Mereology

Ben Blumson

March 1, 2021
Abstract
We use Isabelle/HOL to verify elementary theorems and alternative axiomatizations of classical extensional mereology.

Contents

1 Introduction 2
2 Premereology 2
2.1 Parthood 3
2.2 Overlap 3
2.3 Disjointness 4
3 Ground Mereology 5
3.1 Proper Parthood 6
4 Minimal Mereology 13
5 Extensional Mereology 18
6 Closed Mereology 22
6.1 Products 22
6.2 Differences 29
6.3 The Universe 30
6.4 Complements 32
7 Closed Extensional Mereology 37
7.1 Sums 38
7.2 Distributivity 45
7.3 Differences 51
7.4 The Universe 52
7.5 Complements 53
8 General Mereology 61
9 General Minimal Mereology 62
10 General Extensional Mereology 63
10.1 General Sums 63
10.2 General Products 74
10.3 Strong Fusion 75
10.4 Strong Sums 82

1 Introduction

In this paper, we use Isabelle/HOL to verify some elementary theorems and alternative axiomatizations of classical extensional mereology, as well as some of its weaker subtheories. ${ }^{1}$ We mostly follow the presentations from [Simons, 1987], [Varzi, 1996] and [Casati and Varzi, 1999], with some important corrections from [Pontow, 2004] and [Hovda, 2009] as well as some detailed proofs adapted from [Pietruszczak, 2018]. ${ }^{2}$

We will use the following notation throughout. ${ }^{3}$

```
typedecl i
consts part :: i=>i=> bool (P)
consts overlap :: i=> i=> bool (O)
consts proper-part ::i=>i=> bool (PP)
consts sum :: i=>i=>i(infix }\oplus52
consts product :: i=>i=>i(infix \otimes 53)
consts difference :: i=>i=>i(infix \ominus 51)
consts complement:: i=> i(-)
consts universe :: i(u)
consts general-sum :: (i=> bool)=>i(binder \sigma 9)
consts general-product :: (i=> bool)}=>i\mathrm{ (binder }\pi[8] 9
```


2 Premereology

The theory of premereology assumes parthood is reflexive and transitive. ${ }^{4}$ In other words, parthood is assumed to be a partial ordering relation. ${ }^{5}$ Overlap is defined as common parthood. ${ }^{6}$

```
locale \(P M=\)
    assumes part-reflexivity: P \(x x\)
    assumes part-transitivity : \(P x y \Longrightarrow P y z \Longrightarrow P x z\)
```

[^0]```
 assumes overlap-eq: \(O x y \longleftrightarrow(\exists z . P z x \wedge P z y)\)
begin
```


### 2.1 Parthood

```
lemma identity-implies-part : x=y\LongrightarrowPxy
proof -
 assume }x=
 moreover have P x x by (rule part-reflexivity)
 ultimately show P x y by (rule subst)
qed
```


### 2.2 Overlap

lemma overlap-intro: $P z x \Longrightarrow P z y \Longrightarrow O x y$ proof-
assume $P z x$
moreover assume $P z y$
ultimately have $P z x \wedge P z y$..
hence $\exists z . P z x \wedge P z y$..
with overlap-eq show $O x y$..
qed
lemma part-implies-overlap: $P x y \Longrightarrow O x y$
proof -
assume $P x y$
with part-reflexivity have $P x x \wedge P x y$..
hence $\exists z . P z x \wedge P z y$..
with overlap-eq show $O x y$..
qed
lemma overlap-reflexivity: $O x x$ proof -
have $P x x \wedge P x x$ using part-reflexivity part-reflexivity..
hence $\exists z . P z x \wedge P z x$..
with overlap-eq show $O x x$..
qed
lemma overlap-symmetry: $O x y \Longrightarrow O y x$ proof-
assume $O x y$
with overlap-eq have $\exists z . P z x \wedge P z y$..
hence $\exists z . P z y \wedge P z x$ by auto
with overlap-eq show $O y x$..
qed
lemma overlap-monotonicity: $P x y \Longrightarrow O z x \Longrightarrow O z y$
proof -
assume $P x y$
assume $O z x$

```
 with overlap-eq have \exists v. Pvz^Pvx..
 then obtain v}\mathrm{ where v: Pvz^Pvx..
 hence P v z..
 moreover from v}\mathrm{ have P vx..
 hence Pv y using \langleP x y by (rule part-transitivity)
 ultimately have Pvz^Pvy..
 hence \existsv. Pvz\wedgePvy..
 with overlap-eq show Ozy..
qed
```

The next lemma is from [Hovda, 2009] p. 66.

```
lemma overlap-lemma: \(\exists x .(P x y \wedge O z x) \longrightarrow O y z\)
proof -
 fix \(x\)
 have \(P x y \wedge O z x \longrightarrow O y z\)
 proof
 assume antecedent: \(P x y \wedge O z x\)
 hence \(O z x\)..
 with overlap-eq have \(\exists v . P v z \wedge P v x .\).
 then obtain \(v\) where \(v: P v z \wedge P v x\)..
 hence \(P \quad v x\)..
 moreover from antecedent have \(P x y\)..
 ultimately have \(P v y\) by (rule part-transitivity)
 moreover from \(v\) have \(P v z\)..
 ultimately have \(P v y \wedge P v z\)..
 hence \(\exists v . P v y \wedge P v z .\).
 with overlap-eq show \(O\) y \(z\)..
 qed
 thus \(\exists x .(P x y \wedge O z x) \longrightarrow O y z .\).
qed
```


### 2.3 Disjointness

lemma disjoint-implies-distinct: $\neg O x y \Longrightarrow x \neq y$
proof -
assume $\neg O x y$
show $x \neq y$
proof
assume $x=y$
hence $\neg O$ y $y$ using $\langle\neg O x y\rangle$ by (rule subst)
thus False using overlap-reflexivity..
qed
qed
lemma disjoint-implies-not-part: $\neg \mathrm{O} x \mathrm{y} \Longrightarrow \neg P x y$
proof -
assume $\neg O x y$
show $\neg P x y$
proof

```
 assume P x y
 hence O x y by (rule part-implies-overlap)
 with }\negOxy`\mathrm{ show False..
 qed
qed
lemma disjoint-symmetry: ᄀOxy\Longrightarrow\negO y x
proof -
 assume \neg O x y
 show \neg O y x
 proof
 assume O y x
 hence O x y by (rule overlap-symmetry)
 with }\negOxy`\mathrm{ show False..
 qed
qed
lemma disjoint-demonotonicity: Pxy\Longrightarrow\negOzy\Longrightarrow\negOzx
proof -
 assume P x y
 assume \negOzy
 show \neg O zx
 proof
 assume Ozx
 with }\langlePxy\rangle\mathrm{ have Ozy
 by (rule overlap-monotonicity)
 with }\negO\mathrm{ z y` show False..
 qed
qed
end
```


## 3 Ground Mereology

The theory of ground mereology adds to premereology the antisymmetry of parthood, and defines proper parthood as nonidentical parthood. ${ }^{7}$ In other words, ground mereology assumes that parthood is a partial order.

```
locale \(M=P M+\)
 assumes part-antisymmetry: \(P x y \Longrightarrow P y x \Longrightarrow x=y\)
 assumes nip-eq: PP \(x y \longleftrightarrow P x y \wedge x \neq y\)
begin
```

[^1]
### 3.1 Proper Parthood

```
lemma proper-implies-part: PP x y \LongrightarrowPxy
proof -
 assume PP x y
 with nip-eq have P x y ^ x = y..
 thus P x y..
qed
lemma proper-implies-distinct: PP x y \Longrightarrow x = y
proof -
 assume PP x y
 with nip-eq have P x y ^x\not=y..
 thus }x\not=y\mathrm{ ..
qed
lemma proper-implies-not-part: PP x y \Longrightarrow ᄀP yx
proof -
 assume PP x y
 hence P x y by (rule proper-implies-part)
 show \negP y x
 proof
 from }\langlePP\xy\rangle\mathrm{ have }x\not=y\mathrm{ by (rule proper-implies-distinct)
 moreover assume P y x
 with \langleP x y\rangle have }x=y\mathrm{ by (rule part-antisymmetry)
 ultimately show False..
 qed
qed
lemma proper-part-asymmetry: PP x y \Longrightarrow PP y x
proof -
 assume PP x y
 hence P x y by (rule proper-implies-part)
 from }\langlePPxy\rangle\mathrm{ have }x\not=y\mathrm{ by (rule proper-implies-distinct)
 show \negPP y }
 proof
 assume PP y x
 hence P y x by (rule proper-implies-part)
 with }\langlePxy\rangle\mathrm{ have }x=y\mathrm{ by (rule part-antisymmetry)
 with }\langlex\not=y\rangle\mathrm{ show False..
 qed
qed
lemma proper-implies-overlap: PP x y COxy
proof -
 assume PP x y
 hence P x y by (rule proper-implies-part)
 thus Ox y by (rule part-implies-overlap)
qed
```

end
The rest of this section compares four alternative axiomatizations of ground mereology, and verifies their equivalence.

The first alternative axiomatization defines proper parthood as nonmutual instead of nonidentical parthood. ${ }^{8}$ In the presence of antisymmetry, the two definitions of proper parthood are equivalent. ${ }^{9}$
locale $M 1=P M+$
assumes nmp-eq: $P P x y \longleftrightarrow P x y \wedge \neg P y x$
assumes part-antisymmetry: $P x y \Longrightarrow P y x \Longrightarrow x=y$
sublocale $M \subseteq M 1$
proof
fix $x y$
show nmp-eq: $P P x y \longleftrightarrow P x y \wedge \neg P y x$
proof
assume $P P x y$
with nip-eq have nip: $P x y \wedge x \neq y$..
hence $x \neq y$..
from nip have $P$ x $y$..
moreover have $\neg P y x$
proof
assume $P$ y $x$
with $\langle P x y\rangle$ have $x=y$ by (rule part-antisymmetry)
with $\langle x \neq y\rangle$ show False..
qed
ultimately show $P x y \wedge \neg P y x .$.
next
assume $n m p: P x y \wedge \neg P y x$
hence $\neg P$ y $x$..
from $n m p$ have $P x y$..
moreover have $x \neq y$
proof
assume $x=y$
hence $\neg P$ y $y$ using $\langle\neg P y x\rangle$ by (rule subst)
thus False using part-reflexivity..
qed
ultimately have $P x y \wedge x \neq y$..
with nip-eq show $P P x y$..
qed
show $P x y \Longrightarrow P y x \Longrightarrow x=y$ using part-antisymmetry.
qed

[^2]```
sublocale \(M 1 \subseteq M\)
proof
    fix \(x y\)
    show nip-eq: PP \(x y \longleftrightarrow P x y \wedge x \neq y\)
    proof
        assume \(P P x y\)
```



```
        hence \(\neg P y x\)..
        from \(n m p\) have \(P x y\)..
        moreover have \(x \neq y\)
        proof
            assume \(x=y\)
            hence \(\neg P\) y \(y\) using \(\langle\neg P y x\rangle\) by (rule subst)
            thus False using part-reflexivity..
        qed
        ultimately show \(P x y \wedge x \neq y\)..
    next
        assume nip: \(P x y \wedge x \neq y\)
        hence \(x \neq y\)..
        from nip have \(P x y\)..
        moreover have \(\neg P y x\)
        proof
            assume \(P y x\)
            with \(\langle P x y\rangle\) have \(x=y\) by (rule part-antisymmetry)
            with \(\langle x \neq y\rangle\) show False..
        qed
        ultimately have \(P x y \wedge \neg P y x\)..
        with nmp-eq show \(P P x y\)..
    qed
    show \(P x y \Longrightarrow P\) y \(x \Longrightarrow x=y\) using part-antisymmetry.
qed
```

Conversely, assuming the two definitions of proper parthood are equivalent entails the antisymmetry of parthood, leading to the second alternative axiomatization, which assumes both equivalencies. ${ }^{10}$
locale $M 2=P M+$
assumes nip-eq: $P P x y \longleftrightarrow P x y \wedge x \neq y$
assumes $n m p-e q: P P x y \longleftrightarrow P x y \wedge \neg P y x$
sublocale $M \subseteq M 2$
proof
fix $x y$
show $P P x y \longleftrightarrow P x y \wedge x \neq y$ using nip-eq.
show $P P x y \longleftrightarrow P x y \wedge \neg P y x$ using $n m p-e q$.
qed

[^3]```
sublocale M2 \subseteqM
proof
 fix }x
 show PP x y \longleftrightarrowPxy^x\not=y using nip-eq.
 show P x y P P x \Longrightarrow x=y
 proof -
 assume P x y
 assume P y x
 show }x=
 proof (rule ccontr)
 assume }x\not=
 with }\langlePxy\rangle\mathrm{ have P x y^x#=y..
 with nip-eq have PP x y..
 with nmp-eq have P x y ^\neg P y x..
 hence }\negP\mathrm{ y x ..
 thus False using <P y x\rangle..
 qed
 qed
qed
```

In the context of the other axioms, antisymmetry is equivalent to the extensionality of parthood, which gives the third alternative axiomatization. ${ }^{11}$
locale $M 3=P M+$
assumes nip-eq: PP $x y \longleftrightarrow P x y \wedge x \neq y$
assumes part-extensionality: $x=y \longleftrightarrow(\forall z . P z x \longleftrightarrow P z y)$
sublocale $M \subseteq M 3$
proof
fix $x y$
show $P P x y \longleftrightarrow P x y \wedge x \neq y$ using nip-eq.
show part-extensionality: $x=y \longleftrightarrow(\forall z . P z x \longleftrightarrow P z y)$
proof
assume $x=y$
moreover have $\forall z . P z x \longleftrightarrow P z x$ by simp
ultimately show $\forall z . P z x \longleftrightarrow P z y$ by (rule subst)
next
assume $z: \forall z . P z x \longleftrightarrow P z y$
show $x=y$
proof (rule part-antisymmetry)
from $z$ have $P y x \longleftrightarrow P y$ y..
moreover have $P$ y $y$ by (rule part-reflexivity)
ultimately show $P y x$..
next
from $z$ have $P x x \longleftrightarrow P x y$..
moreover have $P x x$ by (rule part-reflexivity)

[^4]```
            ultimately show P x y..
        qed
    qed
qed
sublocale M3\subseteqM
proof
    fix x y
    show PP x y \longleftrightarrowPxy^x\not=y using nip-eq.
    show part-antisymmetry: Pxy\LongrightarrowPyx\Longrightarrowx=y
    proof -
        assume P x y
        assume P y x
        have }\forallz.Pzx\longleftrightarrowPz
        proof
            fix z
            show Pzx\longleftrightarrowPzy
            proof
                assume Pzx
                thus Pzy using <P x y\rangle by (rule part-transitivity)
            next
                assume Pzy
                thus Pzx using <P y x\rangle by (rule part-transitivity)
            qed
        qed
        with part-extensionality show }x=y.
    qed
qed
```

The fourth axiomatization adopts proper parthood as primitive. ${ }^{12}$ Improper parthood is defined as proper parthood or identity.
locale $M_{4}=$
assumes part-eq: P $x y \longleftrightarrow P P x y \vee x=y$
assumes overlap-eq: $O x y \longleftrightarrow(\exists z . P z x \wedge P z y)$
assumes proper-part-asymmetry: $P P$ x $y \Longrightarrow \neg P P$ y x
assumes proper-part-transitivity: $P P x y \Longrightarrow P P y z \Longrightarrow P P x z$
begin
lemma proper-part-irreflexivity: $\neg P P x x$
proof
assume $P P x x$
hence $\neg P P x x$ by (rule proper-part-asymmetry)
thus False using $\langle P P \quad x x\rangle$..
qed
end

[^5]```
sublocale \(M \subseteq M 4\)
proof
 fix \(x y z\)
 show part-eq: P \(x y \longleftrightarrow(P P x y \vee x=y)\)
 proof
 assume \(P x y\)
 show \(P P x y \vee x=y\)
 proof cases
 assume \(x=y\)
 thus PP \(x y \vee x=y\)..
 next
 assume \(x \neq y\)
 with \(\langle P x y\rangle\) have \(P x y \wedge x \neq y\)..
 with nip-eq have PP \(x y\)..
 thus \(P P x y \vee x=y\)..
 qed
next
 assume \(P P\) x \(y \vee x=y\)
 thus \(P x y\)
 proof
 assume \(P P x y\)
 thus \(P x y\) by (rule proper-implies-part)
 next
 assume \(x=y\)
 thus \(P x y\) by (rule identity-implies-part)
 qed
qed
show \(O x y \longleftrightarrow(\exists z . P z x \wedge P z y)\) using overlap-eq.
show \(P P x y \Longrightarrow \neg P P\) y \(x\) using proper-part-asymmetry.
show proper-part-transitivity: PP x \(y \Longrightarrow P P\) y \(z \Longrightarrow P P x z\)
proof -
 assume \(P P x y\)
 assume \(P P\) y \(z\)
 have \(P x z \wedge x \neq z\)
 proof
 from \(\langle P P x y\rangle\) have \(P x y\) by (rule proper-implies-part)
 moreover from \(\langle P P\) y \(z\rangle\) have \(P\) y \(z\) by (rule proper-implies-part)
 ultimately show \(P x z\) by (rule part-transitivity)
 next
 show \(x \neq z\)
 proof
 assume \(x=z\)
 hence \(P P\) y \(x\) using \(\langle P P y z\rangle\) by (rule ssubst)
 hence \(\neg P P x\) y by (rule proper-part-asymmetry)
 thus False using \(\langle P P x y\rangle\)..
 qed
 qed
 with nip-eq show PP x z..
```

