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In 1994 John Searle stated (Searle 1994, pp.11-12) that the Chinese Room 

Argument (CRA) is an attempt to prove the truth of the premise:  

 

1: Syntax is not sufficient for semantics  

 

which, together with the following:  

 

2: Programs are formal,  

3: Minds have content  

 

led him to the conclusion that ‘programs are not minds’ and hence that 

computationalism, the idea that the essence of thinking lies in computational 

processes and that such processes thereby underlie and explain conscious 

thinking, is false.  

 The argument presented in this paper is not a direct attack or defence 

of the CRA, but relates to the premise at its heart, that syntax is not sufficient 

for semantics, via the closely associated propositions that semantics is not 

intrinsic to syntax and that syntax is not intrinsic to physics.1 However, in 

contrast to the CRA’s critique of the link between syntax and semantics, this 

                                         
1  See Searle (1990, 1992) for related discussion.  
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paper will explore the associated link between syntax and physics.  

 The main argument presented here is not significantly original – it is a 

simple reflection upon that originally given by Hilary Putnam (Putnam 1988) 

and criticised by David Chalmers and others.2 In what follows, instead of 

seeking to justify Putnam’s claim that, “every open system implements every 

Finite State Automaton (FSA)”, and hence that psychological states of the 

brain cannot be functional states of a computer, I will seek to establish the 

weaker result that, over a finite time window every open system implements 

the trace of a particular FSA Q, as it executes program (p) on input (x). That 

this result leads to panpsychism is clear as, equating Q (p, x) to a specific 

Strong AI program that is claimed to instantiate phenomenal states as it 

executes, and following Putnam’s procedure, identical computational (and ex 

hypothesi phenomenal) states (ubiquitous little ‘pixies’) can be found in every 

open physical system.  

 The route-map for this endeavour is as follows. In the first part of the 

paper I delineate the boundaries of the CRA to explicitly target all attempts at 

machine understanding – not just the script-based methods of Schank and 

Abelson (Schank & Abelson 1977). Secondly I introduce Discrete State 

Machines, DSMs, and show how, with input to them defined, their behaviour 

is described by a simple unbranching sequence of state transitions analogous 

to that of an inputless FSA. Then I review Putnam’s 1988 argument that 

purports to show how every open physical system implements every inputless 

FSA. This argument is subsequently applied to a robotic system that is 

claimed to instantiate genuine phenomenal states as it operates.  

 Thus, unlike the CRA, which primarily concerns the ability of a 

suitably programmed computer to understand, this paper outlines a reductio-

                                         
2  See Chalmers (1994, 1996a, 1996b) and also the special issue, What is 

Computation? of Minds and Machines, (vol.4, no.4, November 1994).  
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style argument against the notion that a suitably programmed computer qua 

performing computation can ever instantiate genuine phenomenal states. I 

conclude the paper with a discussion of three interesting objections to this 

thesis.  

 

The Chinese Room  

 The twenty years since its inception have seen many reactions to the 

Chinese Room Argument from both the philosophical and cognitive science 

communities. Comment in this volume ranges from Bringsjord, who asserts 

the CRA to be “arguably the 20th century’s greatest philosophical polarizer”, 

to Rey who claims that in his definition of Strong AI, Searle, “burdens the 

[Computational Representational Theory of Thought (Strong AI)] project 

with extraneous claims which any serious defender of it should reject”. Yet 

the CRA is not a critique of AI per se – indeed it is explicit in ‘Minds, Brains, 

and Programs’, as in other of his expositions, that Searle believes that there is 

no barrier in principle to the notion that a machine can think and understand. 

The CRA is primarily a critique of computationalism, according to which a 

machine could have genuine mental states (e.g. genuinely understand 

Chinese) purely in virtue of its carrying out a series of computations.  

 In the CRA Searle presented a rebuttal of the then computationalist 

orthodoxy that viewed cognition and intelligence as nothing more than symbol 

manipulation and search.3 Following work on the automatic analysis of simple 

stories, a cultural context emerged within the AI community that appeared 

comfortable with the notion that computers were able to ‘understand’ such 

stories, a concept which can be traced back to the publication of Alan 

Turing’s seminal paper ‘Computing Machinery and Intelligence’ (Turing 

1950).  

                                         
3  E.g. Newell & Simon 1976. 
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 For Turing, emerging from the fading backdrop of Logical Positivism 

and the Vienna Circle, conventional questions concerning ‘machine thinking’ 

were too imprecise to be answered scientifically and needed to be replaced by 

a question that could be unambiguously expressed in scientific language. In 

considering the metaphysical question, ‘Can a machine think?’, Turing 

arrived at the other, distinctly empirical, question of, whether, in remote 

interaction via teletype with both a computer and a human, a human could 

identify which was which as accurately as by chance. If so, the computer is 

said to have passed the Turing Test.  

