-Segment: ∀𝑎∀𝑏∀𝑐∀𝑑∀𝑒∀𝑓(Cong(𝑎, 𝑏, 𝑑, 𝑒) ∧ Bet(𝑎, 𝑏, 𝑐) ∧

Bet(𝑑, 𝑒, 𝑓) ⊃ (Cong(𝑎, 𝑐, 𝑑, 𝑓) ≡ Cong(𝑏, 𝑐, 𝑒, 𝑓)))

The first says that congruence is symmetric. The second says that congruence is
transitive. The third is a simplified version of what is sometimes called the five-segment
axiom.

As an illustration of how existence axiomwork, suppose that the substantivalist has
an axiom saying that for any two spacetime points, there is a third between them.

∀𝑎∀𝑏∃𝑥(Bet(𝑎, 𝑥, 𝑏)) (17)

For a fictionalist, the corresponding axiom says that for any pair of particles, there is a
pair of duplicates, somewhere in the pluriverse, that have a third between them.

∀𝑎∀𝑏∃𝑐∃𝑑∃𝑥(Cong(𝑎, 𝑏, 𝑐, 𝑑) ∧ Bet(𝑐, 𝑥, 𝑑)) (18)

Now suppose that there is a universe 𝑢1 with exactly two particles, as illustrated on the
next page. Since the duplicates required by (18) do not exist in 𝑢1, the result will be a
second universe 𝑢2 in which they do exist. Thus, existence axioms, like this one, are
used to fill out the pluriverse.

Now that we have axioms, we want to show that the fictionalist can solve the

38. This is done in my Berntson (2021a).

31



a b

c x d
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problem of uniqueness. To simplify a bit, we can suppose that we only need to show
that if 𝑎 and 𝑏 are twice as far apart as 𝑏 and 𝑐, then they are not also three times as far
apart.

Consider a pluriverse with exactly three universes, as pictured below. Our universe
is 𝑢1 and has exactly three particles. We can suppose that 𝑎 and 𝑏 are twice as far apart
as 𝑏 and 𝑐, and so this is the distance ratio that we want to explain. The fictionalist says

a
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b c𝑢1

𝑢2

𝑢3

that this distance ratio is explained by the existence of a universe like 𝑢2. That is, 𝑎 and
𝑏 are twice as far apart as 𝑏 and 𝑐 in 𝑢1 because there is a universe 𝑢2 in which some 𝑑,
𝑥, 𝑒, and 𝑓 form an equally spaced line. Moreover, 𝑎 and 𝑏 are congruent with 𝑑 and 𝑒,
and 𝑏 and 𝑐 are congruent with 𝑒 and 𝑓.

Now suppose for reductio that 𝑎 and 𝑏 are also three times as far apart as 𝑏 and 𝑐.
For the fictionalist, this means that there is a universe 𝑢3 with particles 𝑔, 𝑦, 𝑧, ℎ, and 𝑖
forming an equally spaced line. Moreover, 𝑎 and 𝑏 are congruent with 𝑔 and ℎ, and 𝑏
and 𝑐 are congruent with ℎ and 𝑖.

We can now prove a contradiction. First, we use symmetry and transitivity to show
that 𝑑, 𝑥, 𝑒, and 𝑓 are pairwise congruent with 𝑦, 𝑧, ℎ, and 𝑖. By two applications
of the three-segment axiom, we then have Cong(𝑑, 𝑓, 𝑦, 𝑖). Since Cong(𝑑, 𝑓, 𝑔, 𝑖) by
symmetry and transitivity, another application of the three-segment axiom gives us
Cong(𝑑, 𝑑, 𝑔, 𝑦). So 𝑔 and 𝑦 are colocated. But 𝑔 and 𝑦 are part of an equally spaced
line, so are not colocated. Thus, we have a contradiction. So the very same particles in
the very same world cannot be both twice as far apart and three times as far apart.
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5.2 Immutabilist Distance Ratios

We are now going to translate the fictionalist theory from the last section into an im-
mutabilist theoryof distance ratios. That that theorywill be givenusing an immutabilist
language with betweenness and congruence predicates. The translation procedure is
given in the appendix, but was also briefly described at the end of §4.3.

