Plan

Scope in English: Analysis in CCG+UC 2

Maria Bittner

(M3: Aug 10, 2009)

Scope prediction

- SA (syntactic argument):

The scope of SA may be ambiguous

- BA (morphologically bound argument):

The scope of BA and any modifiers is unambiguous

- Introduction:
- scope prediction: SA vs BA
- sample data: English (SA, BA) \& Kalaallisut (BA)
- Analysis of English data (today)
- Analysis of Kalaallisut data (next time)

English SA

- (Last month Ole^{\top} ordered three books ${ }^{\perp}$.)
- Transitive DO (direct object): ambiguous
He_{T} hasn't received one ${ }_{\perp}$ book yet.
\exists. one book still missing
$\checkmark \exists$. hasn’t received any
- Passive SU (subject): wide only

One book hasn't been received yet.
$\exists \neg$. one book still missing

English SA \& BA

- (Ole^{\top} has invited his students ${ }^{\perp}$ to come and see him individually. But...)
- Passive TV-CTR ('implicit agent'): narrow only
He_{T} hasn't been approached yet.
$\neg \exists$. none have come yet
- Passive BY QP ('by phrase’): ambiguous
He_{T} hasn't been approached BY one student yet.
$\neg \exists$. none have come yet
$\exists \neg$. one hasn't come yet

Kalaallisut BA: Narrow scope -antip I cn-

- (Last month Ole^{\top} ordered three books ${ }^{\perp}$.)
- Antipassive s^{+}...-antip: narrow only

Suli atuakka-mik ataatsi-mik tigu-si-nngi(t)-la-q.
still book- ${ }_{\delta} \mathrm{MOD}$ one- MOD_{δ} receive-antip-not-DEC-3s ${ }_{(\mathrm{T})}$
$\neg \exists$. hasn’t received any

- 'Incorporated' noun ${ }^{+}$S...cn-: narrow only

Suli ataatsimik atuagar-si-nngi(t)-la-q.
still one-MOD ${ }_{\delta}$ book-rcv-not-DEC-3s ${ }_{(\mathrm{T})}$
$\neg \exists$. hasn’t received any

Kalaallisut BA: Wide scope -pn

- (Last month Ole^{\top} ordered three books ${ }^{\perp}$.)
- Transitive $\mathrm{s}^{+} \ldots-p n_{\perp}$: wide only

Suli atuagaq ataasiq tigu-nngi(t)-la-a- \varnothing.
still ${ }^{\perp}$ book ${ }_{\perp}$ one ${ }_{\perp}$ receive-not-DEC- $3 \mathrm{~S}_{(\mathrm{T})}-3 S_{(\perp)}$
$\exists\urcorner$. one book still missing

- Passive $\mathrm{s}^{+} \ldots-\mathrm{pn}_{\perp}$: wide only

Suli atuagaq ataasiq tigu-niqa(r)-nngi(t)-la-q.
still ${ }^{\top}$ book k_{T} one ${ }_{T}$ receive-pssv-not-DEC-3s ${ }_{(T)}$
$\exists \neg$. one book still missing

Kalaallisut BA: [['s... cn-...] +s] only

- (Yesterday I saw a bear near the village. And today...) Ole alla-mik nanu-si-pu-q angisuu-mik. Ole other $-\mathrm{MOD}_{\delta}$ bear $-\mathrm{see}-\mathrm{DEC}-3 \mathrm{~S}_{(\mathrm{T})}$ big-MOD ${ }_{\delta}$ big > other. Ole saw another bear, a big one.
- (Yesterday I saw a big bear near the village. And today...)

Ole angisuu-mik nanu-si-pu-q alla-mik.
Ole big-MOD ${ }_{\delta}$ bear-see-DEC-35 ${ }_{(\mathrm{T})}$ other- $-\mathrm{MOD}_{\delta}$ other $>$ big. Ole (too) saw a big bear, another one.

