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Abstract:  

Despite numerous and increasing attempts to define what life is, there is no consensus on necessary 

and sufficient conditions for life. Accordingly, some scholars have questioned the value of definitions 

of life and encouraged scientists and philosophers alike to discard the project. As an alternative to 

this pessimistic conclusion, we argue that critically rethinking the nature and uses of definitions can 

provide new insights into the epistemic roles of definitions of life for different research practices. 

This paper examines the possible contributions of definitions of life in scientific domains where such 

definitions are used most (e.g., Synthetic Biology, Origins of Life, Alife, and Astrobiology). Rather 

than as classificatory tools for demarcation of natural kinds, we highlight the pragmatic utility of what 

we call operational definitions that serve as theoretical and epistemic tools in scientific practice. In 

particular, we examine contexts where definitions integrate criteria for life into theoretical models 

that involve or enable observable operations. We show how these definitions of life play important 

roles in influencing research agendas and evaluating results, and we argue that to discard the project 

of defining life is neither sufficiently motivated, nor possible without dismissing important theoretical 

and practical research. 
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1. Introduction 

The fundamental question of what life is was for many years set aside by the success of experimental 

studies of molecular structures in Biology, but the issue has recently gained increasing popularity and 

attention (Gilbert & Sarkar, 2000; Woese, 2004; Cornish-Bowden, 2006; Di Frisco, 2014; Nicholson, 

2014; Moreno & Mossio, 2015). Accordingly, the more specific issue of defining life has also raised 

renewed interest in Biology and Philosophy. Whereas many 20th century biologists considered the 

problem of defining life a purely theoretical or even metaphysical question, often characterised by a 

compromising vitalist flavour (Mayr, 1982), several new fields now take this to be a fundamental 

question. Synthetic Biology, Origins of Life, Astrobiology, and computational Artificial Life are 

examples of fields in which definitions of life have become an established research topic connected 

to the characterisation, detection, demarcation, and synthesis of life (Luisi, 2006; Ruiz-Mirazo et al., 

2010). The renewed attention to definitions is, however, also followed by renewed criticisms. It is 

our aim in this paper to examine the arguments of these criticisms in comparison to the roles that 

definitions of life play in scientific research practices.  

The background for the criticism is the lack of consensus among scholars who have proposed 

definitions of life. Despite various and long-lasting efforts to define life, there is no agreement on the 

central features that unite living systems and separate these from inanimate matter. More generally, 

there is no shared position on the importance of definitions of life in the practice of science (Szostak 

et al., 2001; Ruiz-Mirazo et al., 2010; Tirard et al., 2010; Trifonov, 2011; 2012; Szostak, 2012).  

A few criticisms from philosophers stand out as radically undermining the project of defining life, 

and as possibly leading to the abandonment of this enterprise as pointless or even detrimental to the 

sciences involved. Against the background of diversity of definitions, Edouard Machery recently 

argued that: “the project of defining life is either impossible or pointless” (Machery, 2012, 145). 

Insofar as this enterprise is spread over many disciplines with diverging interests, preferences, goals 

and research traditions, and insofar as it is also possible that life might not even form a single natural 

kind, he argues that a consensus cannot be reached. In parallel, Carol Cleland proposes four main 

arguments against definitions of life (Cleland & Chyba, 2002; 2007; Cleland, 2012). The first and 

more fundamental, she sustains, is that definitions are limited conceptual tools that cannot express 

necessary and sufficient conditions for a natural kind. Second, she criticises the use of definitions as 

theoretical identity statements by pointing to their incapability to encapsulate scientific theories and 

the distinctive properties of the objects they describe. Third, she argues that definitions are likely to 

make scientists blind to other possibilities (e.g., alternative life forms) and therefore are likely to 

mislead us. Fourth, she argues that since we only know one example of life (the one found on Earth), 

there is no well-developed general theory of life available upon which to rely in order to distinguish 

necessary from contingent properties of life1. 

                                                           
1 We address the first criticism in Section 2.1, and the others in section 4.2. 
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In the face of such criticisms ─ and, indeed, precisely by taking them into account ─ this paper aims 

at clarifying the importance of definitions of life in scientific practice and in the theoretical 

advancement of the disciplines involved. The real point of contention, we argue, is what is taken to 

count as a definition, and for what purposes definitions are offered (or taken to be offered). Rather 

than taking for granted that the role of definitions in science is equal to the demarcating natural kinds 

in analytical philosophy, we approach the issue of definitions from a pragmatic standpoint. We focus 

on the possible contributions of definition to the research carried out in those domains in which are 

used most (Synthetic Biology, Origins of Life, Alife, and Astrobiology).  

By analysing the practical utility of definitions of life in scientific practice, we propose that definitions 

of life in these domains should be considered in a non-standard and weaker sense, as operational 

definitions. This choice of terminology is inspired by the use of the same term in the scientific 

literatures of Origins of Life and Synthetic Biology (e.g., Fleischaker, 1990; Luisi 1998). We use the 

term ‘operational’ in a wide sense, referring both to (1) the possibility to define something by means 

of operations (e.g., defining an entity by measuring or building it following a specific procedure), and 

(2) the idea that the contents of the definition (e.g., the conditions for life) can be operationalised for 

empirical research, that is, can be built, manipulated and tested in the laboratory. We are aware that 

operational definitions have slightly different uses in other philosophical debates and domains of 

science, related to the first meaning.2 Yet, we choose to adhere to its use in the scientific literature 

and refer by ‘operational definitions’ to the second meaning as well (for a more detailed discussion, 

see Sections 3 and 4).  

Importantly, operational definitions imply that their content can be object of experimental or formal 

scientific analysis. Properties that cannot be objects of scientific research because of practical reasons, 

for example due to limits in the technological or formal tools available at a certain moment, or 

metaphysical dispositions like entelechies, cannot be part of an operational definition in this sense. 

Operational definitions of life are connected to specific theoretical models which integrate sets of 

contextually relevant criteria for life that involve or enable observable or experimental operations (in 

the laboratory, on another planet, or in a software program). This means abandoning several features 

usually associated with definitions of life in the philosophical debate, such as strict ontological claims 

associated with definitive or stipulative demarcations of necessary and sufficient conditions for life, 

that are fixed once and for all and demarcate life as a natural kind.  

We first examine the background of the debate and the main challenges to definitions of life, brought 

forth by Machery and Cleland (Section 2). Even though these criticisms call for a critical rethinking 

of the nature and role of definitions, we argue that the pessimistic conclusions do not follow once 

strong ontological claims on the relation between definitions and natural kinds are abandoned. Section 

3 discusses the utility of definitions of life in fields that explore the frontiers of Biology. Specifically, 

we analyse the role played in the line of investigation pursued by Pier Luigi Luisi’s research group 

within Origins of Life and Synthetic Biology. In Section 4, we propose that an operational account 

better captures the use of definitions of life in these fields, and we respond to possible objections. 

                                                           
2 The way we use the term here should also not be confused with the broader notion of operationalism, i.e., the view of 

some logical positivists that the meaning of a term bears solely on the methods for its empirical measurement.  
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Section 5 concludes with some general remarks on the distinction between operational and strong 

definitions.  

2. Philosophical challenges to the attempts to define life 

The difficulties of catching the distinctive and universal character of living systems and of reaching 

a consensus on a single definition ─ due to the great diversity of living phenomena, which ‘resists the 

confines of any compact definition’ (Szostak et al., 2001: 387) ─ do not seem to have discouraged 

the enterprise to define life. Rather, attempts from distinct disciplines and research traditions have 

multiplied. Popa’s extensive work (2004) lists almost 100 different definitions of life, not counting 

more recent contributions, among these are for instance several organizational accounts (Ruiz-Mirazo 

et al., 2010; Bich & Damiano, 2012) and cybernetic approaches (Tsolokov, 2010), just to cite few of 

them.  