To translate our fictionalist theory, we will start with the restriction axioms. The fic-
tionalist claims, for example, that congruence is symmetric. Applying the immutabilist
translation scheme gives us:

2∀𝑎2∀𝑏2∀𝑐2∀𝑑(Cong(𝑎, 𝑏, 𝑐, 𝑑) ⊃ Cong(𝑐, 𝑑, 𝑎, 𝑏)) (19)

Given Actuality, this is equivalent to:

2(∀𝑎∀𝑏∀𝑐∀𝑑(Cong(𝑎, 𝑏, 𝑐, 𝑑) ⊃ Cong(𝑐, 𝑑, 𝑎, 𝑏)) (20)

Thus, where the fictionalist says that congruence is symmetric, the immutabilist says
that congruence is necessarily symmetric. Likewise for other restriction axioms.

Now for the existence axioms. Suppose that the fictionalist accepts an existence
axiom saying that, for any pair of particles, there is a duplicate pair of particles with a
third somewhere between them. Our translation scheme gives:

2∀𝑎2∀𝑏3∃𝑐3∃𝑑3∃𝑥(Cong(𝑎, 𝑏, 𝑐, 𝑑) ∧ Bet(𝑐, 𝑥, 𝑑)) (21)

By Actuality and Immutability, this is equivalent to:

2∀𝑎∀𝑏3∃𝑐∃𝑑∃𝑥(Cong(𝑎, 𝑏, 𝑐, 𝑑) ∧ Bet(𝑐, 𝑥, 𝑑)) (22)

Thus, where the fictionalist says that for any pair of particles, there is a duplicate pair
with a third somewhere between them, the immutabilist says that necessarily, for any
pair of particles, there could have been a duplicate pair with a third somewhere between
them, somewhere in the multiverse. Thus, where the substantivalist uses existence
axioms to fill out spacetime, and the fictionalist uses them to fill out the pluriverse, the
immutabilist uses them to fill out how things could have been.

The immutabilist, like the fictionalist, can now solve the problem of uniqueness.
As before, we will illustrate the basic strategy by showing that the very same particles in
the very same world cannot be both twice as far apart and three times as far apart.

Suppose that we have three universes 𝑢1, 𝑢2, and 𝑢3. The betweenness and
congruence relations within those universes are as illustrated on the previous page. The
actual world is 𝑤1 and has exactly one universe, which is 𝑢1. This is illustrated on the
following page. Now suppose that 𝑎 and 𝑏 are twice as far apart as 𝑏 and 𝑐 in𝑤1. For the
immutabilist, this is explained by the fact that there is a possible world𝑤2 that contains
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𝑢1 𝑢1

𝑢2

𝑢1

𝑢3

𝑢1

𝑢2

𝑢3

𝑤1 𝑤2 𝑤3 𝑤4

both 𝑢1 and 𝑢2. The particles in these universes stand in the cross-universe congruence
relations illustrated on page 32.

So far so good. Now suppose for reductio that besides being twice as far apart, 𝑎
and 𝑏 are also three times as far apart as 𝑏 and 𝑐 at 𝑤1. For the immutabilist, this means
that there is a possible world 𝑤3 that contains 𝑢1 and 𝑢3. The congruence relations
between those universes at 𝑤3 are not, however, as illustrated on page 32. Rather, 𝑎
and 𝑏 are congruent with 𝑔 and ℎ, and 𝑏 and 𝑐 are congruent with ℎ and 𝑖.

We can now derive a contradiction. First, we note that since 𝑤2 and 𝑤3 are both
possible, there is a fourth possible world 𝑤4 in which 𝑢1, 𝑢2, and 𝑢3 all exist by
Compossibility. Immutability entails that the congruence and betweenness relations
from 𝑤2 and 𝑤3 carry over to 𝑤4. But given our translated restriction axioms, 𝑤4
is in fact impossible, since we can prove a contradiction the same way we did for the
fictionalist. Thus, the very same particles in the very same world cannot be both twice
as far apart and three times as far apart.