English SA \& BA: Lexicon

- lexical categories $\left(\mathrm{TV}=\mathrm{x}_{\mathrm{D}} / \mathrm{PN}^{\prime}\right.$ where $\left.\mathbf{t p}\left(\mathrm{x}_{\mathrm{DI}}\right)=[]\right)$
receive- Tv: $\lambda \downarrow([e] \perp ;[r c v\langle\perp \varepsilon$, CTR $\perp \varepsilon, \nu\rangle])$
have- $\quad \mathrm{IV}_{\mathrm{I}} / \mathrm{IV}_{\mathrm{pf}}: \lambda K . K$
be- $\quad \mathrm{IV} / \mathrm{IV}_{\mathrm{ps}}: \lambda K\left(K^{\perp} ;\left[\mathrm{el} e \subseteq_{i} \perp \varepsilon\right.\right.$, CTR $\left.\left.e=_{i} \mathrm{BCK} \perp \varepsilon\right]\right)$
book CN: $\lambda x . b k x$
one $\quad \mathrm{NP} / \mathrm{CN}: \lambda P \lambda x([P(? \delta\rangle] ;[x \in ? \delta \|])$
- grammatical categories $\left(\mathrm{VP}=\mathrm{s} \backslash \mathrm{PN}, \mathrm{QP}^{\top}=\mathrm{s} / \mathrm{VP}, \mathrm{QP}^{\perp}=\mathrm{x}_{[\mathrm{l}} \backslash\left(\mathrm{x}_{\mathrm{l}} / \mathrm{PN}\right)^{\prime}\right)$

I, HE	$\mathrm{QP}^{\top}: \lambda \underline{\underline{P}} \underline{\underline{P}} \underline{\mathrm{CTR}}\langle\mathrm{T} \bar{\varepsilon}\rangle, \lambda \underline{P} \underline{P}$? δ	$\left(? \delta \in\left\{T \delta, \perp \delta, T \delta_{2}\right\}\right)$
ME, SLF	$\mathrm{PN}^{\prime}: \operatorname{CTR}\langle\mathrm{T} \varepsilon\rangle, \operatorname{CTR}\langle\perp \varepsilon\rangle$	
HIM	$\mathrm{QP}^{\perp}: \lambda \underline{P}\left(\left[? \delta \neq ⿻_{i} \mathrm{CTR}\langle\perp \varepsilon\rangle\right] ; \underline{P}\right.$? $\left.\delta\right)$	$\left(? \delta \in\left\{\mathrm{~T} \delta, \perp \delta, \mathrm{~T} \delta_{2}\right\}\right)$
T.	$\mathrm{QP}^{\top} / \mathrm{NP}: \lambda \underline{P^{\prime}} \lambda \underline{\underline{P}}\left(\left([\mathrm{x}]^{\top} ; \underline{P^{\prime}} \mathbf{\top} \delta\right)^{\top} ; \underline{P} \boldsymbol{T} \delta\right)$	
${ }_{\text {- }}$	$\mathrm{QP}^{\perp} / \mathrm{NP}: \lambda \underline{\underline{P}} \lambda \underline{\lambda} \underline{\underline{P}}\left(\left([y]{ }^{\perp} ; \underline{P}^{\prime} \perp \delta\right)^{\perp} ; \underline{P} \perp \delta\right)$	
$B Y$	$\begin{aligned} & \mathrm{PP}_{\mathrm{ps}} / \mathrm{QP}^{\perp}: \lambda \underline{Q} \lambda K\left(\underline{Q} \lambda \underline{x}\left(K^{\perp} ;\left[\operatorname{CTR} \perp \varepsilon \varepsilon_{i} \underline{x}\right]\right)\right) \\ & \mathrm{PP}_{s} / \mathrm{QP}^{\perp}: \lambda \underline{O} \lambda K\left(\underline{Q} \lambda \underline{x}\left(K^{\perp} ;\left[\perp \varepsilon \subseteq_{i} \perp \varepsilon_{2}, \operatorname{CTR} \perp \varepsilon_{2}=i \underline{x}\right]\right)\right) \end{aligned}$	$\begin{aligned} & \left(\mathrm{PP}_{\mathrm{ps}}=\mathrm{IV}_{\mathrm{ps}} \backslash \mathrm{IV}_{\mathrm{ps}}\right) \\ & \left(\mathrm{PP}_{\mathrm{s}}=\mathrm{s}\right) \end{aligned}$
-PS	$\mathrm{IV}_{\mathrm{ps}} \mathrm{TV}: \lambda \underline{P} \cdot \underline{P} \mathrm{BCK}\langle\perp \varepsilon\rangle$	
-PF	$\mathrm{IV}_{\mathrm{pf}} \mathrm{IIV}: \lambda K . K$	
-TNS		
= N^{\prime} T	VP\VP: $\lambda \underline{P} \lambda \underline{x}[\sim \sim(\underline{P x})]$	