In the face of this variety, several attempts to systematize the debate and advance unifying definitions 

have been made (Kompanichenko, 2008; Trifonov, 2011). In this context of intense discussion and 

implementation of different strategies (Szostak, 2012; Trifonov, 2012), several journals have recently 

dedicated special issues to definitions of life: Origins of Life and Evolution of Biospheres (2010, 40-

2), Synthese (2012, 185-1), and SEBBM (2013, 175). In addition, one of the four sections of the 

comprehensive book edited by Bedau and Cleland on the Nature of Life (2010, Sec IV) is specifically 

dedicated to contributions on this topic. Papers in these publications defend, challenge or profoundly 

criticise the general quest for definitions. Moreover, criticisms have also been made of the use of 

definitions in specific fields, namely Astrobiology (Cleland & Chyba, 2007; Cleland, 2012) and 

Origins of Life (Szostak, 2012). The following subsection describes in further detail the philosophical 

criticisms by Machery and Cleland.  

2.1 Definitions of life and natural kinds 

In light of the proliferation of definitions of life, Machery (2012) argues that if defining life is a 

scientific project like defining gene, virus, cell etc., then the project is pointless because different 

scientific disciplines, or even research groups within the same discipline, do not reach a consensus3. 

A central assumption in Machery’s argument is that the project of defining life is one of finding one 

unified conceptual definition that covers all and only the relevant life forms, and on which all 

scientists would agree. The idea is that the aim of defining scientific concepts is to arrive at consensus 

on necessary and sufficient conditions for specific terms or classes – an aim that seems impossible to 

reach.  

One problem with definitions of life results from the diversity of preferences for definitions held by 

individual scientists with different disciplinary and theoretical backgrounds as well as different 

research agendas. For instance, scientists interested in uncovering the origins of life are interested in 

defining minimal biochemical life forms that may not be compatible with strong accounts of Artificial 

Life, that argue that life is independent of materiality. Similarly, astrobiologists interested in 

                                                           
3 In the same paper Machery (2012) also proposes an argument against definitions of life in folk psychology. We will 

not address it here, as we are interested in their use in science. 
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understanding what components and organisations could support life on other planets, and how to 

detect it, may have other restrictions for a satisfactory definition of life. Moreover, the prospects of 

finding one unified definition that covers all and only the relevant life forms are challenged by the 

fact that it is “unclear whether living beings form a single natural kind since nature rarely yields a 

unique way of classifying the world” (Machery 2012: 159). In other words, we may be trying to 

identify the boundaries of a group of entities that upon closer inspection do not form a single natural 

kind. 

Cleland’s argument, grounded in metaphysics, is even more radical. She claims that definitions in 

general are incapable of answering questions about natural kinds and are therefore useless for 

scientific investigation. Her criticism leans on Putnam’s (1975) famous Twin Earth Example, which 

she uses to argue that the extension of a term is not fully determined by the concepts in the mind 

(Cleland, 2012; see also Kripke, 1972). The Twin Earth Example4 suggests that insofar as definitions 

are dependent on concepts formed by subjective and fallible features of human thoughts and language, 

they cannot provide necessary and sufficient conditions for demarcating natural categories or entities. 

Yet, according to Cleland, this is precisely what is usually required of them. Hence, if scientists and 

philosophers alike are interested in demarcating and identifying life as a natural kind ─ or in 

establishing for example whether an entity such as a virus is alive or not ─ in a strong ontological 

sense, then appealing to a definition is a wrong choice. Moreover, in Cleland’s view the use of 

definitions carries also practical issues and risks, insofar as it may contribute to entrenching a 

misconception or just restate what scientists already know (see Section 4.2). 

Machery’s and Cleland’s criticisms seem to leave no other choice but to abandon the enterprise of 

defining life, since definitions cannot provide univocal necessary and sufficient conditions for life. 

Importantly, however, their criticisms primarily target the capability of definitions to mark out natural 

kinds. We stress that there are other ways to understand the role of definitions by focusing on their 

uses in scientific practice.  

2.2 An alternative pathway: disengaging from strong requirements on natural kinds 

The debate on natural kinds has itself generated a variety of incompatible theories and raised 

criticisms. In particular, if definitions are understood as attempts to demarcate static ontological 

categories with very strict and rigid boundaries, they are vulnerable targets of Machery's and 

Cleland’s criticisms. But our claim is that this characterisation of definitions is inadequate to account 

for the role of definitions of life in scientific practice. An alternative approach, advanced by Goodman 

(1983), Brigandt (2011), and others, invokes a pragmatic or instrumental use of natural kinds as 

                                                           
4 The famous example considers two planets which are exactly the same except that the substance they call water, and 

which exhibits the same sensible properties, has a different composition on each planet. Before such chemical composition 

is discovered, two identical individuals with identical mental states, living on the two planets, would both call the 

substance ‘water’. They have the same concept of what water is and would think water is the same on both planets. But 

once scientists discover the different chemical composition of the two substances on the respective planets, they show 

that using the same term is wrong: “It follows that the extension of the term ‘water’ is not fully determined by concepts 

in the mind” (Cleland 2012: 134). Putnam’s example has been strongly criticised, as admitted by Cleland herself. Yet, 

she claims, it exposes an uncertainty in the relationship between concepts and natural kinds that is sufficient to undermine 

definitional approaches. 
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research tools, rather than attempts to establish a unique and best way to classify things in nature, by 

stressing their practical role over their ontological value. According to this account, different ways of 

classifying things can be chosen according to specific scientific goals and evaluated in terms of their 

usefulness to scientific practice.5 We share with this approach the view that definitions of life inform 

inferences about central properties of systems, and thus serve important practical and theoretical roles. 

The philosophical discussion of whether life is a natural kind or not, we suggest, is not the only, or 

even most important, aspect of defining life. Rather, we are interested in the concept of life as a 

practical and theoretical target in research that aims to investigate the origin of life, design life, or 

address the "salient puzzles about life" (Bedau, 1998: 125; see also Wolfe, 2014). 

Definitions of life play a role akin to definitions of other scientific concepts such as ‘gene’, ‘disease’ 

or ‘organisms’ which play important roles in scientific and philosophical discourses despite a lack of 

consensus or optimism that these correspond to distinct or univocally definable natural kinds (Dupré 

1993; Moss 2001; Scully 2004; Waters, 2006; see also Section 4.2). Like these concepts, the notion 

of ‘life’ can be seen as a conceptual tool for different experimental systems and research programs. 

It can play an important role in the theoretical activity of comparing, through references to definitions, 

different types of systems that are considered as limit cases with epistemic implications (Wolfe, 

2014). Examples are viruses (Forterre, 2010) and transient systems at the frontier between Chemistry 

and Biology (Etxeberria and Ruiz-Mirazo, 2009). Such conceptual boundaries can be complex and 

dynamic, and their choice has great theoretical and practical implications in the elaboration of 

scientific programs (Forterre, 2010). From this perspective, unification is not the only – or even most 

relevant – criterion for success. Rather, definitions of life – despite their diversity – reflect ongoing 

attempts to understand the complexity of the central properties of life from different perspectives (see 

also Malaterre, 2010).  

In the following, we shall examine the role definitions of life in terms of their contributions to the 

theoretical and experimental understanding of life that they support or facilitate.  

3. Defining and redefining life in practice 

Definitions of life play prominent roles in recent interdisciplinary research areas at the frontiers of 

Biology, such as Synthetic Biology, Origins of Life, Astrobiology and computational Artificial Life. 

These fields draw on Engineering, Biochemistry, Physics, Computer Science, etc. in their attempt to 

design and understand systems at the edge of life. This section illuminates the practical role of 

definitions of life in science by analysing the work of the biochemist and synthetic biologist Pier 

Luigi Luisi ─ and of his team at ETH-Z, Zurich and University of Roma Tre ─ in the investigation 

of the transitions to life (Luisi, 1993)6.  