This gives the nominalist a solution to the problem of uniqueness. With a bit more
work, she can give a full slate of axioms and full theory of distance ratios.39 Since the
basic strategy generalizes to other quantities, we also have a solution to the problem of
quantities. We also have a new approach to doing science without numbers.

6 State Space

We saw how to use immutabilism to give a theory of distance ratios in §5. One
of the main advantages of the immutabilist approach, as compared to the existing
substantivalist approach from Field (1980), is that it gives the nominalist a natural

39. See my Berntson (2021a).
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strategy for understanding state space. Thus, in this section, we are going to briefly
sketch the problem, and show what an immutabilist theory of state space might look
like, in very general terms. Most of the interesting details will have to be left for another
time.

In his review of ScienceWithout Numbers, David Malament (1982) raises what has
become a serious challenge to nominalism.

The challenge goes like this: In classical physics, the dynamical laws are given
using mathematical Euclidean spacetime.40 This mathematical spacetime is just a
mathematical object with certain formal features. Nominalists, of course, deny that
there are such things. But in that case, how is a nominalist going to state dynamical
laws?

Field’s solution is to trade mathematical spacetime for concrete spacetime. This
concrete spacetime is built out of spacetime points, thought of as concrete material
particulars. Thus, Field’s solution is to be a substantivalist.

The problem, Malament points out, is that modern physics is often formulated
in terms of not just mathematical spacetime, but also mathematical state spaces. A
nominalist cannot accept mathematical state spaces, and so needs to find a concrete
replacement. But what is that concrete replacement going to be? Call thisMalament’s
challenge.

To illustrate the basic problem, Malament uses the case of Hamiltonian mechanics.
His discussion is worth quoting at length:

[I]t is simplest to identify Hamiltonian mechanics by its determination
of a class of mathematical models. Each model is of form ⟨𝑀, Ω𝑎𝑏, 𝐻⟩
where 𝑀 is an even-dimensional manifold, Ω𝑎𝑏 is a symplectic form
on 𝑀, and 𝐻 is a smooth, real-valued (“Hamiltonian”) scalar field on
𝑀. The points of 𝑀 represent “possible dynamical states” of a given
mechanical system. (Ω𝑎𝑏 and 𝐻 jointly determine a “Hamiltonian vector
field” which characterizes the dynamic evolution of the system.) Now
Field can certainly try to tradeΩ𝑎𝑏 and𝐻 in favor of “qualitative relations”
they induce on 𝑀. If successful, he can reformulate the theory so that
its subject matter is the set of “possible dynamical states” (of particular
physical systems) and various relations into which they enter. But this is
no victory at all! Even a generous nominalist like Field cannot feel entitled
to quantify over possible dynamical states.

Hamiltonian mechanics can be thought of as a class of mathematical state spaces.
Each mathematical state space is built using mathematical states, which are just points

40. Or Galilean spacetime or Maxwellean spacetime.
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in a mathematical structure. These points are characterized using things like sets,
functions, and real numbers.

This means that in order to give a corresponding nominalist theory, we need to
do two things. First, we need to replace the sets, functions, and real numbers used to
characterize mathematical states with intrinsic relations between them. Second, she
needs to replace mathematical states with something concrete.

If we were Platonists, we could replace mathematical states with universals. We
could, for example, replace mathematical states with state relations. These are binary
relations between universes and times. Each such relation is a maximally specific way
for a universe to be at a time. A universe then evolves over time because it stands in
different state relations to different times. But nothing like this strategy is available to
the nominalist.

One approach to the problem would be to look for empirically equivalent theories
that use something like a concrete four-dimensional spacetime in place ofmathematical
state space. Perhaps this can be done, and the project deserves more attention.41 But
while this may work for some theories, it may not work in others. Thus, the nominalist
has reason to want a more direct—and general—approach to the metaphysics of state
space.

This is not the place to show that we can nominalize any state space theory that
might come along. Nor is it the place to show, in any detail, that we can nominalize
even a relatively simple state space theory like Hamiltonian mechanics. What we want
to do, though, is motivate the idea that a immutabilist could, with some time and effort,
give a nominalist theory of Hamiltonian mechanics.