```
 qed
qed
sublocale M4\subseteqM
proof
 fix x yz
 show proper-part-eq:PP x y \longleftrightarrowPxy^x\not=y
 proof
 assume PP x y
 hence PP x y\veex=y..
 with part-eq have P x y..
 moreover have }x\not=
 proof
 assume }x=
 hence PP y y using <PP x y by (rule subst)
 with proper-part-irreflexivity show False..
 qed
 ultimately show P x y ^ x\not= y..
next
 assume rhs: P x y ^x\not=y
 hence }x\not=y\mathrm{ ..
 from rhs have P x y..
 with part-eq have PP x y\veex=y..
 thus PP x y
 proof
 assume PP x y
 thus PP x y.
 next
 assume }x=
 with }\langlex\not=y\rangle\mathrm{ show PP x y..
 qed
qed
show P x x
proof -
 have }x=x\mathrm{ by (rule refl)
 hence PP x x \vee x=x..
 with part-eq show P x x..
qed
show O x y \longleftrightarrow(\existsz.Pzx\wedgePzy) using overlap-eq.
show P x y \LongrightarrowP y x \Longrightarrow x=y
proof -
 assume P x y
 assume P y x
 from part-eq have PP x y\veex=y using <P x y`..
 thus }x=
 proof
 assume PP x y
 hence }\negPP\mathrm{ y }x\mathrm{ by (rule proper-part-asymmetry)
 from part-eq have PP y x\vee y = x using <P y x\rangle..
```

```
 thus \(x=y\)
 proof
 assume \(P P\) y \(x\)
 with \(\neg P P y x\rangle\) show \(x=y\)..
 next
 assume \(y=x\)
 thus \(x=y\).
 qed
 qed
qed
show \(P x y \Longrightarrow P y z \Longrightarrow P x z\)
proof -
 assume \(P x y\)
 assume \(P y z\)
 with part-eq have \(P P y z \vee y=z\)..
 hence \(P P x z \vee x=z\)
 proof
 assume \(P P\) y \(z\)
 from part-eq have \(P P x y \vee x=y\) using \(\langle P x y\rangle\)..
 hence \(P P x z\)
 proof
 assume \(P P x y\)
 thus \(P P x z\) using \(\langle P P y z\rangle\) by (rule proper-part-transitivity)
 next
 assume \(x=y\)
 thus \(P P x z\) using \(\langle P P y z\rangle\) by (rule ssubst)
 qed
 thus \(P\) P \(x z \vee x=z\)..
 next
 assume \(y=z\)
 moreover from part-eq have \(P P x y \vee x=y\) using \(\langle P x y\rangle\)..
 ultimately show \(P P x z \vee x=z\) by (rule subst)
 qed
 with part-eq show \(P x z\)..
 qed
qed
```


## 4 Minimal Mereology

Minimal mereology adds to ground mereology the axiom of weak supplementation. ${ }^{13}$
locale $M M=M+$

[^6]assumes weak-supplementation: $P P$ y $x \Longrightarrow(\exists z . P z x \wedge \neg O z y)$
The rest of this section considers three alternative axiomatizations of minimal mereology. The first alternative axiomatization replaces improper with proper parthood in the consequent of weak supplementation. ${ }^{14}$
locale $M M 1=M+$
assumes proper-weak-supplementation:
$$
P P \text { y } x \Longrightarrow(\exists z \cdot P P z x \wedge \neg O z y)
$$

```
sublocale \(M M \subseteq M M 1\)
proof
 fix \(x y\)
 show \(P P y x \Longrightarrow(\exists z . P P z x \wedge \neg O z y)\)
 proof -
 assume \(P P\) y \(x\)
 hence \(\exists z . P z x \wedge \neg O z y\) by (rule weak-supplementation)
 then obtain \(z\) where \(z: P z x \wedge \neg O z y\)..
 hence \(\neg O z y\)..
 from \(z\) have \(P z x\)..
 hence \(P z x \wedge z \neq x\)
 proof
 show \(z \neq x\)
 proof
 assume \(z=x\)
 hence \(P P y z\)
 using \(\langle P P\) y \(x\rangle\) by (rule ssubst)
 hence \(O\) y \(z\) by (rule proper-implies-overlap)
 hence \(O z y\) by (rule overlap-symmetry)
 with \(\langle\neg z y\rangle\) show False..
 qed
 qed
 with nip-eq have \(P P\) z \(x\)..
 hence \(P P z x \wedge \neg O z y\)
 using \(\langle\neg O z y\)...
 thus \(\exists z\). \(P P z x \wedge \neg O z y\)..
 qed
qed
```

sublocale $M M 1 \subseteq M M$
proof
fix $x y$
show weak-supplementation: $P P$ y $x \Longrightarrow(\exists z . P z x \wedge \neg O z y)$
proof -
assume $P P$ y $x$
hence $\exists z . P P z x \wedge \neg O z y$ by (rule proper-weak-supplementation)
then obtain $z$ where $z: P P z x \wedge \neg O z y$..

[^7]```
    hence PP z x..
    hence Pzx by (rule proper-implies-part)
    moreover from z have \neg O z y..
    ultimately have Pzx^\negOzy..
    thus \existsz. Pzx\wedge\negOzy..
    qed
qed
```

The following two corollaries are sometimes found in the literature. ${ }^{15}$
context MM
begin

```
corollary weak-company: \(P P\) y \(x \Longrightarrow(\exists z . P P z x \wedge z \neq y)\)
proof -
    assume \(P P\) y \(x\)
    hence \(\exists z\). \(P P z x \wedge \neg O z y\) by (rule proper-weak-supplementation)
    then obtain \(z\) where \(z: P P z x \wedge \neg O z y\)..
    hence \(P P z x\)..
    from \(z\) have \(\neg O z y\)..
    hence \(z \neq y\) by (rule disjoint-implies-distinct)
    with \(\langle P P z x\rangle\) have \(P P z x \wedge z \neq y\)..
    thus \(\exists z . P P z x \wedge z \neq y\)..
qed
corollary strong-company: \(P P\) y \(x \Longrightarrow(\exists z . P P z x \wedge \neg P z y)\)
proof -
    assume \(P P\) y \(x\)
    hence \(\exists z . P P z x \wedge \neg O z y\) by (rule proper-weak-supplementation)
    then obtain \(z\) where \(z: P P z x \wedge \neg O z y\)..
    hence \(P P z x\)..
    from \(z\) have \(\neg O z y\)..
    hence \(\neg P z y\) by (rule disjoint-implies-not-part)
    with \(\langle P P z x\rangle\) have \(P P z x \wedge \neg P z y\)..
    thus \(\exists z . P P z x \wedge \neg P z y\)..
qed
end
```

If weak supplementation is formulated in terms of nonidentical parthood, then the antisymmetry of parthood is redundant, and we have the second alternative axiomatization of minimal mereology. ${ }^{16}$
locale $M M 2=P M+$

[^8]```
 assumes nip-eq:PP x y \longleftrightarrowPxy^x\not=y
 assumes weak-supplementation: PP y x \Longrightarrow(\existsz.Pzx\wedge\negOzy)
sublocale MM2 \subseteqMM
proof
 fix x y
 show PP x y \longleftrightarrowPxy^x\not=y using nip-eq.
 show part-antisymmetry: Pxy\LongrightarrowPyx\Longrightarrowx=y
 proof -
 assume P x y
 assume P y x
 show }x=
 proof (rule ccontr)
 assume }x\not=
 with \langlePxy\rangle have P x y ^ x\not=y..
 with nip-eq have PP x y..
 hence }\existsz.Pzy^\negOzx\mathrm{ by (rule weak-supplementation)
 then obtain z where z: Pzy^\negOzx..
 hence }\negOzx.
 hence \negPzx by (rule disjoint-implies-not-part)
 from z have Pzy..
 hence P zx using <P y x\rangle by (rule part-transitivity)
 with }\negPPzx\rangle\mathrm{ show False..
 qed
 qed
 show PP y x\Longrightarrow\existsz.Pzx\wedge\negOzy using weak-supplementation.
qed
sublocale MM\subseteqMM2
proof
 fix x y
 show PP x y \longleftrightarrow(P x y ^x\not=y) using nip-eq.
 show PP y x\Longrightarrow\existsz.Pzx\wedge\negOzy using weak-supplementation.
qed
Likewise, if proper parthood is adopted as primitive, then the asymmetry of proper parthood is redundant in the context of weak supplementation, leading to the third alternative axiomatization. \({ }^{17}\)
locale \(M M 3\) =
assumes part-eq: P \(x y \longleftrightarrow P P x y \vee x=y\)
assumes overlap-eq: \(O x y \longleftrightarrow(\exists z . P z x \wedge P z y)\)
assumes proper-part-transitivity: \(P P x y \Longrightarrow P P y z \Longrightarrow P P x z\)
assumes weak-supplementation: PP y \(x \Longrightarrow(\exists z . P z x \wedge \neg O z y)\)
begin
lemma part-reflexivity: \(P x x\)
```

[^9]```
proof -
    have }x=x\mathrm{ ..
    hence PP x x \vee x= x..
    with part-eq show P x x..
qed
lemma proper-part-irreflexivity: \negPP x x
proof
    assume PP x x
    hence \existsz. Pzx^\negOzx by (rule weak-supplementation)
    then obtain z where z: Pzx\wedge\negO zx..
    hence }\negOzx.
    from z have Pzx..
    with part-reflexivity have Pzz^Pzx..
    hence \existsv. Pvz\wedgePvx..
    with overlap-eq have Ozx..
    with }\negOzx\rangle\mathrm{ show False..
qed
end
sublocale MM3 \subseteqM4
proof
    fix x y z
    show P x y \longleftrightarrowPP x y\vee x= y using part-eq.
    show }Oxy\longleftrightarrow(\existsz.Pzx\wedgePzy)\mathrm{ using overlap-eq.
    show proper-part-irreflexivity: PP x y \Longrightarrow ᄀPP y x
    proof -
        assume PP x y
        show \negPP y x
        proof
            assume PP y }
            hence PP y y using \langlePP x y\rangle by (rule proper-part-transitivity)
            with proper-part-irreflexivity show False..
        qed
    qed
    show PP x y PP y z\LongrightarrowPP x z using proper-part-transitivity.
qed
sublocale MM3 \subseteqMM
proof
    fix x y
    show PP y x \Longrightarrow(\existsz.Pzx\wedge\negOzy) using weak-supplementation.
qed
sublocale MM\subseteqMM3
proof
    fix x y z
    show P x y \longleftrightarrow(PP x y\vee x=y) using part-eq.
```

```
    show O x y \longleftrightarrow(\existsz.Pzx\wedgePzy) using overlap-eq.
    show PP x y \LongrightarrowPP y z\LongrightarrowPP x z using proper-part-transitivity.
    show PP y x\Longrightarrow\existsz.Pzx\wedge\negOzy using weak-supplementation.
qed
```


5 Extensional Mereology

Extensional mereology adds to ground mereology the axiom of strong supplementation. ${ }^{18}$
locale $E M=M+$
assumes strong-supplementation:

$$
\neg P x y \Longrightarrow(\exists z \cdot P z x \wedge \neg O z y)
$$

begin
Strong supplementation entails weak supplementation. ${ }^{19}$

```
lemma weak-supplementation: \(P P x y \Longrightarrow(\exists z . P z y \wedge \neg O z x)\)
proof -
    assume \(P P x y\)
    hence \(\neg P y x\) by (rule proper-implies-not-part)
    thus \(\exists z . P z y \wedge \neg O z x\) by (rule strong-supplementation)
qed
end
```

So minimal mereology is a subtheory of extensional mereology. ${ }^{20}$
sublocale $E M \subseteq M M$
proof
fix $y x$
show $P P$ y $x \Longrightarrow \exists z . P z x \wedge \neg O z y$ using weak-supplementation.
qed

Strong supplementation also entails the proper parts principle. ${ }^{21}$
context EM
begin
lemma proper-parts-principle:
$(\exists z \cdot P P z x) \Longrightarrow(\forall z \cdot P P z x \longrightarrow P z y) \Longrightarrow P x y$
proof -
assume $\exists z . P P z x$
then obtain v where $v: P P v x$.
hence $P v x$ by (rule proper-implies-part)
assume antecedent: $\forall z . P P z x \longrightarrow P z y$

[^10]```
hence \(P P v x \longrightarrow P v y\)..
hence \(P v y\) using \(\langle P P \vee x\rangle\)..
with \(\langle P v x\rangle\) have \(P v x \wedge P v y\)..
hence \(\exists v . P v x \wedge P v y\)..
with overlap-eq have \(O x y\)..
show \(P x y\)
proof (rule ccontr)
 assume \(\neg P x y\)
 hence \(\exists z . P z x \wedge \neg O z y\)
 by (rule strong-supplementation)
 then obtain \(z\) where \(z: P z x \wedge \neg O z y\)..
 hence \(P z x\)..
 moreover have \(z \neq x\)
 proof
 assume \(z=x\)
 moreover from \(z\) have \(\neg O z y\)..
 ultimately have \(\neg O x y\) by (rule subst)
 thus False using \(\langle O x y\rangle\)..
 qed
 ultimately have \(P z x \wedge z \neq x\)..
 with nip-eq have \(P P\) z \(x\)..
 from antecedent have \(P P z x \longrightarrow P z y\)..
 hence \(P z y\) using \(\langle P P z x\rangle\)..
 hence \(O z y\) by (rule part-implies-overlap)
 from \(z\) have \(\neg O z y\)..
 thus False using \(\langle O z y\rangle\)..
 qed
qed
```

Which with antisymmetry entails the extensionality of proper parthood. ${ }^{22}$
theorem proper-part-extensionality:

```
\((\exists z . P P z x \vee P P z y) \Longrightarrow x=y \longleftrightarrow(\forall z . P P z x \longleftrightarrow P P z y)\)
proof -
 assume antecedent: \(\exists z . P P z x \vee P P z y\)
show \(x=y \longleftrightarrow(\forall z . P P z x \longleftrightarrow P P z y)\)
proof
 assume \(x=y\)
 moreover have \(\forall z . P P z x \longleftrightarrow P P z x\) by simp
 ultimately show \(\forall z . P P z x \longleftrightarrow P P z y\) by (rule subst)
next
 assume right: \(\forall z . P P z x \longleftrightarrow P P z y\)
 have \(\forall z . P P z x \longrightarrow P z y\)
 proof
 fix \(z\)
 show \(P P z x \longrightarrow P z y\)
 proof
```

[^11]```
        assume PP zx
        from right have PP zx\longleftrightarrow \longleftrightarrowP zy..
        hence PP z y using \langlePPzx\rangle..
        thus Pzy by (rule proper-implies-part)
        qed
    qed
    have }\forallz.PPzy\longrightarrowPz
    proof
        fix z
        show PPzy\longrightarrowPzx
        proof
            assume PP z y
            from right have PP zx\longleftrightarrow <PPzy..
            hence PP zx using \langlePP z y\rangle..
            thus Pzx by (rule proper-implies-part)
        qed
    qed
    from antecedent obtain z where z: PP zx\vee PP zy..
    thus }x=
    proof (rule disjE)
    assume PP zx
    hence }\existsz.PPzx.
    hence P x y using \\forallz.PP zx\longrightarrowP < z y`
        by (rule proper-parts-principle)
    from right have PPzx\longleftrightarrowPP z y..
    hence PP z y using }\langlePPzx\rangle.
    hence }\existsz.PPzy.
    hence P y x using \\forallz.PP zy\longrightarrowPz 
        by (rule proper-parts-principle)
        with \langlePxy\rangle show }x=
            by (rule part-antisymmetry)
    next
    assume PP z y
    hence }\existsz.PPzy.
    hence P y x using \\forallz.PP zy\longrightarrowPzx\rangle
        by (rule proper-parts-principle)
    from right have PP z x \longleftrightarrowPP z y..
    hence PP zx using <PP z y`..
    hence }\existsz.PP z x.
    hence P x y using < }\forallz.PPzx\longrightarrowPzy
            by (rule proper-parts-principle)
    thus }x=
        using \langleP y x\rangle by (rule part-antisymmetry)
    qed
    qed
qed
```

It also follows from strong supplementation that parthood is de-

```
finable in terms of overlap. \({ }^{23}\)
lemma part-overlap-eq: \(P x y \longleftrightarrow(\forall z . O z x \longrightarrow O z y)\)
proof
    assume \(P x y\)
    show \((\forall z . O z x \longrightarrow O z y)\)
    proof
        fix \(z\)
        show \(O z x \longrightarrow O z y\)
        proof
            assume \(O z x\)
            with \(\langle P x y\rangle\) show \(O z y\)
                by (rule overlap-monotonicity)
        qed
    qed
next
    assume right: \(\forall z . O z x \longrightarrow O z y\)
    show \(P x y\)
    proof (rule ccontr)
        assume \(\neg P x y\)
        hence \(\exists z . P z x \wedge \neg O z y\)
            by (rule strong-supplementation)
        then obtain \(z\) where \(z: P z x \wedge \neg O z y\)..
        hence \(\neg O z y\)..
        from right have \(O z x \longrightarrow O z y\)..
        moreover from \(z\) have \(P z x\)..
        hence \(O z x\) by (rule part-implies-overlap)
        ultimately have \(O z y\)..
        with \(\langle\neg O z y\rangle\) show False..
    qed
qed
```