English SA \& BA: have-TNS=n't

English SA \& BA: Passive copula

English SA \& BA: Passive vs. Perfect

received

- receive

receive-	-
$\mathrm{TV}\left(=\mathrm{x}_{\mathrm{L}} / \mathrm{PN}^{\prime}\right):$	$\mathrm{IV}_{\mathrm{pf}}$ \IV:
$\lambda y\left([e]^{\perp} ;[\operatorname{rcv}\langle\perp \varepsilon, \operatorname{CTR} \perp \varepsilon, y\rangle]\right)$	$\lambda K . K$

$\mathrm{IV}_{\mathrm{pf}} / \mathrm{PN}^{\prime}: \lambda \underline{y}\left([e]^{\perp} ;[\operatorname{rcv}\langle\perp \varepsilon, \mathrm{CTR} \perp \varepsilon, \underline{y}\rangle]\right)$

- receive-

$\mathrm{TV}\left(=\mathrm{x}_{\mathrm{D}} / \mathrm{PN}^{\prime}\right)$:	$\mathrm{IV}_{\mathrm{ps}} \backslash \mathrm{TV}$:
$\lambda \underline{y}\left([e]^{\perp} ;[\operatorname{rcv}\langle\perp \varepsilon, \operatorname{CTR} \perp \varepsilon, y\rangle]\right)$	$\lambda \underline{P} . \underline{P} \operatorname{BCK}\langle\perp \varepsilon\rangle$

$\mathrm{IV}_{\mathrm{ps}}:[e \mid r c v\langle e, \mathrm{CTR} e, \mathrm{BCK} e\rangle]$

Ambiguous object QP^{\perp} : English data

- (Last month Ole^{\top} ordered three books ${ }^{\perp}$.)
- He e_{T} hasn't received one book yet.

HE have-TNS $=\mathrm{N}^{\prime}$ T receive- $\mathrm{PF}{ }^{\perp}$ - one book yet
\checkmark. hasn't received any
$\exists \neg$. one is still missing

Ambiguous object QP^{\perp} : Narrow scope (part 2)

- ... receive-PF ${ }^{\perp}$ one book (yet). receive-pF

[^0]
Ambiguous object QP^{\perp} : Narrow scope (part 1)

Ambiguous object QP^{\perp} : Narrow scope (conclusion)

- he hasn't [receive-PF ${ }^{\text {one book] (yet). }}$

HE have-TNS $=N^{\prime} T$
$\mathrm{s} / \mathrm{IV}_{\mathrm{pf}}: \lambda K\left[\sim\left(K^{\perp} ;\left[\mathrm{CTR} \perp \varepsilon=_{i} \mathrm{~T} \delta\right]\right)\right]$
receive-PF ${ }^{\perp}$ one book

$$
\mathrm{IV}_{\mathrm{pf}}:\left([y] ;\left[b k\left\langle\perp \delta_{2}\right\rangle\right] ;\left[\perp \delta \in \perp \delta_{2} \|\right] ;[e \mid r c v\langle e, \operatorname{CTR} e, \perp \delta\rangle]\right)
$$