The basic strategy is the same as before. First, we give a theory of Hamiltonian
mechanics within the pluriverse fiction. Next, we use the combined fiction to prove
empirical adequacy. Once we have that, we can directly translate the original fictionalist
theory into an immutabilist theory. That translation procedure preserves empirical
adequacy. So the resulting immutabilist theory is also empirically adequate.

To start, then, we will have a fictional pluriverse populated with slices. These are
what youmight think of as time-slices of universes. Slices aremuch larger than ordinary
concrete particulars like cars, trees, and coffeemugs. Their existence is alsomuch briefer.
Still, neither of these are serious grounds for denying that slices are concrete particulars.
Thus, the nominalist can use them to build a fictional pluriverse.

The character of each slice is fixed by what we will call structural relations. So for
example, we might fix the number of particles in each slice by using an at least as many
particles relation between slices. Slices with zero particles are slices such that there are

41. See for example Chen (2017).

36



no slices with strictly fewer particles. Slices with exactly one particle are slices such that
the only slices with strictly fewer particles are slices with zero particles. And so on.

Suppose that after some time, we have selected enough structural relations to fix the
positions of particles, along with their momentum.42 We then need to add temporal
relations to our fictional pluriverse. For these, we could use temporal betweenness and
temporal congruence.

TempBet(a, b, c)
TempCong(a, b, c, d)

The first says that 𝑏 is temporally between 𝑎 and 𝑐. The second is temporal congruence.
It says that the duration between 𝑎 and 𝑏 is the same as the duration between 𝑐 and
𝑑. These can be used to fix duration ratios between slices in much the same way that
spatial betweenness and congruence can be used to fix distance ratios between particles.

Once we have both structural relations and temporal relations, we need universes.
That is, we need to saywhich slices are connected. One answer is that they are connected
when they are temporally self-congruent.

𝑎 ∼ 𝑏 ≡ TempCong(𝑎, 𝑏, 𝑎, 𝑏) (23)

Or perhaps more intuitively, two slices are in the same universe when there is some
temporal duration between them.

Once we have our basic relations between states, we need laws governing them.
There will be laws governing the structural relations. There will also be laws governing
the temporal relations. Importantly, there will also be dynamical laws telling us how
temporal relations are determined, given the structural relations. Thus, the dynamical
laws will tell us which slices are connected, and so which slices form universes.

This gives us a pluriverse like the one illustrated below. Hexes represent slices. There
are lines between slices that are temporally connected. This gives us three strands of

slices. Each strand is a universe. The dynamical laws determine which slices stand in
temporal relations and, so, which slices form universes. Slices that are not connected

42. To see one way in which this might be done, see Schroeren (2020).
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with lines do not form universes. Thus, take the three slices on either diagonal. These
slices are not temporally connected, and so do not form a universe

7 Objections

The success of our new strategy for doing science without numbers depends on the
possibility of a multiverse. This is a substantial claim about the physical world. Thus,
you might object on the grounds that a multiverse is physically impossible.

In response: I prefer immutabilist theories formulated in terms of physical possi-
bility. But the immutabilist strategy itself is quite general, and compatible with other
views. Thus, if you think that a multiverse is physically impossible, you could use a
broader notion of possibility (like metaphysical possibility) instead.

That said, I maintain that amultiverse is physically possible. By way of analogy: Is it
physically possible for the stars to have spelled out a Shakespearean sonnet? Surely yes.
But why think so? The reason, it seems to me, is that such possibilities are consistent
with the laws, and we have no other reason to reject them.

The same goes for the physical possibility of various multiverses. The existence of
a multiverse is consistent with the laws. Moreover, we have no reason to reject such
possibilities. In fact, quite the opposite: Accepting the possibility of variousmultiverses
gives us a powerful tool for doing science without numbers.

This brings us to a secondobjection. Immutabilismdescribes theworldusingmodal
operators. Thus, immutabilist theories would seem to be committed to fundamental
modality. But modality is not fundamental. Fundamental reality is not filled with
threats and promises, or so you might say.

