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Abstract

According to Satosi Watanabe’s “theorem of the ugly duckling”, the number of

predicates satisfied by any two different particulars is a constant, which does not

depend on the choice of the two particulars. If the number of predicates satisfied

by two particulars is their number of properties in common, and the degree of re-

semblance between two particulars is a function of their number of properties in

common, then it follows that the degree of resemblance between any two different

particulars is also constant, which is absurd. Avoiding this absurd conclusion re-

quires questioning assumptions about infinity in the proof or interpretation of the

theorem, adopting a sparse conception of properties, or denying degree of resem-

blance is a function of number of properties in common. After arguing against both

the first two options, this paper argues for a version of the third which analyses

degree of resemblance as a function of properties in common, but weighted by their

degree of naturalness or importance.
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Introduction

“...the point of philosophy,” according to Bertrand Russell, “is to start with something

so simple as not to seem worth stating, and to end with something so paradoxical that

no one will believe it” (Russell, 1918, 514). The argument discussed in this paper,

which proceeds from platitudinous or nearly provable premises about predicates and

properties to the barely believable conclusion that any two different particulars resemble

each other to the same degree, does not fall far short of Russell’s goal. This paper

assesses the metaphysical significance of the argument by considering which premise

should be rejected, and whether any surrogate premise can capture its platitudinous

aspects, without entailing a barely believable conclusion.

The first premise, which Satosi Watanabe (1969, 376) dubs “the theorem of the ugly

duckling”, is:

(1) The number of (possible) predicates satisfied by two particulars which do not

satisfy all the same (possible) predicates is a fixed (infinite) constant, which equals

the number of (possible) predicates satisfied by only the first, as well as the number

of (possible) predicates satisfied by only the second.

As Watanabe explains “The reader will soon understand the reason for referring to the

story of Hans Christian Andersen, because this theorem, combined with the foregoing

interpretation [or premises two and three below], would lead to the conclusion that an

ugly duckling and a swan are just as similar to each other as are two (different) swans”
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(Watanabe, 1969, 376).1 The first section explains the rationale behind this premise.

The second premise follows from an abundant conception of properties, according to

which a particular has a property if and only if it satisfies a (possible) predicate corre-

sponding to that property, and so the number of properties is the number of (possible)

predicates.2 According to it:

(2) The number of (possible) predicates satisfied by two particulars is the number of

properties they have in common, the number of (possible) predicates satisfied by

only the first is the number of properties the first has not in common with the

second, and the number of (possible) predicates satisfied by only the second is the

number of properties the second has not in common with the first.

Snow, for example, has the property of being white, according to abundant conceptions

of properties, if and only if snow satisfies the corresponding predicate ‘is white’. Like-

wise, two peas in a pod have the properties of greenness, roundness and yuckiness in

common, according to abundant conceptions of properties, if and only if they satisfy the

corresponding predicates ‘is green’, ‘is round’, and ‘is yucky’.

1See also Watanabe (1965) and Watanabe (1985, 82).

2The name “abundant” comes from Lewis (1983, 346); see also Lewis (1986b, 59). Some writers

prefer “deflationary”, following Hale, who writes “According to the abundant or, as I prefer to call it,

deflationary conception of properties, every meaningful predicate stands for a property or relation, and

it is sufficient for the actual existence of a property or relation that there could be a predicate with

appropriate satisfaction conditions” (Hale, 2013, 132); see also Cook (2019) and Hale (2015). I prefer

“abundant” not only because of the contrast with “sparse”, but also because I do not wish to imply

that, according to the abundant conception, properties are any less real or fundamental.
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The second premise is plausible on the hypothesis that the meaning of a (possible)

predicate is a property: the meaning of the predicate ‘is white’, for example, is simply

the property of being white. So even though the second premise could also be motivated

by assuming the doctrine of predicate nominalism, according to which a particular has

a property in virtue of satisfying a corresponding (possible) predicate, or the doctrine

of class nominalism, according to which an individual has a property in virtue of being

a member of the class of (possible) individuals which have that property, it is also

independently plausible: it requires for its motivation no stronger metaphysical doctrine

than the thesis that properties are the meanings of (possible) predicates.3

Proponents of sparse conceptions of properties, according to which there is not a

property corresponding to every (possible) predicate, will find this the obvious premise

to reject.4 But I will argue in the second section that many sparse conceptions of

properties which are otherwise well motivated nevertheless fail to escape the barely

believable conclusion that the degree of resemblance between two different particulars

is a constant, independent of the choice of the two particulars. According to David

Armstrong’s influential conception, for example, there are instantiated conjunctive, but

no negative, disjunctive or uninstantiated properties (Armstrong, 1978b). But later I

will argue, following John Bacon (1986), that Armstrong’s conception entails that every

3For predicate nominalism in this sense see especially Armstrong (1978a, 11-24). For class nominalism

see, for example, Armstrong (1978a, 28-34), Lewis (1983) and Lewis (1986b, 50-69).

4See, for example, Niiniluoto (1987, 37), Armstrong (1989, 40), Rodriguez-Pereyra (2002, 66-7) and

Ott (2016, 140).
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particular has at most one property, and so the degree of resemblance between any two

different particulars is zero, regardless of the choice of the two particulars.

The third premise is supported by the analysis of resemblance as having properties

in common, which suggests that the more properties particulars have in common, the

more they resemble each other, and the more properties particulars have not in common

with each other, the less they resemble each other. According to it:

(3) The degree of resemblance between two particulars is a function of the number

of properties they have in common, the number of properties the first has not

in common with the second, and the number of properties the second has not in

common with the first.

It’s natural to suggest, for example, that two peas in a pod resemble each other to a

high degree because they have many properties in common and few properties not in

common. Likewise, it’s natural to suggest that the degree of resemblance between a

raven and a writing desk is low because a raven and a writing desk have few properties

in common and many properties not in common.

For illustrative purposes, I will focus on the suggestion that the degree of resemblance

between particulars is their proportion of properties in common or, in other words, their

number of properties in common, divided by their number of properties in total (the sum

of their number of properties in common and number of properties not in common). This

is convenient because the degree of resemblance between particulars which have all of

their properties in common is one, whereas the degree of resemblance between particulars

which have none of their properties in common is zero. But nothing important depends

5



on this choice of illustration.5

The first premise and the second in combination entail that the number of properties

in common and the number of properties not in common between two different particulars

is a constant, which in combination with the third premise entails that the degree of

resemblance between two different particulars is a function of a constant, and so:

(4) The degree of resemblance between two particulars which do not satisfy all the

same (possible) predicates, or which do not have all of their properties in common,

or which differ from each other, is a fixed constant, which does not depend on the

choice of the two particulars.

This conclusion is barely believable. According to it, a raven resembles a writing desk,

for example, to the same degree as a raven resembles a magpie, and a cygnet resembles

a duckling to the same degree as two different ducklings resemble each other.