                                                           
5 According to Brigandt, "[f]or any kind, the philosophically relevant question is an epistemic issue: how scientifically 

important is the grouping of an object into a kind, i.e., what generalizations and explanations can the kind figure in, and 

how important are they?" (Brigandt, 2011). See Dieguez (2013) for a position that combines ontological and practical 

claims. See Amilburu (2015) for a recent detailed classification and discussion of different approaches to natural kinds. 
6 The analysis is based on published papers as well as personal interactions between one of the authors and Luisi and his 

team for more than a decade. 
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3.1 The case of Luisi's team 

Luisi has been a leading scientist at the crossroads of some of the fields mentioned above, and since 

the early 90’s he has made explicit use of definitions of life. In his work, definitions play a 

fundamental instrumental role in informing experimental research and in the generation of novel 

knowledge: 

Why should one have a definition of life? (…) A definition of life illustrates an 

experimental program: once you have the intellectual clarification of the definition in 

front of you – there you have a challenge to implement it in the laboratory (Luisi, 1998: 

621). 

According to Luisi’s pragmatic view, definitions are directly related to the aims and goals of the 

scientific user, and their ‘success’ is not evaluated in terms of unification or consensus. Rather, their 

utility depends on practical purposes, and "one definition may be more meaningful than another, 

depending on what you want to do with it" (Luisi, 1998: 617). 

Luisi is known, among other things, for his research on protocells, and more specifically on the 

synthesis of fatty acid and lipid compartments: from micelles to vesicles7. This research line, started 

in the early 90’s after meeting Francisco Varela, was initially based on the following definition of 

living system:  

"a system which is spatially defined by a semipermeable compartment of its own making 

and which is self-sustaining by transforming external energy/nutrients by its own 

process of component production" (Luisi, 1998: 619).  

It is a reformulation of the definition of living system as an autopoietic organisation given by 

Maturana and Varela ([1973] 1980)8, and draws on a theoretical framework, focused on the idea of 

organisms as autonomous systems (Moreno & Mossio, 2015). A characteristic of this framework is 

that it attempts to put together into a coherent conceptual formulation what are considered the crucial 

properties common to all living systems. Specifically, it integrates metabolism (self-production) and 

compartmentation (self-distinction from the medium and control over concentrations and exchanges) 

into an organised system capable of achieving self-maintenance as a whole. 

The use of a definition of life as an autopoietic system ─ formulated in a way that explicitly stresses 

the importance of compartments ─ had an important theoretical impact on the study of the origins of 

life. The synthesis and study of different kinds of compartments has a long history (Hanczyc, 2009). 

                                                           
7 A micelle is a spherical aggregate of lipid molecules characterised by a hydrophilic polar head directed towards the 

solvent and a hydrophobic tail directed towards the interior. A lipid vesicle is a structure characterised by a fluid core 

enclosed by a lipid bilayer. See Stano and Luisi (2016), for a recent historical review of the main research lines developed 

by Luisi’s research teams in Zurich and Rome. 
8 “[The autopoietic organisation] (...) is a network of production processes (transformation and destruction) of components 

which produces the components which: (1) Through their interactions and transformations, permanently regenerate and 

realize the network of processes (relations) which produces the components; and (2) constitute a concrete unity in space, 

within which they (the components) exist by specifying the topological domain of its realization in that network.” 

(Maturana and Varela [1973] 1980: 79). 
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But the theory of autopoiesis is among the first contributions that explicitly moved the focus of 

research towards the specific question of the construction of the membrane from within the system, 

in the more encompassing context of the self-production of the organism. Due to this very feature, 

the notion of autopoiesis has played a central role in integrating approaches focused on metabolism 

and compartments in experimental and computational research9. 

This theoretical approach has informed Luisi’s experimental research by guiding it towards types of 

compartments, such as vesicles, capable, in principle, not only of harbouring metabolism, but also of 

being generated and maintained by it (Luisi, 1993). Several experiments inspired by the autopoietic 

definition have been performed over the decades. One example is Zepik et al.’s (2001) chemical 

model of minimal autopoietic unity (Figure 1), developed to study the relationship between 

compartments and self-maintenance in the prebiotic world (see also Luisi, 2015). The experiments 

carried out in this work are based on self-producing oleate vesicles, that constitute an example of 

compartmentalised protocells10. The boundary of the vesicle is maintained by the continuous 

replacement of oleic acid components (S in the figure) on the surface through the hydrolysis of a 

precursor A. The originality of Luisi’s chemical model derives from the fact that the anabolic reaction 

of vesicle production (representing growth) is combined with a competitive oxidation reaction, which 

destroys the membrane oleate components (representing catabolism or decay). In this reaction, S is 

transformed into the decay product P. By balancing the relative concentrations of the reagents, and 

thus the velocities of the two reactions, Zepik et al. (2001) obtained a chemical model that could 

account for different and biologically interesting kinetic modes such as homeostasis (when the 

velocities are equal), growth (when production is faster than decay, eventually leading to division and 

self-reproduction), and death (when decay is faster than production). The chemical model, thus, 

allows for the exploration of different possible dynamic regimes by modulation of these reactions, 

providing a proof of principle for experimental investigation of possible self-maintaining precursors 

of current living systems11. 

                                                           
9 Varela et al. (1974) proposed the definition of an autopoietic system together with a computational model of the 

generation and maintenance of a compartment. Thus, early research on Artificial Life was directly related to a specific 

definition. The relationship between the metabolism and the compartment had been stressed in the same years by Gánti 

(1979) through his model of the chemoton, thought of as a possible realisation of a definition of a minimal living system. 

Some of the first (but ultimately unsuccessful) experimental attempts to synthesise an autopoietic system were performed 

by Gloria Guiloff, a graduate student in Maturana’s laboratory at the Universidad de Chile (see Guiloff, 1981). 

10 Oleate vesiscles are spherical bilayer structures that host an aqueous core, and are composed of simple long chain fatty 

acids (such as oleic acid) that are ionised to form hydrogen bonds. 

11 Today, more sophisticated forms of such experiments are common both in wetware and software domains, but at the 

time they were unusual (see Luisi, 2015). For a comprehensive review of this approach in current systems chemistry see 

Ruiz-Mirazo et al. (2014).  For recent examples of wetware and software applications see Murillo-Sanchez et al. (2016) 

and Agmon et al. (2016), respectively.  
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Figure 1. The chemical model of the “minimal autopoietic unit”: an experimental system directly inspired by Luisi’s 

definition of life. The system is characterised by two competitive reactions of anabolism and catabolism. S represent the 

oleic acid components of the compartment, A the precursors, and P the decay products. Figure from (Zepik et al. 2001), 

Copyright © 2001 by John Wiley & Sons, Inc. Preprinted by permission of John Wiley & Sons, Inc.  

Additional insights into the role of definitions of life can be derived from Luisi’s work. Definitions 

not only specify individual research trajectories, but also facilitate collaborations and intersections 

between different perspectives. Moreover, they can be combined to generate novel research 

approaches. For example, the common interest in understanding minimal life, by combining internal 

processes and compartments, has brought together scientists with diverging views and definitions of 

life such as Szostak, Bartel, and Luisi. The former two support the evolutionary view, while the latter 

the autopoietic view based on autonomy, but these came together in the following proposal:  

How simple can a cell be and still be considered as living? The answer depends on what 

we consider to be the essential properties of life. Defining life is notoriously difficult; 

its very diversity resists the confines of any compact definition. An operational 

approach focuses on identifying simple cellular systems that are both autonomously 

replicating and subject to Darwinian evolution (Szostak et al, 2001: 387).  