 It is now more than fifty years since Turing published details of his test 

for machine intelligence and although the test has since been discredited by 

several commentators (e.g. Bringsjord 1992, Kelly 1993), the notion of a 

thinking machine continues to flourish. Indeed, the concept has become so 

ingrained in popular culture by science fiction books and movies that many 

consider it almost apostate to question it. And yet, given the poverty of 

current AI systems on relatively simple linguistic comprehension problems,4 it 

is hardly surprising that, when writing on the subject, a phrase from Hans 

Christian Andersen slipped into Roger Penrose’s mind (Penrose 1989). 

Nonetheless, throughout the 1970’s and early 1980’s, Searle and Hubert 

Dreyfus (Dreyfus 1972) remained isolated voices that surfaced above the 

hegemony of symbolically Strong AI. Still today, partly due to the (apparent) 

simplicity of its attack, the CRA is perhaps the best-known philosophical 

argument in this area.  

 In the CRA Searle argues that understanding of a Chinese story can 

                                         
4  As illustrated by the poor quality of the entrants to the annual Loebner 

prize (an award made to the program that can best maintain a 

believable dialogue with a human. See 

http://www.loebner.net/Prizef/loebner-prize.html). 
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never arise purely as a result of the state transforms caused by ‘following the 

instructions’ of any computer program. His original paper offers a first-person 

tale outlining how Searle could instantiate such a program, produce correct 

internal and external state transitions, pass a Turing Test for understanding 

Chinese, and yet still not understand a word of Chinese. However, in the 

twenty years since its publication, perhaps because of its ubiquity and the 

widespread background perception that, if it succeeds at all, its primarily 

target is Good Old-Fashioned AI (GOFAI), the focus of AI research has 

drifted into other areas: connectionism, evolutionary computing, embodied 

robotics, etc. Because such typically cybernetic5 approaches to AI are 

perceived to be the antithesis of formal, rule-based, script techniques, many 

working in these fields believe the CRA is not directed at them. Unfortunately 

it is, for Searle’s rule-book of instructions could be precisely those defining 

learning in a neural network, search in a genetic algorithm or even controlling 

the behaviour of a humanoid-style robot of the type beloved by Hollywood.  

 But what does it mean to genuinely understand Chinese? That it is not 

simply a matter of acting in the behaviourally correct way is illustrated if we 

consider Wittgenstein’s illustration of the difference between following a rule 

and merely acting in accordance with it.6 Although rule-following requires 

regularity in behaviour, regularity alone is not enough. The movements of 

planets are correctly described by Kepler’s laws, but planets do not follow 

those laws in a way that constitutes rule-following behaviour.  

 It is clear that the CRA employs a similar rhetorical device. It asks: 

‘Does the appropriately programmed computer follow the rules of (i.e. 

                                         
5  Cybernetic AI is characterised by emphasis on ‘sub-symbolic 

knowledge representation’ and a ‘bottom-up’ approach to problem 

solving.  
6  Wittgenstein 1953, §§207-8, 232.  
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understand) Chinese when it generates ‘correct’ responses to questions asked 

about a story, or is it merely that its behaviour is correctly described by those 

rules?’. This difference between genuinely following a rule and merely acting 

in accordance with it seems to undermine Turing’s unashamedly 

behaviouristic test for machine intelligence.  

 That the CRA addresses both phenomenal and intentional aspects of 

understanding and intelligence is clear from the introduction to Searle’s 

original paper, where we find Searle’s definition of Strong AI: 

 

But according to Strong AI the computer is not merely a tool in the 

study of the mind; rather the appropriately programmed computer 

really is a mind, in the sense that computers given the right programs 

can be literally said to understand and have other cognitive states. 

(Searle 1980, p.417 (p.67 in Boden)).  

 

An axial statement here is that, ‘the appropriately programmed computer 

really is a mind’. This, taken in conjunction with, ‘[the appropriately-

programmed computer] can be literally said to understand’ and hence have 

associated ‘other cognitive states’, implies that the CRA also, at the very 

least, targets some aspects of machine consciousness – the phenomenal 

infrastructure that goes along with ‘really having a mind’.  

 However it is also clear from literature on the CRA that many 

philosophers do not believe that prestigious practitioners of AI take the idea 

of machine phenomenology and artificial consciousness seriously and hence 

that, in this aspect at least, the CRA is supposed to target a straw man. Yet 

several eminent cognitive scientists such as: Minsky, Moravec and Kurzweil 

have already speculated widely on the subject.7 Further, as Searle makes 

                                         
7  See, e.g., Minsky (1985), Moravec (1988) and Kurzweil (1998).  
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clear, it was precisely such statements, emerging from a vociferous bunch of 

proselytising AI-niks discussing Schank & Abelson’s work, that originally led 

him to formulate the CRA.  