Through Nelson Goodman’s later work, especially Seven Strictures on Similarity,

the argument has become extremely familiar. As Goodman writes “...any two things

5For analyses of degree of dissimilarity as a function of number of properties in common and not

in common see, for example, Niiniluoto (1987, 22-35), Oliver (1996, 52), Rodriguez-Pereyra (2002, 65-

9), Paseau (2012, 365), Blumson (2014b, 179-93), Paseau (2015, 110), Blumson (2018), and Blumson

(2019b). Yi (2018) criticises some of these analyses. For scepticism of whether resemblance is measurable

by numerical degree at all, see Lewis (1973, 50), Williamson (1988, 457-60), Blumson (2019a) and Paseau

(2020); for defence see, for example, Bigelow (1976, 1977), Tversky (1977), Suppes et al. (1989, 159-

225), Weisberg (2012), Kroedel and Huber (2013, 459-462) and Enflo (2020). Section (3) is also a

partial defence of this presupposition. Morreau (2010) argues against the cogency of overall comparative

similarity on different grounds.
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have exactly as many properties in common as any other two. If there are just three

things in the universe, then any two of them belong together in exactly two classes and

have exactly two properties in common... Where the number of things in the universe

is n, each two things have in common exactly 2n−2 properties out of the total 2n − 1

properties; each thing has 2n−2 properties that the other does not, and there are 2n−2−1

properties that neither has” (Goodman, 1972, 443-4; see also Quinton, 1957, 36). But

despite its familiarity, the argument is worth revisiting for four reasons.

First, this version of the argument assumes the controversial doctrine of class nom-

inalism, according to which there is a property corresponding to every set of (possible)

particulars, and so if n is the number of (possible) particulars, the number of properties

is 2n. While this is a much quicker route to the absurd conclusion, the assumption of

class nominalism is itself in need of justification. As Goodman himself admits “...as a

[predicate] nominalist, I take all talk of properties [and classes] as slang for a more care-

ful formulation in terms of predicates” (Goodman, 1972, 443). The presentation below

assumes neither class nor predicate nominalism (although it does assume the existence

of classes and properties), and so is a more careful formulation in terms of predicates of

the kind Goodman alludes to. As a result, it reveals more than Goodman’s presentation

about the underlying sources of the problem.

Second, discussions of the problem almost invariably focus on the case in which

the number of (possible) predicates or properties is infinite. David Lewis, for example,

writes “Because properties are so abundant, they are undiscriminating. Any two things

share infinitely many properties, and fail to share infinitely many others. That is so
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whether the two things are perfect duplicates or utterly dissimilar. Thus properties do

nothing to capture facts of resemblance” (1983, 346). In a similar vein, David Armstrong

writes “We should perhaps take quick and unfavourable notice of the view sometimes

encountered that degrees of resemblance are quite arbitrary because with respect to any

two things at all we can find an indefinite number of resemblances and an indefinite

number of differences and that, as a result, no two things are more, or less, alike than

any other two” (1989, 40).6

Since the number of (possible) predicates is infinite, the focus on the infinite case

is unsurprising. But the focus on the infinite case also makes it hard to avoid the

impression that infinity is the source of the problem, which in turn suggests that clear

thinking about infinity may be the route to a solution. In section (1), I will explain

how the rationale for the first premise depends on two assumptions about infinity. But

since the argument goes through in the finite case without either assumption, I will also

argue that rejecting either of these assumptions is not the right approach to solving

the problem. In section (3), I will note that some problems with infinity affecting the

analysis of similarity are paradoxes of measure, familiar from philosophy of probability.

Third, despite the absurdity of the conclusion, the argument has been extremely

influential. In a discussion of concepts in cognitive science, Peter Gardenfors (2000,

111), for example, writes:

The problem is pressing because given only a moderate generosity, any

two objects can be shown to share an infinite number of properties. ... If it

6For similar passages see Guigon (2014, 390), Cowling (2017, 4) and the references in footnote 7.
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is the number of shared properties that determines the similarity of objects,

then any two objects will be arbitrarily similar. ... Restricting the problem

to natural properties ... does not help – there are still arbitrarily many. ... I

know of no theory of properties that furnishes a satisfactory solution to this

problem. Consequently, I see no way of defining similarity as the number of

shared properties.

It is clear from this passage that Gardenfors would respond to the argument by outright

rejecting the third premise. But he also rejects the second, arguing that “From the point

of view of cognitive science the abundant properties are totally worthless” (Gardenfors,

2000, 67). We may hope for a more conservative solution, which at least retains some

plausible surrogate for the abandoned premises.

Other writers come close to simply accepting the absurd conclusion, by taking the

argument to throw doubt on whether overall similarity makes sense at all. In a discussion

of biodiversity, James Maclaurin and Kim Sterelny (2008, 14), for example, come close

to accepting the conclusion when they write emphatically that:

... the project of building a classification based on overall similarity is hope-

less. If any characteristic at all counts in determining similarity relations

among (say) a horse fly, a fruit fly, and a bee, then they are all equally sim-

ilar and equally unlike one another. For every individual has, and lacks, an

infinity of characteristics. ... Overall similarity is not a well defined concept,

as Nelson Goodman vigorously remarked in Seven Strictures on Similarity.
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An argument purported to have such radical and far-reaching consequences deserves to

be considered extremely carefully.7

1 The First Premise

A predicate is a sentence with a name removed. The predicate ‘is white’, for example,

is the sentence ‘snow is white’ with the name ‘snow’ removed. A (named) particular

satisfies a predicate if and only if replacing the gap in the predicate by a name of the

particular results in a true sentence. Snow satisfies ‘is white’, for example, because the

sentence ‘snow is white’ is true. According to abundant conceptions of properties, there

is a property corresponding to every (possible) predicate: corresponding to the predicate

‘is white’, for example, is the property of being white, and corresponding to ‘is red’ is

the property of being red.

There are some properties that do not correspond to any actual predicate. As David

Armstrong writes “It is clearly possible, and we believe it to be the case, that particulars

have certain properties and relations which never fall under human notice” (Armstrong,

1978a, 21). Nevertheless, if these properties were to fall under human notice, we could

introduce predicates to talk about them, so corresponding to every property is a possible

7The argument is also raised outside metaphysics by, amongst others, Towster (1975), Watanabe

(1985), Oddie (1986, 164-5), Niiniluoto (1987, 35-7), Medin et al. (1993, 255), Mundy (1995, 35-6),

Feldman (1997, 150), Byrne (2003, 641), Priest (2008, 97), Sterrett (2009, 803), Decock and Douven

(2011, 68), Isaac (2013, 685), Blumson (2014b, 182-96), Ott (2016, 140-1) and Harnad (2017, 36-7).

Most of these authors stress the infinite case, and many draw radical conclusions.

10



predicate. Because of their great number, possible predicates are a complicating factor

at some points in the argument, but a simplifying factor at others. When possible, I

may omit to mention them.