The cited paper became the manifest of a full-fledged research program. Its long-term objective was 

to develop systems of vesicles capable of encapsulating biologically relevant molecules and hosting 

compartmentalised biochemical processes. Furthermore, the vesicles should be capable of 

evolutionary change, with selective pressures arising from functionally advantageous genetic changes 

and vesicle replication12. The relationship between template-directed synthesis of genetic polymers 

and vesicle replication has been explored by Szostak’s group as a step towards the realisation of the 

                                                           
12 See Oberholzer et al. (1995) for a preliminary realisation of this idea in oleate vesicles by Luisi’s team at ETH-Zurich. 

This work already shows a flexible attitude towards combining different definitions: "by combining the RNA replication 

with the principles of autopoiesis, we obtained a bridge between the two more accepted views on the theory of minimal 

life, the one based on the “RNA-world” and the other based on the cellular autopoietic view” (See Oberholzer et al., 1995: 

255-256). 
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coupling between template replication and compartment division (Mansy et al, 2008; Adamala & 

Szostak, 2013)13.  

In parallel, the attempt to encapsulate molecules in protocells by Luisi’s group has revealed 

unexpected and interesting results that are still not fully explained (Luisi et al, 2010; Souza et al, 

2014). One of the poorly understood aspects of the origin of life is how self-maintaining protocells 

can arise from separate constituents. For instance, a central question is how molecules, such as 

catalytic RNA (ribozymes) or small peptides, could become entrapped or permeate into a lipid 

compartment and start interacting. Experiments on vesicle formation can illuminate some possible 

answers to how this could have happened. Luisi’s group expected that when vesicles form in diluted 

solutions in the presence of ferritin or ribozymes they exhibit similar (low) concentrations of 

entrapped molecules. However, they observed that most of the vesicles are empty. Yet, few of them 

(about 1%) entrap a very high number of solutes and achieve molecular crowding, possibly favouring 

the beginning of a primitive compartmentalised metabolism (Figure 2). 

 

 

Figure 2. Entrapment of the protein ferritin inside lipid vesicles. Some vesicles are empty while others exhibit a high 

concentration of ferritin molecules. Figure from (Luisi et al. 2010), Copyright © 2010 by John Wiley & Sons, Inc. 

Preprinted by permission of John Wiley & Sons, Inc.   

These experiments represent fundamental steps in a research line that is characteristic of a wider 

theoretical approach to the study life and its origins, based on the notion of systemic integration (Bich, 

2010). This approach currently numbers several attempts to integrate membrane and metabolism, 

template and membrane, and metabolism and template in synthetic prebiotic systems (reviewed in 

Ruiz-Mirazo et al., 2014).  

3.1 Evolving definitions  

                                                           
13 Szostak has recently criticised the effort of defining life on the grounds that the origins of life concern transitions, but 

definitions of life do not tell us how these transitions took place (Szostak, 2012; see also Trifonov, 2012). Yet, although 

definitions do not tell what happened, they can guide the scientist in selecting which features to examine: they are not 

answers, but tools. Szostak himself defines life in terms of Darwinian evolution, considered as the “unifying characteristic 

of all Biology” (Szostak, 2012: 599). Accordingly, he focuses primarily on realising in the laboratory those transitions 

that give rise to conditions for evolution, such as the combination of template replication and protocell division (see 

Mansy et al., 2008; Adamala & Szostak, 2013). 
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An important aspect of operational definitions is that they are revisable in response to challenges, 

new insights, or criticisms that point to weak spots of the theory on which they are based. Definitions, 

as employed by Luisi and colleagues, have changed over time following the results of theoretical 

reflection and experimental research.  

For example, the biological pertinence of the model of a chemical autopoietic system (Fig. 1) 

developed by Luisi and collaborators on the basis of Luisi’s definition of a living system (Zepik et al, 

2001), was theoretically and philosophically questioned by Luisi himself and Michel Bitbol (Bitbol 

and Luisi, 2004). The chemical model appears too limited if compared to a minimal organism such 

as a bacterium. Only few (simplified) reactions take place in the chemical system, whereas a full-

fledged living system exhibiting metabolism is capable of interacting with the environment by 

reacting conservatively to external perturbations. This aspect is not explicitly addressed by the 

definition (Luisi, 1998) and by the experimental model inspired by it (Zepik et al, 2001), even though 

it is part of the more general theory of autopoiesis. Hence, this reflection led to the reformulation of 

the definition of life based on autopoiesis, with the incorporation of another aspect of the theory which 

previously was not included: cognition, in its minimal meaning of the capacity to interact with the 

environment and respond to changes in it (Damiano & Luisi, 2010; Bich & Damiano, 2012). 

According to the ‘redefined’ version, "a living system is a system capable of self-production and self-

maintenance through a regenerative network of processes which takes place within a boundary of its 

own making and regenerates itself through cognitive or adaptive interactions with the medium." 

(Damiano & Luisi, 2010: 149, italics ours). This example shows that definitions can change within 

the framework provided by a specific theory.  

Another interesting aspect of operational definitions is that attempts to respond to challenges for the 

theoretical framework on which they are based can lead to modifications or to novel experimental 

results. Research based on the autopoietic definition of life traditionally focused on individual cells 

(represented as individual vesicles). The focus is justified through the interest in the simplest unit of 

life. Yet, the relatively recent recognition in the microbiology community that unicellular organisms 

live in colonies (see for example Costerton et al. 1995; Dupré and O’Malley, 2009) has given support 

to the idea that life might have arisen from cooperative mechanisms between prebiotic systems 

(Carrara et al. 2012). Moreover, experiments with single vesicles (especially liposomes14) give 

limited results due to their low permeability, and they incur into difficulties in realising an exchange 

of materials between individual vesicles. In response to such challenges, Luisi’s group investigated 

the properties of colonies of giant vesicles (Carrara el al., 2012, Figure 3), an approach previously 

unexplored in the literature. Using oleate-based vesicles allowed the researchers to explore functional 

features of a negatively charged membrane. They observed that the vesicles in contact with 

polycations form physically stable colonies which attach to the solid substrate (like biofilms) and 

could attract positively charged compounds at the surface.  

                                                           
14 Liposomes are vesicles composed of phospholipids, the lipids that compose current cell membranes. They are more 

stable but less permeable than oleate vesicles. 
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Figure 3. Reciprocal attraction of colonies of giant vesicles. See text for details. From (Carrara et al. 2012), Copyright 

© 2012 by John Wiley & Sons, Inc. Preprinted by permission of John Wiley & Sons, Inc.   

 

Importantly, the study led to the unexpected discovery that vesicle colonies, compared to individual 

vesicles, have features that better mimic some biological processes. These include a demonstrated 

increased permeability and a capability to incorporate solutes. Moreover, using fluorescent t-RNA 

the group showed how also larger compounds can attach to the colony surface and more slowly 

penetrate the membrane without breaking the vesicles’ macrostructure. The latter operationalisation 

corresponds to a possible scenario of the origin of metabolism where externally formed polymers are 

captured by primitive compartments. Moreover, they observed colony accretion ─ which is also 

observed in bacterial biofilms ─ vesicle fusion, and exchange of material between vesicles (Carrara 

et al., 2012). In this case, the debate on the limitations of current operational criteria for studying the 

origins of life improved both the definition and the experimental models of primitive cell 

communities. This example also shows that definitions can provide a context for the discussion and 

revision of fundamental theoretical assumptions. 

3.2 General roles and applications in different fields at the frontiers of Biology 

The case of Luisi’s group shows that definitions are used and can be useful as operational tools to 

guide research in Origins of Life and Synthetic Biology. More generally, definitions can play a 

theoretical, epistemological, practical, and even ethical role15 in several disciplines at the frontiers of 

biology. Their content can range from life considered as a collective phenomenon ─ the living world 

or the biosphere in general16 ─ or as the distinctive character of any individual living system.  