 The idea that the appropriately-programmed computer really is a mind 

is eloquently outlined by Chalmers. Central to Chalmers’ nonreductive 

functionalist theory of mind is the Principle of Organisational Invariance, 

POI. This asserts that, ‘given any system that has conscious experiences, then 

any system that has the same fine-grained functional organisation will have 

qualitatively identical experiences’ (Chalmers 1996b, p.249). To illustrate the 

point Chalmers imagines a fine-grained simulation of the operation of the 

human brain – a massively complex and detailed neural network. If the 

outputs of each simulated neuron were identical to those found in a real brain, 

then, via ‘Dancing Qualia’ and ‘Fading Qualia’ arguments, Chalmers argues 

that the neural network must have the same qualitative conscious experiences 

as the brain.  

 What is clear from Chalmers, and indeed any of the prophets of 

computationally instantiated consciousness, is that the system’s phenomenal 

states must somehow be realised by the formally-generated sequence of 

computational state transitions that arise as the program executes. But, 

following Turing, we must rid ourselves of a popular intuition:  

 

Importance is often attached to the fact that modern digital computers 

are electrical, and that the nervous system also is electrical. Since 

Babbage’s machine was not electrical, and since all digital computers 

are in a sense equivalent, we see that the use of electricity cannot be of 

theoretical importance. (Turing 1950, p.439 (p.46 in Boden)).  

 

 Indeed, in 1976 Joseph Weizenbaum described a game-playing 

‘computer’ that could be constructed from toilet rolls and coloured stones 
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(Weizenbaum 1976, pp.51ff.). Certainly functionalism, as a philosophy of 

mind, remains silent on the underlying hardware that causes computational 

state transitions – whether a program is executed on a PC or a MAC the 

results of its execution, the computational states it enters, are functionally the 

same.8  

 

Discrete State Machines  

 In ‘Computing Machinery and Intelligence’, Turing defined DSMs as, 

“machines that move in sudden jumps or clicks from one quite definite state 

to another” (Turing ibid., p.439 (p.46 in Boden)), and explained that modern 

digital computers are a subset of them. An example DSM from Turing is that 

of a wheel machine that clicks round through 120o once a second, but may be 

stopped by the application of a lever-brake mechanism. In addition, if the 

machine stops in one of the three possible positions it will cause a lamp to 

come on. Input to the machine is thus the position of the lever-brake, 

{brake on; brake off}, and the output of the machine is the lamp state, 

{lamp on; lamp off}.  

 

                                         
8  Modulo temporal constraints.  
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Figure 1:  

Turing’s ‘Discrete State Wheel Machine’ 

 

Such a machine can be described abstractly in the following manner. Its 

internal [computational] state is labelled (arbitrarily) by a mapping function  

that maps from the physical state of the machine (i.e. what position the wheel 

is in) to the computational state of the machine, q ∈ {q1 q2 q3}. The input to 

the DSM, the brake position, is described by an input signal, i ∈ { i0 brake 

off; i1 brake on}. Hence the next state of the machine is determined solely by 

its current state and its current input as follows:  

 

  q1  q2  q3 

 i0  q2  q3  q1 

 i1  q1,  q2  q3 
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With its output being determined by: 

 

State: q1  q2  q3 

Output: o0 o0 o1 [lamp on] 

 

Thus, with input to the machine either {i0} or {i1}, (input undefined), the 

following branching state transition diagram describes the DSM’s behaviour:  

 

 
Figure 2: 

State transition Diagram of Turing’s Wheel Machine – input undefined 

 

The above diagram has several branch points where the next state of the 

machine is determined by a state transition contingent on the current input. 

However, as shown below, for any specific input value there are no such 

branching state transitions. The machine’s output (lamp on/off) is determined 

purely by its initial state, (q ∈ {q1 q2 q3}), and the system input value, (i ∈ { 

i0  i1}).  
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Figure 3: 

State transition Diagram of Turing’s Wheel Machine – input defined 

 

Knowledge of the specific input to the machine’s state transition table 

[program] has thus collapsed its combinatorial structure. Further, over a 

given time period, say [t1..t7], all loops can be removed from the state diagram 

to form a linear path of state transits. The machine now functions, like 

clockwork, e.g.:  

 

 INPUT STATE 0: 

<q1 q2 q3 q1 q2 q3 q1>  OR <q2 q3 q1 q2 q3 q1 q1>  OR <q3 q1 q2 q3 q1 q2 q3>  

 

INPUT STATE 1: 

<q1 q1 q1 q1 q1 q1 q1>  OR <q2 q2 q2 q2 q2 q2 q2> OR <q3 q3 q3 q3 q3 q3 q3>  

 

The following argument aims to show that for any Discrete State Machine 
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which, it is claimed, instantiates mental (phenomenal) states purely in virtue 

of its execution of a suitable computer program, we can generate a 

corresponding state transition sequence using any open physical system. That 

this conclusion leads to a form of panpsychism is clear, as if such state 

transition sequences are effectively found in most material objects, then 

phenomenal states must be equally ubiquitous.  