A predicate entails another predicate if and only if necessarily any particular which

satisfies the former also satisfies the latter. The predicate ‘is white’ entails the predi-

cate ‘is coloured’, for example, because it’s necessary that any particular which satisfies

‘is white’ also satisfies ‘is coloured’. Entailment between predicates is a reflexive and

transitive relation: since necessarily any particular which satisfies ‘is white’ satisfies ‘is

white’, for example, ‘is white’ entails ‘is white’. And since ‘is scarlet’ entails ‘is red’ and

‘is red’ entails ‘is coloured’, ‘is scarlet’ entails ‘is coloured’.

It’s also convenient to stipulate that the relation of entailment between predicates is

antisymmetric. In other words, if a predicate entails a second predicate and the second

predicate entails the first, then they are the same predicate. Since ‘is white’ entails ‘is

not unwhite’ and ‘is not unwhite’ entails ‘is white’, for example, ‘is white’ and ‘is not

unwhite’ are the same predicate. This stipulation is convenient because it ensures that

there is only one (possible) predicate corresponding to each property, so if there is a

(possible) predicate corresponding to every property, then there is exactly one (possible)

predicate corresponding to every property (Armstrong, 1978a, 7).

Two clarifications. First, for many purposes it’s desirable to distinguish between

predicates which entail each other, and between their corresponding properties (see, for

example, Lewis (1986b, 55-59)). Although ‘is triangular’ and ‘is trilateral’, for example,

entail each other, it’s often desirable to distinguish between them, as well as to distinguish
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between the corresponding properties of being triangular and being trilateral. But it’s

not desirable to draw this distinction for the purpose of analysing resemblance. We

should not count being triangular and being trilateral, for example, as distinct similarities

between two shapes, since that would be to count one similarity twice over.

Second, consider the purported predicate ‘is not satisfied by itself’. If an abundant

conception of properties is correct, a predicate satisfies ‘is not satisfied by itself’ if and

only if it satisfies the corresponding property of not being satisfied by itself or, in other

words, if and only if it does not satisfy itself. So ‘is not satisfied by itself’ satisfies itself if

and only if it does not satisfy itself, which is a contradiction. This is a serious problem for

abundant conceptions of properties (Field, 2004), but not the problem under discussion

in this paper. To avoid it, I consider only predicates applying to individual particulars,

and not to other predicates, properties, or sets.

A relation which is reflexive, antisymmetric and transitive is called a partial ordering

relation, and a partially ordered set is an ordered pair 〈A,≤〉 of a set A and a partial

ordering relation ≤ between elements of A (Gratzer, 2011, 1). Since entailment between

predicates is a reflexive, antisymmetric and transitive relation, it follows that entailment

between predicates is a partial ordering relation, and predicates are a partially ordered

set under the relation of entailment. (As usual I will say that a < b if and only if a ≤ b

but it is not the case that b ≤ a, and a = b if and only if a ≤ b and b ≤ a.)

The conjunction of two elements in a partially ordered set can be defined in terms of

its ordering relation as follows: an element a ∈ A is the conjunction b∧c of two elements

b, c ∈ A of a partially ordered set 〈A,≤〉 if and only if (i) a ≤ b and a ≤ c and (ii)
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for all d ∈ A if d ≤ b and d ≤ c, then d ≤ a. The predicate ‘is red and square’ is the

conjunction of ‘is red’ and ‘is square’, for example, because ‘is red and square’ entails ‘is

red’ and entails ‘is square’, and because every predicate which entails ‘is red’ and entails

‘is square’ entails ‘is red and square’.

Likewise, an element a ∈ A is the disjunction b ∨ c of two elements b, c ∈ A of a

partially ordered set 〈A,≤〉 if and only if (i) b ≤ a and c ≤ a and (ii) for all d ∈ A if

b ≤ d and c ≤ d, then a ≤ d. The predicate ‘is Czechoslovakian’ is the disjunction of

‘is Czech’ and ‘is Slovakian’, for example, because ‘is Czech’ and ‘is Slovakian’ entail ‘is

Czechoslovakian’, and every predicate which is entailed by ‘is Czech’ and entailed by ‘is

Slovakian’ is also entailed by ‘is Czechoslovakian’.

Notice that neither definition requires ‘or’ or ‘and’ to appear in a predicate for it to be

a conjunction or disjunction. This is important, since it means that whether a predicate

is a conjunction or disjunction of possible predicates in this sense is not contingent on

which language we speak. So if, as we consider in the next section, we deny that there

are properties corresponding to disjunctive or conjunctive predicates in this sense, which

properties we are denying the existence of likewise is not contingent on language.8

A lattice is a partially ordered set 〈A,≤〉 in which every pair of elements a, b ∈ A has

a conjunction a∧ b and a disjunction a∨ b. Since every pair of (possible) predicates has

a conjunction which may be formed with ‘and’ and a disjunction which may be formed

with ‘or’, the partial ordering of (possible) predicates under the relation of entailment is

a lattice. In order to complete the rational for the first premise, it remains to be shown

8For a related point see, for example, Oddie (2005, 151-2).
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that it is a boolean lattice, which is both complete and completely distributive, as the

rest of this section explains.

An element a ∈ A is the maximum > of a partially ordered set 〈A,≤〉 if and only

if b ≤ a for all b ∈ A (Gratzer, 2011, 5). The predicate ‘exists’ or ‘is white or not

white’, for example, is the maximum element of the set of predicates under the relation

of entailment, because necessarily, if a particular satisfies any predicate, then it satisfies

‘exists’ or ‘is white or not white’. Likewise, an element a ∈ A is the minimum ⊥ of a

poset 〈A,≤〉 if and only if a ≤ b for all b ∈ A (Gratzer, 2011, 5). The predicate ‘does

not exist’ or ‘is white and not white’, for example, is the minimum element of the set of

predicates under entailment, because ‘does not exist’ or ‘is white and not white’ entail

every predicate.

An element a ∈ A is the negation ¬b of an element b ∈ A if and only if a∨ b = > and

a∧ b = ⊥ (Gratzer, 2011, 97). And A lattice 〈A,≤〉 is complemented if and only if it has

a minimum ⊥, a maximum > and every a ∈ A has a negation ¬a (Gratzer, 2011, 98).

Notice that this definition of negation does not require ‘not’ to appear in a predicate

in order for it to be a negation. In fact, in a complemented lattice, every element is

a negation, since every element is the negation of its negation. Just as ‘is foreign’, for

example, is the negation of ‘is local’, ‘is local’ is the negation of ‘is foreign’. So if, as we

consider in the next section, we deny that there are “negative properties”, we must be

especially careful to be clear what we mean by this.9

A lattice 〈A,≤〉 is distributive if and only if for all elements a, b, c ∈ A, a ∧ (b ∨ c) =

9For a related point see, for example, Oddie (2005, 151-2).
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(a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (Gratzer, 2011, 14-5). The lattice of

predicates is plausibly distributive – ‘is married and a man or a woman’, for example, is

equivalent to ‘is a husband or a wife’ and ‘is red and round or square’ is equivalent to ‘is

red or round and red or square’. Since it’s relatively uncontroversial in this context that

the predicates ordered under the relation of entailment is a distributive lattice, I won’t

stress its role, except when it comes to its generalisation to the infinite case below.