s: $\left.\left[\sim\left(\left([y] ;\left[b k\left\langle\perp \delta_{2}\right\rangle\right] ;\left[\perp \delta \in \perp \delta_{2} \|\right] ;[e \mid r c v\langle e, \mathrm{CTR} e, \perp \delta\rangle]\right)\right)^{\perp} ;\left[\mathrm{CTR} \perp \varepsilon=_{i} \mathrm{~T} \delta\right]\right)\right]$
$\mathrm{s}:\left[\sim\left([y] ;\left[b k\left\langle\perp \delta_{2}\right\rangle\right] ;\left[\perp \delta \in \perp \delta_{2} \|\right] ;\left[e l r c \vee\langle e, \operatorname{CTR} e, \perp \delta\rangle\right.\right.\right.$, CTR $\left.\left.\left.e==_{i} T \delta\right]\right)\right]$
s: $\left[\sim\left([y] ;\left[b k\left\langle\perp \delta_{2}\right\rangle\right] ;\left[\perp \delta \in \perp \delta_{2} \|\right] ;[e l r c v\langle e, \mathrm{~T} \delta, \perp \delta\rangle\rangle\right)\right]$

Ambiguous object QP^{\perp} : Wide scope (part 1)

- HE hasn't receive-PF...

HE	have-TNS=N'T	receive-PF
$\mathrm{QP}^{\top}(=\mathrm{s} / \mathrm{VP})$:	$\mathrm{vP} / \mathrm{IV}_{\mathrm{pf}}$:	$\mathrm{IV}_{\mathrm{pi}} / \mathrm{PN}{ }^{\prime}$
$\lambda \underline{P} . \underline{P} \top \delta$	$\lambda K \lambda \underline{x}\left[\sim\left(K^{\perp} ;\left[C T R ~ \perp \varepsilon==_{i} \underline{\chi}\right]\right)\right]$	$\lambda y\left([e]^{\perp} ;[r c v\langle\perp \varepsilon, \operatorname{CTR} \perp \varepsilon, y\rangle]\right)$
	VP/PN': $\lambda \underset{y}{ } \lambda \underline{x}\left[\sim\left([e]^{\perp} ;[\operatorname{rcv} / \perp\right.\right.$ $\mathrm{vP} / \mathrm{PN}^{\prime}: \lambda \underline{2} \boldsymbol{x}[\sim([e \mid r c v\langle e, \mathrm{CTR}$ $\mathrm{vP} / \mathrm{PN}$ ': $\lambda \geq \lambda \lambda \underline{x}[\sim[e \mid r c v\langle e, \underline{x}, \nu\rangle]$	$\begin{aligned} & \varepsilon, \operatorname{CTR} \perp \varepsilon, y\rangle]) \perp ;[\operatorname{CTR} \perp \varepsilon=i \underline{x]})] \\ & \left.\left.e, \nu\rangle]]^{\perp} ;[\operatorname{CTR} \perp \varepsilon=i \underline{x}]\right)\right] \\ & \text { 1] } \end{aligned}$

$\mathrm{s} / \mathrm{PN} \mathrm{N}^{\prime}: \lambda \underline{y}[\sim[\mathrm{el} r c \vee\langle e, \mathrm{~T} \delta, \nu\rangle]]$

Ambiguous object QP^{\perp} : Wide scope (conclusion)

- [HE hasn't receive-PF] ${ }^{\text {one book (yet). }}$

HE have-TNS=N'T receive-PF
$\mathrm{s} / \mathrm{PN}: ~ \lambda y[\sim[e \mid r c \nu\langle e, T \delta, y\rangle]]$
${ }^{\text {Lone book }}$
\qquad
$\mathrm{QP}^{\perp}\left(=\mathrm{x}_{\mathrm{l}} \backslash\left(\mathrm{x}_{\mathrm{II}} / \mathrm{PN} \mathrm{N}^{\prime}\right)\right): \lambda \underline{P}\left(\left([y] ;\left[b k\left\langle\perp \delta_{2}\right\rangle\right] ;\left[\perp \delta \in \perp \delta_{2} \|\right]\right)^{\perp} ; \underline{P} \perp \delta\right)$
s: $\left(\left([y] ;\left[b k\left\langle\perp \delta_{2}\right\rangle\right] ;\left[\perp \delta \in \perp \delta_{2} \|\right]\right) \perp ;[\sim[e l r c v\langle\perp \varepsilon, T \delta, \perp \delta\rangle]]\right)$
s: ([y]; $\left.\left[b k\left\langle\perp \delta_{2}\right\rangle\right] ;\left[\perp \delta \in \perp \delta_{2} \|\right] ;[\sim[e \mid r c v\langle\perp \varepsilon, \mathrm{~T} \delta, \perp \delta\rangle]]\right)$

Ambiguous object QP^{\perp} : Wide scope (part 2)

- ... ${ }^{+}$one book (yet).