Which entails the extensionality of overlap.

```
theorem overlap-extensionality: \(x=y \longleftrightarrow(\forall z . O z x \longleftrightarrow O z y)\)
proof
    assume \(x=y\)
    moreover have \(\forall z . O z x \longleftrightarrow O z x\)
    proof
        fix \(z\)
        show \(O z x \longleftrightarrow O z x\).
    qed
    ultimately show \(\forall z . O z x \longleftrightarrow O z y\)
        by (rule subst)
next
    assume right: \(\forall z . O z x \longleftrightarrow O z y\)
    have \(\forall z . O z y \longrightarrow O z x\)
    proof
        fix \(z\)
```

[^12]```
 from right have }Ozx\longleftrightarrowOzy.
 thus Ozy\longrightarrowOzx..
 qed
 with part-overlap-eq have P y x..
 have }\forallz.Ozx\longrightarrowOz
 proof
 fix z
 from right have }Ozx\longleftrightarrowOzy.
 thus Ozx\longrightarrowOzy..
 qed
 with part-overlap-eq have P x y..
 thus }x=
 using \langleP y x\rangle by (rule part-antisymmetry)
qed
end
```


## 6 Closed Mereology

The theory of closed mereology adds to ground mereology conditions guaranteeing the existence of sums and products. ${ }^{24}$

```
locale \(C M=M+\)
 assumes sum-eq: \(x \oplus y=(\) THE \(z . \forall v . O v z \longleftrightarrow O v x \vee O v y)\)
 assumes sum-closure: \(\exists z . \forall v . O v z \longleftrightarrow O v x \vee O v y\)
 assumes product-eq:
 \(x \otimes y=(\) THE \(z . \forall v . P v z \longleftrightarrow P v x \wedge P v y)\)
 assumes product-closure:
 \(O x y \Longrightarrow \exists z . \forall v . P v z \longleftrightarrow P v x \wedge P v y\)
begin
```


### 6.1 Products

lemma product-intro:
$(\forall w . P w z \longleftrightarrow(P w x \wedge P w y)) \Longrightarrow x \otimes y=z$
proof -
assume $z: \forall w . P w z \longleftrightarrow(P w x \wedge P w y)$
hence $(T H E v . \forall w . P w v \longleftrightarrow P w x \wedge P w y)=z$
proof (rule the-equality)
fix $v$
assume $v: \forall w . P w v \longleftrightarrow(P w x \wedge P w y)$
have $\forall w$. $P w v \longleftrightarrow P w z$
proof
fix $w$

[^13]```
            from z have Pwz\longleftrightarrow(Pwx\wedgePwy)..
            moreover from v have Pwv\longleftrightarrow(Pwx\wedgePwy)..
            ultimately show Pwv\longleftrightarrowPwz}\mathrm{ by (rule ssubst)
    qed
    with part-extensionality show v}=z.
    qed
    thus }x\otimesy=
    using product-eq by (rule subst)
qed
lemma product-idempotence: }x\otimesx=
proof -
    have }\forallw.Pwx\longleftrightarrowPwx\wedgePw
    proof
        fix w
        show Pwx \longleftrightarrowPwx^Pwx
        proof
            assume P wx
            thus Pwx^Pwx using <Pwx\rangle..
        next
            assume P wx}^\Pw
            thus P wx..
        qed
    qed
    thus }x\otimesx=x\mathrm{ by (rule product-intro)
qed
lemma product-character:
    Oxy\Longrightarrow(\forallw.Pw(x\otimesy)\longleftrightarrow(Pwx\wedgePwy))
proof -
    assume O x y
    hence }\existsz.\forallw.Pwz\longleftrightarrow(Pwx\wedgePwy)\mathrm{ by (rule product-closure)
    then obtain z where z: \forallw.Pwz\longleftrightarrow(Pwx\wedgePwy)..
    hence }x\otimesy=z\mathrm{ by (rule product-intro)
    thus }\forallw.Pw(x\otimesy)\longleftrightarrowPwx\wedgePw
        using z by (rule ssubst)
qed
lemma product-commutativity: O x y \Longrightarrowx\otimesy=y\otimesx
proof -
    assume Oxy
    hence O y x by (rule overlap-symmetry)
    hence }\forallw.Pw(y\otimesx)\longleftrightarrow(Pwy\wedgePwx) by (rule prod
uct-character)
    hence }\forallw.Pw(y\otimesx)\longleftrightarrow(Pwx\wedgePwy)\mathrm{ by auto
    thus }x\otimesy=y\otimesx\mathrm{ by (rule product-intro)
qed
lemma product-in-factors: O x y \LongrightarrowP(x\otimesy) x ^P(x\otimesy)y
```

```
proof -
    assume O x y
    hence }\forallw.Pw(x\otimesy)\longleftrightarrowPwx\wedgePwy\mathrm{ by (rule prod-
uct-character)
    hence P(x\otimesy) (x\otimesy)\longleftrightarrowP(x\otimesy)x\wedgeP(x\otimesy)y..
    moreover have P (x\otimesy)(x\otimesy) by (rule part-reflexivity)
    ultimately show P (x\otimesy)x\wedgeP(x\otimesy)y..
qed
lemma product-in-first-factor: O x y \LongrightarrowP(x\otimesy)x
proof -
    assume O x y
    hence P(x\otimesy)x\wedgeP(x\otimesy)y by (rule product-in-factors)
    thus P(x\otimesy)x..
qed
lemma product-in-second-factor: O x y \LongrightarrowP(x\otimesy)y
proof -
    assume Oxy
    hence P(x\otimesy)x\wedgeP(x\otimesy) y by (rule product-in-factors)
    thus P(x\otimesy)y..
qed
lemma nonpart-implies-proper-product:
    \neg P x y \wedge O x y \Longrightarrow P P ( x \otimes y ) x
proof -
    assume antecedent: ᄀ P x y ^Oxy
    hence }\negPxy.
    from antecedent have Oxy..
    hence P}(x\otimesy)x\mathrm{ by (rule product-in-first-factor)
    moreover have (x\otimesy)\not=x
    proof
    assume (x\otimesy)=x
    hence }\negP(x\otimesy)
            using <\negP x y by (rule ssubst)
            moreover have P(x\otimesy)y
                using {O x y` by (rule product-in-second-factor)
            ultimately show False..
    qed
    ultimately have P}(x\otimesy)x\wedgex\otimesy\not=x.
    with nip-eq show PP (x\otimesy)x..
qed
lemma common-part-in-product: Pzx\wedgePzy\LongrightarrowPz(x\otimesy)
proof -
    assume antecedent: Pzx\wedgePzy
    hence }\existsz.Pzx\wedgePzy.
    with overlap-eq have O x y..
    hence }\forallw.Pw(x\otimesy)\longleftrightarrow(Pwx\wedgePwy
```

```
    by (rule product-character)
    hence Pz(x\otimesy)\longleftrightarrow(Pzx\wedgePzy)..
    thus Pz(x\otimesy)
    using }\langlePzx\wedgePzy\rangle.
qed
lemma product-part-in-factors:
    Oxy\LongrightarrowPz(x\otimesy)\LongrightarrowPzx\wedgePzy
proof -
    assume Oxy
    hence }\forallw.Pw(x\otimesy)\longleftrightarrow(Pwx\wedgePwy
        by (rule product-character)
    hence }Pz(x\otimesy)\longleftrightarrow(Pzx\wedgePzy).
    moreover assume Pz(x\otimesy)
    ultimately show Pzx^Pzy..
qed
corollary product-part-in-first-factor:
    Oxy\LongrightarrowPz(x\otimesy)\LongrightarrowPzx
proof -
    assume O x y
    moreover assume Pz(x\otimesy)
    ultimately have Pzx\wedgePzy
        by (rule product-part-in-factors)
    thus P zx..
qed
corollary product-part-in-second-factor:
    Oxy\LongrightarrowPz(x\otimesy)\LongrightarrowPzy
proof -
    assume O x y
    moreover assume Pz(x\otimesy)
    ultimately have Pzx}\P>z
        by (rule product-part-in-factors)
    thus Pzy..
qed
lemma part-product-identity: P x y \Longrightarrow x\otimesy=x
proof -
    assume P x y
    with part-reflexivity have P x x ^ P x y..
    hence Px (x\otimesy) by (rule common-part-in-product)
    have O x y using \langleP x y by (rule part-implies-overlap)
    hence P
    thus }x\otimesy=x\mathrm{ using <Px(x&y)> by (rule part-antisymmetry)
qed
lemma product-overlap: P z x COzy\LongrightarrowOz(x\otimesy)
proof -
```

```
    assume Pzx
    assume Ozy
    with overlap-eq have \existsv. Pvz^Pvy..
    then obtain v}\mathrm{ where v: Pvz^Pvy..
    hence P v y..
    from v have P vz..
    hence Pvx using \langlePzx\rangle by (rule part-transitivity)
    hence Pvx}\\Pvy\mathrm{ using }\langlePvy\rangle.
    hence Pv(x\otimesy) by (rule common-part-in-product)
    with \langlePvz\rangle have Pvz^Pv(x\otimesy)..
    hence }\existsv.Pvz\wedgePv(x\otimesy).
    with overlap-eq show Oz(x\otimesy)..
qed
lemma disjoint-from-second-factor:
    Pxy^\negOx(y\otimesz)\Longrightarrow\negOxz
proof -
    assume antecedent: Pxy^\negOx(y\otimesz)
    hence \neg Ox (y\otimesz)..
    show ᄀ Oxz
    proof
        from antecedent have P x y..
        moreover assume Oxz
        ultimately have Ox(y\otimesz)
            by (rule product-overlap)
        with «\negOx (y\otimesz)\rangle show False..
    qed
qed
lemma converse-product-overlap:
    Oxy\LongrightarrowOz(x\otimesy)\LongrightarrowOzy
proof -
    assume O x y
    hence P(x\otimesy) y by (rule product-in-second-factor)
    moreover assume Oz(x\otimesy)
    ultimately show Ozy
        by (rule overlap-monotonicity)
qed
lemma part-product-in-whole-product:
    Oxy\LongrightarrowPxv^Pyz\LongrightarrowP(x\otimesy)(v\otimesz)
proof -
    assume O x y
    assume Pxv^Pyz
    have }\forallw.Pw(x\otimesy)\longrightarrowPw(v\otimesz
    proof
        fix w
        show Pw(x\otimesy)\longrightarrowPw(v\otimesz)
        proof
```

```
    assume P w (x\otimesy)
    with }\langleOxy\rangle\mathrm{ have Pwx^Pwy
        by (rule product-part-in-factors)
    have Pwv\wedge Pwz
    proof
        from \langlePwx^Pwy\rangle have Pwx..
        moreover from \langlePxv}\P>yz\rangle\mathrm{ have P x v..
        ultimately show P wv by (rule part-transitivity)
        next
            from }\langlePwx\wedgePwy\rangle\mathrm{ have P wy..
            moreover from \langlePxv^Pyz\rangle have P y z..
            ultimately show P wz by (rule part-transitivity)
        qed
        thus Pw(v\otimesz) by (rule common-part-in-product)
        qed
    qed
    hence P(x\otimesy)(x\otimesy)\longrightarrowP(x\otimesy)(v\otimesz)..
    moreover have P (x\otimesy)(x\otimesy) by (rule part-reflexivity)
    ultimately show P}(x\otimesy)(v\otimesz).
qed
lemma right-associated-product: ( }\exists\textrm{w}.Pwx\wedgePwy\wedgePwz)
    (\forallw.Pw(x\otimes(y\otimesz))\longleftrightarrowPwx\wedge(Pwy\wedgePwz))
proof -
    assume antecedent: ( }\exists\textrm{w}.Pwx\wedgePwy\wedgePwz
    then obtain w where w: Pwx^Pwy^Pwz..
    hence P wx..
    from w have Pwy^Pwz..
    hence }\exists\textrm{w}.Pwy\wedgePwz.
    with overlap-eq have O y z..
    hence yz: \forallw.Pw(y\otimesz)\longleftrightarrow(Pwy^Pwz)
    by (rule product-character)
hence Pw(y\otimesz)\longleftrightarrow(Pwy^Pwz)..
hence P w (y\otimesz)
    using <Pwy^Pwz\rangle..
with \langlePwx\rangle have Pwx^Pw(y\otimesz)..
hence }\exists\textrm{w}.Pwx\wedgePw(y\otimesz)
with overlap-eq have Ox (y\otimesz)..
hence xyz: }\forallw.Pw(x\otimes(y\otimesz))\longleftrightarrowPwx\wedgePw(y\otimesz
    by (rule product-character)
show }\forallw.Pw(x\otimes(y\otimesz))\longleftrightarrowPwx\wedge(Pwy\wedgePwz
proof
    fix }
    from yz have wyz:Pw(y\otimesz)\longleftrightarrow(Pwy\wedgePwz)..
    moreover from xyz have
        Pw(x\otimes(y\otimesz))\longleftrightarrow \longleftrightarrow wx^Pw(y\otimesz)..
    ultimately show
        Pw (x\otimes (y\otimesz))\longleftrightarrow \longleftrightarrow wx^(Pwy^Pwz)
        by (rule subst)
```

qed
qed
lemma left-associated-product: $(\exists w . P w x \wedge P w y \wedge P w z) \Longrightarrow$ $(\forall w . P w((x \otimes y) \otimes z) \longleftrightarrow(P w x \wedge P w y) \wedge P w z)$
proof -
assume antecedent: $(\exists w . P w x \wedge P w y \wedge P w z)$
then obtain w where $w: P w x \wedge P w y \wedge P w z$..
hence $P w y \wedge P w z$..
hence $P w y$..
have $P w z$
using $\langle P w y \wedge P w z\rangle .$.
from w have $P w x$..
hence $P w x \wedge P w y$
using $\langle P w y\rangle .$.
hence $\exists z . P z x \wedge P z y$..
with overlap-eq have $O x y$..
hence $x y: \forall w . P w(x \otimes y) \longleftrightarrow(P w x \wedge P w y)$
by (rule product-character)
hence $P w(x \otimes y) \longleftrightarrow(P w x \wedge P w y)$..
hence $P w(x \otimes y)$ using $\langle P w x \wedge P w y\rangle .$.
hence $P w(x \otimes y) \wedge P w z$
using $\langle P w z\rangle$..
hence $\exists w . P w(x \otimes y) \wedge P w z .$.
with overlap-eq have $O(x \otimes y) z$..
hence $x y z: \forall w . P w((x \otimes y) \otimes z) \longleftrightarrow P w(x \otimes y) \wedge P w z$ by (rule product-character)
show $\forall w . P w((x \otimes y) \otimes z) \longleftrightarrow(P w x \wedge P w y) \wedge P w z$
proof
fix v
from $x y$ have $v x y: P v(x \otimes y) \longleftrightarrow(P v x \wedge P v y) .$.
moreover from $x y z$ have
$P v((x \otimes y) \otimes z) \longleftrightarrow P v(x \otimes y) \wedge P v z .$.
ultimately show $P v((x \otimes y) \otimes z) \longleftrightarrow(P v x \wedge P v y) \wedge P v z$
by (rule subst)
qed
qed
theorem product-associativity:
$(\exists w . P w x \wedge P w y \wedge P w z) \Longrightarrow x \otimes(y \otimes z)=(x \otimes y) \otimes z$ proof -
assume ante: $(\exists w . P w x \wedge P w y \wedge P w z)$
hence $(\forall w . P w(x \otimes(y \otimes z)) \longleftrightarrow P w x \wedge(P w y \wedge P w z))$ by (rule right-associated-product)
moreover from ante have
$(\forall w . P w((x \otimes y) \otimes z) \longleftrightarrow(P w x \wedge P w y) \wedge P w z)$
by (rule left-associated-product)
ultimately have $\forall w . P w(x \otimes(y \otimes z)) \longleftrightarrow P w((x \otimes y) \otimes z)$
by simp
with part-extensionality show $x \otimes(y \otimes z)=(x \otimes y) \otimes z .$. qed
end

6.2 Differences

Some writers also add to closed mereology the axiom of difference closure. ${ }^{25}$
locale $C M D=C M+$
assumes difference-eq:

$$
x \ominus y=(T H E z . \forall w . P w z \longleftrightarrow P w x \wedge \neg O w y)
$$

assumes difference-closure:
$(\exists w . P w x \wedge \neg O w y) \Longrightarrow(\exists z . \forall w . P w z \longleftrightarrow P w x \wedge \neg O w$ y)
begin
lemma difference-intro:
$(\forall w . P w z \longleftrightarrow P w x \wedge \neg O w y) \Longrightarrow x \ominus y=z$
proof -
assume antecedent: $(\forall w . P w z \longleftrightarrow P w x \wedge \neg O w y)$
hence (THE z. $\forall w . P w z \longleftrightarrow P w x \wedge \neg O w y)=z$
proof (rule the-equality)
fix v
assume $v:(\forall w . P w v \longleftrightarrow P w x \wedge \neg O w y)$
have $\forall w . P w v \longleftrightarrow P w z$
proof
fix w
from antecedent have $P w z \longleftrightarrow P w x \wedge \neg O w y .$.
moreover from v have $P w v \longleftrightarrow P w x \wedge \neg O w y .$.
ultimately show $P w v \longleftrightarrow P w z$ by (rule ssubst)
qed
with part-extensionality show $v=z .$.
qed
with difference-eq show $x \ominus y=z$ by (rule ssubst)
qed
lemma difference-idempotence: $\neg O x y \Longrightarrow(x \ominus y)=x$
proof -
assume $\neg O x y$
hence $\neg O y x$ by (rule disjoint-symmetry)
have $\forall w . P w x \longleftrightarrow P w x \wedge \neg O w y$
proof
fix w
show $P w x \longleftrightarrow P w x \wedge \neg O w y$
proof