A lattice is boolean if and only if it is distributive and complemented, and it has a

minimum and maximum element (Gratzer, 2011, 15). So the lattice of predicates under

the relation of entailment is boolean, because predicates under the relation of entailment

are distributive and complemented (since every element has a negation), and it has a

minimum and maximum element (‘does not exist’ or ‘is white and not white’ and ‘exists’

or ‘is white or not white’). In order to establish the first premise, we need to show that

the lattice of predicates under entailment is not only boolean, but also atomic.

An element a ∈ A of a lattice 〈A,≤〉 is an atom if and only if ⊥ < a and for all

b ∈ A if b < a then b = ⊥ (Gratzer, 2011, 101). In other words, an element is an atom

if and only if no element is smaller, except the minimum. In a lattice of predicates an

atom is a predicate entailed only by itself or inconsistent predicates – in the lattice of

predicates which apply to a die in virtue of the number it lands, for example, there are

six atoms: ‘lands one’, ‘lands two’, ‘lands three’, ‘lands four’, ‘lands five’ and ‘lands

six’.10 A lattice is atomic if and only if every element except ⊥ is greater than or equal

10Note that an “atom” in this context is not a syntactically simple predicate: ‘lands’, for example, is

not an atom, because it is strictly entailed by ‘lands one’, whereas ‘lands on an even number and lands
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to an atom (Davey and Priestley, 2002, 113).

To generalise to the infinite case, the definitions of conjunction and disjunction need

to be generalised as follows. An element a ∈ A is the disjunction
∨

B of the elements

in a subset B ⊆ A if and only if (i) for all b ∈ B, b ≤ a and (ii) for all c ∈ A if b ≤ c

for all b ∈ B, then a ≤ c (Gratzer, 2011, 5). The predicate ‘is red’, for example, is the

disjunction of ‘is scarlet’, ‘is crimson’, ‘is maroon’, ... and so on, because ‘is scarlet’, ‘is

crimson’, ‘is maroon’, ... and so on all entail ‘is red’, and every predicate which entails ‘is

scarlet’, ‘is crimson’, ‘is maroon’, ... and so on also entails ‘is red’. Likewise, an element

a ∈ A is the conjunction
∧
B of the elements in a subset B ⊆ A if and only if (i) for all

b ∈ B, a ≤ b and (ii) for all c ∈ A if c ≤ b for all b ∈ B, then c ≤ a (Gratzer, 2011, 5).

Notice that neither of these definitions requires a predicate to be infinitely long for

it to be the conjunction or disjunction of an infinite set of predicates – ‘is prime’, for

example, is the disjunction of the infinitely many predicates ‘is two’, ‘is three’, ‘is five’,

‘is seven’, ‘is eleven’ ... and so on, but ‘is prime’ is nevertheless only two words long.11

Nor does one have to be able to enumerate an infinite list of predicates to be able to

understand their infinite disjunction – I am perfectly capable of understanding ‘is red’

and ‘is prime’, for example, even though I’m unable to enumerate all the shades of red

or all the prime numbers.

If 〈A,≤〉 is a finite lattice, then every element a ∈ A must be greater than or equal

on a prime number’ is an atom, because it is strictly entailed by ‘does not land’ but not by any other

predicate. Atoms are akin to Sider’s “profiles” (1993, 50); see also Dorr and Hawthorne (2013, 23).

11In contrast to predicates in the infinitary languages discussed by Cook (2019).
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to some atom b ∈ A. Moreover, every element a ∈ A in a finite boolean lattice 〈A,≤〉 is

equivalent to the disjunction
∨
{b ∈ B | b ≤ a} of a subset of the atoms B ⊆ A and for

every subset C ⊆ B of the atoms B ⊆ A in the lattice, C = {b ∈ B | b ≤
∨
C} (Davey

and Priestley, 2002, 114-5). In other words, there is a one to one correspondence between

the elements of a finite boolean lattice and the subsets of the atoms in the lattice which

the elements are disjunctions of. But in the infinite case, we need to further assumptions

to obtain this result.

The first further assumption needed to generalise to the infinite case is that the

lattice of predicates is complete. A lattice 〈A,≤〉 is complete if and only if every subset

of elements B ⊆ A has a conjunction
∧
B and a disjunction

∨
B (Gratzer, 2011, 50).

Every finite lattice is complete, since the disjunction or conjunction of its elements can

be formed by successively disjoining or conjoining each pair of its elements. So if there

were only a finite number of predicates, then the partial ordering of predicates under the

relation of entailment would be a complete lattice. So the assumption of completeness

is not controversial in the finite case, which strongly suggests that completeness is not

the source of the underlying problem.

But what about the infinite case? There is an infinite number of predicates. The

predicates ‘is one year old’, ‘is two years old’, ‘is three years old’, ... and so on, for

example, are countably infinite. Moreover, although every pair of predicates has a

disjunction and conjunction, it’s controversial whether every infinite subset of predicates

does, since it’s controversial whether the disjunction or conjunction of even a countably

infinite set of predicates can be formed by joining every predicate in the set with the
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words ‘or’ or ‘and’, or whether only finitely long strings of words can form grammatical

predicates of natural language.12

However, recall that according to abundant conceptions it is really possible predicates

that correspond to properties, and so what matters for the purposes of the argument

is whether every subset of predicates has a possible predicate as its conjunction or dis-

junction. So even if not all infinite disjunctions and conjunctions of arbitrary sets of

predicates exist in natural languages, it suffices to show that infinite disjunctions and

conjunctions of arbitrary sets of predicates are possible, which is a much lower bar. Even

if the set of actual predicates under the relation of entailment does not form a complete

lattice, it’s still plausible that the set of possible predicates does.

One argument which would suffice to show this proceeds from the possibility of enun-

ciating an infinitely long predicate by completing a supertask.13 It would be possible,

for example, to enunciate an infinitely long predicate such as ‘is one year old or is three

years old or is five years old ...’ and so on by enunciating the first disjunct in half a

minute, the second disjunct in a quarter of a minute, the third disjunct in an eighth of

a minute, ... and so on, until the whole disjunction is enunciated within a minute. The

same goes for any arbitrary infinite disjunction or conjunction, and so it would follow

that the lattice of possible predicates under the relation of entailment is complete.

12For discussion of whether there are infinite sentences in natural language see, for example, Langen-

doen and Postal (1986), Collins (2010) and Blumson (2014a).

13See especially Cook (2019, 2572-81). For linguistic supertasks see also Blumson (2015, 129-30), and

for supertasks in general see Benacerraf (1962) and Thomson (1954).
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But although the argument from the possibility of supertasks would suffice to show

that the lattice of possible predicates under the relation of entailment is complete, it is

not necessary. As I noticed above, it is not necessary for a predicate to be infinitely long

for it to be a disjunction or conjunction of infinitely many predicates – the disjunction

of ‘is one year old’, ‘is three years old’, ‘is five years old’, ... and so on, can be expressed

simply by ‘is an odd number of years old’, for example. Of course, not every infinite

set of predicates has an actual finitely-long predicate as its conjunction or disjunction.