\perp	one	book	
$\mathrm{QP}^{\perp} / \mathrm{NP}$:	NP/CN:	CN:	
$\lambda \underline{\underline{P}} \lambda \underline{P}\left(\left([y]{ }^{\perp} ; \underline{P}^{\prime} \perp \delta\right)^{\perp} ; \underline{P} \perp \delta\right)$	$\left.\left.\lambda P \lambda \underline{x} \underline{(}\left[P\left\langle\perp \delta_{2}\right\rangle\right\rangle ; \underline{\underline{x}} \in \perp \delta_{2} \\|\right]\right)$	$\lambda x . b k x$	
$\mathrm{QP}^{\perp} / \mathrm{CN}: \lambda \underline{P} \underline{P}^{\prime} \lambda \underline{P}\left(\left([y]^{\perp} ;\left(\left[P^{\prime}\langle\perp \delta)\right.\right.\right.\right.$	$\left.\left.\left.\left.\dot{j}_{2}\right] ;\left[\perp \delta \in \perp \delta_{2} \\| I\right]\right)\right)^{\perp} ; \underline{P} \perp \delta\right)>\mathbf{B}$		

Subject QP $^{\top}$: Wide scope only (part 1)

- (Last month ${ }^{\top}$ Ole ordered ${ }^{\perp}$ three books.)
- ${ }^{\top}$ One book hasn't been received yet
$\exists \neg$. one book is still missing
- ${ }^{\top}$ One book...

T.	one	book		
$\mathrm{QP}^{\mathrm{T}} / \mathrm{NP}$:	NP/CN:	CN :		
$\lambda \underline{\underline{P}} \boldsymbol{\lambda} \underline{\underline{P}}\left(\left([\mathbf{x}]^{\top} ; \underline{P}^{\prime} \top \delta\right)^{\top} ; \underline{P} \underline{T}^{\top} \delta\right)$	$\lambda P \lambda \underline{x}([P\langle\perp \delta\rangle] ;[\underline{x} \in \perp \delta\\| \\|)$	$\lambda x . b k x$		
	$\rightarrow>$ B			
$\mathrm{QP}^{\mathrm{T}} / \mathrm{CN}: \lambda \underline{P^{\prime}} \lambda \underline{\underline{P}}\left(\left([\mathrm{x}]^{\top} ;\left(\left[P^{\prime}\langle\perp \delta\rangle\right] ;[\tau \delta \in \perp \delta \\|]\right)\right)^{\top} ; \underline{P} T \delta\right)$				

Subject QP^{\top} : Wide scope only (part 2)

- ... hasn't been received

have-TNS=N'T	be-PF
$\begin{aligned} & \mathrm{VP} / \mathrm{IV}_{\mathrm{pf}} \\ & \lambda K \lambda \underline{x}\left[\sim\left(K^{\perp} ;[\mathrm{CTR} \perp \varepsilon=i \underline{x}]\right)\right] \end{aligned}$	$\begin{aligned} & \mathrm{IV}_{\mathrm{pf}} / \mathrm{IV}_{\mathrm{ps}}: \\ & \lambda K\left(K^{\perp} ;\left[e \mathrm{l} e \subseteq_{i} \perp \varepsilon, \mathrm{CTR} e=_{i} \mathrm{BCK} \perp \varepsilon\right]\right) \end{aligned}$
$\begin{aligned} & \mathrm{VP} / \mathrm{IV} \mathrm{ps}^{:}: \lambda K \lambda \underline{x}\left[\sim\left(K^{\perp} ;\left[e \mid e \subseteq_{i} \perp \varepsilon, \mathrm{CTR} e=_{i} \mathrm{BCK} \perp \varepsilon, \mathrm{CTR} e=_{i} \underline{x}\right]\right)\right] \\ & \quad \text { receive-PS } \end{aligned}$	
VP: $\lambda \underline{x}[\sim([\operatorname{el} r c v\langle e$, CTR $e, B C K$ VP: $\lambda \times x\left[\sim\left[e^{\prime}\right.\right.$ el $r c v\langle e$, CTR e, BC VP: $\lambda \underline{x}\left[\sim\left[e^{\prime} e \mid r c v\langle e, \operatorname{CTR} e, \underline{x}\rangle\right.\right.$,	$\begin{aligned} & \left.\left.e\rangle]^{\perp} ;\left[e l e \subseteq_{i} \perp \varepsilon, \operatorname{CTR} e=_{i} \operatorname{BCK} \perp \varepsilon, \operatorname{CTR} e=_{i} \underline{x}\right]\right)\right] \\ & \mathrm{K} e\rangle, e^{\prime} \subseteq_{i} e, \operatorname{CTR} e^{\prime}=_{i} \text { BCK } e, \operatorname{CTR} e^{\prime}={ }_{i} \underline{x]} \\ & \left.e^{\prime} \subseteq_{i} e, \operatorname{CTR} e^{\prime}==_{i} \underline{x}\right] \end{aligned}$