[^14]```
 assume P wx
 hence }\negOy\mathrm{ w using «ᄀOyx`
 by (rule disjoint-demonotonicity)
 hence \negOwy by (rule disjoint-symmetry)
 with }\langlePwx\rangle\mathrm{ show P wx^ ᄀOwy..
 next
 assume Pwx^\negOwy
 thus P wx..
 qed
 qed
 thus (x\ominusy) =x by (rule difference-intro)
qed
lemma difference-character: (}\exists\textrm{w}.Pwx\wedge\negOwy)
 (\forallw.Pw(x\ominusy)\longleftrightarrowPwx^\negOwy)
proof -
 assume \existsw.Pwx^\negOwy
 hence }\existsz.\forallw.Pwz\longleftrightarrowPwx\wedge\negOwy\mathrm{ by (rule differ-
ence-closure)
 then obtain z where z: \forallw.Pwz\longleftrightarrowPwx\wedge\negOwy..
 hence (x\ominusy)=z by (rule difference-intro)
 thus }\forallw.Pw(x\ominusy)\longleftrightarrowPwx\wedge\negOwy using z by (rule
ssubst)
qed
lemma difference-disjointness:
 (\existsz.Pzx\wedge\negOzy)\Longrightarrow\negOy(x\ominusy)
proof -
 assume }\existsz.Pzx\wedge\negOz
 hence xmy: }\forallw.Pw(x\ominusy)\longleftrightarrow(Pwx\wedge\negOwy
 by (rule difference-character)
 show \negOy(x\ominusy)
 proof
 assume O y (x\ominusy)
 with overlap-eq have \existsv.Pvy^Pv(x\ominusy)..
 then obtain v where v: Pv y^Pv(x\ominusy)..
 from xmy have Pv(x\ominusy)\longleftrightarrow(Pvx\wedge\negOvy)..
 moreover from v have Pv (x\ominusy)..
 ultimately have Pvx^\neg Ovy..
 hence \neg O v y..
 moreover from v have P v y..
 hence Ovy by (rule part-implies-overlap)
 ultimately show False..
 qed
qed
end
```


### 6.3 The Universe

Another closure condition sometimes considered is the existence of the universe. ${ }^{26}$
locale $C M U=C M+$
assumes universe-eq: $u=(T H E z . \forall w . P w z)$
assumes universe-closure: $\exists y . \forall x . P x y$
begin
lemma universe-intro: $(\forall w . P w z) \Longrightarrow u=z$
proof -
assume $z: \forall w . P w z$
hence $(T H E z . \forall w . P w z)=z$
proof (rule the-equality)
fix $v$
assume $v: \forall w . P w v$
have $\forall w . P w v \longleftrightarrow P w z$
proof
fix $w$
show $P w v \longleftrightarrow P w z$
proof
assume $P w v$
from $z$ show $P w z$.. next
assume $P w z$
from $v$ show $P w v$..
qed
qed
with part-extensionality show $v=z$..
qed
thus $u=z$ using universe-eq by (rule subst)
qed
lemma universe-character: $P x u$
proof -
from universe-closure obtain $y$ where $y$ : $\forall x . P x y .$.
hence $u=y$ by (rule universe-intro)
hence $\forall x$. $P x u$ using $y$ by (rule ssubst)
thus $P x u$..
qed
lemma $\neg P P u x$
proof
assume $P P$ ux
hence $\neg P x u$ by (rule proper-implies-not-part)
thus False using universe-character..
qed

[^15]```
lemma product-universe-implies-factor-universe:
    Oxy\Longrightarrowx\otimesy=u\Longrightarrowx=u
proof -
    assume }x\otimesy=
    moreover assume O x y
    hence P}(x\otimesy)
        by (rule product-in-first-factor)
    ultimately have Pux
        by (rule subst)
    with universe-character show }x=
    by (rule part-antisymmetry)
qed
end
```


6.4 Complements

As is a condition ensuring the existence of complements. ${ }^{27}$

```
locale \(C M C=C M+\)
    assumes complement-eq: \(-x=(\) THE z. \(\forall w . P w z \longleftrightarrow \neg O w x)\)
    assumes complement-closure:
        \((\exists w . \neg O w x) \Longrightarrow(\exists z . \forall w . P w z \longleftrightarrow \neg O w x)\)
    assumes difference-eq:
    \(x \ominus y=(\) THE \(z . \forall w . P w z \longleftrightarrow P w x \wedge \neg O w y)\)
begin
lemma complement-intro:
    \((\forall w . P w z \longleftrightarrow \neg O w x) \Longrightarrow-x=z\)
proof -
    assume antecedent: \(\forall w . P w z \longleftrightarrow \neg O w x\)
    hence (THE \(z . \forall w . P w z \longleftrightarrow \neg O w x)=z\)
    proof (rule the-equality)
        fix \(v\)
        assume \(v: \forall w . P w v \longleftrightarrow \neg O w x\)
        have \(\forall w . P w v \longleftrightarrow P w z\)
        proof
            fix \(w\)
            from antecedent have \(P w z \longleftrightarrow \neg O w x .\).
            moreover from \(v\) have \(P w v \longleftrightarrow \neg O w x\)..
            ultimately show \(P w v \longleftrightarrow P w z\) by (rule ssubst)
        qed
        with part-extensionality show \(v=z .\).
    qed
    with complement-eq show \(-x=z\) by (rule ssubst)
qed
```

[^16]```
lemma complement-character:
 \((\exists w . \neg O w x) \Longrightarrow(\forall w . P w(-x) \longleftrightarrow \neg O w x)\)
proof -
 assume \(\exists w\). \(\neg O w\)
 hence \((\exists z . \forall w . P w z \longleftrightarrow \neg O w x)\) by (rule complement-closure)
 then obtain \(z\) where \(z: \forall w . P w z \longleftrightarrow \neg O w x\).
 hence \(-x=z\) by (rule complement-intro)
 thus \(\forall w . P w(-x) \longleftrightarrow \neg O w x\)
 using \(z\) by (rule ssubst)
qed
lemma not-complement-part: \(\exists w . \neg O w x \Longrightarrow \neg P x(-x)\)
proof -
 assume \(\exists w\). \(\neg O w x\)
 hence \(\forall w\). \(P w(-x) \longleftrightarrow \neg O w x\)
 by (rule complement-character)
 hence \(P x(-x) \longleftrightarrow \neg O x x\).
 show \(\neg P x(-x)\)
 proof
 assume \(P x(-x)\)
 with \(\langle P x(-x) \longleftrightarrow \neg O x x\rangle\) have \(\neg O x x .\).
 thus False using overlap-reflexivity..
 qed
qed
lemma complement-part: \(\neg O x y \Longrightarrow P x(-y)\)
proof -
 assume \(\neg O x y\)
 hence \(\exists z\). \(\neg O z y\)..
 hence \(\forall w . P w(-y) \longleftrightarrow \neg O w y\)
 by (rule complement-character)
 hence \(P x(-y) \longleftrightarrow \neg O x y\).
 thus \(P x(-y)\) using \(\langle\neg O x y\rangle\)..
qed
lemma complement-overlap: \(\neg O x y \Longrightarrow O x(-y)\)
proof -
 assume \(\neg O x y\)
 hence \(P x(-y)\)
 by (rule complement-part)
 thus \(O x(-y)\)
 by (rule part-implies-overlap)
qed
lemma or-complement-overlap: \(\forall y . O y x \vee O y(-x)\)
proof
 fix \(y\)
 show \(O\) y \(x \vee O y(-x)\)
 proof cases
```

```
 assume O y x
 thus Oyx\veeOy(-x)..
 next
 assume }\neg\mathrm{ O y x
 hence O y (-x)
 by (rule complement-overlap)
 thus Oyx\veeOy(-x)..
 qed
qed
lemma complement-disjointness: \existsv.\negOvx\Longrightarrow\negOx(-x)
proof -
 assume \existsv.\neg Ovx
 hence w: }\forallw.Pw(-x)\longleftrightarrow\negOw
 by (rule complement-character)
 show \negO
 proof
 assume O x (-x)
 with overlap-eq have \existsv.Pvx^Pv(-x)..
 then obtain v}\mathrm{ where v:Pvx}^\Pv(-x).
 from w have Pv(-x)\longleftrightarrow \longleftrightarrowOvx..
 moreover from v have Pv(-x)..
 ultimately have \neg O vx..
 moreover from v}\mathrm{ have P vx..
 hence Ovx by (rule part-implies-overlap)
 ultimately show False..
 qed
qed
lemma part-disjoint-from-complement:
 \exists.\negOvx\LongrightarrowPyx\Longrightarrow\negOy(-x)
proof
 assume }\existsv.\negOv
 hence }\negOx(-x) by (rule complement-disjointness
 assume P y x
 assume O y (-x)
 with overlap-eq have \existsv.P v y ^Pv (-x)..
 then obtain v}\mathrm{ where v:Pv y^Pv(-x)..
 hence P v y..
 hence Pv x using \langleP y x\rangle by (rule part-transitivity)
 moreover from v}\mathrm{ have Pv(-x)..
 ultimately have P vx}^P\v(-x).
 hence \existsv. Pvx^Pv(-x)..
 with overlap-eq have Ox (-x)..
 with }\negOx(-x)\rangle\mathrm{ show False..
qed
lemma product-complement-character: (\exists w. Pwx\wedge\negOwy)\Longrightarrow
 (\forallw.Pw(x\otimes(-y))\longleftrightarrow(Pwx\wedge(\negOwy)))
```

```
proof -
 assume antecedent: \existsw. Pwx\wedge\negOwy
 then obtain w where w: Pwx^\negOwy..
 hence P wx..
 moreover from w have }\negOwy.
 hence Pw(-y) by (rule complement-part)
 ultimately have Pwx^Pw(-y)..
 hence }\exists\textrm{w}.Pwx\wedgePw(-y).
 with overlap-eq have Ox(-y)..
 hence prod: (\forallw.Pw(x\otimes(-y))\longleftrightarrow(Pwx\wedgePw(-y)))
 by (rule product-character)
 show }\forallw.Pw(x\otimes(-y))\longleftrightarrow\longleftrightarrow(Pwx\wedge(\negOwy)
 proof
 fix v
 from w have \negOwy..
 hence }\exists\textrm{w}.\negOwy.
 hence }\forallw.Pw(-y)\longleftrightarrow\negOw
 by (rule complement-character)
 hence Pv(-y)\longleftrightarrow \longleftrightarrowO O y..
 moreover have Pv(x\otimes(-y))\longleftrightarrow(Pvx\wedgePv(-y))
 using prod..
 ultimately show Pv(x\otimes(-y))\longleftrightarrow(Pvx\wedge(\negOvy))
 by (rule subst)
 qed
qed
theorem difference-closure: (}\exists\textrm{w.}P\textrm{P}x\wedge\negOwy)
 (\existsz.\forallw.Pwz\longleftrightarrowPwx^\negOwy)
proof -
 assume \existsw. Pwx^\negOwy
 hence }\forallw.Pw(x\otimes(-y))\longleftrightarrowPwx\wedge\negOw
 by (rule product-complement-character)
 thus(\existsz.\forallw.Pwz\longleftrightarrowPwx^\negOwy) by (rule exI)
qed
end
sublocale CMC\subseteqCMD
proof
 fix x y
 show }x\ominusy=(\mathrm{ THE z.}\forallw.Pwz=(Pwx\wedge\negOwy)
 using difference-eq.
 show (\existsw. Pwx^\negOwy)\Longrightarrow
 (\existsz.\forallw.Pwz=(Pwx^\negOwy))
 using difference-closure.
qed
corollary (in CMC) difference-is-product-of-complement:
 (\existsw.Pwx\wedge\negOwy)\Longrightarrow(x\ominusy)=x\otimes(-y)
```

```
proof -
 assume antecedent: \existsw. Pwx^\negOwy
 hence }\forallw.Pw(x\otimes(-y))\longleftrightarrowPwx\wedge\negOw
 by (rule product-complement-character)
 thus (x\ominusy)=x\otimes(-y) by (rule difference-intro)
qed
```

Universe and difference closure entail complement closure, since the difference of an individual and the universe is the individual's complement.

```
locale \(C M U D=C M U+C M D+\)
 assumes complement-eq: \(-x=(\) THE z. \(\forall w . P w z \longleftrightarrow \neg O w x)\)
begin
lemma universe-difference:
 \((\exists w . \neg O w x) \Longrightarrow(\forall w . P w(u \ominus x) \longleftrightarrow \neg O w x)\)
proof -
 assume \(\exists w\). \(\neg=x\)
 then obtain \(w\) where \(w\) : \(\neg O w x\).
 from universe-character have \(P w u\).
 hence \(P w u \wedge \neg O w x\) using \(\measuredangle \neg{ }^{\prime} \quad\) x \(\rangle\)..
 hence \(\exists z . P z u \wedge \neg O z x\).
 hence \(u x: \forall w . P w(u \ominus x) \longleftrightarrow(P w u \wedge \neg O w x)\)
 by (rule difference-character)
 show \(\forall w . P w(u \ominus x) \longleftrightarrow \neg O w x\)
 proof
 fix \(w\)
 from \(u x\) have wux: \(P w(u \ominus x) \longleftrightarrow(P w u \wedge \neg O w x) .\).
 show \(P w(u \ominus x) \longleftrightarrow \neg O w x\)
 proof
 assume \(P w(u \ominus x)\)
 with wux have \(P\) wu^ ᄀOwx..
 thus \(\neg O w x\)..
 next
 assume \(\neg O w x\)
 from universe-character have \(P w u\).
 hence \(P w u \wedge \neg O w x\) using \(\measuredangle \neg O x\rangle\)..
 with wux show \(P w(u \ominus x)\).
 qed
 qed
qed
theorem complement-closure:
 \((\exists w . \neg O w x) \Longrightarrow(\exists z . \forall w . P w z \longleftrightarrow \neg O w x)\)
proof -
 assume \(\exists w\). \(\neg O w x\)
 hence \(\forall w . P w(u \ominus x) \longleftrightarrow \neg O w x\)
 by (rule universe-difference)
 thus \(\exists z . \forall w . P w z \longleftrightarrow \neg O w x .\).
```

```
qed
end
sublocale \(C M U D \subseteq C M C\)
proof
 fix \(x y\)
 show \(-x=(\) THE \(z . \forall w . P w z \longleftrightarrow(\neg O w x))\)
 using complement-eq.
 show \(\exists w\). \(\neg O w x \Longrightarrow \exists z . \forall w . P w z \longleftrightarrow(\neg O w x)\)
 using complement-closure.
 show \(x \ominus y=(\) THE \(z . \forall w . P w z=(P w x \wedge \neg O w y))\)
 using difference-eq.
qed
corollary (in CMUD) complement-universe-difference:
 \((\exists y . \neg O y x) \Longrightarrow-x=(u \ominus x)\)
proof -
 assume \(\exists w\). \(\neg O w x\)
 hence \(\forall w . P w(u \ominus x) \longleftrightarrow \neg O w x\)
 by (rule universe-difference)
 thus \(-x=(u \ominus x)\)
 by (rule complement-intro)
qed
```


## 7 Closed Extensional Mereology

Closed extensional mereology combines closed mereology with extensional mereology. ${ }^{28}$
locale $C E M=C M+E M$
Likewise, closed minimal mereology combines closed mereology with minimal mereology. ${ }^{29}$
locale $C M M=C M+M M$
But famously closed minimal mereology and closed extensional mereology are the same theory, because in closed minimal mereology product closure and weak supplementation entail strong supplementation. ${ }^{30}$
sublocale $C M M \subseteq C E M$
proof
fix $x y$

[^17]```
    show strong-supplementation: \negP x y \Longrightarrow(\existsz.Pzx\wedge\negOzy)
    proof -
    assume \negP P y
    show \existsz. Pzx\wedge\negOzy
    proof cases
        assume O x y
        with }\negPxy\rangle\mathrm{ have }\negPxy^Oxy.
        hence PP (x\otimesy)x by (rule nonpart-implies-proper-product)
    hence }\existsz.Pzx\wedge\negOz(x\otimesy)\mathrm{ by (rule weak-supplementation)
        then obtain z where z:Pzx\wedge\negOz(x\otimesy)..
        hence}\negOzy\mathrm{ by (rule disjoint-from-second-factor)
        moreover from z have Pzx..
        hence Pzx\wedge\negOzy
            using «\negO z y`..
        thus \existsz. Pzx\wedge\negOzy..
    next
        assume }\negOx
        with part-reflexivity have P x x ^\negO x y..
        thus (\existsz. Pzx^\negOzy)..
    qed
    qed
qed
```

sublocale $C E M \subseteq C M M$..