But there is no reason why not every infinite set of predicates should have a possible

finitely-long predicate as their conjunction or disjunction.

The second further assumption needed to generalise to the infinite case is that the

lattice of possible predicates under the relation of entailment is completely distributive,

which is a generalisation of the distributivity condition stated above to infinite disjunc-

tions and conjunctions (Davey and Priestley, 2002, 239-40). Since ‘is red’, for example,

is the disjunction of ‘is scarlet’, ‘is crimson’, ‘is mauve’, ... and so on, complete dis-

tributivity implies, for example, that ‘is square and red’ is equivalent to ‘is square and

scarlet or square and crimson or square and mauve ...’ and so on. Like the condition of

distributivity above, complete distributivity of the lattice of possible predicates ordered

under entailment is relatively uncontroversial in this context.

It can be proven that all and only complete and completely distributive lattices are

complete and atomic, and so just as in the finite case, there is a one to one correspondence

between the elements of a finite boolean lattice and the subsets of the atoms in the lattice

which the elements are disjunctions of (Davey and Priestley, 2002, 240-1). And this is
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true of the lattice of predicates under the relation of entailment, even if there are infinitely

many predicates, so long as it remains complete and completely distributive. It is also

this correspondence between predicates and subsets of the set of atoms which underlies

the appeal of the doctrine of class nominalism, and its identification of properties with

subsets of the set of individuals.14

Let n be the number of atoms in a complete and completely distributive boolean

lattice 〈A,≤〉. Then since there is a one to one correspondence between elements in A

and subsets of atoms in B ⊆ A, the number of elements in A is the number of subsets

|P(B)| = 2n of the atoms. The number of predicates which apply to a die in virtue of

the number it lands, for example, is 26, since there is a predicate which applies for each

combination of the six atoms ‘lands one’, ‘lands two’, ‘lands three’, ‘lands four’, ‘lands

five’ and ‘lands six’. More importantly, if n is the number of atoms in the complete

boolean lattice of possible predicates, then the total number of possible predicates is 2n.

It follows that the number of predicates a particular satisfies is 2n−1, since each

particular must satisfy exactly one atomic predicate, but may satisfy the disjunction of

that atomic predicate with any combination of the remaining n − 1 atomic predicates.

The number of predicates satisfied by two particulars which do not satisfy all the same

predicates is 2n−2, since each two particulars satisfy in common the disjunctions of

exactly two atomic predicates with any combination of the remaining n − 2. And the

number of predicates which are satisfied by only the first of two particulars which do

not satisfy all the same predicates is also 2n−2, since the first particular satisfies not in

14Bjerring and Schwarz (2017, 26) make a similar point about analysing propositions as sets of worlds.
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common with the second the disjunctions of the atomic predicate it satisfies with any

combination of the remaining n − 1 atomic predicates, except for the atomic predicate

satisfied by the second particular (Watanabe, 1969, 377).

So, as the first premise of the argument states, the number of (possible) predicates

satisfied by two particulars which do not satisfy all the same (possible) predicates is a

fixed constant, which equals the number of (possible) predicates satisfied by only the

first and which equals the number of possible predicates satisfied by only the second

(Watanabe, 1969, 376-377). So if there is a property corresponding to every (possible)

predicate, and degree of resemblance is number of properties in common divided by

number of properties in total, then it follows that the degree of resemblance between

two particulars is
2n−2

2n−2 + 2n−2 + 2n−2
, which is

1

3
if n is finite and undefined otherwise.

This is something so paradoxical that no one will believe it.

2 The Second Premise

Sparse conceptions of properties deny that there is a property corresponding to every

(possible) predicate, and so deny that the number of properties is the number of (pos-

sible) predicates. So it’s natural for a proponent of the sparse conception to resist the

conclusion of the argument by denying its second premise. As Gonzalez Rodriguez-

Pereyra (2002, 66-7), for example, writes:

... what Watanabe proved is not a problem ... for it is essential to his

proof that the properties in question (or “predicates” to use his terminology)
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are the members of the smallest complete Boolean lattice of a given set of

properties ... Thus if the properties of being red and being square are among

the given sparse properties, their Boolean lattice will contain properties like

being red and square, being red or not being square, being neither red nor

square, etc. In general the lattice will contain negative, disjunctive, and

conjunctive properties. But these are not sparse or natural ...

Nevertheless, I will argue in this section that many conceptions of sparse properties

cannot escape the absurd conclusion.

Two clarifications. First, sparse conceptions of properties typically maintain that

whether a property corresponds to a (possible) predicate is an a posteriori question.

The existence of the property of being white, for example, cannot be deduced a priori

from the existence of the corresponding predicate ‘is white’ (Armstrong, 1978b, 7-9).

But even if whether a property corresponds to a (possible) predicate is an a posteriori

question, it does not follow that there is nothing to be said in answer to that question

in logical terms, including in terms of negation, disjunction and conjunction.

Consider an analogy with probabilities. Although whether a proposition has a certain

probability is plausibly an a posteriori question, there is much which can be said about

the relationship between probabilities in logical terms – for example, that if two propo-

sitions are inconsistent, then the sum of their probabilities is the probability of their

disjunction. In this section of the paper, I want to focus particularly on sparse con-

ceptions which articulate the relationships between properties in broadly logical terms.

Many sparse conceptions of this kind, I will argue, do not escape the absurd conclusion.
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Second, some sparse conceptions of properties maintain that whether there is a prop-

erty corresponding to a (possible) predicate is not only a posteriori, but revealed by

fundamental physics. As David Lewis, for example, writes “Physics has its short list

of ‘fundamental physical properties’: the charges and masses of particles, also their so-

called ‘spins’ and ‘colours’ and ‘flavours’, ... an inventory of the sparse properties of

this-worldly things” (Lewis, 1986b, 60). But fundamental physical properties are not

the respects in which ordinary macroscopic objects typically resemble each other, so this

conception of sparse properties is poorly suited to feature in the analysis of resemblance

(Schaffer, 2004, 94).

A natural way for proponents of sparse conceptions of properties to address this con-

cern is to postulate the existence, in addition to the fundamental physical properties, of

structural or complex properties, which depend on or derive from the fundamental phys-

ical properties. Then although ordinary macroscopic objects do not typically resemble

each other in respect of fundamental physical properties, they may resemble each other

in respect of the structural or complex properties which derive from the fundamental

physical properties.