Passive BA-CTR: Narrow scope only (data)

- (Ole^{\top} has invited his students ${ }^{\perp}$ to come and see him individually. But...)
- He hasn't [been approached] yet
$\checkmark \exists$. no students have approached him yet

Subject QP $^{\top}$: Wide scope only (conclusion)

- TOne book. -one book
$\mathrm{QP}^{\mathrm{T}}(=\mathrm{s} / \mathrm{vP}): \lambda \underline{P}\left(([\mathrm{x}] ;[b k\langle\perp \delta\rangle] ;[\mathrm{T} \delta \in \perp \delta \|])^{\top} ; \underline{P} \mathrm{~T} \delta\right)$
- ... hasn't been received
$\xlongequal[{\text { have-TNS=N'T be-PF receive-PS } \lambda \underline{x}\left[\sim\left[e^{\prime} e \mid r c v\langle e, \operatorname{CTR} e, \underline{x}\rangle, e^{\prime} \subseteq_{i} e, \operatorname{CTR} e^{\prime}={ }_{i} \underline{x}\right]\right.}]]{ }>$
- 'One book [hasn't been received].
- ($([\mathbf{x}] \cdot[b k\langle\perp \delta)] \cdot[T \delta \in \perp \delta \|])^{\mathrm{T}}$. : ([x]]; [bk $\left.\langle\perp \delta\rangle] ;[T \delta \in \perp \delta \|] ;\left[\sim\left[e^{\prime} e \mid r c v\langle e, \operatorname{CTR} e, T \delta\rangle, e^{\prime} \subseteq_{i} e, \operatorname{CTR} e^{\prime}={ }_{i} T \delta\right]\right]\right)$

Passive BA-CTR: Narrow scope only (analysis)

HE	have-TNS=N'T
$\mathrm{QP}^{\top}(=\mathrm{s} / \mathrm{VP})$:	$\mathrm{VP} / \mathrm{IV} \mathrm{pff}$:
$\lambda \underline{P} \underline{P} \top \delta$	$\lambda K \lambda \underline{\chi}\left[\sim\left(K^{\perp} ;\left[\operatorname{CTR} \perp \varepsilon=_{i} \underline{x}\right]\right)\right]$

....

be-PF	approach-PS
$\mathrm{IV}_{\mathrm{pf}} / \mathrm{IV} \mathrm{V}_{\mathrm{ps}}$:	$\mathrm{IV}_{\mathrm{ps}}$:
$\lambda K\left(K^{\perp} ;\left[e l e \subseteq_{i} \perp \varepsilon, \mathrm{CTR} e={ }_{i} \mathrm{BCK} \perp \varepsilon\right]\right)$	[el approach $\langle e$, CTR e, BCK $e\rangle$]
$\mathrm{IV}_{\mathrm{pf}}:\left([\text { el approach }\langle e, \mathrm{CTR} e, \mathrm{BCK} e\rangle]^{\perp} ;\left[e \mid e \subseteq_{i} \perp \varepsilon, \mathrm{CTR} e=_{i} \mathrm{BCK} \perp \varepsilon\right]\right)$ $\mathrm{IV}_{\mathrm{pf}}:\left[e^{\prime}\right.$ el approach $\left.\langle e, \mathrm{CTR} e, \mathrm{BCK} e\rangle, e^{\prime} \subseteq_{i} e, \mathrm{CTR} e^{\prime}={ }_{i} \mathrm{BCK} e\right]$	