 

Putnam’s Claim  

 Hidden away as an appendix to Hilary Putnam’s 1988 book 

Representation and Reality is a short argument that endeavours to prove that 

every open physical system is a realisation of every abstract Finite State 

Automaton and hence that functionalism fails to provide an adequate 

foundation for the study of the mind.  

 Central to Putnam’s original argument is the observation that every 

open physical system, S, is in different maximal states9 at every discrete 

instant and is characterised by a discrete series of non-cyclic10 modal state 

transitions, [s1, s2 .. st .. sn]. To simplify the following discussion of Putnam’s 

claim and with minimal loss of generality11, I will replace Putnam’s arbitrary 

physical system, S, with a counting machine, generating the non-cyclic state 

sequence [c1, c2 .. ct .. cn] in place of [s1, s2 .. st .. sn].  

 

                                         
9  Putnam, (1988), p.122. 
10  ibid., p.121. 
11  Chalmers argues that for Putnam’s open physical system to reliably 

transit a sequence of states it must include a natural clock (such as a 

source of radioactive decay), however Chalmers concedes that, 

“[p]robably most physical systems satisfy such a requirement” (1996a, 

p.316).  
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Figure 4: 

A ‘non-cyclic’ Counting Machine 

 

It is clear that given counter state [ck] at time [tk], it is trivial to predict its next 

state [ck+1] at time [tk+1]. NB. This transition from state [ck ] to [ck+1] is both 

regular and carries full modal force – that the counting machine is in state [ck] 

defines and contains the provision to force it to transit to [ck+1] at the next 

clock interval.  

 Any inputless FSA is characterised by its state transition table, 

defining, given its current state, its subsequent state. Imagine, without loss of 

generality, that the state transition table for FSA Q calls for the automaton to 

go through the following sequence of states in the interval [t1 .. t6]:  

 

<A B A B A B>  

 

Next let us suppose we are given a counting machine, C, which goes through 

the sequence of states, [c1, c2, c3, c4, c5, c6] in the interval [t1 .. t6]. We wish to 

find a mapping between counter states [ca] and [cb] and FSA states [A] and 

[B] such that, during the time interval under observation, the counting 
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machine obeys Q's state transition table by going through a sequence of states 

which the state mapping function will label [A B A B A B].  

 

Putnam’s Mapping  

 It is trivial to observe that if we map FSA state [A] to the disjunction of 

counting machine states, [c1v c3 v c5], and FSA state [B] to the disjunction of 

counting machine states, [c2 v c4 v c6 ], then the counting machine will fully 

implement Q. Further, given any counting machine state [ca] ∈ {c1, c3, c5}, at 

time [ta], we can predict it will enter state [B] at time [tb].  

 To show that being in state [A] at time [t1] caused the counting 

machine to enter state [B] at [t2] we observe that at [t1] the counting machine 

is in state [c1], (which the mapping function labels FSA state [A]), and that 

being in state [c1] at [t1] causes the counting machine to enter state [c2], 

(which the mapping function labels FSA state [B]) at [t2]. Hence, given the 

current state of the counting machine at time [t], we can predict its future state 

and hence how the states of Q evolve over the time interval under 

observation.  

 Note, after Chalmers, that the counting system above will only 

implement a particular execution run of the FSA – there may be other state 

transition sequences that have not emerged in this execution trace. To 

circumvent this problem Chalmers posits a [counting] system with an extra 

dial – a sub-system with an arbitrary number of states, [c[dial-state, counter-state]].  

 Now, as Chalmers suggests, we associate dial-state [1] with the first 

run of the FSA. The initial state of the counting machine will then be [c[1, 1]] 

and we associate this with an initial state of the FSA. We then associate 

counting-machine states [c[1, 2]], [c[1, 3]] with associated FSA states using the 

Putnam mapping described earlier. If at the end of this process some FSA 

states have not come up, we choose a new FSA state, [C], increment the dial 
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of the counting machine to position [2] and associate this new state [c[2, 1]] 

with [C] and proceed as before. By repeating this process all of the states of 

the FSA will eventually be exhausted. Then, for each state of the FSA there 

will be a non-empty set of associated counting machine states. To obtain the 

FSA implementation mapping we use Putnam’s mapping once more and the 

disjunction of these states is mapped to the FSA state as before. Chalmers 

remarks:  

 

It is easy to see that this system satisfies all the strong conditionals in 

the strengthened definition of implementation [above]. For every state 

of the FSA, if the system is (or were to be) in a state that maps onto 

that formal state, the system will (or would) transit into a state that 

maps onto the appropriate succeeding formal state. So the result is 

demonstrated. (Chalmers 1996a, p.317).  