In response: We started by distinguishing scientific nominalism frommetaphysical
nominalism. We then set out to defend scientific nominalism. We did this by building
theories using a language with modal operators, which were not defined in other terms.
That much is true.

But all of this is compatible with a wide range of views about fundamental reality.
You could deny scientific fundamentalism, and so hold that fundamental reality is not
characterized by any of the best scientific theories. Or you could hold that it is equally
well characterized by several scientific theories, some of which have basic modality, and
some of which do not. On this sort of view, fundamental reality is simply ambivalent
aboutmodality. You could think that modal facts are reducible to other facts, like those
involving the notion of essence. Or you could deny that there is any such thing as
fundamental reality altogether.

For my own part, I accept fundamental modality. This is in part because I am an
anti-Humean. The fundamental laws, I say, are fundamental physical necessities. But
in that case, I am already committed to fundamental modal notions. Thus, using those
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modal notions to also do science without numbers is no additional cost.
Fully defending the use of modal notions in fundamental theorizing would take us

beyond the scope of this paper. But suffice it so say, the notions of physical possibility
and necessity strike me as being in perfectly good working order. We have precise
formal systems for reasoning about them. And we have robust scientific practice for
determining what is physically possible and what is physically necessary. Thus, I can see
no reason to avoid such notions in fundamental theorizing.

8 Conclusion

We started in §1 by describing scientific nominalism and one of the main challenges it
faces, which is the problem of quantities. One natural solution to the problem appeals
to modality. That solution, though, would seem to require cross-modal comparisons.
But there is no obvious strategy for expressing such comparisons as a nominalist.

Our response was to introduce a new view about modality called compossible im-
mutabilism in §2. We then showed that a nominalist can use compossible immutabilism
to express cross-modal comparisons in §3.

This gave us a new strategy for doing science without numbers. The basic strategy
is to use the fictionalist language from §4 to build scientific theories, which can then
be translated into compossible immutabilist theories that make extensive use of cross-
modal comparisons. To show how the strategy works—and to motivate the idea that
can solve the problem of quantities—we showed how to give a theory of Euclidean
distance ratios in §5. We also quickly sketched an immutabilist theory of state space in
§6

Now of course, there is still muchwork to be done. What wewould really like is not
just a full immutabilist theory of classical mechanics, but a full immutabilist theory of
general relativity, along with a full immutabilist theory of quantummechanics. Those
hard projects will obviously need to be left for another day. But for now, there is reason
for optimism. My own conviction is that with enough time and patience, those hard
projects can be completed.
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Appendix: Models, Translations, and Structural Equivalence

In this appendix, we are going to give a model-theoretic specification of the systems
CI, I, and F from the main text. We will then provide recursive translation from the
sentence of ℒ𝐼 to the sentences of ℒ𝐹, and visa-versa, that preserve logical entailment,
relative to the system I and F. Thus, given any immutabilist theory 𝑇𝐼 in system I, there
is a structurally equivalent fictionalist theory 𝑇𝐹 in F, and visa-versa.

Definition 8.1: A frame is a tuple ⟨𝑊, @, 𝐷, 𝑃⟩. This includes a set of worlds𝑊 ⊂
𝑃, an actual world @ ∈ 𝑊, a singular domain 𝐷, and a plural domain 𝑃 ⊂ 𝒫(𝐷).
Moreover, every frame also meets the following conditions:

For every 𝑥 ∈ 𝐷, there is some 𝑤 ∈ 𝑊 such that 𝑥 ∈ 𝑤.
For every 𝑥 ∈ 𝑃, there is some 𝑤 ∈ 𝑊 such that 𝑥 ⊆ 𝑤.

Each world is the set of individuals that exist at that world. Thus, each world is
identified with its singular domain. Each world is also a set in the plural domain. Thus,
each world is also a plurality. The two indented conditions tell us that every individual
is in a world, and so every individual is a possible individual. Likewise, every plurality is
in a world. Thus, every plurality is a possible plurality. Finally, given any frame, we can
define a plural domain function 𝑝 ∶ 𝑤 ↦ 𝒫(𝑤) ∩ 𝑃. This tells us which pluralities
exist at which worlds.