- $\mathrm{s}:\left[\sim\left[e^{\prime}\right.\right.$ el approach $\left.\left.\langle e, \mathrm{CTR} e, \mathrm{~T} \delta\rangle, e^{\prime} \subseteq_{i} e, \mathrm{CTR} e^{\prime}=_{i} \mathrm{~T} \delta\right]\right]$

Ambiguous BY-phrase: Data

- (Ole^{\top} has invited his students ${ }^{\perp}$ to come and see him individually. But...)
- He hasn't been approached by one student yet.
$\neg \exists$. no student has approached him yet
ヨ . one student still hasn't approached him

Ambiguous BY-phrase: Narrow scope (part 1)

- HE hasn't been...

HE have-TNS $=\mathrm{N}^{\prime} T$ be-PF
$\mathrm{QP}^{\top}(=\mathrm{s} / \mathrm{VP}): \quad \mathrm{VP} / \mathrm{IV}_{\mathrm{ps}}$.
$\lambda \underline{P} \underline{P} T \delta \quad \lambda K \lambda \underline{x}\left[\sim\left(K^{\perp} ;\left[e l e \subseteq_{i} \perp \varepsilon\right.\right.\right.$, CTR $\left.\left.e==_{i} \mathrm{BCK} \perp \varepsilon, \mathrm{CTR} e==_{i} \underline{x}\right)\right]$
$\mathrm{s} / \mathrm{IV}_{\mathrm{ps}}: \lambda K\left[\sim\left(K^{\perp} ;\left[e l e \subseteq_{i} \perp \varepsilon, \mathrm{CTR} e=_{i} \mathrm{BCK} \perp \varepsilon, \mathrm{CTR} e=_{i} \mathrm{~T} \delta\right]\right)\right]$

Ambiguous BY-phrase: Wide scope (part 1)

HE hasn't been approached.
HE

have-TNS=N'T be-PF
$\mathrm{QP}^{\top}(=\mathrm{s} / \mathrm{VP}): \quad \mathrm{VP} / \mathrm{IV}_{\mathrm{ps}}$:
$\lambda \underline{P} \underline{P} T \delta \quad \lambda K \lambda \underline{x}\left[\sim\left(K^{\perp} ;\left[e l e \subseteq_{i} \perp \varepsilon, \operatorname{CTR} e==_{i} \operatorname{BCK} \perp \varepsilon, \operatorname{CTR} e==_{i} \underline{x}\right)\right]\right.$
$\mathrm{s} / \mathrm{IV} \mathrm{pss}^{2}: \lambda K\left[\sim\left(K^{\perp} ;\left[e \mid e \subseteq_{i} \perp \varepsilon, \mathrm{CTR} e=_{i} \mathrm{BCK} \perp \varepsilon, \mathrm{CTR} e==_{i} \mathrm{~T} \delta\right]\right)\right]$
approach-PS
$\mathrm{IV}_{\mathrm{ps}}:[e l$ approach $\langle e, \mathrm{CTR} e, \mathrm{BCK} e\rangle]$
s: $\left[\sim\left([e l \text { approach }\langle e, \mathrm{CTR} e, \mathrm{BCK} e\rangle]^{\perp} ;\left[e l e \subseteq_{i} \perp \varepsilon, \mathrm{CTR} e={ }_{i} \mathrm{BCK} \perp \varepsilon, \mathrm{CTR} e==_{i} \mathrm{~T} \delta\right]\right)\right]$
s: $\left[\sim\left[e^{\prime} e l\right.\right.$ approach $\left.\left.\left.\langle e, \mathrm{CTR} e, \mathrm{BCK} e\rangle, e^{\prime} \subseteq_{i} e, \mathrm{CTR} e^{\prime}={ }_{i} \mathrm{BCK} e, \mathrm{CTR} e^{\prime}=\mathrm{T} \delta\right]\right)\right]$
s: [$\sim\left[e^{\prime}\right.$ el approach $\left.\left.\langle e, \operatorname{CTR} e, \mathrm{~T} \delta\rangle, e^{\prime} \subseteq_{i} e, \operatorname{CTR} e^{\prime}={ }_{i} \mathrm{~T} \delta\right]\right]$