7.1 Sums

context CEM
begin
lemma sum-intro:

$$
(\forall w . O w z \longleftrightarrow(O w x \vee O w y)) \Longrightarrow x \oplus y=z
$$

proof -
assume sum: $\forall w . O w z \longleftrightarrow(O w x \vee O w y)$
hence $($ THE v. $\forall w . O w v \longleftrightarrow(O w x \vee O w y))=z$
proof (rule the-equality)
fix a
assume $a: \forall w . O w a \longleftrightarrow(O w x \vee O w y)$
have $\forall w . O w a \longleftrightarrow O w z$
proof
fix w
from sum have $O w z \longleftrightarrow(O w x \vee O w y)$..
moreover from a have $O w a \longleftrightarrow(O w x \vee O w y)$..
ultimately show $O w a \longleftrightarrow O w z$ by (rule ssubst)
qed
with overlap-extensionality show $a=z .$.
qed
thus $x \oplus y=z$
using sum-eq by (rule subst)
qed
lemma sum-idempotence: $x \oplus x=x$
proof -
have $\forall w . O w x \longleftrightarrow(O w x \vee O w x)$
proof
fix w
show $O w x \longleftrightarrow(O w x \vee O w x)$
proof (rule iffI)
assume $O w x$
thus $O w x \vee O w x$..
next
assume $O w x \vee O w x$
thus $O w x$ by (rule disjE)
qed
qed
thus $x \oplus x=x$ by (rule sum-intro)
qed
lemma part-sum-identity: P y $x \Longrightarrow x \oplus y=x$
proof -
assume P y x
have $\forall w . O w x \longleftrightarrow(O w x \vee O w y)$
proof
fix w
show $O w x \longleftrightarrow(O w x \vee O w y)$
proof
assume $O w x$
thus $O w x \vee O w y$..
next
assume $O w x \vee O w y$
thus $O w x$
proof
assume $O w x$
thus $O w x$.
next
assume $O w y$
with $\langle P y x\rangle$ show $O w x$
by (rule overlap-monotonicity)
qed
qed
qed
thus $x \oplus y=x$ by (rule sum-intro)
qed
lemma sum-character: $\forall w . O w(x \oplus y) \longleftrightarrow(O w x \vee O w y)$ proof -
from sum-closure have $(\exists z . \forall w . O w z \longleftrightarrow(O w x \vee O w y))$.
then obtain a where $a: \forall w . O w a \longleftrightarrow(O w x \vee O w y) .$.

```
    hence }x\oplusy=a\mathrm{ by (rule sum-intro)
    thus }\forallw.Ow(x\oplusy)\longleftrightarrow(Owx\veeOwy
        using a by (rule ssubst)
qed
lemma sum-overlap: Ow w
    using sum-character..
lemma sum-part-character:
    Pw(x\oplusy)\longleftrightarrow(\forallv.Ovw\longrightarrowOvx\veeOvy)
proof
    assume P w (x\oplusy)
    show }\forallv.Ovw\longrightarrowOvx\veeOv
    proof
        fix v
        show Ovw\longrightarrowOvx\veeOvy
        proof
            assume O vw
            with}\langlePw(x\oplusy)\rangle\mathrm{ have Ov(x}\oplusy
            by (rule overlap-monotonicity)
            with sum-overlap show Ovx\veeOvy..
        qed
    qed
next
    assume right: }\forallv.Ovw\longrightarrowOvx\veeOv
    have}\forallv.Ovw\longrightarrowOv(x\oplusy
    proof
        fix v
        from right have Ovw\longrightarrowOvx\veeOvy..
        with sum-overlap show Ovw\longrightarrowOv(x\oplusy)
        by (rule ssubst)
    qed
    with part-overlap-eq show P w (x\oplusy)..
qed
lemma sum-commutativity: }x\oplusy=y\oplus
proof -
    from sum-character have }\forallw.Ow(y\oplusx)\longleftrightarrowOwy\veeOwx
    hence }\forallw.Ow(y\oplusx)\longleftrightarrowOwx\veeOwy\mathrm{ by metis
    thus }x\oplusy=y\oplusx\mathrm{ by (rule sum-intro)
qed
lemma first-summand-overlap: Ozx\LongrightarrowOz(x\oplusy)
proof -
    assume Ozx
    hence }Ozx\veeOzy.
    with sum-overlap show Oz (x\oplusy)..
qed
```

```
lemma first-summand-disjointness: \(\neg \mathrm{Oz}(x \oplus y) \Longrightarrow \neg O z x\)
proof -
    assume \(\neg O z(x \oplus y)\)
    show \(\neg O z x\)
    proof
        assume \(O z x\)
        hence \(O z(x \oplus y)\) by (rule first-summand-overlap)
        with \(\measuredangle \neg O z(x \oplus y)\rangle\) show False..
    qed
qed
lemma first-summand-in-sum: \(P x(x \oplus y)\)
proof -
    have \(\forall w . O w x \longrightarrow O w(x \oplus y)\)
    proof
        fix \(w\)
        show \(O w x \longrightarrow O w(x \oplus y)\)
        proof
            assume \(O w x\)
            thus \(O w(x \oplus y)\)
            by (rule first-summand-overlap)
        qed
    qed
    with part-overlap-eq show \(P x(x \oplus y)\)..
qed
lemma common-first-summand: \(P x(x \oplus y) \wedge P x(x \oplus z)\)
proof
    from first-summand-in-sum show \(P x(x \oplus y)\).
    from first-summand-in-sum show \(P x(x \oplus z)\).
qed
lemma common-first-summand-overlap: \(O(x \oplus y)(x \oplus z)\)
proof -
    from first-summand-in-sum have \(P x(x \oplus y)\).
    moreover from first-summand-in-sum have \(P x(x \oplus z)\).
    ultimately have \(P x(x \oplus y) \wedge P x(x \oplus z)\).
    hence \(\exists v . P v(x \oplus y) \wedge P v(x \oplus z)\)..
    with overlap-eq show ?thesis..
qed
lemma second-summand-overlap: \(O z y \Longrightarrow O z(x \oplus y)\)
proof -
    assume \(O z y\)
    from sum-character have \(O z(x \oplus y) \longleftrightarrow(O z x \vee O z y)\)..
    moreover from \(\langle O z y\rangle\) have \(O z x \vee O z y\)..
    ultimately show \(O z(x \oplus y)\)..
qed
```

```
lemma second-summand-disjointness: \(\neg O z(x \oplus y) \Longrightarrow \neg O z y\)
proof -
    assume \(\neg O z(x \oplus y)\)
    show \(\neg O z y\)
    proof
        assume \(O z y\)
        hence \(O z(x \oplus y)\)
            by (rule second-summand-overlap)
        with \(\neg O z(x \oplus y)\) show False..
    qed
qed
lemma second-summand-in-sum: \(P y(x \oplus y)\)
proof -
    have \(\forall w . O w y \longrightarrow O w(x \oplus y)\)
    proof
        fix \(w\)
        show \(O w y \longrightarrow O w(x \oplus y)\)
        proof
            assume \(O w y\)
            thus \(O w(x \oplus y)\)
                by (rule second-summand-overlap)
    qed
    qed
    with part-overlap-eq show \(P y(x \oplus y) .\).
qed
lemma second-summands-in-sums: \(P y(x \oplus y) \wedge P v(z \oplus v)\)
proof
    show \(P y(x \oplus y)\) using second-summand-in-sum.
    show \(P v(z \oplus v)\) using second-summand-in-sum.
qed
lemma disjoint-from-sum: \(\neg \mathrm{Oz}(x \oplus y) \longleftrightarrow \neg O z x \wedge \neg O z y\)
proof -
    from sum-character have \(O z(x \oplus y) \longleftrightarrow(O z x \vee O z y)\)..
    thus ?thesis by simp
qed
lemma summands-part-implies-sum-part:
    \(P x z \wedge P y z \Longrightarrow P(x \oplus y) z\)
proof -
    assume antecedent: \(P x z \wedge P y z\)
    have \(\forall w\). \(O w(x \oplus y) \longrightarrow O w z\)
    proof
    fix \(w\)
    have \(w: O w(x \oplus y) \longleftrightarrow(O w x \vee O w y)\)
        using sum-character..
    show \(O w(x \oplus y) \longrightarrow O w z\)
```

```
    proof
        assume Ow (x\oplusy)
    with w have Owx\veeOwy..
    thus Owz
    proof
        from antecedent have Pxz..
        moreover assume Owx
        ultimately show O wz
            by (rule overlap-monotonicity)
    next
            from antecedent have P y z..
            moreover assume Owy
            ultimately show O wz
                by (rule overlap-monotonicity)
    qed
        qed
    qed
    with part-overlap-eq show P (x\oplusy)z..
qed
lemma sum-part-implies-summands-part:
    P(x\oplusy)z\LongrightarrowPxz\wedgePyz
proof -
    assume antecedent: P}(x\oplusy)
    show Pxz^Pyz
    proof
        from first-summand-in-sum show P x z
            using antecedent by (rule part-transitivity)
    next
        from second-summand-in-sum show P y z
            using antecedent by (rule part-transitivity)
    qed
qed
lemma in-second-summand: Pz(x\oplusy)\wedge\negOzx\LongrightarrowPzy
proof -
    assume antecedent: Pz (x\oplusy)\wedge\negOzx
    hence P z (x\oplusy)..
    show P zy
    proof (rule ccontr)
    assume \negPzy
    hence }\existsv.Pvz\wedge\negOv
    by (rule strong-supplementation)
    then obtain v where v:Pvz\wedge\negOvy..
    hence }\negOvy.
    from v have Pvz..
    hence Pv(x\oplusy)
        using \langlePz(x\oplusy)\rangle by (rule part-transitivity)
    hence Ov(x\oplusy) by (rule part-implies-overlap)
```

```
    from sum-character have Ov(x\oplusy)\longleftrightarrowOvx\veeOvy.
    hence Ovx\vee Ovy using <Ov(x\oplusy)\rangle..
    thus False
    proof (rule disjE)
        from antecedent have ᄀ Ozx..
        moreover assume Ovx
        hence Oxv by (rule overlap-symmetry)
        with }\langlePvz\rangle\mathrm{ have Oxz
            by (rule overlap-monotonicity)
        hence Ozx by (rule overlap-symmetry)
        ultimately show False..
    next
        assume Ovy
        with }\negOvy\rangle\mathrm{ show False..
        qed
    qed
qed
lemma disjoint-second-summands:
    Pv(x\oplusy)\wedgePv(x\oplusz)\Longrightarrow\negOyz\LongrightarrowPvx
proof -
    assume antecedent: P v (x\oplusy)\wedge Pv(x\oplusz)
    hence P v (x\oplusz)..
    assume \negOyz
    show P v x
    proof (rule ccontr)
        assume \neg P vx
        hence }\exists\textrm{w}.Pwv\wedge\negOwx\mathrm{ by (rule strong-supplementation)
        then obtain w where w: Pwv^\negOwx..
        hence }\negOwx.
        from w have Pwv..
        moreover from antecedent have Pv(x\oplusz)..
        ultimately have Pw(x\oplusz) by (rule part-transitivity)
        hence Pw(x\oplusz)^\negOwx using <\negOwxi..
        hence Pwz by (rule in-second-summand)
        from antecedent have Pv(x\oplusy)..
        with \langlePwv\rangle have Pw (x\oplusy) by (rule part-transitivity)
        hence Pw(x\oplusy)^\negOwx using <\negOwx\rangle..
        hence Pwy by (rule in-second-summand)
        hence Pwy^Pwz using \langlePwz\rangle..
        hence }\exists\textrm{w}.P\textrm{F}y\wedgeP\mp@code{z..
        with overlap-eq have O y z..
        with }\negOyz\rangle\mathrm{ show False..
    qed
qed
lemma right-associated-sum:
    Ow(x\oplus(y\oplusz))\longleftrightarrowOwx\vee(Owy\veeOwz)
proof -
```

```
    from sum-character have Ow(y\oplusz)\longleftrightarrowOwy\veeOwz..
    moreover from sum-character have
        Ow(x\oplus(y\oplusz))\longleftrightarrow(Owx\veeOw(y\oplusz))..
    ultimately show ?thesis
    by (rule subst)
qed
lemma left-associated-sum:
    Ow((x\oplusy)\oplusz)\longleftrightarrow(Owx\veeOwy)\veeOwz
proof -
    from sum-character have Ow (x\oplusy)\longleftrightarrow(Owx\veeOwy)..
    moreover from sum-character have
        Ow((x\oplusy)\oplusz)\longleftrightarrowOw(x\oplusy)\veeOwz..
    ultimately show ?thesis
        by (rule subst)
qed
theorem sum-associativity: x}\oplus(y\oplusz)=(x\oplusy)\oplus
proof -
    have }\forallw.Ow(x\oplus(y\oplusz))\longleftrightarrowOw((x\oplusy)\oplusz
    proof
        fix w
        have}Ow(x\oplus(y\oplusz))\longleftrightarrow(Owx\veeOwy)\veeOw
        using right-associated-sum by simp
    with left-associated-sum show
        Ow (x\oplus(y\oplusz))\longleftrightarrowOw((x\oplusy)\oplusz) by (rule ssubst)
    qed
    with overlap-extensionality show }x\oplus(y\oplusz)=(x\oplusy)\oplusz.
qed
```


7.2 Distributivity

The proofs in this section are adapted from [Pietruszczak, 2018] pp. 102-4.
lemma common-summand-in-product: $P x((x \oplus y) \otimes(x \oplus z))$
using common-first-summand by (rule common-part-in-product)
lemma product-in-first-summand:
$\neg O y z \Longrightarrow P((x \oplus y) \otimes(x \oplus z)) x$
proof -
assume $\neg O y z$
have $\forall v . P v((x \oplus y) \otimes(x \oplus z)) \longrightarrow P v x$
proof
fix v
show $P v((x \oplus y) \otimes(x \oplus z)) \longrightarrow P v x$
proof
assume $P v((x \oplus y) \otimes(x \oplus z))$
with common-first-summand-overlap have $P v(x \oplus y) \wedge P v(x \oplus z)$ by (rule product-part-in-factors)

```
        thus Pvx using }\negOyz`\mathrm{ by (rule disjoint-second-summands)
        qed
    qed
    hence P}((x\oplusy)\otimes(x\oplusz))((x\oplusy)\otimes(x\oplusz))
        P((x\oplusy)\otimes(x\oplusz)) x..
    thus P}((x\oplusy)\otimes(x\oplusz))x\mathrm{ using part-reflexivity..
qed
lemma product-is-first-summand:
    \neg O y z \Longrightarrow ( x \oplus y ) \otimes ( x \oplus z ) = x
proof -
    assume ᄀO y z
    hence P}((x\oplusy)\otimes(x\oplusz))
    by (rule product-in-first-summand)
    thus }(x\oplusy)\otimes(x\oplusz)=
        using common-summand-in-product
        by (rule part-antisymmetry)
qed
lemma sum-over-product-left: O y z\LongrightarrowP(x\oplus(y\otimesz))}((x\oplusy)
(x\oplusz))
proof -
    assume Oyz
    hence P}(y\otimesz)((x\oplusy)\otimes(x\oplusz))\mathrm{ using second-summands-in-sums
    by (rule part-product-in-whole-product)
    with common-summand-in-product have
        Px ((x\oplusy)\otimes (x\oplusz))\wedgeP(y\otimesz)((x\oplusy)\otimes(x\oplusz))..
    thus P(x\oplus (y\otimesz)) ((x\oplusy)\otimes(x\oplusz))
        by (rule summands-part-implies-sum-part)
qed
lemma sum-over-product-right:
    Oyz\LongrightarrowP((x\oplusy)\otimes(x\oplusz))(x\oplus(y\otimesz))
proof -
    assume Oyz
    show P}((x\oplusy)\otimes(x\oplusz))(x\oplus(y\otimesz)
    proof (rule ccontr)
    assume }\negP((x\oplusy)\otimes(x\oplusz))(x\oplus(y\otimesz)
    hence }\existsv.Pv((x\oplusy)\otimes(x\oplusz))\wedge\negOv(x\oplus(y\otimesz)
        by (rule strong-supplementation)
        then obtain v}\mathrm{ where v:
            Pv}((x\oplusy)\otimes(x\oplusz))\wedge\negOv(x\oplus(y\otimesz)).
    hence \negOv(x\oplus(y\otimesz))..
    with disjoint-from-sum have vd:\negOvx\wedge\negOv(y\otimesz)..
    hence }\negOv(y\otimesz).
    from vd have ᄀ Ovx..
    from }v\mathrm{ have P v ((x }\oplusy)\otimes(x\oplusz)).
    with common-first-summand-overlap have
        vs: Pv(x\oplusy)^Pv(x\oplusz) by (rule product-part-in-factors)
```

```
    hence Pv(x\oplusy)..
    hence Pv (x\oplusy)^\negO v x using <\negOvx\rangle..
    hence Pvy by (rule in-second-summand)
    moreover from vs have Pv(x\oplusz)..
    hence Pv (x\oplusz)^\negOvx using ८\negOvx\rangle..
    hence Pvz by (rule in-second-summand)
    ultimately have P v y ^Pvz..
    hence Pv (y\otimesz) by (rule common-part-in-product)
    hence Ov(y\otimesz) by (rule part-implies-overlap)
    with }\negOv(y\otimesz)\rangle\mathrm{ show False..
    qed
qed
```