As we go on, it will be helpful to establish a notational convention. Suppose that
we have a world 𝑤 and a predicate 𝑅. Predicates have sorted argument places. Worlds
also have both a singular domain and a plural domain. Thus, it will be helpful to have
notationpairing argumentplaceswithdomains. For this, wewill use 𝛿𝑤

𝑖 , where 𝛿𝑤
𝑖 = 𝑤

when the i-th argument place of𝑅 is singular, and 𝛿𝑤
𝑖 = 𝑝(𝑤)when the i-th place of𝑅

is plural. When the superscript is dropped, 𝛿𝑖 will refer to the appropriate outer domain
for each argument place. Thus, 𝛿𝑖 = 𝑊 when the i-th argument place of 𝑅 is singular,
and 𝛿𝑖 = 𝑃 when the i-th argument place is plural.

Definition 8.2: A valuation is a function ~⋅� assigning denotations to names and
predicates. This is done in the following way:

~𝑐� ∈ @
~𝑐𝑐� ∈ 𝑝(@)
~𝑅� ⊆ 𝛿1 × ⋯ × 𝛿𝑛 when 𝑅 is a non-logical predicate

Definition 8.3: An immutabilist model ℳ𝐼 = ⟨𝑊, @, 𝐷, 𝑃 , ~⋅�𝐼⟩ is a frame
together with a valuation function for the names and predicates in ℒ𝐼.

Definition 8.4: Afictionalistmodelℳ𝐹 = ⟨𝑊, @, 𝐷, 𝑃 , ~⋅�𝐹⟩ is a frame together
with a valuation function for the names and predicates in ℒ𝐹.

To simplify the semantic clauses below, we can assume that the only basic truth-
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functional operators are ∧ and ¬. The only basic quantifiers are ∀𝑥 and ∀𝑥𝑥. For the
immutabilist language, the only basic modal operator is 2. The other operators and
quantifiers are then defined in the usual way.

Definition 8.5: Let ℳ𝐼 be an immutabilist model. When 𝑤 ⊧𝜎 𝜙, we say that 𝜙 is
true at world 𝑤 relative to variable assignment 𝜎. This relation is defined recursively:

𝑤 ⊧𝜎 𝑅(𝑡1, … , 𝑡𝑛) iff ⟨𝜎(𝑡1), … , 𝜎(𝑡𝑛)⟩ ∈ ~𝑅� ∩ 𝛿𝑤
1 × ⋯ × 𝛿𝑤

𝑛
𝑤 ⊧𝜎 𝑡1 ≺ 𝑡2 iff 𝜎(𝑡1) ∈ 𝜎(𝑡2)
𝑤 ⊧𝜎 𝑡1 =𝑠 𝑡2 iff 𝜎(𝑡1) = 𝜎(𝑡2)
𝑤 ⊧𝜎 𝑡1 =𝑝 𝑡2 iff 𝜎(𝑡1) = 𝜎(𝑡2)
𝑤 ⊧𝜎 𝑡1 ∼ 𝑡2 iff 𝜎(𝑡1) ∈ 𝑤 iff 𝜎(𝑡2) ∈ 𝑤 for all 𝑤 ∈ 𝑊
𝑤 ⊧𝜎 ¬𝜙 iff 𝑤 ̸⊧𝜎 𝜙
𝑤 ⊧𝜎 𝜙 ∧ 𝜓 iff 𝑤 ⊧𝜎 𝜙 and 𝑤 ⊧𝜎 𝜓
𝑤 ⊧𝜎 ∀𝑥𝜙 iff 𝑤 ⊧𝜎∗ 𝜙 for all 𝜎∗ such that 𝜎∗(𝑥) ∈ 𝑤
𝑤 ⊧𝜎 ∀𝑥𝑥𝜙 iff 𝑤 ⊧𝜎∗ 𝜙 for all 𝜎∗ such that 𝜎∗(𝑥𝑥) ∈ 𝑝(𝑤)
𝑤 ⊧𝜎 2𝜙 iff 𝑣 ⊧𝜎 𝜙 for all 𝑣 ∈ 𝑊

A sentence 𝜙 is true in ℳ𝐼 when true at the actual world relative to all variables
assignments. When it is, we write ℳ𝐼 ⊧ 𝜙.