But the existence and nature of sparse structural or complex properties is extremely

controversial (see, for example, Lewis (1986a)). The least controversial case is the ex-

ample of conjunctive properties. But they are the source of the last and most serious

problem I discuss below. I take it that if even the least controversial example of struc-

tural or complex properties is problematic, then it’s likely that the more controversial

examples of structural or complex properties will be even more problematic. In general,
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although I won’t show that there is no sparse conception of properties which avoids the

problems I raise, I will consider enough to show that those problems are no accident.15

I will begin with various toy examples which, while philosophically motivated, do

not correspond to positions in the literature. I will then turn to the sparse conception of

properties favoured by David Armstrong, which is one of the most influential positions

in the literature. In another context, it may seem as if the problems with Armstrong’s

conception are an accident due to careless formulation (this seems to be John Bacon’s

(1986) view, for example). But in the context of these toy examples, it is apparent that

the problems with Armstrong’s conception are deep and robust.

Some conceptions of sparse properties cannot escape the absurd conclusion that the

degree of resemblance between any two different particulars is a fixed constant because

they are not sparse enough. According to the principle of instantiation, for example,

there is a property corresponding to a (possible) predicate only if some particular satisfies

that (possible) predicate (Armstrong, 1978a, 113). So according to the principle of

instantiation there is no property corresponding to the predicate ‘is faster than the speed

of light’, for example, because nothing is faster than the speed of light. This suggests a

sparse conception of properties according to which there is a property corresponding to

a (possible) predicate if and only if some particular satisfies that predicate.

15Gardenfors (2000, 59-100) and Oddie (2005, 152-158), for example, present a sparse conception of

properties which is like Armstrong’s in accepting that all conjunctions of sparse properties are properties,

but differs from Armstrong’s in only denying that some negative and disjunctive properties are. But

Blumson (2019b) proves this conception does not overcome the problems with Armstrong’s.
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But just as every (possible) predicate corresponds to a disjunction of the n atoms,

every unsatisfied (possible) predicate corresponds to a disjunction of the r unsatisfied

atoms. So if there is a property corresponding to a (possible) predicate if and only if

some particular satisfies that predicate, then the number of properties is not 2n, the

number of (possible) predicates, but 2n − 2r, the number of (possible) predicates minus

the number of unsatisfied (possible) predicates.

Nevertheless, the number of properties a particular satisfies is still 2n−1, since none of

the (possible) predicates it satisfies are unsatisfied, the number of properties two different

particulars have in common still 2n−2, since none of the (possible) predicates satisfied

by two particulars are unsatisfied, and the number of properties instantiated by only

the first still 2n−2, since none of the (possible) predicates satisfied by two particulars are

unsatisfied. So if the degree of resemblance between two particulars is their proportion

of properties in common, the degree of resemblance between two different particulars is

still
2n−2

2n−2 + 2n−2 + 2n−2
or

1

3
if defined.

The conception of sparse properties which incorporates only the principle of instan-

tiation cannot escape the absurd conclusion roughly because it is not sparse enough –

there are still sufficiently many properties to ensure that any two distinct individuals

resemble each other to the same degree. Other conceptions of sparse properties cannot

escape the absurd conclusion that the degree of resemblance between any two differ-

ent particulars is a fixed constant roughly because they are too sparse – according to

them there are insufficiently many properties to ensure that any two distinct individuals

resemble each other to a different degree.
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Consider, for example, a sparse conception of properties according to which there is

a property corresponding to every atomic (possible) predicate – in other words, those

predicates which are not disjunctions of any others. Then the number of properties is n,

the number of atomic predicates. Since the atomic (possible) predicates are all incon-

sistent with each other, no particular satisfies more than one. And since the disjunction

of the atomic (possible) predicates is tautologous, every particular satisfies at least one.

So the number of atomic (possible) predicates a particular satisfies is one, and the num-

ber of atomic (possible) predicates satisfied by two particulars which do not satisfy all

the same (possible) predicates is zero. So if properties correspond to atomic (possible)

predicates and degree of resemblance is proportion of properties in common, then the

degree of resemblance between any two different particulars is zero.

So whereas conceptions according to which the sparse properties correspond to the

instantiated (possible) predicates are not sparse enough to escape the conclusion that

the degree of resemblance between two different particulars is constant, the conception

according to which the sparse properties correspond to the atomic (possible) predicates

is too sparse to escape the conclusion that the degree of resemblance between two dif-

ferent particulars is constant.16 This suggests pursuing a conception of properties of

intermediate sparseness.

16Although no conceptions in the literature correspond exactly to this conception, some are just as

unremittingly sparse. According to Rodriguez-Pereyra (2002, 48-52), for example, the sparse proper-

ties are “lowest determinate properties”, and there are no negative, conjunctive or disjunctive sparse

properties. I intend to consider Rodriguez-Pereyra’s theory in more detail elsewhere.
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I now turn to consider the intermediately sparse conception of properties favoured

by David Armstrong, which is not merely a toy example, but one of the most influential

in the literature. I will begin with a simplified version of Armstrong’s conception, which

ignores the principle of instantiation. I will then discuss Armstrong’s actual concep-

tion, which includes the principle of instantiation. I will argue that neither conception

succeeds in escaping the absurd conclusion that the degree of resemblance between two

different particulars is a fixed constant, which does not depend on the choice of the two

particulars.

If we ignore the principle of instantiation, then Armstrong favours a conception of

properties which meets the following three conditions: (negation) if there is a property

corresponding to a (possible) predicate a, then there is no property corresponding to

its negation ¬a, (disjunction) if there is a property corresponding to two (possible)

predicates a and b and a 6= b, then there is no property corresponding to their disjunction

a∨ b, and (conjunction) if there is a property corresponding to two (possible) predicates

a and b, then there is a property corresponding to their conjunction a ∧ b (Armstrong,

1978b, 20-30).

This conception of properties is too sparse, because it follows that a property corre-

sponds to only one possible predicate. For suppose that there is a property corresponding

to a and a property corresponding to b. Then according to (conjunction) there is a prop-

erty corresponding to a ∧ b. But since a is equivalent to a ∨ (a ∧ b) and b is equivalent

to b ∨ (a ∧ b), and because we have stipulated (as Armstrong (1978a, 7) agrees) that

equivalent predicates are the same, there is a property corresponding to a ∨ (a ∧ b) and
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a property corresponding to b ∨ (a ∧ b). Then according to (disjunction) a = a ∧ b and

b = a∧b (otherwise a∨(a∧b) and b∨(a∧b) would correspond to disjunctive properties),

so a = b. So if there is a property corresponding to a and a property corresponding to

b, then according to this conception, a = b (Bacon, 1986, 49).

Because Armstrong accepts the principle of instantiation, he does not accept (con-

junction) in full generality, and so it does not follow from Armstrong’s conception that

there is a property corresponding to only one (possible) predicate. Instead, Armstrong

endorses: (instantiated conjunction) if there is a property corresponding to two (pos-

sible) predicates a and b and some particular satisfies both a and b, then there is a

property corresponding to their conjunction a ∧ b (Armstrong, 1978b, 30).

But Armstrong’s conception is still too sparse, since it follows that each particular

instantiates only one property. For suppose that there is a property corresponding to

a and a property corresponding to b, and that some particular satisfies both a and b.

Then according to (instantiated conjunction) there is a property corresponding to a∧ b.