Definitions play an important role in fields where research is guided, at least in part, by explicit or 

implicit assumptions on the difference between living and non-living systems, and where the goal is 

theoretical advancement through analysis, challenging, testing and subsequent improving of models 

                                                           
15 The role of definitions of life related to ethics has ramifications that extend to environmental ethics and medicine 

(Machery, 2012). The role of definitions of life in ethics is beyond the scope of this paper, which is focused on the role 

played by definitions in the frontier disciplines aforementioned. 
16 This is the case, for example, of those approaches which include Darwinian evolution as a crucial property to define 

life. 
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of living systems. They are often used in the construction of theoretical models17 aimed at explicitly 

characterising or simulating some crucial features of basic biological systems as well as of unfamiliar 

forms of life (Rasmussen et al, 2008), and transient systems (Etxeberria & Ruiz-Mirazo, 2009) such 

as prebiotic systems and protocells.  

The epistemological role of definitions of life is related to the specific goals and distinctive features 

of the different domains of investigation in the research fields mentioned above. Definitions may 

provide insights and guidance in the design of experimental18 or computational research programs19, 

in the synthesis of proto-biological systems20, or in the realisation of biological relevant properties21. 

Furthermore, they are sometimes used in order to identify or detect living systems22, or to distinguish 

them from non-living ones23.   

Different fields can have different contents and criteria of "practical operationability" (Luisi, 1998), 

i.e., the actual uses for definitions as tools to guide and inspire experimental research and theoretical 

debate. Yet, discussions and hybridisations often cut across disciplinary boundaries, as do many of 

the scientists involved. Origins of life research often relies on definitions in orienting the investigation 

of the fundamental steps towards, or requirements for, life and applies them in the design and 

construction of plausible prebiotic systems and properties. In research on protocells24 definitions are 

used to provide criteria of pertinence and relevance in the design of biologically significant systems 

(e.g., Rasmussen et al., 2008; Stano & Mavelli, 2015). For example, they are used to guide decisions 

regarding which basic functions should be included in the protocells in order to make them plausible 

models of possible precursors of life. Similarly, in some branches of Synthetic Biology definitions 

play a role in the choice of relevant or interesting biological properties to implement in synthetic 

systems (Ruiz-Mirazo & Moreno, 2013). Moreover, as acknowledged in the literature in Synthetic 

Biology, the evaluation of results in the design of synthetic cells is particularly problematic in the 

absence of definitions (see for example, Cronin, et al., 2006; Forlin et al, 2012)25.  

In Artificial Life definitions are used, for example, in the selection of the relevant properties of life 

that should be simulated. Moreover, this field has been characterised by intense theoretical debates 

on the possible domains of realisation of life. For instance, it has been debated whether life requires 

metabolism, and therefore a chemical and molecular domain (Rosen, 1991; Boden, 1999; Moreno 

and Etxeberria, 2005), or whether life could be realised regardless of the material substrate, even in 

                                                           
17 Or are identified with theoretical models of minimal living systems (see Letelier et al., 2011)  
18 As argued in Ruiz-Mirazo & Moreno (2013). Examples of this use of definitions are Guiloff (1981), Fleischaker (1990), 

Luisi (1993), Murillo-Sanchez et al. (2016). 
19 Discussed in Boden (1999). Examples are Ruiz-Mirazo & Mavelli (2008), Piedrafita et al. (2010), van Segbroeck et al. 

(2009), Zachar et al. (2011), Shirt-Ediss et al. (2014), Agmon et al. (2016). 
20 Discussed in Ruiz-Mirazo & Moreno (2004), Bich & Damiano (2007). Examples are Szostak et al. (2001), Zepick et 

al. (2001), Stano & Mavelli (2015). 
21 For example Rasmussen et al. (2008), Mansy et al. (2008), Luisi et al. (2006). 
22 Discussed in Raulin (2010), Cyzweska (201). See Cleland (2012) and Bains (2014) for alternative views. 
23 See for example Forterre (2010). 
24 Protocells are coherent unities (spherical collections of lipids) proposed as the infrastructures for the origins of life. 
See Shirt-Ediss (2016) for a thorough analysis of the protocells approach to study the origins of life.   
25 An alternative proposal advanced by Cronin et al. (2006) has been to design and implement Turing tests for lifeness, to 

have real cells evaluate artificial ones. Yet, the value of the test is only limited to life-like interactions. 
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software simulations (Langton, 1989; Ray, 1992; Grand et al, 1996)26. Definitions play a primary role 

in Astrobiology as well27, where the difference in criteria of practical operationability, compared to 

other disciplines, is particularly striking. In this domain, definitions function as sources of criteria for 

the detection of life, rather than for the design and construction of it. Systems Biology28 and Prebiotic 

Systems Chemistry29 are other examples of fields involved in developing an integrated account of 

biological systems where definitions of life have become more prominent.  

In summary, in the development of fields working on problems regarding the characterisation, 

detection, design and synthesis of life, definitions of life play important roles as boundary concepts 

for specifying research approaches and specific operations. These examples provide empirical 

resistance to the assumptions that most biologists take life to be a natural kind and that the purpose 

of definitions of life in science is to demarcate it (e.g., Cleland, 2012: 127). In the cases we have 

examined, even the heuristic use of definitions to establish whether something is alive or not, is 

actually marginal, compared to their more general role as tools in actively guiding research. In the 

following section we will attempt to systematise this operational view of definitions as opposed to an 

ontological one, and answer possible objections. 

 

4. Operational definitions and their virtues 

We have shown that, in several fields, definitions of life are used in a way that is not necessarily 

related to carving out natural categories in a strong ontological sense, and their value does not depend 

on consensus, but rather on their impact on research. Scientists pragmatically define life consistently 

with the current and continuously changing biological theory as well as according to their own 

specific theoretical and experimental perspective and goals. The examples taken from the work of 

Luisi and colleagues show this instrumental use for definitions: they are directly involved in scientific 

practice, and play an active operational role in guiding theoretical and experimental research, and in 

generating novel knowledge. 

In the examined examples, definitions are exploratory tools that can change over time and across 

research programs. This use does not imply a requirement of a unique, complete and definitive set of 

necessary and sufficient conditions for all life (and only life) as we know it, or the commitment to 

strong ontological claims. Instead, such tools point out some possible necessary conditions for life 

which are considered plausible and interesting in the context of current theories and available 

experimental techniques30. In doing so they aim at identifying a set of conditions that are satisficing 

                                                           
26 For a discussion of the role of definitions of life in Artificial Life, see for example Umerez (1995). 
27 Consider for instance the NASA effort to formulate a definition to help decide which experiment to realise to detect 

life on Mars: "Life is a self-sustained chemical system capable of undergoing Darwinian evolution" (discussed for 

example in Luisi, 1998). For a criticism of this enterprise, see Cleland (2012). 
28 Examples are Cornish-Bowden (2006), Wolkenhauer and Hofmeyr (2007), Piedrafita et al. (2010), and Letelier et al. 

(2011). 
29 See Ruiz-Mirazo et al. (2014) for a review of the emerging field of Prebiotic Systems Chemistry and of the role played 

in it by definitions of life. 
30 The reason we emphasize necessary, rather than sufficient conditions, is that these are more pertinent tools in the 

scientific practices we examine here. The targets are simple life-like, prebiotic or minimal living systems, that is, systems 
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for the purposes of research, rather than sufficient31. The notion of operational definitions captures 

this use ─ which is dependent upon theory and directly involved in scientific practice ─ by pointing 

out the importance of the active (operational) role they play in the design and evaluation of observable 

operations in the relevant domain of investigation32. We agree with Fleischaker that in this context 

"the force of any operational definition is its capability of exhibition in the laboratory" (Fleischaker, 

1990: 131). Accordingly, in our view, operational definitions coherently combine, or integrate into 

a theoretical model, a set of mutually dependent necessary and satisficing criteria for life that imply 

observable operations, and that are considered pertinent and relevant for research33.  