 

Chalmers remains unfazed at this result because he states that inputless FSA’s 

are simply an “inappropriate formalism” for a computationalist theory of 

mind:  

 

To see the triviality, note that the state-space of an inputless FSA will 

consist of a single unbranching sequence of states ending in a cycle, or 

at best in a finite number of such sequences. The latter possibility 

arises if there is no state from which every state is reachable. It is 

possible that the various sequences will join at some point, but this is 

as far as the ‘structure’ of the state-space goes. This is a completely 

uninteresting kind of structure, as indeed is witnessed by the fact that it 

is satisfied by a simple combination of a dial and a clock. (ibid., p.318).  

 

But Putnam extends his result to the case of FSA’s with input and output, by 
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arguing that an FSA with input and output is realised by every open physical 

system with the right input/output dependencies – if the physical system has 

the right input/output then it instantiates the FSA correctly. Patently this is a 

restriction on his original claim, but nonetheless it remains a significant result 

that, if correct, suggests that functionalism implies behaviourism.12  

 Putnam’s original argument, using an open physical system to generate 

a series of non-repeating system states equivalent to the non-cyclic counting 

machine states described earlier, runs as follows. For any arbitrary FSA, take 

an open physical system with the right input/output dependencies, e.g. a rock 

with a number of marks on it encoding the input vector, (x), (where (x) 

encodes the finite set of input values, {x1, x2 .. xn}) and another set of marks 

encoding the output vector (o) ), (where (o) encodes the finite set of output 

values, {o1, o2 .. on}). Associate rock state [s1] at [t1] with the relevant initial 

state of the FSA, and rock state [s2] at [t2] with the subsequent state of the 

FSA etc. Putnam claims it is clear that by mapping each FSA state with the 

disjunction of associated rock states we ensure the system goes through the 

relevant state sequence [s1, s2, s3] that corresponds, using this mapping, to the 

relevant FSA state sequence, [A, B, C], with system output encoded by the 

other marks on the rock.13  

 However, as for Turing’s DSM, the addition of input now makes the 

                                         
12  Putnam (1988), pp.124-5. Any open system with the correct 

input/output dependencies implements the FSA with input/output. 

Hence every FSA with input (i) and output (o) is implemented by any 

physical system with the same input/output dependencies. Hence 

mentality is contingent only on input and output and functionalism 

implies behaviourism. 
13  As before, we can use Chalmers’ extra dial construction to ensure that 

all initially uninstantiated FSA states are generated by the system.  
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formalism non-trivial. There can now be branching in the execution trace, as 

the next FSA state is contingent upon its current state and the input. This 

gives the system a combinatorial structure. But, as Chalmers states, Putnam’s 

revised construction does not fully encapsulate this structure – rather it merely 

manifests one trace of the FSA with a specific input/output dependency. So 

we are left with the counter intuitive notion that for example, when using say 

a rock to implement a two plus two program, we mark two on the input area 

of the rock and four on the output and credit the rock with computing the 

result . . .  

 In his 1996 paper, Chalmers introduces a more suitable FSA formalism, 

which makes explicit such input/internal-state dependencies, the 

Combinatorial State Automaton, CSA. A CSA is like, (and no more powerful 

than), a conventional FSA except that its internal states, [S], are structured to 

form a set, {s1, s2… sn}, where each element {si} can take on one of a finite 

set of values or sub-states and has an associated state transition rule.  

 Chalmers then demonstrates how to map a CSA onto a physical system 

in such a way as to deal with such input/internal-state dependencies correctly 

and preserve the internal functional organisation of the original program, but 

only at the price of a combinatorial increase in the number of states required 

for the implementation. In fact, as he illustrates in his paper, executing even 

the most trivial FSA with input and output, over a small number of time steps 

would rapidly require a physical system with more states than atoms in the 

known universe to implement it. So it seems that, “we can rest reasonably 

content with the knowledge that the account as it stands provides satisfactory 

results within the class of physically possible system”, and functionalism is 

preserved.  

 The problem that the CSA makes explicit is that of fully encapsulating 

the complex inter-dependencies between machine state and the input. To 

implement these using an open physical system requires an astronomical 
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number of internal states, whereas the simple implementation of an inputless 

FSA that Putnam describes functions only because of the subsequent loss of 

generality. However, as we observed with Turing’s DSM, when input is 

defined over a specific time interval the combinatorial state structure 

collapses to a bounded linear path which can be simply generated using 

Putnam’s mapping and any open physical system.  

 

A Small Constriction  

 Consider a mobile robot whose behaviour is controlled by a program 

(p), acting upon input states (x), generating output states (o), running on 

computer hardware (Q). Consider the operation of the robot over a specified 

time interval [t1 ..tk]. Assume that after switch-on at time [t1], the robot 

experiences a series of phenomenal states until it is switched off at time [tk].  