Ambiguous BY-phrase: Wide scope (conclusion)

- HE hasn't been approached ..
s: [$\sim e^{\prime}$ el approach $\left.\left.\langle e, \mathrm{CTR} e, \mathrm{~T} \delta\rangle, e^{\prime} \subseteq_{i} e, \mathrm{CTR} e^{\prime}==_{i} \mathrm{~T} \delta\right]\right]$
- ... BY one ${ }_{\perp}$ student (yet).

BY		-one student	
$\mathrm{PP}_{s} / \mathrm{QP}^{\perp}:$		$\mathrm{QP}^{\perp}:$	
$\lambda \underline{Q} \lambda K\left(\underline{Q} \lambda \underline{x}\left(K^{\perp} ;\left[\perp \varepsilon \subseteq_{i} \perp \varepsilon_{2}, \mathrm{CTR} \perp \varepsilon_{2}=_{i} \underline{x}\right]\right)\right)$	$\lambda \underline{P}\left(\left([y] ;\left[s t d\left\langle\perp \delta_{2}\right\rangle\right] ;\left[\perp \delta \in \perp \delta_{2} \\|\right]\right) \perp ; \underline{P} \perp \delta\right)$		

$\lambda \underline{Q} \lambda K\left(\underline{Q} \lambda \underline{x}\left(K^{\perp} ;\left[\perp \varepsilon \subseteq_{i} \perp \varepsilon_{2}, \operatorname{CTR} \perp \varepsilon_{2}=_{i} \underline{x}\right]\right)\right) \quad \lambda \underline{P}\left(\left([y] ; ;\left[\operatorname{std}\left\langle\perp \delta_{2}\right\rangle\right] ;\left[\perp \delta \in \perp \delta_{2} \|\right]\right) \stackrel{\perp}{P} \underline{P} \perp \delta\right)$
$\mathrm{PP}_{\mathrm{s}}(=\mathrm{s} \backslash \mathrm{s}): \lambda K\left(\left([y] ;\left[\operatorname{std}\left\langle\perp \delta_{2}\right\rangle\right] ;\left[\perp \delta \in \perp \delta_{2} \|\right]\right)^{\perp} ;\left(K^{\perp} ;\left[\mathrm{CTR} \perp \varepsilon_{2}={ }_{i} \perp \delta\right]\right)\right)$

- HE hasn't been approached BY one ${ }_{\perp}$ student (yet).
s: ([y]; [std $\left.\left\langle\perp \delta_{2}\right\rangle\right] ;\left[\perp \delta \in \perp \delta_{2} \|\right]$;
($\left[\sim\left[e^{\prime}\right.\right.$ el approach $\left.\left.\left.\left.\langle e, \operatorname{CTR} e, \mathrm{~T} \delta\rangle, e^{\prime} \subseteq_{i} e, \operatorname{CTR} e^{\prime}=_{i} \mathrm{~T} \delta\right]\right]{ }^{\perp} ;\left[\perp \varepsilon \subseteq_{i} \perp \varepsilon_{2}, \mathrm{CTR} \perp \varepsilon_{2}=_{i} \perp \delta\right]\right)\right)$
- Oops! The antecedent (e) for $\perp \varepsilon_{2}$ is trapped inside the scope of negation (\sim). So this background-elaboration sequence $\left(A^{\perp} ; B\right)$ denotes the absurd state--i.e. wide scope BY QP is wrongly ruled out. (See handout for the outline of a possible solution).

[^0]: $\mathrm{IV}_{\mathrm{pf}}:\left([y] ;\left[b k\left\langle\perp \delta_{2}\right\rangle\right] ;\left[\perp \delta \in \perp \delta_{2} I\right] ;[e l r c \imath\langle e\right.$, CTR $\left.e, \perp \delta\rangle]\right)$