This approach fits with the way that many scientists, such as Luisi (e.g. Damiano & Luisi, 2011), 

refer to necessary and sufficient conditions for life but in the context of revisable or provisional 

definitions. Operational definitions provide a theoretical background to guide research and evaluate 

the relevance of experimental results, rather than strong demarcation criteria for a unique and rigid 

categorisation of natural systems.  

As illustrated in Section 3.2, the principles for the use and experimental application of these 

definitions, i.e. criteria for practical operationability, can vary from one domain to the other: for 

example, design and construction of life for Synthetic Biology and Origins of Life, and guidelines for 

detection experiments in the case of Astrobiology. Criteria for practical operationability should not 

be confused with another important element of definitions, that is, operational criteria for life. The 

latter concern the specific contents of the definition, i.e., the set of relevant and pertinent necessary 

conditions for life according to a certain line of research. Consider for example the application of the 

definition of autopoiesis to the study of the origins of life. According to Fleischaker, "demonstration 

of the autopoietic criteria would result in the assembly of a living cell-system: a system boundary 

structure and a network of synthetic pathways for the production and replacement of system 

components" (Fleischaker, 1990: 131). The first part of the quotation concerns criteria for practical 

operationability indicating where, for what purposes, and how to apply the definition in the laboratory 

practice. In this case, the aim is to build a cell, in other cases, it may be to realise a simulation, to 

design tests to detect living systems, etc. The second part focuses on operational criteria: the specific 

contents of the definition that will be applied in a specific research practice. In this case, the contents 

include a boundary and minimal metabolism ("a network of synthetic pathways") capable of 

producing and replacing the components of the system.  

                                                           
that do not exhibit all the features of life, or just the minimal ones. Accordingly, the focus of research is on individual, or 

sets of, necessary conditions for life, and on their emergence or precursors in the prebiotic world. 

31 We find that this use of definitions is better reflected by the term ‘satisficing’ rather than ‘sufficient’. The use of the 

term 'satisfice', a mix of 'satisfy' and ‘suffice', has been introduced by Herbert Simon (1956) to denote a heuristic strategy 

according to which a decision is made in real life when it satisfies the minimum requirements necessary to achieve a 

certain goal (see also Gigerenzer & Goldstein, 1996). It better fits our view of definitions of life, because the necessary 

conditions included in a definition reflect pragmatic choices that are dependent on practical and theoretical purposes. 

Moreover, this choice has a limited validity in time, insofar as definitions are refined in response to criticism, empirical 

results and new issues to be addressed. 
32 We refer to the use of operational definitions in the literature of these disciplines at the frontiers of Biology (see for 

example Fleischaker, 1990 and Luisi, 1998, among others). 
33 To make it clearer, definitions whose central properties and phenomena that are not in principle or practically possible 

to study in the laboratory or in simulations (e.g. entelechies or unspecified dispositions) do not satisfy the operational 

criteria. 
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The two dimensions do not necessarily coincide, as scientists sharing the same operational criteria 

might have different criteria for practical operationability, and apply the same definition in different 

ways and with different goals. For instance, while taking the same focus on boundary structure and 

synthetic pathways, Fleischaker (1990) aims at building a cell in the laboratory, whereas Agmon et 

al. (2016) aim at simulating the interplay between rates of metabolic reactions and changes in 

membrane properties. 

 

4.1. The integrated nature of operational definitions 

The case of Luisi and collaborators shows that operational definitions are used and can be useful in 

science, not only for providing guidance to well-established research programs, but also for 

developing previously unexplored research lines and producing unexpected results. We do not claim 

that the cases examined are representative of all approaches to definitions in these fields. However, 

we take the examples to offer resistance to the view that attempts to define life are pointless. Our aim 

is simply to show that (operational) definitions of life can be useful in scientific practice, by guiding 

the development of a research program, providing criteria for the evaluation of results, and in 

generating new lines of investigations. Before we further unpack the virtues of operational definitions, 

we address the possible objection that the notion of definitions may not be necessary or useful to 

capture these aspects of the scientific practice. 

Cleland and Chyba (2007), Griesemer (2015), and Bains (2014) propose to replace integrated 

definitions with a variety of "tentative criteria" or "practical tests" for life: a series of properties and 

phenomena usually related to our knowledge of life, but not defining or delimiting life. This approach 

offers a way to avoid the problems faced by definitions (in the traditional sense). However, the 

flexibility also implies a fragmentation of the criteria that results in difficulties of accounting for some 

important aspects of the scientific practices in which definitions of life are used. Specifically, tentative 

criteria cannot account for how life-processes are realized through organisms functioning as 

integrated wholes. A crucial aspect that distinguishes definitions from criteria for life in general is 

precisely that in definitions criteria are put together into a model or a set of mutually dependent 

necessary conditions.  

An interesting aspect that can be evinced from Luisi’s work is that the use of an integrated definition 

of life allows far reaching investigations, such as those integrating metabolism and compartment. 

Inspired by Luisi's definition of life, Noireaux and Libchaber (2004) experimentally studied the 

integrated relations between metabolism and the permeability of the compartment. They emphasise 

how metabolism in protocells can improve the permeability of a lipid bilayer compartment. This 

process, in turn, improves the viability of metabolism itself by facilitating the exchange of 

biochemical compounds with the environment without lysing or perturbing the membrane. These 

integrative aspects may be missed if one focuses only on scattered criteria or properties of life.  

The integration into one coherent system of several types of kinetic (catalysts), spatial 

(compartments) and template (genetic) components or subsystems is considered the basis for the 
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realisation of a self-maintaining and self-producing biochemical machinery (see for example, Bich et 

al, 2016). Experimentally and theoretically speaking, this is not a trivial issue, but an extremely 

important one, because pre-existing molecular or supramolecular complexes cannot simply be 

recruited and coupled together. Integration requires a matching between the features of the 

subsystems involved: e.g., the composition of the membrane and the position of molecular 

machineries to meet the demands of metabolism, and the synthesis of the right components by 

metabolism to be used in compartments to achieve certain permeability (Shirt-Ediss, 2016). As 

recently argued by Alvaro Moreno, "the encapsulation of a self-maintaining chemical system has far-

reaching organisational implications since its viability imposes significant changes on both parts 

(compartments and metabolic networks) in order to enable a functional coupling between them" 

(Moreno 2016, 10). The basic subsystems do not only need to be matched, but also their activity and 

rates must be functionally coordinated in order to achieve integration, and to avoid conflict.  

Thus, a central aspect of defining life operationally is to investigate how the relevant conditions and 

processes included in definitions of life can be realised and made compatible with one another, in a 

theoretical as well as experimental sense. The distinct necessary conditions for life involved in a 

definition exhibit an integrated character that needs to be accounted for in theoretical, experimental 

and computational models representing a system as living or life-like34. A particularly hard challenge 

in the fields we examine is to integrate the functioning of different subsystems that are necessary to 

realise and maintain a protocell, a virtual cell, or a minimal living system in such a way as to achieve 

viable compatibility and interdependence (Rasmussen et al, 2008).  

It may be objected to our proposal that examples of scientific practice fit better with the account of 

tentative criteria. For instance, Griesemer’s alternative to definitions of life, centred on tentative 

criteria, is empirically based on an analysis of Gánti’s chemoton theory (Gánti, 1975; 1979; 2003a; 

2003b; Griesemer and Szathmary, 2009). Griesemer (2015) argues that despite using the term 

definition and proposing one, Gánti as an engineer engaged primarily in an explorative research 

program where criteria for life functioned as heuristics for the elaboration and manipulation of 

theoretical models. In our view, however, there is no contradiction between these two aspects 

(definitions and explorative heuristics). To explain why, we examine Gánti’s work in further detail.  