Sums distribute over products.
theorem sum-over-product:

$$
O y z \Longrightarrow x \oplus(y \otimes z)=(x \oplus y) \otimes(x \oplus z)
$$

proof -
assume $O y z$
hence $P(x \oplus(y \otimes z))((x \oplus y) \otimes(x \oplus z))$
by (rule sum-over-product-left)
moreover have $P((x \oplus y) \otimes(x \oplus z))(x \oplus(y \otimes z))$
using $\langle O y z\rangle$ by (rule sum-over-product-right)
ultimately show $x \oplus(y \otimes z)=(x \oplus y) \otimes(x \oplus z)$
by (rule part-antisymmetry)
qed
lemma product-in-factor-by-sum:
$O x y \Longrightarrow P(x \otimes y)(x \otimes(y \oplus z))$
proof -
assume $O x y$
hence $P(x \otimes y) x$
by (rule product-in-first-factor)
moreover have $P(x \otimes y) y$
using $\langle O x y\rangle$ by (rule product-in-second-factor)
hence $P(x \otimes y)(y \oplus z)$
using first-summand-in-sum by (rule part-transitivity)
with $\langle P(x \otimes y) x\rangle$ have $P(x \otimes y) x \wedge P(x \otimes y)(y \oplus z)$. .
thus $P(x \otimes y)(x \otimes(y \oplus z))$
by (rule common-part-in-product)
qed
lemma product-of-first-summand:
$O x y \Longrightarrow \neg O x z \Longrightarrow P(x \otimes(y \oplus z))(x \otimes y)$
proof -
assume $O x y$
hence $O x(y \oplus z)$
by (rule first-summand-overlap)
assume $\neg O x z$
show $P(x \otimes(y \oplus z))(x \otimes y)$

```
    proof (rule ccontr)
    assume }\negP(x\otimes(y\oplusz))(x\otimesy
    hence }\existsv.Pv(x\otimes(y\oplusz))\wedge\negOv(x\otimesy
    by (rule strong-supplementation)
    then obtain v where v: Pv(x\otimes (y\oplusz))\wedge\negOv(x\otimesy)..
    hence Pv(x\otimes(y\oplusz))..
    with \langleOx (y\oplusz)\rangle have Pvx\wedgePv(y\oplusz)
    by (rule product-part-in-factors)
    hence P vx..
    moreover from v have }\negOv(x\otimesy).
    ultimately have Pvx^\negOv(x\otimesy)..
    hence }\negOvy\mathrm{ by (rule disjoint-from-second-factor)
    from \langlePvx}^\Pv(y\oplusz)\rangle have Pv(y\oplusz).
    hence Pv(y\oplusz)^\negOvy using }\negOvy>.
    hence Pvz by (rule in-second-summand)
    with }\langlePvx\rangle\mathrm{ have Pvx}\PPvz.
    hence }\existsv.Pvx\wedgePvz.
    with overlap-eq have Oxz..
    with }\negO\\mp@code{z}\mathrm{ show False..
    qed
qed
theorem disjoint-product-over-sum:
```

```
    \(O x y \Longrightarrow \neg O x z \Longrightarrow x \otimes(y \oplus z)=x \otimes y\)
```

 \(O x y \Longrightarrow \neg O x z \Longrightarrow x \otimes(y \oplus z)=x \otimes y\)
 proof -
proof -
assume $O x y$
assume $O x y$
moreover assume $\neg O x z$
moreover assume $\neg O x z$
ultimately have $P(x \otimes(y \oplus z))(x \otimes y)$
ultimately have $P(x \otimes(y \oplus z))(x \otimes y)$
by (rule product-of-first-summand)
by (rule product-of-first-summand)
moreover have $P(x \otimes y)(x \otimes(y \oplus z))$
moreover have $P(x \otimes y)(x \otimes(y \oplus z))$
using $\langle O x y\rangle$ by (rule product-in-factor-by-sum)
using $\langle O x y\rangle$ by (rule product-in-factor-by-sum)
ultimately show $x \otimes(y \oplus z)=x \otimes y$
ultimately show $x \otimes(y \oplus z)=x \otimes y$
by (rule part-antisymmetry)
by (rule part-antisymmetry)
qed
qed
lemma product-over-sum-left:
lemma product-over-sum-left:
$O x y \wedge O x z \Longrightarrow P(x \otimes(y \oplus z))((x \otimes y) \oplus(x \otimes z))$
$O x y \wedge O x z \Longrightarrow P(x \otimes(y \oplus z))((x \otimes y) \oplus(x \otimes z))$
proof -
proof -
assume $O x y \wedge O x z$
assume $O x y \wedge O x z$
hence $O x y$..
hence $O x y$..
hence $O x(y \oplus z)$ by (rule first-summand-overlap)
hence $O x(y \oplus z)$ by (rule first-summand-overlap)
show $P(x \otimes(y \oplus z))((x \otimes y) \oplus(x \otimes z))$
show $P(x \otimes(y \oplus z))((x \otimes y) \oplus(x \otimes z))$
proof (rule ccontr)
proof (rule ccontr)
assume $\neg P(x \otimes(y \oplus z))((x \otimes y) \oplus(x \otimes z))$
assume $\neg P(x \otimes(y \oplus z))((x \otimes y) \oplus(x \otimes z))$
hence $\exists v . P v(x \otimes(y \oplus z)) \wedge \neg O v((x \otimes y) \oplus(x \otimes z))$
hence $\exists v . P v(x \otimes(y \oplus z)) \wedge \neg O v((x \otimes y) \oplus(x \otimes z))$
by (rule strong-supplementation)
by (rule strong-supplementation)
then obtain v where v :
then obtain v where v :
$P v(x \otimes(y \oplus z)) \wedge \neg O v((x \otimes y) \oplus(x \otimes z)) .$.
$P v(x \otimes(y \oplus z)) \wedge \neg O v((x \otimes y) \oplus(x \otimes z)) .$.
hence $\neg O v((x \otimes y) \oplus(x \otimes z))$..

```
    hence \(\neg O v((x \otimes y) \oplus(x \otimes z))\)..
```

with disjoint-from-sum have oxyz: $\neg O v(x \otimes y) \wedge \neg O v(x \otimes z) .$.
from v have $P v(x \otimes(y \oplus z))$..
with $\langle O x(y \oplus z)\rangle$ have $p x y z: P v x \wedge P v(y \oplus z)$
by (rule product-part-in-factors)
hence $P v x$..
moreover from oxyz have $\neg O v(x \otimes y)$..
ultimately have $P v x \wedge \neg O v(x \otimes y)$..
hence $\neg O v y$ by (rule disjoint-from-second-factor)
from oxyz have $\neg O v(x \otimes z)$..
with $\langle P v x\rangle$ have $P v x \wedge \neg O v(x \otimes z)$..
hence $\neg O v z$ by (rule disjoint-from-second-factor)
with $\langle\neg O v y\rangle$ have $\neg O v y \wedge \neg O v z .$.
with disjoint-from-sum have $\neg O v(y \oplus z)$..
from pxyz have $P v(y \oplus z)$..
hence $O v(y \oplus z)$ by (rule part-implies-overlap)
with $\langle\neg O v(y \oplus z)\rangle$ show False..
qed
qed
lemma product-over-sum-right:

$$
O x y \wedge O x z \Longrightarrow P((x \otimes y) \oplus(x \otimes z))(x \otimes(y \oplus z))
$$

proof -
assume antecedent: $O x y \wedge O x z$
have $P(x \otimes y)(x \otimes(y \oplus z)) \wedge P(x \otimes z)(x \otimes(y \oplus z))$
proof
from antecedent have $O x y$..
thus $P(x \otimes y)(x \otimes(y \oplus z))$
by (rule product-in-factor-by-sum)
next
from antecedent have $O x z$..
hence $P(x \otimes z)(x \otimes(z \oplus y))$
by (rule product-in-factor-by-sum)
with sum-commutativity show $P(x \otimes z)(x \otimes(y \oplus z))$
by (rule subst)
qed
thus $P((x \otimes y) \oplus(x \otimes z))(x \otimes(y \oplus z))$
by (rule summands-part-implies-sum-part)
qed
theorem product-over-sum:
$O x y \wedge O x z \Longrightarrow x \otimes(y \oplus z)=(x \otimes y) \oplus(x \otimes z)$
proof -
assume antecedent: $O x$ y $\wedge O x z$
hence $P(x \otimes(y \oplus z))((x \otimes y) \oplus(x \otimes z))$
by (rule product-over-sum-left)
moreover have $P((x \otimes y) \oplus(x \otimes z))(x \otimes(y \oplus z))$
using antecedent by (rule product-over-sum-right)
ultimately show $x \otimes(y \oplus z)=(x \otimes y) \oplus(x \otimes z)$

```
    by (rule part-antisymmetry)
qed
lemma joint-identical-sums:
    v\oplusw=x\oplusy\LongrightarrowOxv\wedgeOxw\Longrightarrow((x\otimesv)\oplus(x\otimesw))=x
proof -
    assume v\oplusw=x\oplusy
    moreover assume Oxv^Oxw
    hence }x\otimes(v\oplusw)=x\otimesv\oplusx\otimes
        by (rule product-over-sum)
    ultimately have }x\otimes(x\oplusy)=x\otimesv\oplusx\otimesw\mathrm{ by (rule subst)
    moreover have (x\otimes(x\oplusy)) =x using first-summand-in-sum
        by (rule part-product-identity)
    ultimately show ((x\otimesv)\oplus(x\otimesw))=x by (rule subst)
qed
lemma disjoint-identical-sums:
    v\oplusw=x\oplusy\Longrightarrow\negOyv\wedge\negOwx\Longrightarrowx=v\wedgey=w
proof -
    assume identical: v}\oplusw=x\oplus
    assume disjoint: \negO y v^\negOwx
    show }x=v\wedgey=
    proof
        from disjoint have \negO y v..
        hence }(x\oplusy)\otimes(x\oplusv)=
            by (rule product-is-first-summand)
    with identical have (v\oplusw)\otimes(x\oplusv)=x
        by (rule ssubst)
    moreover from disjoint have }\negOwx.
    hence }(v\oplusw)\otimes(v\oplusx)=
        by (rule product-is-first-summand)
    with sum-commutativity have (v\oplusw)\otimes(x\oplusv)=v
        by (rule subst)
    ultimately show }x=v\mathrm{ by (rule subst)
next
    from disjoint have }\negOwx.
    hence }(y\oplusw)\otimes(y\oplusx)=
        by (rule product-is-first-summand)
    moreover from disjoint have }\negOyv.
    hence }(w\oplusy)\otimes(w\oplusv)=
        by (rule product-is-first-summand)
    with sum-commutativity have (w\oplusy)\otimes(v\oplusw)=w
        by (rule subst)
    with identical have (w\oplusy)\otimes(x\oplusy)=w
        by (rule subst)
        with sum-commutativity have (w\oplusy)\otimes(y\oplusx)=w
        by (rule subst)
    with sum-commutativity have (y\oplusw)\otimes(y\oplusx)=w
        by (rule subst)
```

```
    ultimately show y=w
        by (rule subst)
    qed
qed
```

end

7.3 Differences

locale $C E M D=C E M+C M D$
begin
lemma plus-minus: PP y $x \Longrightarrow y \oplus(x \ominus y)=x$
proof -
assume $P P$ y x
hence $\exists z . P z x \wedge \neg O z y$ by (rule weak-supplementation)
hence $x m y: \forall w . P w(x \ominus y) \longleftrightarrow(P w x \wedge \neg O w y)$
by (rule difference-character)
have $\forall w . O w x \longleftrightarrow(O w y \vee O w(x \ominus y))$
proof
fix w
from $x m y$ have $w: P w(x \ominus y) \longleftrightarrow(P w x \wedge \neg O w y) .$.
show $O w x \longleftrightarrow(O w y \vee O w(x \ominus y))$
proof
assume $O w x$
with overlap-eq have $\exists v . P v w \wedge P v x .$.
then obtain v where $v: P v w \wedge P v x$..
hence $P v w$..
from v have $P v x$..
show $O w y \vee O w(x \ominus y)$
proof cases
assume $O v y$
hence $O y v$ by (rule overlap-symmetry)
with $\langle P v w\rangle$ have $O y w$ by (rule overlap-monotonicity)
hence $O w y$ by (rule overlap-symmetry)
thus $O w y \vee O w(x \ominus y)$..
next
from $x m y$ have $P v(x \ominus y) \longleftrightarrow(P v x \wedge \neg O v y) .$.
moreover assume $\neg O v y$
with $\langle P v x\rangle$ have $P v x \wedge \neg O v y$..
ultimately have $P v(x \ominus y)$..
with $\langle P v w\rangle$ have $P v w \wedge P v(x \ominus y)$..
hence $\exists v . P v w \wedge P v(x \ominus y)$..
with overlap-eq have $O w(x \ominus y)$..
thus $O w y \vee O w(x \ominus y)$..
qed
next
assume $O w y \vee O w(x \ominus y)$
thus $O w x$

```
        proof
            from \langlePP y x\rangle have P y x
            by (rule proper-implies-part)
            moreover assume Owy
            ultimately show Owx
                by (rule overlap-monotonicity)
next
            assume O w (x\ominus y)
            with overlap-eq have \exists v.Pvw^Pv(x\ominusy)..
            then obtain v}\mathrm{ where v: Pvw^Pv(xӨy)..
            hence P v w..
            from xmy have Pv(x\ominusy)\longleftrightarrow(Pvx\wedge\negOvy)..
            moreover from v have Pv(x\ominusy)..
            ultimately have Pvx}\~Ovy.
            hence P vx..
            with }\langlePvw\rangle\mathrm{ have Pvw^Pvx..
            hence \existsv.Pvw^Pvx..
            with overlap-eq show Owx..
            qed
        qed
    qed
    thus }y\oplus(x\ominusy)=
    by (rule sum-intro)
qed
end
```


7.4 The Universe

locale $C E M U=C E M+C M U$
begin

```
lemma something-disjoint: \(x \neq u \Longrightarrow(\exists v . \neg O v x)\)
proof -
    assume \(x \neq u\)
    with universe-character have \(P x u \wedge x \neq u\)..
    with nip-eq have PP x u..
    hence \(\exists v . P v u \wedge \neg O v x\)
        by (rule weak-supplementation)
    then obtain \(v\) where \(P v u \wedge \neg O v x\)..
    hence \(\neg O v x\)..
    thus \(\exists v\). ᄀ \(O v x\)..
qed
lemma overlaps-universe: \(O x u\)
proof -
    from universe-character have \(P x u\).
    thus \(O x u\) by (rule part-implies-overlap)
qed
```

```
lemma universe-absorbing: }x\oplusu=
proof -
    from universe-character have P}(x\oplusu)u
    thus }x\oplusu=u\mathrm{ using second-summand-in-sum
        by (rule part-antisymmetry)
qed
lemma second-summand-not-universe: }x\oplusy\not=u\Longrightarrowy\not=
proof -
    assume antecedent: }x\oplusy\not=
    show }y\not=
    proof
        assume y=u
        hence }x\oplusu\not=u\mathrm{ using antecedent by (rule subst)
        thus False using universe-absorbing..
    qed
qed
lemma first-summand-not-universe: }x\oplusy\not=u\Longrightarrowx\not=
proof -
    assume x}\oplusy\not=
    with sum-commutativity have }y\oplusx\not=u\mathrm{ by (rule subst)
    thus x\not=u by (rule second-summand-not-universe)
qed
end
```