But since a = a ∨ (a ∧ b) and b = b ∨ (a ∧ b), there is a property corresponding to

a ∨ (a ∧ b) and a property corresponding to b ∨ (a ∧ b). Then according to (disjunction)

a = a ∧ b and b = a ∧ b, so a = b. So if there is a property corresponding to a and a

property corresponding to b and some particular satisfies both a and b, then, according

to Armstrong’s conception, a = b (Bacon, 1986, 49).

So Armstrong’s conception of properties has similar consequences to the conception

according to which the properties correspond to the atomic (possible) predicates. Sup-

posing that that there are no bare particulars, or in other words that at least one of
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the (possible) predicates satisfied by a particular corresponds to a property, it follows

from Armstrong’s conception that exactly one of the (possible) predicates satisfied by

each particular corresponds to a property, or that the number of properties a particular

instantiates is one. The number of properties instantiated by two different particulars

is zero, since the one property each satisfies must be different if they are different. So

if their degree of resemblance is their proportion of properties in common, then their

degree of resemblance is zero.

3 The Third Premise

A natural way for proponents of abundant conceptions of properties to avoid the conclu-

sion of the argument is to revise the premise that the degree of resemblance between two

different particulars is a function of their number of common and uncommon properties.

Different properties, according to this revision, have different weights in determining

degrees of resemblance: the degree of resemblance between two different particulars is a

function of the weights of the properties they have in common, the weights of the prop-

erties the first has not in common with the second, and the weights of the properties the

second has not in common with the first.

Revising the premise that the degree of resemblance between two different particulars

is a function of their number of common and uncommon properties to the thesis that the

degree of resemblance between two different particulars is a weighted function of their

common and uncommon properties must be at least as good a way to avoid the barely

believable conclusion as adopting a given sparse conception of properties, because if the
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weights of the properties are given by the function w : A → {0, 1} which takes each

abundant property in A to one if it corresponds to a property according to the sparse

conception but to zero if it does not, then the revision to the premise can give the same

number (if defined) as the degree of resemblance between two particulars as the given

sparse conception of properties did.

Note that proponents of abundant conceptions of properties disagree over the ques-

tion of whether the weights should be interpreted as subjective degrees of importance

(as Nelson Goodman (1972), for example, argues) or objective degrees of naturalness

(as David Lewis (1983), for example, argues). Nevertheless, I will argue in this section

that even without resolving this question, there is more to be said in logical terms about

the nature of weights than there is to be said in logical terms about which predicates

correspond to properties according to an appropriate sparse conception.

Reconsider the analogy with probabilities. Even though there is disagreement about

whether the probability of a proposition should be interpreted in terms of subjective

credences or objective chances, there is much to be said about the relationship between

probability in logical terms – for example, that if two propositions are inconsistent, then

the sum of their probabilities is the probability of their disjunction – which is independent

of this issue. In this section of the paper, I want to focus particularly on what can be

said about the nature of weights in logical terms.

The analogy with probabilities suggests that the weights should be given by a function

w : A → R from the set of predicates A to the real numbers such that for all a ∈ A,

w(a) = 1 − p(a), where p : A → R is a function from the set of predicates A to the
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real numbers which meets the following three conditions: (non-negativity) for all a ∈ A,

0 ≤ p(a), (normalisation) p(>) = 1 and (finite additivity) for all a, b ∈ A such that

a∧ b = ⊥, p(a∨ b) = p(a) + p(b). The weight of a property, according to this idea, is the

opposite of its peculiarity, where the minimum degree of peculiarity is zero, predicates

which apply to everything have the maximum degree of peculiarity, and the peculiarity

of a disjunction is the sum of the peculiarity of its disjuncts, when they are inconsistent.

This characterisation of the weighting function captures the desired asymmetry be-

tween conjunctive and disjunctive properties, whereas sparse conceptions which main-

tained that properties exist corresponding to conjunctive but not to disjunctive predi-

cates were unable to. This is because for any pair of predicates a, b ∈ A such that a ≤ b

or a entails b, it follows that p(a) ≤ p(b). And since for all a, b ∈ A, a ∧ b ≤ a ≤ a ∨ b

it follows that for all a, b ∈ A, p(a ∧ b) ≤ p(a) ≤ p(a ∨ b) or, in other words, that the

weight of a conjunction is greater than or equal to the weight of the conjuncts, whereas

the weight of a disjunction is less than or equal to the weight of the disjuncts.

But this characterization of the weighting function also has three counterintuitive

consequences. First, if p(a) = 0 and p(b) = 0 it follows from finite additivity that

p(a∨ b) = 0. But if ‘is red’ and ‘is green’, for example, are not at all peculiar or in other

words perfectly natural or important, it shouldn’t follow that their disjunction ‘is red

or green’ is not at all peculiar or perfectly natural or important, since there is a wider

diversity between the things which are red or green than between the things which are

red or than between the things which are green.

Second, if p(a) = p(b), p(c) = p(d), a ∧ c = ⊥, and b ∧ d = ⊥, it follows from
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finite additivity that p(a ∨ c) = p(b ∨ d). But if ‘is red’ and ‘is yellow’ are peculiar or

natural to the same degree, and ‘is orange’ and ‘is purple’ are peculiar or natural to the

same degree, it shouldn’t follow that ‘is red or orange’ is peculiar or natural to the same

degree as ‘is yellow or purple’. Rather, ‘is red or orange’ should have a higher weight

in determining degree of resemblance and a lower degree of peculiarity than ‘is yellow

or purple’, since red and orange particulars are similar with respect to colour whereas

yellow and purple particulars are not.

Third, suppose finite additivity is strengthed to (ultra-additivity), according to which

for every subset, finite or infinite, B ⊆ A such that a ∧ b = ⊥ for all a, b ∈ B, p(
∨
B) =∑

b∈B p(b).17 Then if there is an infinite subset B ⊆ A such that a ∧ b = ⊥ for all

a, b ∈ B and every predicate b ∈ B is peculiar to the same non-negative degree, the sum

p(
∨

B) =
∑

b∈B p(b) must be zero or infinite. But if p(
∨
B) =

∑
b∈B p(b) is infinite, this

contradicts the fact that for all a ∈ A, p(a) ≤ 1. So if there is an infinite subset B ⊆ A

such that a ∧ b = ⊥ for all a, b ∈ B and every predicate b ∈ B is peculiar to the same

non-negative degree, then the sum p(
∨
B) =

∑
b∈B p(b) is zero.

However, it seems as if there are infinite sets of predicates which all have the same

non-negative degree of peculiarity. It seems, for example, that there is an infinite number

of determinate shades of colour, which all have equal weight in determining degree of

resemblance. Their equal degree of peculiarity cannot be positive, since then the degree

of peculiarity of their disjunction ‘is coloured’ would be an infinite number greater than

one, contradicting the fact that all degrees of peculiarity are real numbers less than one.