 During the specified interval, [t1 ..tk], the robot’s input states are 

defined by data from its sensors forming the input set (x) = {i1 i2 i3 .. ik} with 

its output states defining the actuator commands controlling its external 

behaviour, which together form the output set (o) = {o1 o2 o3 .. ok }. Let us 

now concede that the robot’s control program, (p), instantiates a series of 

phenomenal states in Q, caused by interaction with its environment as the 

program executes. But what is it in the robot that manifests this property? 

Unless we allow mind to extend beyond the physical extent of the controlling 

computational hardware, Q, it must be manifested solely by it. ie. The 

claimed phenomenal properties of the system must be realised solely by 

Q (p, x); CPU, Q, executing program (p), on input (x).  

 Now as Q executes (p) over the interval [t1 ..tk], Q (p, x) generates a 

specific set of computational states, S, (S = {s1, s2 .. st}), at the discrete clock 

intervals of the CPU, Q. Due to the universal realisability of Turing Machine 

programs, the particular underlying computational engine, Q, is irrelevant to 
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the generation of the computational states {s1, s2 .. st}. Whether Q had at its 

heart a CPU made from toilet rolls or a 600Mz Intel Pentium P3, the 

associated computational states are the same yet it is the system’s generation 

of these computational states that must result in its instantiation of 

phenomenal experience.  

 But we have already seen from Putnam how the computational states 

resulting from the execution of any given FSA, Q, (with specific 

input/output), can be mapped onto an open physical system, (e.g. a simple 

counting machine). Thus, by relaxing the requirement that the physical system 

instantiates the full combinatorial state structure of a program with general 

input, to the relatively trivial requirement that it just instantiate the correct 

state transitions for a specific execution trace, we sidestep the need for an 

exponential increase in state space. Over the specified time interval [t1 ..tk] 

and with the input set defined, we are thus are able to replicate the 

computational states governing the robot’s behaviour, (and hence the claimed 

phenomenal states), via an open physical system.  

 

Three Objections: (1) Hofstadter: This is not Science  

 Douglas Hofstadter, in his 1981 critique of the CRA, objects that we 

can only perform a Putnam-style mapping a posteriori, i.e. we can only map 

the robot’s computational states onto the physical states of the system after 

the program has executed and hence know the computational states it 

generates. Hence the Putnam construct is not a real mapping and this type of 

technique is ‘not science’.  

 But Hofstadter is a little too harsh in his taxonomy of science and non-

science. Unlike say, the intrinsic relationship between the solidity of a 

substance and the laws of physics, the relationship between the logical state 

of a computer variable and its physical implementation as a set of voltage 

levels is observer-relative. That is, in Searle’s formulation, ‘Syntax is not 
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intrinsic to physics’ (Searle 1992, pp.207, 208). A computer variable cannot 

be uniquely identified from purely physical measurements without first 

knowing the mapping between the two domains (e.g. 5v = logic TRUE).  

 Following Turing’s observations on universal realisability, if we repeat 

the robot’s program execution with the same input on any suitable hardware, 

the resulting computational states are the same. Hence there is no substantive 

difference between equating physical system state [ci] with FSA state [si], 

compared to equating the logical state TRUE with the physical state of +5v.  

 Clearly, once we know the computational states encountered in a given 

trace of a program, we can map them onto, and later read them off, the state 

transitions of an open physical system.  

 That Putnam’s mapping can only be applied a posteriori is irrelevant to 

this discussion. Consider the experiment being repeated using the same FSA 

over the same length time interval [t'1 .. t'k], with the same input, [i'1 .. i'k]. The 

computationalist would continue to claim that the robot instantiated 

phenomenological states over this period. It is clear that a posteriori 

knowledge of system input does not impact upon this claim.  

 

(2): The Execution of a Series of State-Transitions is not Sufficient to 

Attribute Phenomenal Properties to a Physical System14  

 This objection runs as follows. Putnam claims that his argument shows 

that any physical system realises any finite automaton’s state transition table, 

but in fact it merely realises any desired sequence of states. Suppose an FSA 

recognises a simple (regular) language – given any input string, the machine 

enters a phenomenal state contingent upon the string being in the language or 

not being in it. It seems that because the automaton has gone through a 

                                         
14  Objection based upon a discussion with Peter Fletcher, lecturer in 

Computing & Mathematics at the University of Keele, UK.  
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sequence of states [s1, s2, . . . sn], where each state causes the next, by using a 

Putnam mapping function, f, to map from open physical system states to 

automaton states, the physical system can be viewed as going through the 

same sequence of states. Hence the physical system also ‘recognises’ the 

string. But this is a false intuition. Going through a certain sequence of states 

is not sufficient for a system to recognise a particular string, s. What matters 

is not just the sequence of states the automaton went through on this 

occasion, but the sequences of states it would have gone through if it had 

been presented with other strings.  