Definition 8.6: Let ℳ𝐹 be a fictionalist model. When ⊧𝜎 𝜙, we say that 𝜙 is true
relative to variable assignment 𝜎. This relation is defined recursively:

⊧𝜎 𝑅(𝑡1, … , 𝑡𝑛) iff ⟨𝜎(𝑡1), … , 𝜎(𝑡𝑛)⟩ ∈ ~𝑅�𝐼

⊧𝜎 𝑡1 ≺ 𝑡2 iff 𝜎(𝑡1) ∈ 𝜎(𝑡2)
⊧𝜎 𝑡1 =𝑠 𝑡2 iff 𝜎(𝑡1) = 𝜎(𝑡2)
⊧𝜎 𝑡1 =𝑝 𝑡2 iff 𝜎(𝑡1) = 𝜎(𝑡2)
⊧𝜎 𝑡1 ∼ 𝑡2 iff 𝜎(𝑡1) ∈ 𝑤 iff 𝜎(𝑡2) ∈ 𝑤 for all 𝑤 ∈ 𝑊
⊧𝜎 ¬𝜙 iff 𝑤 ̸⊧𝜎 𝜙
⊧𝜎 𝜙 ∧ 𝜓 iff 𝑤 ⊧𝜎 𝜙 and 𝑤 ⊧𝜎 𝜓
⊧𝜎 ∀𝑥𝜙 iff 𝑤 ⊧𝜎∗ 𝜙 for all 𝜎∗

⊧𝜎 ∀𝑥𝑥𝜙 iff 𝑤 ⊧𝜎∗ 𝜙 for all 𝜎∗

⊧𝜎 Act(𝑡) iff 𝜎(𝑡) ∈ @

A sentence 𝜙 is true in ℳ𝐹 when true relative to all variable assignments. When it is,
we write ℳ𝐹 ⊧ 𝜙.

Definition 8.7: Amodel ℳ is regular if for every basic non-logical predicate:

⟨𝑎1, … , 𝑎𝑛⟩ ∈ ~𝑅� only if there is some 𝑤 ∈ 𝑊 such that ⟨𝑎1, … , 𝑎𝑛⟩ ∈
𝛿𝑤

1 × ⋯ × 𝛿𝑤
𝑛 .

Roughly speaking, amodel is regularwhen individuals stand in non-logical relations
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only when they exist together in some worlds. The above formulation generalizes this
basic thought to include pluralities.

Definition 8.8: A frame is compossiblewhen for every 𝑤, 𝑣 ∈ 𝑊, there is a 𝑢 ∈ 𝑊
such that 𝑤 ∪ 𝑣 ∈ 𝑢.

Definition 8.9: A frame is a separable when for every 𝑆 ⊂ 𝑊, if ∪(𝑆) ∈ 𝑃, then
∪(𝑆) ∈ 𝑊.

As you would expect, when a model is based on a compossible frame, we will say
that the model is compossible and, when a model is based on a separable frame, we will
say that the model is separable.

Observation 8.10: Every compossible model is regular.

Definition 8.11: A model is a standard when it is compossible and separable and
such that every instance of Plural Comprehension is true at every world.

We can now characterize the three systems from the main text. CI consists of those
sentences of ℒ𝐼 that are true in all standard models. I consists of those sentence of ℒ𝐼
that are true in all regular models. Finally, F consists of those sentences of ℒ𝐹 that are
true in all regular models.

What we want to show now is that the languages ℒ𝐼 and ℒ𝐹 are structurally
equivalent, modulo I and F.

We will say that an ℒ𝐼 language and ℒ𝐹 language correspondwhen they have the
same names and non-logical predicates. Given any two such languages, two models
ℳ𝐼 and ℳ𝐹 correspond when the valuation functions assign the same names and
the same predicates the same denotations.