7.5 Complements

```
locale \(C E M C=C E M+C M C+\)
    assumes universe-eq: \(u=(\) THE \(x . \forall y . P y x)\)
begin
lemma complement-sum-character: \(\forall y . P y(x \oplus(-x))\)
proof
    fix \(y\)
    have \(\forall v . O v y \longrightarrow O v x \vee O v(-x)\)
    proof
        fix \(v\)
        show \(O v y \longrightarrow O v x \vee O v(-x)\)
        proof
            assume \(O v y\)
            show \(O v x \vee O v(-x)\)
            using or-complement-overlap..
        qed
    qed
    with sum-part-character show \(P\) y \((x \oplus(-x))\)..
qed
```

```
lemma universe-closure: \exists x. }\forall\textrm{y}.P\textrm{P}
    using complement-sum-character by (rule exI)
end
sublocale CEMC\subseteqCEMU
proof
    show }u=(THEz.\forallw.Pwz) using universe-eq
    show \exists x.\forally.P y x using universe-closure.
qed
sublocale CEMC\subseteqCEMD
proof
qed
context CEMC
begin
corollary universe-is-complement-sum: }u=x\oplus(-x
    using complement-sum-character by (rule universe-intro)
lemma strong-complement-character:
    x\not=u\Longrightarrow(\forallv.Pv(-x)\longleftrightarrow \longleftrightarrowO vx)
proof -
    assume }x\not=
    hence \existsv.\negOvx by (rule something-disjoint)
    thus }\forallv.Pv(-x)\longleftrightarrow\negOvx by (rule complement-character
qed
lemma complement-part-not-part: }x\not=u\LongrightarrowPy(-x)\Longrightarrow\negPy
proof -
    assume }x\not=
    hence }\forallw.Pw(-x)\longleftrightarrow\negOw
    by (rule strong-complement-character)
    hence y: Py (-x)\longleftrightarrow \longleftrightarrow O y x..
    moreover assume P y (-x)
    ultimately have }\neg\mathrm{ O y x..
    thus \negP y x
        by (rule disjoint-implies-not-part)
qed
lemma complement-involution: }x\not=u\Longrightarrowx=-(-x
proof -
    assume }x\not=
    have }\negPu
    proof
    assume P ux
    with universe-character have }x=
```

```
    by (rule part-antisymmetry)
    with \(\langle x \neq u\rangle\) show False..
qed
hence \(\exists v . P v u \wedge \neg O v x\)
    by (rule strong-supplementation)
then obtain \(v\) where \(v\) : \(P v u \wedge \neg O v x\)..
hence \(\neg O v x\)..
hence \(\exists v\). \(\neg\) O \(v x\)..
hence notx: \(\forall w . P w(-x) \longleftrightarrow \neg O w x\)
    by (rule complement-character)
have \(-x \neq u\)
proof
    assume \(-x=u\)
    hence \(\forall w . P w u \longleftrightarrow \neg O w x\) using notx by (rule subst)
    hence \(P x u \longleftrightarrow \neg O x x\)..
    hence \(\neg O x x\) using universe-character..
    thus False using overlap-reflexivity..
qed
have \(\neg P u(-x)\)
proof
    assume \(P u(-x)\)
    with universe-character have \(-x=u\)
        by (rule part-antisymmetry)
        with \(\langle-x \neq u\rangle\) show False..
qed
hence \(\exists v . P v u \wedge \neg O v(-x)\)
    by (rule strong-supplementation)
then obtain \(w\) where \(w: P w u \wedge \neg O w(-x)\)..
hence \(\neg O w(-x)\)..
hence \(\exists v\). \(\neg O v(-x)\)..
hence notnotx: \(\forall w . P w(-(-x)) \longleftrightarrow \neg O w(-x)\)
    by (rule complement-character)
hence \(P x(-(-x)) \longleftrightarrow \neg O x(-x)\)..
moreover have \(\neg O x(-x)\)
proof
    assume \(O x(-x)\)
    with overlap-eq have \(\exists s . P s x \wedge P s(-x)\)..
    then obtain \(s\) where \(s: P s x \wedge P s(-x)\)..
    hence \(P s x\)..
    hence \(O s x\) by (rule part-implies-overlap)
    from notx have \(P s(-x) \longleftrightarrow \neg O s x .\).
    moreover from \(s\) have \(P s(-x)\)..
    ultimately have \(\neg O s x\)..
    thus False using \(\langle O s x\rangle\)..
qed
ultimately have \(P x(-(-x))\)..
moreover have \(P(-(-x)) x\)
proof (rule ccontr)
    assume \(\neg P(-(-x)) x\)
```

```
    hence }\exists\textrm{s.Ps}(-(-x))\wedge\negOs
        by (rule strong-supplementation)
    then obtain s where s: Ps (-(-x))^\negO s x..
    hence \neg O s x..
    from notnotx have Ps(-(-x))\longleftrightarrow(\negOs (-x))..
    moreover from s have Ps (-(-x))..
    ultimately have }\negOs(-x).
    from or-complement-overlap have Osx\veeOs(-x)..
    thus False
    proof
        assume O s x
        with }\langle\negOsx\rangle\mathrm{ show False..
    next
        assume Os(-x)
        with }\negOs(-x)\rangle\mathrm{ show False..
    qed
qed
    ultimately show }x=-(-x
    by (rule part-antisymmetry)
qed
lemma part-complement-reversal: }y\not=u\LongrightarrowPxy\LongrightarrowP(-y)(-x
proof -
    assume y\not=u
    hence ny: \forall w.Pw(-y)\longleftrightarrow \longleftrightarrow\negOwy
    by (rule strong-complement-character)
assume P x y
have }x\not=
proof
    assume }x=
    hence P u y using <P x y by (rule subst)
    with universe-character have }y=
        by (rule part-antisymmetry)
    with }\langley\not=u\rangle\mathrm{ show False..
qed
hence }\forallw.Pw(-x)\longleftrightarrow\negOw
    by (rule strong-complement-character)
hence P(-y)(-x)\longleftrightarrow\negO(-y)x..
moreover have }\negO(-y)
proof
    assume}O(-y)
    with overlap-eq have }\existsv.Pv(-y)\wedgePvx.
    then obtain v}\mathrm{ where v:Pv(-y)^Pvx..
    hence Pv(-y)..
    from ny have Pv(-y)\longleftrightarrow \longleftrightarrow O v y..
    hence \negOv y using 〈Pv(-y)\rangle..
    moreover from v have Pvx..
    hence P v y using 〈P x y〉
        by (rule part-transitivity)
```

```
    hence Ovy
        by (rule part-implies-overlap)
    ultimately show False..
    qed
    ultimately show P (-y) (-x)..
qed
lemma complements-overlap: }x\oplusy\not=u\LongrightarrowO(-x)(-y
proof -
    assume }x\oplusy\not=
    hence }\existsz.\negOz(x\oplusy
    by (rule something-disjoint)
    then obtain z where z:\neg Oz (x\oplusy)..
    hence}\negOzx\mathrm{ by (rule first-summand-disjointness)
    hence Pz (-x) by (rule complement-part)
    moreover from z have }\negOz
    by (rule second-summand-disjointness)
    hence Pz(-y) by (rule complement-part)
    ultimately show }O(-x)(-y
    by (rule overlap-intro)
qed
lemma sum-complement-in-complement-product:
\[
x \oplus y \neq u \Longrightarrow P(-(x \oplus y))(-x \otimes-y)
\]
proof -
    assume }x\oplusy\not=
    hence}O(-x)(-y
    by (rule complements-overlap)
    hence }\forallw.Pw(-x\otimes-y)\longleftrightarrow(Pw(-x)\wedgePw(-y)
    by (rule product-character)
    hence P(-(x\oplusy))(-x\otimes-y)\longleftrightarrow(P(-(x\oplusy))(-x)\wedge \(-(x\oplus
y))(-y))..
    moreover have P(-(x\oplusy))(-x)\wedgeP(-(x\oplusy))(-y)
    proof
    show P
        by (rule part-complement-reversal)
    next
    show P(-(x\oplusy))(-y) using <x\oplusy\not=u\rangle second-summand-in-sum
        by (rule part-complement-reversal)
    qed
    ultimately show }P(-(x\oplusy))(-x\otimes-y).
qed
lemma complement-product-in-sum-complement:
\(x \oplus y \neq u \Longrightarrow P(-x \otimes-y)(-(x \oplus y))\)
proof -
assume \(x \oplus y \neq u\)
hence \(\forall w . P w(-(x \oplus y)) \longleftrightarrow \neg O w(x \oplus y)\)
by (rule strong-complement-character)
```

```
hence \(P(-x \otimes-y)(-(x \oplus y)) \longleftrightarrow(\neg O(-x \otimes-y)(x \oplus y))\)..
moreover have \(\neg O(-x \otimes-y)(x \oplus y)\)
proof
    have \(O(-x)(-y)\) using \(\langle x \oplus y \neq u\rangle\) by (rule complements-overlap)
    hence \(p: \forall v . P v((-x) \otimes(-y)) \longleftrightarrow(P v(-x) \wedge P v(-y))\)
        by (rule product-character)
    have \(O(-x \otimes-y)(x \oplus y) \longleftrightarrow(O(-x \otimes-y) x \vee O(-x \otimes-y) y)\)
        using sum-character..
    moreover assume \(O(-x \otimes-y)(x \oplus y)\)
    ultimately have \(O(-x \otimes-y) x \vee O(-x \otimes-y) y .\).
    thus False
    proof
        assume \(O(-x \otimes-y) x\)
        with overlap-eq have \(\exists v . P v(-x \otimes-y) \wedge P v x .\).
        then obtain \(v\) where \(v: P v(-x \otimes-y) \wedge P v x\)..
        hence \(P v(-x \otimes-y)\)..
        from \(p\) have \(P v((-x) \otimes(-y)) \longleftrightarrow(P v(-x) \wedge P v(-y))\)..
        hence \(P v(-x) \wedge P v(-y)\) using \(\langle P v(-x \otimes-y)\rangle\)..
        hence \(P v(-x)\)..
        have \(x \neq u\) using \(\langle x \oplus y \neq u\rangle\)
        by (rule first-summand-not-universe)
    hence \(\forall w . P w(-x) \longleftrightarrow \neg O w x\)
        by (rule strong-complement-character)
    hence \(P v(-x) \longleftrightarrow \neg O\) vx..
    hence \(\neg O v x\) using \(\langle P v(-x)\rangle\)..
    moreover from \(v\) have \(P v x\)..
    hence \(O v x\) by (rule part-implies-overlap)
    ultimately show False..
    next
    assume \(O(-x \otimes-y) y\)
    with overlap-eq have \(\exists v . P v(-x \otimes-y) \wedge P v y .\).
    then obtain \(v\) where \(v: P v(-x \otimes-y) \wedge P v y .\).
    hence \(P v(-x \otimes-y)\)..
    from \(p\) have \(P v((-x) \otimes(-y)) \longleftrightarrow(P v(-x) \wedge P v(-y))\)..
    hence \(P v(-x) \wedge P v(-y)\) using \(\langle P v(-x \otimes-y)\rangle\)..
    hence \(P v(-y)\)..
    have \(y \neq u\) using \(\langle x \oplus y \neq u\rangle\)
        by (rule second-summand-not-universe)
    hence \(\forall w . P w(-y) \longleftrightarrow \neg O w y\)
        by (rule strong-complement-character)
        hence \(P v(-y) \longleftrightarrow \neg O\) v ..
        hence \(\neg O v y\) using \(\langle P v(-y)\rangle\)..
        moreover from \(v\) have \(P v y\)..
        hence \(O v y\) by (rule part-implies-overlap)
        ultimately show False..
    qed
    qed
    ultimately show \(P(-x \otimes-y)(-(x \oplus y))\)..
qed
```

theorem sum-complement-is-complements-product:

$$
x \oplus y \neq u \Longrightarrow-(x \oplus y)=(-x \otimes-y)
$$

proof -
assume $x \oplus y \neq u$
show $-(x \oplus y)=(-x \otimes-y)$
proof (rule part-antisymmetry)
show $P(-(x \oplus y))(-x \otimes-y)$ using $\langle x \oplus y \neq u\rangle$
by (rule sum-complement-in-complement-product)
show $P(-x \otimes-y)(-(x \oplus y))$ using $\langle x \oplus y \neq u\rangle$
by (rule complement-product-in-sum-complement)
qed
qed
lemma complement-sum-in-product-complement:

$$
O x y \Longrightarrow x \neq u \Longrightarrow y \neq u \Longrightarrow P((-x) \oplus(-y))(-(x \otimes y))
$$

proof -
assume $O x y$
assume $x \neq u$
assume $y \neq u$
have $x \otimes y \neq u$
proof
assume $x \otimes y=u$
with $\langle O x y\rangle$ have $x=u$
by (rule product-universe-implies-factor-universe)
with $\langle x \neq u\rangle$ show False..
qed
hence notxty: $\forall w . P w(-(x \otimes y)) \longleftrightarrow \neg O w(x \otimes y)$
by (rule strong-complement-character)
hence $P((-x) \oplus(-y))(-(x \otimes y)) \longleftrightarrow \neg O((-x) \oplus(-y))(x \otimes y)$..
moreover have $\neg O((-x) \oplus(-y))(x \otimes y)$
proof
from sum-character have
$\forall w . O w((-x) \oplus(-y)) \longleftrightarrow(O w(-x) \vee O w(-y))$.
hence $O(x \otimes y)((-x) \oplus(-y)) \longleftrightarrow(O(x \otimes y)(-x) \vee O(x \otimes$
$y)(-y))$..
moreover assume $O((-x) \oplus(-y))(x \otimes y)$
hence $O(x \otimes y)((-x) \oplus(-y))$ by (rule overlap-symmetry)
ultimately have $O(x \otimes y)(-x) \vee O(x \otimes y)(-y) .$.
thus False
proof
assume $O(x \otimes y)(-x)$
with overlap-eq have $\exists v . P v(x \otimes y) \wedge P v(-x) .$.
then obtain v where $v: P v(x \otimes y) \wedge P v(-x)$..
hence $P v(-x)$..
with $\langle x \neq u\rangle$ have $\neg P v x$
by (rule complement-part-not-part)
moreover from v have $P v(x \otimes y)$..
with $\langle O x y\rangle$ have $P v x$ by (rule product-part-in-first-factor)

```
        ultimately show False..
    next
        assume}O(x\otimesy)(-y
        with overlap-eq have }\existsv.Pv(x\otimesy)\wedgePv(-y).
        then obtain v}\mathrm{ where v:Pv(x&y)^Pv(-y)..
        hence P v (-y)..
        with }\langley\not=u\rangle\mathrm{ have }\negPv
            by (rule complement-part-not-part)
        moreover from v have Pv(x\otimesy)..
        with \langleOxy\rangle have Pvy by (rule product-part-in-second-factor)
        ultimately show False..
        qed
    qed
    ultimately show P}((-x)\oplus(-y))(-(x\otimesy)).
qed
lemma product-complement-in-complements-sum:
    x\not=u\Longrightarrowy\not=u\LongrightarrowP(-(x\otimesy))((-x)\oplus(-y))
proof -
    assume }x\not=
    hence }x=-(-x
        by (rule complement-involution)
    assume y}\not=
    hence }y=-(-y
    by (rule complement-involution)
    show P
    proof cases
    assume -x }\oplus-y=
    thus P(-(x\otimesy))((-x)\oplus(-y))
        using universe-character by (rule ssubst)
    next
    assume -x\oplus-y\not=u
    hence -x\oplus-y=-(-(-x\oplus-y))
        by (rule complement-involution)
    moreover have - (-x\oplus-y)=-(-x)\otimes-(-y)
        using <-x }\oplus-y\not=u
        by (rule sum-complement-is-complements-product)
    with \langlex=-(-x)\rangle have -(-x\oplus-y)=x\otimes-(-y)
        by (rule ssubst)
    with }\langley=-(-y)\rangle\mathrm{ have }-(-x\oplus-y)=x\otimes
        by (rule ssubst)
    hence P}(-(x\otimesy))(-(-(-x\oplus-y))
        using part-reflexivity by (rule subst)
    ultimately show P
        by (rule ssubst)
    qed
qed
theorem complement-of-product-is-sum-of-complements:
```

```
    \(O x y \Longrightarrow x \oplus y \neq u \Longrightarrow-(x \otimes y)=(-x) \oplus(-y)\)
proof -
    assume \(O x y\)
    assume \(x \oplus y \neq u\)
    show \(-(x \otimes y)=(-x) \oplus(-y)\)
    proof (rule part-antisymmetry)
        have \(x \neq u\) using \(\langle x \oplus y \neq u\rangle\)
            by (rule first-summand-not-universe)
    have \(y \neq u\) using \(\langle x \oplus y \neq u\rangle\)
            by (rule second-summand-not-universe)
    show \(P(-(x \otimes y))(-x \oplus-y)\)
    using \(\langle x \neq u\rangle\langle y \neq u\rangle\) by (rule product-complement-in-complements-sum)
    show \(P(-x \oplus-y)(-(x \otimes y))\)
    using \(\langle O x y\rangle\langle x \neq u\rangle\langle y \neq u\rangle\) by (rule complement-sum-in-product-complement)
    qed
qed
end
```


8 General Mereology

The theory of general mereology adds the axiom of fusion to ground mereology. ${ }^{31}$
locale $G M=M+$
assumes fusion:
$\exists x . \varphi x \Longrightarrow \exists z . \forall y . O y z \longleftrightarrow(\exists x . \varphi x \wedge O y x)$
begin
Fusion entails sum closure.

```
theorem sum-closure: \(\exists z . \forall w . O w z \longleftrightarrow(O w a \vee O w b)\)
proof -
    have \(a=a\)..
    hence \(a=a \vee a=b\)..
    hence \(\exists x . x=a \vee x=b\)..
    hence \((\exists z . \forall y . O y z \longleftrightarrow(\exists x .(x=a \vee x=b) \wedge O y x))\)
    by (rule fusion)
    then obtain \(z\) where \(z\) :
        \(\forall y . O y z \longleftrightarrow(\exists x .(x=a \vee x=b) \wedge O y x) .\).
    have \(\forall w . O w z \longleftrightarrow(O w a \vee O w b)\)
    proof
        fix \(w\)
    from \(z\) have \(w: O w z \longleftrightarrow(\exists x .(x=a \vee x=b) \wedge O w x)\)..
    show \(O w z \longleftrightarrow(O w a \vee O w b)\)
    proof
        assume \(O w z\)
```