 This argument conflates two distinct properties: that of a system 

recognising the string s and that of a system experiencing phenomenal states. 

Input-sensitive counterfactual reasoning may or may not be a necessary 

property of any system of which it is claimed understands a language (and 

hence recognises the string s); however it does not constitute a necessary 

condition of any system that experiences phenomenal states – see below.  

 

(3): Lack of Counterfactuals15 

 The open physical system described above does not genuinely replicate 

an FSA with input. In particular, it lacks the ability to correctly implement 

counterfactuals. As such it is not a full functional isomorph of an FSA system 

with input. Even though specific computational states may not be entered on a 

particular execution run of the FSA, the mere possibility that they could be if 

system input was different is required in any genuine functional isomorph of 

the FSA, and is a necessary condition for both systems to have identical 

phenomenal states. 

 The first point to note in this response is that it seems to require a non-

                                         
15  Objection based upon a discussion with David Chalmers at the ASSC4 

conference, Brussels, June/July 2000. 
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physical causal link between non-entered machine states and the resulting 

phenomenal experience of the system over the given time interval.  

 Secondly, we can use a type of Fading Qualia Argument (FQA)16 to 

show that, in the context of FSA behaviour with input defined, counterfactuals 

cannot be necessary for phenomenal experience. 

 Consider the operation of two robots over the time interval [t1..tk], with 

defined input [i1..ik]. One robot, R1, is controlled by a program designed to 

Chalmers’ specification, replicating the fine-grained functional organisation of 

a system known to have phenomenal states; the second, R2, generates the 

computational states of R1 via an open physical system using Putnam’s 

mapping. Hence, although the external behaviour of the two systems over the 

time interval is identical, for Chalmers, only R1 would experience genuine 

phenomenal states. 

 Yet even for R1, contingent on the defined input vector I, (I = [i1..ik]), 

only a small subset of potential machine states will be transited during the 

particular execution trace of state transitions, TR1 (I). 

 Now, with reference to system input, consider what happens if at each 

branch point in TR1 (I) we delete a state transition sequence that is not 

entered17, then iteratively repeat this procedure until Chalmers’ robot, R1, 

with full input-sensitivity, is step-by-step transformed into a second robot R2 

whose behaviour is determined solely by a linear series of state transitions. 

We can imagine that throughout this replacement procedure R1 is repeatedly 

asked to report the colour of a red square placed within its sensor field. 

 Initially, R1 would both enter a phenomenal state corresponding to red, 

                                         
16   Chalmers (1996b: p.255). 

17  This is achieved by replacing one input-sensitive branching state 

transition, (cf. Figure 19.2), with a simple linear state transition 

contingent on the input, (cf. Figure 19.3). 
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and report that it perceived red. But what happens to the phenomenological 

experience of R1 as it incrementally undergoes the above transformation? In 

the spirit of Chalmers’ exposition of the Fading Qualia Argument, imagine R1 

to be at a basketball game, surrounded by shouting fans, with all sorts of 

brightly coloured clothes. Specifically, imagine R1 focusing on the bright red 

of the players’ uniforms. Imagine also R2 in its final state (functioning as R1 

without input sensitive branching behaviour, that is, simply performing a 

linear series of state transitions), being the same system but, by hypothesis, 

not experiencing any phenomenal states.  

 Between R1 and R2 there are a number of intermediate robots {R`} – 

what is it like to be them? As we transform R1 into R2, how does its 

phenomenal perception vary? Either its experience of phenomenal states must 

gradually fade (Fading Qualia) or it must switch abruptly at some point 

(Suddenly Disappearing Qualia). We can rule out the latter possibility by 

observing that it would imply that the removal of one such privileged 

branching state transition instruction would result in the complete loss of the 

robot’s phenomenal experience.  

 Imagine then, that initially R1 was having bright red experience, which, 

as it transmutes to R2, must vanish. At some point R`’s experience must stop 

being bright, yet the only difference between R1 and R` is that a sequence of 

non-entered machine states has been deleted. 

 It is clear that this type of fading qualia scenario is implausible, for 

otherwise we have a system, R`, whose phenomenal experience is contingent 

upon non-physical interactions with sections of its control program that are 

not executed – a form of dualism. Hence, if phenomenal states are purely 

physical phenomena, the phenomenal experience of the two robot systems, 

R1 and R2,  must be the same. 