Theorem 8.12: Let ℒ𝐼 and ℒ𝐹 be corresponding languages. There is then a recursive
translation 𝑔 from the sentences of ℒ𝐼 to the sentences of ℒ𝐹 such that ℳ𝐼 ⊧ 𝜙 iff ℳ𝐹 ⊧
𝑔(𝜙) whenever ℳ𝐼 and ℳ𝐹 are corresponding models.

Proof. We will first divide the plural variables of ℒ𝐼 into two infinite stocks 𝑥𝑥𝑖 and
𝑦𝑦𝑖. Now take any sentence 𝜙. We can suppose that none of the variables in the second
stock appear in 𝜙. For if they do, we can rewrite 𝜙 as 𝜙∗ using relettering, where 𝜙∗

does not include any such variables. We then translate 𝜙 as follows:

𝑔[𝜙] = ∃𝑦𝑦0(∀𝑥(Act(𝑥) ≡ 𝑥 ≺ 𝑦𝑦0) ∧ 𝑔0[𝜙])
𝑔𝑛[𝑅(𝑡1, … , 𝑡𝑛)] = 𝑅(𝑡1, … , 𝑡𝑛)
𝑔𝑛[¬𝜙] = ¬𝑔𝑛[𝜙]
𝑔𝑛[𝜙 ∧ 𝜓] = 𝑔𝑛[𝜙] ∧ 𝑔𝑛[𝜓]
𝑔𝑛[∀𝑥𝜙] = ∀𝑥(𝑥 ≺ 𝑦𝑦𝑛 ⊃ 𝜙)
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𝑔𝑛[∀𝑥𝑥𝜙] = ∀𝑥𝑥(𝑥𝑥 ≺ 𝑦𝑦𝑛 ⊃ 𝜙)
𝑔𝑛[2(𝜙)] = ∀𝑦𝑦𝑛+1(World(𝑦𝑦𝑛+1) ⊃ 𝑔𝑛+1[𝜙])

This gives us our translation. We could then easily verify, by induction on complexity,
that ℳ𝐼 ⊧ 𝜙 iff ℳ𝐹 ⊧ 𝑔(𝜙) whenever 𝑀𝐼 and 𝑀𝐹 are corresponding models. �

Theorem 8.13: Let ℒ𝐹 and ℒ𝐼 be corresponding languages. There is then a recursive
translation 𝑓 from the sentences of ℒ𝐹 to the sentences of ℒ𝐼 such that ℳ𝐹 ⊧ 𝜙 iff ℳ𝐼 ⊧
𝑓(𝜙) whenever ℳ𝐹 and ℳ𝐼 are corresponding models.

Proof. We start by dividing the plural variables of ℒ𝐹 into an infinite stock 𝑥𝑥𝑖 and a
single 𝑦𝑦. Now take any sentence 𝜙 of ℒ𝐹. We can suppose that the plural variable 𝑦𝑦
appears nowhere in 𝜙. Because if it did, we could use relettering to derive a logically
equivalent 𝜙∗, and then use that for our translation. We then recursively translate 𝜙 as
follows:

𝑓[𝜙] = ∃𝑦𝑦(𝑓∗[𝜙])
𝑓∗[𝑅(𝑡1, … , 𝑡𝑛)] = 𝑅(𝑡1, … , 𝑡𝑛)
𝑓∗[¬𝜙] = ¬𝑓∗[𝜙]
𝑓∗[𝜙 ∧ 𝜓] = 𝑓∗[𝜙] ∧ 𝑓∗[𝜓]
𝑓∗[∀𝑥𝜙] = 2(∀𝑥𝜙)
𝑓∗[∀𝑥𝑥𝜙] = 2(∀𝑥𝑥𝜙)
𝑓∗[Act(𝑡)] = 𝑡 ≺ 𝑦𝑦

As before, it remains to be shown thatℳ𝐹 ⊧ 𝜙 iffℳ𝐼 ⊧ 𝑓(𝜙)wheneverℳ𝐹 andℳ𝐼
are corresponding models. But once we have the translation scheme, this can easily be
shown by induction. �
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