Gánti proposes a definition of life formulated in terms of a coherent set of criteria for life and an 

integrated model. His definition is based on ten criteria for life35: five absolute ones, to be satisfied 

by any living system (unity, metabolism, inherent stability, information carrying components, 

regulation) and five potential, necessary for the sustained existence of a living world (growth, 

multiplication, hereditary change, evolution, mortality). The absolute criteria are integrated into a 

model of a minimal living system capable of fulfilling them, in such a way that they are mutually 

dependent. The Chemoton (figure 4) is a hypothetical system organised as a biochemical “clockwork” 

(Gánti 2003b).  

                                                           
34 This is not necessary the case for all definitions. "Something is X if and only if it is red and square" does not raise 

problems of integration as long as 'red' and 'square' are independent properties. We thank an anonymous reviewer for 

pointing out the need to make this point more explicit. 
35 The criteria change slightly in different publications of Gánti’s work. 
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Figure 4. Scheme of Gánti’s chemoton with the three coupled subsystems: a metabolic cycle, a template replication cycle 

and a compartment. Figure from (Moreno & Mossio, 2015: 26), with kind permission from Springer Science + Business 

Media. 

Three autocatalytic reaction loops (metabolic cycle, template subsystem and compartment) are 

directly coupled to each other and realise the system as a unity. The individual unit (delimited by a 

membrane) is realised by the metabolic activity of production of the membrane and of the information 

carrying components. Metabolism, in turn, is made possible by the membrane, which allows 

substrates to enter the system, and waste to exit without accumulating in the systems, while avoiding 

at the same time the dispersion the molecules that are crucial for the internal processes. Metabolic 

components are also constrained by an information-carrying template (genetic) subsystem which, in 

Gánti's model in figure 4, specifies the possible length of metabolites. The different subsystems are 

then mutually stabilised by homeostatic mechanisms such as feedback loops and cycles. According 

to Gánti, the template also acts as an internal regulatory mechanism that "provides for the cooperation 

between genetic substance and homeostatic subsystem" (Gánti, 1979: 20) by controlling the system’s 

functions and enabling the activity of the system as a unity, etc.36 Gánti's Chemoton, therefore, 

constitutes a basic case of integration in which three of the most commonly mentioned necessary 

conditions of life, namely metabolism, membrane and template replication, are mutually dependent 

and functionally combined. Our view, thus, is compatible with Griesemer’s interpretation of Gánti’s 

goals without giving up (but accounting for) the effective use of definitions by Gánti and other 

theoretical biologists involved in a similar enterprise of building definitions as abstract theoretical 

models. 

This dimension of definitions related to integration is especially important in our current historical 

context in which integrative approaches to life, such as that of Systems Biology, are being developed 

with the aim to overcome the intrinsic limitations exhibited by reductionist ones (Cornish-Bowden, 

                                                           
36 The characterisation of the template subsystem as a 'regulatory' mechanism is controversial, and it has been criticised 

by Bich et al. (2016). 
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2006; Wolkenhauer and Hofmeyr, 2007). As argued by Ruiz-Mirazo et al.: "theoretical and 

philosophical efforts to define life also contribute to those integrative approaches, providing a global 

theoretical framework that may help to deal with or interpret the huge amount of data being collected 

by current high-throughput technologies, in this so-called “omics’ revolution”" (Ruiz-Mirazo et al., 

2010: 203). Similarly, Fleischaker stresses the role of integration in a cautionary note on the study of 

individual mechanisms: "[A]lthough a particular mechanism might appear promising in that it 

satisfies one operational requirement or another, that mechanism is feasible for minimal cell operation 

only if it can be integrated with all the other operational mechanisms, it is theoretically consistent in 

combination. When we can provide the operational mechanisms and all their interrelationships in 

intricate detail, we will be describing a plausible candidate for the minimal cell" (Fleischaker 1990: 

135-136). This point is still relevant in current Synthetic Biology, where the lack of clear theoretically 

grounded means of evaluating the outcomes of experimental efforts in building artificial cells has 

slowed the advancement of research in the field (Forlin et al. 2012). 

In summary, while scattered criteria of life suggested by Cleland, Griesemer, and Bains avoid the 

criticism targeted towards strong ontological definitions, this approach misses one of the aspects that 

make living systems both interesting and difficult to study from the theoretical and practical points 

of view, namely their integrated character.  

 

4.2 Further criticisms to operational definitions and responses 

To clarify further important aspects of operational definitions, we now address the last three of the 

general criticisms advanced by Cleland, targeted at the use of definitions. The first concerns how 

operational definitions relate to theories. Cleland (2012) argues that while definitions aim at capturing 

entire theories of life, theories are always wider and entail many more assumptions than what can be 

contained by definitions. This latter idea does not contrast with our view, according to which 

definitions summarize aspects of a theory that are considered crucial for a specific research project. 

They provide a set of necessary and satisficing (yet not sufficient, see footnotes 30 and 31) conditions 

for life, by selecting contextually relevant elements of the theory. For instance, Luisi’s definition of 

life in terms of autopoiesis was built and used as a summary of the theory. Although reflecting only 

part of the overall theory, the definition was revised as a result of a shift within the theoretical 

perspective (to include responsiveness to the environment) and to enlarge it in response to new 

empirical research (from individual and isolated cells to cell colonies, and). Yet, from the operational 

point of view, unlike for Cleland, this is not a flaw: definitions play relevant roles in science due to 

the flexibility enabled by this very feature, because they facilitate communication, debate, and 

revision of experimental strategies.  

The second criticism is that definitions might favour the entrenching of misconceptions, due to the 

fact that they tend to fix our knowledge into some static categories that make us blind to alternatives 

(Cleland, 2012). This problem is general for any heuristic strategy or model used in research. Yet, 

unguided and unbiased search for patterns or phenomena is rarely, if ever, a possible alternative. 

Operational definitions, like models or tentative criteria, are fallible tools that can be misleading but 
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may also be used as stepping stones for better theories. The examples in Section 3.1 on minimal 

cognition and vesicle colonies show that insofar as definitions are theory based, they can be revised 

both within the context of a theory or as a result of revision of the theory itself. Whereas Cleland 

(2012) seems to assume that definitions of life aim (unsuccessfully) to express complete theories of 

life, we argue that definitions are instruments for the development of such theories. If theories are 

incomplete, provisional, and changeable, so or even more so are the definitions that summarise parts 

of them. Moreover, the very plurality of definitions of life, and the possibility of combining them 

(Oberholtzer, 1995; Szostak, 2001), suggest that these do not fix research and enforce of 

misconceptions but are continuously debated, challenged, and approached from different 

perspectives. In summary, agreement is not the pertinent requirement for a good definition. 

Accordingly, we view the question about the importance of definitions of life as a matter of relevance 

and utility for research, rather than an issue about the potential for consensus37. For example, the lack 

of agreement on the definition of species does not prevent scientists from using this flexible notion 

to discuss extinctions and biodiversity (see for example Monastersky, 2014). Similarly, instead of 

seeing the existence of multiple gene concepts as an unwanted inconsistency in scientific 

terminology, multiple definitions can provide flexibility for distinct research purposes and insights to 

characteristics of different scientific fields or contexts (Waters, 2006). Importantly, the existence of 

disciplinary differences in concepts like ‘genes’ does not make it pointless for scientists and 

philosophers to reflect on limits and qualities of different definitions, or to discuss the type of gene 

concept that should be communicated to the public (Bartol 2013). The same is the case for disease 

classification where giving up the idea that diseases in general form a natural kind does not leave 

debates about the scope and content of disease concepts obsolete, e.g., as showed in discussions about 

how disease categories relate to abnormalities and risk factors (Scully, 2004). From this point of view, 

the very plurality of definitions used in biology is not pointless and useless, but can stimulate the 

debate and counteract the risk of dogmatic approaches to life and the entrenching of misconceptions. 