 Yet is this rendering of the FQA valid? David Chalmers has argued that 
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it is not18. In contrast to his version of the FQA, in this scenario although the 

first robot, R1, is sensitive to its input, the second, R2, is not (‘it merely acts 

like a clockwork toy’). Yet it is clear that decreasing input sensitivity per se 

cannot affect R`’s phenomenal experience, for consider what would happen 

to R1’s qualia if the link between its frame store19 and its visual sensor is 

damaged, such that its frame store constantly maintains a red image, 

irrespective of the colours processed by its optical sensor. This will result in 

R1, like R2, becoming insensitive to the colours of its visual input. When 

asked, R1 will now ‘act like clockwork’ and always report that the objects in 

its visual field are red, irrespective of their true hue. 

 This lack of input sensitivity will either deflate the phenomenal 

experience of R1 or have no effect (with any phenomenal states in the latter 

case analogous to the human experience of a red hallucination). But as R1’s 

control program is unchanged and the data it reads from its frame store is of 

exactly the same form (a set of binary numbers), whether it is an accurate 

representation of the world or is erroneous, R1 will function as it always has 

and its phenomenal experience will be unchanged (i.e. constantly ‘red’). 

 Hence, in the execution of a computer program with known input, 

input-sensitive state transition branching behaviour (counterfactual reasoning) 

is not a necessary condition for phenomenal states to be instantiated by a 

computational system.  

 

Conclusion  

                                         
18  Discussion with David Chalmers at ASSC5 Durham, (North Carolina), 

May 2001. 
19  A device than maintains a digital representation of an image obtained 

by a visual sensor such as a TV camera. 
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 For any computing machine, Q, executing program (p), with known 

input (x), over the specified time interval [t1 ..tk], only a formal (and 

repeatable) series of state transitions occurs within its hardware. The 

generation of these state changes must be responsible for the generation of the 

machine’s phenomenal properties. In this paper we have seen why, following 

Turing’s observations on universal realisability, the underlying hardware that 

instantiates computational state transitions is unimportant and hence, 

following Putnam, that a series of such transitions could be implemented by 

any open physical system. Thus if, over a specified time interval, Q (p, x) has 

phenomenal awareness purely as a result of its execution of a Strong AI 

computer program, then so does any open physical system, and we find little 

pixies dancing everywhere . . .  

 



 26 

References 

Bringsjord, S. (1992) What Robots Can and Can’t Be, (Dordrecht: Kluwer).  

Chalmers, D.J. (1994) ‘On Implementing a Computation’, Minds and 

Machines, vol.4, pp.391-402.  

 (1996a) ‘Does a Rock Implement Every Finite-State Automaton?’, 

Synthese, vol.108, pp.309-333.  

 (1996b) The Conscious Mind: In Search of a Fundamental Theory, 

(Oxford: Oxford University Press).  

Dreyfus, H. (1972) What Computers Cannot Do, (New York: Harper & 

Row).  

Hofstadter, D. (1981) ‘Reflections’, in The Mind's I: Fantasies and 

Reflections on Self and Soul, (eds.) D.Hofstadter & D.C.Dennett 

(London: Penguin), pp.373-382.  

Kelly, J. (1993) Artificial Intelligence: A Modern Myth, (Chichester: Ellis 

Horwood).  

Kurzweil, R. (1998) The Age of Spiritual Machines: When Computers 

Exceed Human Intelligence, (New York: Viking).  

Minsky, M. (1985) The Society of Mind, (New York: Simon & Schuster).  

Moravec, H.P. (1988) Mind Children: The Future of Robot and Human 

Intelligence, (Cambridge, MA: Harvard University Press).  

Newell, A. & Simon, H.A. (1976) ‘Computer Science as Empirical Enquiry: 

Symbols and Search’, Communications of the ACM, vol.19, pp.113-

26.  

Penrose, R. (1989) The Emperor’s New Mind: Concerning Computers, 

Minds, and the Laws of Physics, (Oxford: Oxford University Press).  

Putnam, H. (1988) Representation and Reality, (Cambridge, MA: MIT 

Press/Bradford Books).  

Schank, R.C. & Abelson, R.P. (1977) Scripts, Plans, Goals & Understanding, 

(Hillsdale, NJ: Lawrence Erlbaum).  



 27 

Searle, J.R. (1980) ‘Minds, Brains, and Programs’, Behavioural and Brain 

Sciences, vol.3, pp.417-424.  

 (1984) Minds, Brains and Science, (London: BBC Publications).  

 (1990) ‘Is the Brain a Digital Computer?’, Proceedings of the 

American Philosophical Association, vol.64, pp.21-37.  

 (1992) The Rediscovery of Mind, (Cambridge, MA: MIT Press).  

 (1994) The Mystery of Consciousness, (London: Granta Books).  

Turing, A.M. (1950) ‘Computing Machinery and Intelligence’, Mind, vol.49, 

pp.433-460.  

Weizenbaum, J. (1976) Computer Power and Human Reason: From 

Judgement to Calculation, (San Francisco: W.H.Freeman).  

Wittgenstein, L. (1953) Philosophical Investigations, (Oxford: Blackwell).  

 