17The name “ultra-additivity” comes from Skyrms (1983, 227).
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So their equal degree of peculiarity must be zero, and the sum of their zero degrees of

peculiarity or the degree of peculiarity of their disjunction ‘is coloured’ must be zero too.

But since there is a great deal of heterogeneity amongst the things that are coloured,

the degree of peculiarity of ‘is coloured’ should be greater than zero.

This third problem is the least pressing, since it arises equally for the case of prob-

ability and measurement in general, where the denial of ultra-additivity is the modern

solution to Zeno’s paradox of measure (Skyrms, 1983, 235). Moreover, it is just one of

many other counterintuitive results concerning infinity and connected with the axiom

of choice – such as, for example, the Vitali and Banch-Tarski paradoxes – which afflict

probability and measurement in general (Skyrms, 1983, 242-5). But since the first two

problems arise even in the finite case, infinity is not the whole source of the problem,

and a problem arises even if ultra-additivity is denied. Moreover, the first two problems

do not have any probabilistic analogue.

In order to escape these problems with this approach, one not unnatural proposal is to

weaken finite additivity to require that the peculiarity of the disjunction of inconsistent

predicates is not strictly equal to but merely greater than or equal to the sum of the

disjunctions or, in other words, to: (finite superadditivity) for all a, b ∈ A such that

a ∧ b = ⊥, p(a ∨ b) ≥ p(a) + p(b) (Wang and Klir, 2009, 67). The peculiarity of a

disjunction such as ‘is red or orange’, for example, is greater than or equal to the sum

of the peculiarities of the disjuncts ‘is red’ and ‘is orange’.

This characterisation still captures the desired asymmetry between conjunctive and

disjunctive properties. For for all predicates a, b ∈ A such that a ≤ b, b = a∨(b∧¬a), and
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so it follows from finite superadditivity that p(b) ≥ p(a) + p(b ∧ ¬a) and so p(b) ≥ p(a).

So it still follows that for all a, b ∈ A, p(a ∧ b) ≤ p(a) ≤ p(a ∨ b) or, in other words,

that the weight of a conjunction is greater than or equal to the weight of the conjuncts,

whereas the weight of a disjunction is less than or equal to the weight of the disjuncts.

But the three counterintuitive consequence don’t follow. First, even if p(a) = 0 and

p(b) = 0, it doesn’t follow that p(a ∨ b) = 0, but only that p(a ∨ b) ≥ 0. If ‘is red’ and

‘is green’, for example, are perfectly natural or not at all peculiar, ‘is red or green’ may

still be less than perfectly natural or somewhat peculiar. Second, even if p(a) = p(b),

p(c) = p(d), a∧ c = ⊥ and b∧ d = ⊥, it doesn’t follow that p(a∨ c) = p(b∨ d), but only

that p(a ∨ c) ≥ p(a) + p(c) = p(b) + p(d) ≤ p(b ∨ d). So even if ‘is red’ and ‘is yellow’

are peculiar or natural to the same degree, and ‘is orange’ and ‘is purple’ are peculiar or

natural to the same degree, it doesn’t follow that ‘is red or orange’ is peculiar or natural

to the same degree as ‘is yellow or purple’.

Third, suppose finite superadditivity is strengthened to (ultra-superadditivity), ac-

cording to which for every subset, finite or infinite, B ⊆ A such that a ∧ b = ⊥ for all

a, b ∈ B, p(
∨
B) ≥

∑
b∈B p(b). Then even if there is an infinite subset B ⊆ A such that

a∧ b = ⊥ for all a, b ∈ B and every predicate b ∈ B is natural to the same non-negative

degree, the sum
∑

b∈B p(b) must still be zero or infinite. Since
∑

b∈B p(b) cannot be

infinite, it must be zero. However, it only follows from this and ultra-superadditivity

that p(
∨

B) ≥ 0, which is unexceptionable.

Supposing, for example, that there is an infinite number of determinate shades of

colour, which all have equal non-negative weight in determining degree of resemblance.
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Their equal degree of peculiarity still cannot be positive, since then the degree of pecu-

liarity of their disjunction ‘is coloured’ or the sum of their equal degrees of peculiarity

would be an infinite number greater than one. So their equal degree of peculiarity

must be zero. But it follows from this and ultra-superadditivity only that the degree

of peculiarity of their disjunction ‘is coloured’ is greater than or equal to zero, which is

unexceptionable.

Some problems with infinity remain. Consider, for example, a two kilogram weight,

which is more similar in respect of mass to a three kilogram weight than it is to a

ten kilogram weight. If this is to be so, then some property which the two kilogram

weight has in common with the three kilogram weight but not in common with the ten

kilogram weight must have a positive degree of naturalness or importance. For the sake

of illustration, say it is the property of weighing between one and four kilograms. It

follows that the infinitely many properties which entail this property, such as weighing

between one and r kilograms for any r between three and four, will have at least as high

a degree of naturalness or importance.

Since all these properties are in common between the two and three kilogram weights,

the degrees of importance and naturalness of their properties in common will sum to

an infinite number, and their weighted proportion of properties will be undefined. One

may try to avoid this problem by assigning positive weight only to properties which are

entailed by a finite number of other properties (in other words only to properties corre-

sponding to predicates which are finite disjunctions of atoms). But this is unacceptably

ad hoc – after all being between one and four kilograms in weight is intuitively a prop-
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erty which makes for resemblance. Moreover, it is difficult if not impossible to assign

the degrees in such a way that things closer together in respect of weight resemble each

other more.18

Nevertheless, analysing degree of resemblance as a function of properties in common

and not in common, weighted by degrees of naturalness or importance, represents a

significant improvement over analysing degree of resemblance simply as a function of

number of properties in common and not in common. Most importantly, it provides a

precise way to accommodate the intuition that conjunctive properties make for resem-

blance more than disjunctive properties do. While difficulties remain in the infinite case,

the same is true for rival theories of degree of dissimilarity, such as those which attempt

to treat it in analogy with spatial distance (Blumson, 2019a). The finite case is hard

enough on its own.19

18This problem, suggested by anonymous referee, generalises objections to Rodriguez-Pereyra (2002)

given by Yi (2018). Blumson (2018, 34-6) also raises similar problems of infinity for the analysis of degree

of similarity as proportion of properties in common, some of which generalise to analysis of degree of

similarity as weighted proportion of properties in common. I intend to take this up again elsewhere.

19Thanks to John Baez, Zach Barnett, Bob Beddor, Jens-Christian Bjerring, Antony Eagle, Jay

Garfield, Jeremiah Joven Joaquin, David Kovacs, Dan Marshall, Neil Mehta, Qu Hsueh Ming, Daniel

Nolan, Josh Parsons, Alexander Paseau, Michael Pelczar, Abelard Podgorski, Alex Sandgren, Kranti

Saran, Nicholas Silins, Nick Smith, Neil Sinhababu and Weng Hong Tang, as well as audiences at the

National Chung Cheng University, the University of Delhi, the University of Sydney and the Australasian

Association of Philosophy conference at the University of Queensland in 2013 for discussion of this paper.
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