This perspective also allows us to comment on Cleland’s proposed solution to the aforementioned 

problem of definitions in the context of Astrobiology, namely to focus on detecting anomalies rather 

than systems that satisfy a definition. In Cleland’s view, looking for anomalies allows for more 

flexibility than specific conditions for life selected according to a single, limited, framework. This is 

indeed an ingenious heuristic proposal, but is not as opposed to definitions as it might seem. It is also 

an operation that is theory dependent. Just like detection of abnormalities and diseases is dependent 

on knowledge about normal functional states, so is detection of abnormalities in this context 

dependent on an understanding of the 'normal' characteristics of life. In addition, approaches focused 

on anomalies, and more generally on tentative criteria, provide only tools to look for interesting cases, 

which are worth more attention. They do not provide diagnostic tools for discussing and deciding on 

                                                           
37 In the operational framework proposed here, the lack of consensus does not derive from a disagreement on how to 

demarcate life as a natural kind. Rather, it is related to the evaluation of different research programs (or subprograms) 

and modelling frameworks underlying definitions, i.e. it is a lack of agreement on which are the most relevant theoretical 

and practical problems to be solved and questions to be asked, and how to best address them. Disagreements on definitions 

are in this sense not different from scientific disagreements on the best model or modelling framework for solving 

scientific puzzles.  
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whether candidates for alternative life forms can be considered alive, which is what definitions help 

to do. If we accept an operational view of definitions, we believe that the two approaches should be 

considered as complementary, rather than mutually exclusive: a combination of negative heuristics 

based on the search for anomalies, and positive heuristics derived from tentative necessary and 

satisficing conditions of life according to instrumental definitions. 

The third criticism draws on the argument that our current understanding of biology is still limited, 

and that we are far from having a general theory of living systems on which to rely to build general 

categorisations concerning life. From this standpoint, trying to fix our knowledge into definitions 

would obstruct science rather than contribute to its development. The main argument in support of 

this claim is that biology is based only on a single example of life: that part of the terrestrial biosphere 

which we currently know. Until we find other forms of life to compare to ours, we cannot distinguish 

essential from contingent properties of living systems and build a general theory of life (Cleland, 

2012). Although the importance of discovering new forms of life is unquestionable, the assumption 

that encountering new life forms would possibly undermine our understanding of biology does not 

justify the need to suspend our attempts at developing and improving a theory of living systems. 

Science does not stop producing theories on the basis of the possibility that new discoveries might 

revolutionise them, and the idea of distinguishing sharply and ultimately between necessary and 

contingent aspects of the physical world has been problematised even in the context of physical laws 

(Mitchell, 2005).  

Thus, there is no reason to abandon the project of a general theory of life, and stop thinking about 

what living systems are until we are certain to have the whole picture covered. Recall also that 

operational definitions allow for differences in practical operationability. The scope of definitions 

may vary depending on the purposes, and is not supposed to cover all possible scenarios. It is here 

interesting to note that Luisi (1998) criticises NASA’s definition of life (specifically the requirement 

of Darwinian evolution) as being too restrictive in the context of Astrobiology, while including some 

of its insights into his experimental program in Origins of Life (Oberholzer et al, 1995; Szostak et al, 

2001). At the moment, however, it is not even clear whether or when we are going to find alternative 

life forms, and tentative criteria or anomalies alone provide limited help in their identification.  

Finally, we should consider that life on Earth exhibits remarkable diversity with a variety of forms, 

behaviours and adaptability to different and extreme environments. Functionally speaking38, 

therefore, a widely differentiated collection of examples is already available from which to start 

building well grounded, yet always provisional, theories and definitions capable of providing 

distinctions between some necessary and contingent properties of life and, also, to make sense of the 

increasing amount of data (Ruiz-Mirazo et al, 2010). 

 

                                                           
38 A functional perspective, open to multiple realisability in the molecular domain, can be generalised to other possible 

forms of life, as it is not univocally committed to the exact biochemical composition of life as we know it, that is: DNA, 

RNA and proteins made with the specific subset amino acids of known life, the same genetic code, etc. 
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5. Concluding remarks 

We have argued that in order to account for the use of definitions of life in science, it is necessary to 

revisit the requirements we impose on definitions. In our view, at least two distinct and opposing 

kinds and uses of definitions of life are discussed in the literature. In this paper, we have contrasted 

what we can call strong definitions (Cleland, 2012) to our proposal of operational definitions 

(Fleischaker, 1990; Luisi, 1998)39. Strong definitions aim at providing answers to questions regarding 

natural kinds, by specifying necessary and sufficient conditions. As we demonstrated with examples, 

operational definitions better capture the use of definitions in Origins of Life and Synthetic Biology. 

These are considered tools that express and integrate necessary criteria for life that are considered 

pertinent, relevant and satisficing for research, and that imply observable operations.  

These two kinds of definitions are characterised by different and often incompatible claims, 

requirements, and aims (Figure 5). Strong definitions attempt to provide a complete set of necessary 

and sufficient conditions. In contrast, operational definitions focus on an open-ended set of possible 

necessary and satisficing conditions for life according to the specific requirements and goals of 

different research programs. Accordingly, while strong definitions might establish static 

categorisations, operational ones allow for flexibility and revisability. Finally, whereas strong 

definitions strive for unification and thereby set consensus as their success criterion, operational 

definitions rely on pluralism as a source of production of novel knowledge, and on practical and 

theoretical utility as the featured value. While the former are more demanding in terms of 

philosophical justification and are subject to profound criticisms (Machery, 2012; Cleland, 2012), the 

latter better conform to scientific practice and goals, to the actual uses of definitions in science, and 

can be applied to specific case studies.  

 

 

STRONG DEFINITIONS OPERATIONAL DEFINITIONS 

(Strong) ontological claim 

Demarcating life: carving out natural kinds 

Instrumental claim 

Theoretical and epistemic tools: guidance for 

debate and experiments 

Complete 

Necessary and sufficient conditions 

Open-ended 

Necessary (and satisficing) provisional 

conditions 

Fixed 

Static categories 

Flexible 

Variation in practical operationability 

Definitions evolve over time 

                                                           
39 Strong and operational definitions are not the only possible kinds of definitions of life. Intermediate positions between 

these two are also possible, for example combining instrumental claims with more moderate ontological ones (an example 

is Ruiz-Mirazo et al., 2004), which nevertheless would require a philosophical justification against Machery's and 

Cleland's criticisms. 
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Unification 

Consensus and generalization of 

characteristics of all life are the key values 

Pluralist 

Target of debate, challenge and revision  

Utility is the key value  

 

Figure 5. Comparison between strong and operational definitions 

 

In summary, we have questioned the assumption that the only (or even main) purpose of definitions 

of life is to establish a set of universal criteria that strongly demarcate natural kinds. In doing so, we 

have focused on the role played by definitions in scientific practice rather than on whether or not 

strong ontological definitions are possible. From this standpoint, we suggest that the use of definitions 

in scientific practice may be better captured by a pluralist and operational perspective in which 

definitions can serve various epistemic purposes by combining variety and flexibility with the need 

for useful tools and categorisations towards scientific aims. Even if the criticisms against strong 

definitions of life are accepted, there is still a role for definitions of life in science, which is played 

by operational definitions. We have highlighted how a number of case studies demonstrate the 

practical and theoretical value of this kind of definitions in guiding the classification, detection, 

design, and understanding of different life forms.  
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