[^18]```
 with \(w\) have \(\exists x .(x=a \vee x=b) \wedge O w x .\).
 then obtain \(x\) where \(x:(x=a \vee x=b) \wedge O w x\)..
 hence \(O w x\).
 from \(x\) have \(x=a \vee x=b\)..
 thus \(O w a \vee O w b\)
 proof (rule disjE)
 assume \(x=a\)
 hence \(O w a\) using \(\langle O w x\rangle\) by (rule subst)
 thus \(O w a \vee O w b\)..
 next
 assume \(x=b\)
 hence \(O w b\) using \(\langle O w x\rangle\) by (rule subst)
 thus \(O w a \vee O w b\)..
 qed
 next
 assume \(O w a \vee O w b\)
 hence \(\exists x .(x=a \vee x=b) \wedge O w x\)
 proof (rule disjE)
 assume \(O w a\)
 with \(\langle a=a \vee a=b\rangle\) have \((a=a \vee a=b) \wedge O w a\). .
 thus \(\exists x .(x=a \vee x=b) \wedge O w x\)..
 next
 have \(b=b\). .
 hence \(b=a \vee b=b\)..
 moreover assume \(O w b\)
 ultimately have \((b=a \vee b=b) \wedge O w b\)..
 thus \(\exists x .(x=a \vee x=b) \wedge O w x\)..
 qed
 with \(w\) show \(O w z\)..
 qed
 qed
 thus \(\exists z . \forall w . O w z \longleftrightarrow(O w a \vee O w b) .\).
qed
end
```


## 9 General Minimal Mereology

The theory of general minimal mereology adds general mereology to minimal mereology. ${ }^{32}$

```
locale GMM = GM + MM
```

begin

It is natural to assume that just as closed minimal mereology and closed extensional mereology are the same theory, so are general

[^19]minimal mereology and general extensional mereology. ${ }^{33}$ But this is not the case, since the proof of strong supplementation in closed minimal mereology required the product closure axiom. However, in general minimal mereology, the fusion axiom does not entail the product closure axiom. So neither product closure nor strong supplementation are theorems.

## lemma product-closure:

$O x y \Longrightarrow(\exists z . \forall v . P v z \longleftrightarrow P v x \wedge P v y)$
nitpick $[$ expect $=$ genuine $]$ oops
lemma strong-supplementation: $\neg P x y \Longrightarrow(\exists z . P z x \wedge \neg O z y)$
nitpick $[$ expect $=$ genuine $]$ oops
end

## 10 General Extensional Mereology

The theory of general extensional mereology, also known as classical extensional mereology adds general mereology to extensional mereology. ${ }^{34}$

```
locale \(G E M=G M+E M+\)
 assumes sum-eq: \(x \oplus y=(\) THE z. \(\forall v . O v z \longleftrightarrow O v x \vee O v y)\)
 assumes product-eq:
 \(x \otimes y=(\) THE z. \(\forall v . P v z \longleftrightarrow P v x \wedge P v y)\)
 assumes difference-eq:
 \(x \ominus y=(\) THE \(z . \forall w . P w z=(P w x \wedge \neg O w y))\)
 assumes complement-eq: \(-x=(\) THE \(z . \forall w . P w z \longleftrightarrow \neg O w x)\)
 assumes universe-eq: \(u=(\) THE \(x . \forall y . P\) y \(x)\)
 assumes fusion-eq: \(\exists x . F x \Longrightarrow\)
 \((\sigma x . F x)=(\) THE \(x . \forall y . O y x \longleftrightarrow(\exists z . F z \wedge O y z))\)
 assumes general-product-eq: \((\pi x . F x)=(\sigma x . \forall y . F y \longrightarrow P x y)\)
sublocale \(G E M \subseteq G M M\)
proof
qed
```


### 10.1 General Sums

context GEM
begin

[^20]lemma fusion-intro:

```
\((\forall y . O y z \longleftrightarrow(\exists x . F x \wedge O y x)) \Longrightarrow(\sigma x . F x)=z\)
proof -
 assume antecedent: \((\forall y . O y z \longleftrightarrow(\exists x . F x \wedge O y x))\)
 hence \((\) THE \(x . \forall y . O\) y \(x \longleftrightarrow(\exists z . F z \wedge O y z))=z\)
 proof (rule the-equality)
 fix \(a\)
 assume \(a:(\forall y . O y a \longleftrightarrow(\exists x . F x \wedge O y x))\)
 have \(\forall x . O x a \longleftrightarrow O x z\)
 proof
 fix \(b\)
 from antecedent have \(O b z \longleftrightarrow(\exists x . F x \wedge O b x)\)..
 moreover from \(a\) have \(O b a \longleftrightarrow(\exists x . F x \wedge O b x)\)..
 ultimately show \(O b a \longleftrightarrow O b z\) by (rule ssubst)
 qed
 with overlap-extensionality show \(a=z\)..
 qed
 moreover from antecedent have \(O z z \longleftrightarrow(\exists x . F x \wedge O z x)\).
 hence \(\exists x . F x \wedge O z x\) using overlap-reflexivity..
 hence \(\exists x . F x\) by auto
 hence \((\sigma x . F x)=(\) THE \(x . \forall y . O y x \longleftrightarrow(\exists z . F z \wedge O y z))\)
 by (rule fusion-eq)
 ultimately show \((\sigma v . F v)=z\) by (rule subst)
qed
lemma fusion-idempotence: \((\sigma x . z=x)=z\)
proof -
 have \(\forall y . O\) y \(z \longleftrightarrow(\exists x . z=x \wedge O y x)\)
 proof
 fix \(y\)
 show \(O y z \longleftrightarrow(\exists x . z=x \wedge O y x)\)
 proof
 assume \(O y z\)
 with refl have \(z=z \wedge O y z .\).
 thus \(\exists x . z=x \wedge O y x\)..
 next
 assume \(\exists x . z=x \wedge O y x\)
 then obtain \(x\) where \(x: z=x \wedge O y x\)..
 hence \(z=x\)..
 moreover from \(x\) have \(O y x\)..
 ultimately show \(O y z\) by (rule ssubst)
 qed
 qed
 thus \((\sigma x . z=x)=z\)
 by (rule fusion-intro)
qed
```

The whole is the sum of its parts.
lemma fusion-absorption: $(\sigma x . P x z)=z$

```
proof -
 have }(\forally.Oyz\longleftrightarrow(\existsx.Pxz\wedgeOyx)
 proof
 fix }
 show Oyz\longleftrightarrow(\existsx.Pxz\wedgeOyx)
 proof
 assume Oyz
 with part-reflexivity have Pzz\wedgeOyz..
 thus \existsx. Pxz^Oyx..
 next
 assume \existsx.Pxz^Oyx
 then obtain x where x: Pxz^Oyx..
 hence P x z..
 moreover from x have O y x..
 ultimately show Oyz by (rule overlap-monotonicity)
 qed
 qed
 thus (\sigmax. P x z)=z
 by (rule fusion-intro)
qed
lemma part-fusion: Pw(\sigmav.Pvx)\LongrightarrowPwx
proof -
 assume Pw(\sigmav. P vx)
 with fusion-absorption show Pwx by (rule subst)
qed
lemma fusion-character:
 \existsx.Fx\Longrightarrow(\forally.Oy(\sigmav.Fv)\longleftrightarrow(\existsx.Fx\wedgeOyx))
proof -
 assume }\existsx.F
 hence }\existsz.\forally.O y z\longleftrightarrow(\existsx.Fx\wedgeOyx
 by (rule fusion)
 then obtain z where z: \forally.Oyz\longleftrightarrow(\existsx.Fx\wedgeOyx)..
 hence (\sigma v.Fv)=z by (rule fusion-intro)
 thus }\forally.Oy(\sigmav.Fv)\longleftrightarrow(\existsx.Fx\wedgeOyx)\mathrm{ using z by (rule
ssubst)
qed
```

The next lemma characterises fusions in terms of parthood. ${ }^{35}$
lemma fusion-part-character: $\exists x . F x \Longrightarrow$
$(\forall y . P y(\sigma v . F v) \longleftrightarrow(\forall w . P w y \longrightarrow(\exists v . F v \wedge O w v)))$
proof -
assume $(\exists x . F x)$
hence $F: \forall y . O y(\sigma v . F v) \longleftrightarrow(\exists x . F x \wedge O y x)$
by (rule fusion-character)
show $\forall y . P y(\sigma v . F v) \longleftrightarrow(\forall w . P w y \longrightarrow(\exists v . F v \wedge O w v))$
proof

[^21]```
    fix y
    show Py(\sigmav.Fv)\longleftrightarrow(\forallw.Pwy\longrightarrow(\existsv.Fv^Owv))
    proof
    assume P y (\sigmav.Fv)
    show }\forallw.Pwy\longrightarrow(\existsv.Fv\wedgeOwv
    proof
            fix w
            from F have w: Ow (\sigmav.Fv)\longleftrightarrow \longleftrightarrow(\existsx.Fx\wedgeOwx)..
            show Pwy\longrightarrow(\existsv.Fv^Owv)
            proof
                assume Pwy
                    hence Pw(\sigmav.Fv) using \langleP y (\sigmav.Fv)\rangle
                    by (rule part-transitivity)
            hence Ow (\sigmav.Fv) by (rule part-implies-overlap)
            with w show \existsx.Fx^Owx..
            qed
    qed
    next
    assume right: }\forallw.Pwy\longrightarrow(\existsv.Fv\wedgeOwv
    show P y (\sigmav.Fv)
    proof (rule ccontr)
        assume \negPy(\sigmav.Fv)
        hence }\existsv.Pvy\wedge\negOv(\sigmav.Fv
            by (rule strong-supplementation)
        then obtain v where v: Pv y^\negOv(\sigmav.Fv)..
        hence }\neg\mathrm{ Ov ( }\sigmav.Fv).
        from right have Pvy\longrightarrow(\existsw.Fw\wedgeOvw)..
        moreover from v have Pvy..
        ultimately have }\exists\textrm{w}.Fw\wedgeOvw.
        from F have Ov(\sigmav.Fv)\longleftrightarrow(\existsx.Fx\wedgeOvx)..
        hence Ov(\sigmav.Fv) using «\existsw.Fw\wedgeOvw`..
        with }\negOv(\sigmav.Fv)\rangle\mathrm{ show False..
        qed
    qed
    qed
qed
lemma fusion-part: Fx\LongrightarrowPx(\sigmax.F x)
proof -
    assume Fx
    hence }\existsx.Fx.
    hence }\forally.Py(\sigmav.Fv)\longleftrightarrow(\forallw.Pwy\longrightarrow(\existsv.Fv\wedgeOwv)
    by (rule fusion-part-character)
hence Px (\sigmav.Fv)\longleftrightarrow(\forallw.Pwx\longrightarrow(\existsv.Fv\wedgeOwv))..
moreover have }\forallw.Pwx\longrightarrow(\existsv.Fv\wedgeOwv
proof
    fix w
    show }Pwx\longrightarrow(\existsv.Fv\wedgeOwv
    proof
```

```
            assume P wx
            hence Owx by (rule part-implies-overlap)
            with \langleFx\rangle have Fx^Owx..
            thus \existsv.Fv\wedgeOwv..
        qed
    qed
    ultimately show P x (\sigma v.F v)..
qed
lemma common-part-fusion:
    Oxy\Longrightarrow(\forallw.Pw(\sigmav.(Pvx\wedgePvy))\longleftrightarrow(Pwx\wedgePwy))
proof -
    assume O x y
    with overlap-eq have \existsz.(Pzx\wedgePzy)..
    hence sum: (\forallw.Pw(\sigmav.(Pvx\wedgePvy))\longleftrightarrow
        (\forallz.Pzw\longrightarrow(\existsv.(Pvx\wedgePvy)\wedgeOzv)))
        by (rule fusion-part-character)
    show }\forallw.Pw(\sigmav.(Pvx\wedgePvy))\longleftrightarrow(Pwx\wedgePwy
    proof
    fix }
    from sum have w: Pw(\sigmav.(Pvx\wedgePvy))
        \longleftrightarrow(\forallz.Pzw\longrightarrow(\existsv.(Pvx\wedgePvy)\wedgeOzv))..
    show Pw(\sigmav.(Pvx\wedgePvy))\longleftrightarrow(Pwx\wedgePwy)
    proof
        assume Pw(\sigmav.(Pvx\wedgePvy))
        with w have bla:
            (\forallz.Pzw\longrightarrow(\existsv.(Pvx\wedgePvy)\wedgeOzv))..
        show Pwx^Pwy
        proof
            show P wx
            proof (rule ccontr)
            assume }\negPw
            hence }\existsz.Pzw\wedge\negOz
                by (rule strong-supplementation)
            then obtain z where z:Pzw^\negOzx..
            hence }\negOzx.
            from bla have Pzw\longrightarrow(\existsv.(Pvx\wedgePvy)^Ozv)..
            moreover from z have P zw..
            ultimately have }\existsv.(Pvx\wedgePvy)\wedgeOzv.
            then obtain v}\mathrm{ where v: (Pvx^Pvy)^Ozv..
            hence P P x}^\Pvy.
            hence P vx..
            moreover from v have Ozv..
            ultimately have Ozx
                    by (rule overlap-monotonicity)
            with }\neg\negOzx\rangle\mathrm{ show False..
            qed
            show P wy
            proof (rule ccontr)
```

```
            assume \(\neg P w y\)
            hence \(\exists z . P z w \wedge \neg O z y\)
            by (rule strong-supplementation)
            then obtain \(z\) where \(z: P z w \wedge \neg O z y\)..
            hence \(\neg O z y\)..
            from bla have \(P z w \longrightarrow(\exists v .(P v x \wedge P v y) \wedge O z v)\)..
            moreover from \(z\) have \(P z w\)..
            ultimately have \(\exists v .(P v x \wedge P v y) \wedge O z v .\).
            then obtain \(v\) where \(v:(P v x \wedge P v y) \wedge O z v\).
            hence \(P v x \wedge P v y\)..
            hence \(P\) v \(y\)..
            moreover from \(v\) have \(O z v\)..
            ultimately have \(O z y\)
                    by (rule overlap-monotonicity)
            with \(\langle\neg\) z \(y\rangle\) show False..
                qed
            qed
next
            assume \(P w x \wedge P w y\)
            thus \(P w(\sigma v .(P v x \wedge P v y))\)
            by (rule fusion-part)
            qed
    qed
qed
theorem product-closure:
    \(O x y \Longrightarrow(\exists z . \forall w . P w z \longleftrightarrow(P w x \wedge P w y))\)
proof -
    assume \(O x y\)
    hence \((\forall w . P w(\sigma v .(P v x \wedge P v y)) \longleftrightarrow(P w x \wedge P w y))\)
            by (rule common-part-fusion)
    thus \(\exists z . \forall w . P w z \longleftrightarrow(P w x \wedge P w y) .\).
qed
end
sublocale \(G E M \subseteq C E M\)
proof
    fix \(x y\)
    show \(\exists z . \forall w . O w z=(O w x \vee O w y)\)
        using sum-closure.
    show \(x \oplus y=(\) THE \(z . \forall v . O v z \longleftrightarrow O v x \vee O v y)\)
        using sum-eq.
    show \(x \otimes y=(\) THE z. \(\forall v . P v z \longleftrightarrow P v x \wedge P v y)\)
        using product-eq.
    show \(O x y \Longrightarrow(\exists z . \forall w . P w z=(P w x \wedge P w y))\)
        using product-closure.
qed
```

```
context GEM
begin
corollary Ox y \Longrightarrowx\otimesy=(\sigmav.Pvx\wedgePvy)
proof -
    assume Oxy
    hence }(\forallw.Pw(\sigmav.(Pvx\wedgePvy))\longleftrightarrow(Pwx\wedgePwy)
        by (rule common-part-fusion)
    thus }x\otimesy=(\sigmav.Pvx\wedgePvy)\mathrm{ by (rule product-intro)
qed
lemma disjoint-fusion:
    \existsw.\negOwx\Longrightarrow(\forallw.Pw(\sigmaz.\negOzx)\longleftrightarrow}\longleftrightarrow\negOwx
proof -
    assume antecedent: \existsw.\negOwx
    hence }\forally.Oy(\sigmav.\negOvx)\longleftrightarrow(\existsv.\negOvx\wedgeOyv
        by (rule fusion-character)
    hence x:Ox (\sigmav.\negOvx)\longleftrightarrow(\existsv.\negOvx\wedgeOxv)..
    show }\forallw.Pw(\sigmaz.\negOzx)\longleftrightarrow~OOw
    proof
        fix }
        show Py(\sigmaz.\negOzx)\longleftrightarrow}\longleftrightarrow~Oy
        proof
            assume P y (\sigmaz.\negOzx)
            moreover have \negOx(\sigmaz.\negOzx)
            proof
            assume Ox (\sigmaz.\negOzx)
            with x have ( }\existsv.\negOvx\wedgeOxv).
            then obtain v}\mathrm{ where v: ᄀOvx^Oxv..
            hence ᄀ O vx..
            from v have Oxv..
            hence Ovx by (rule overlap-symmetry)
            with }\negO\mathrm{ v x〉 show False..
            qed
            ultimately have }\negOx
            by (rule disjoint-demonotonicity)
            thus \negOyx by (rule disjoint-symmetry)
        next
            assume }\negOy
            thus Py(\sigmav.\negOvx)
            by (rule fusion-part)
        qed
    qed
qed
theorem complement-closure:
    \exists}.\negOwx\Longrightarrow(\existsz.\forallw.Pwz\longleftrightarrow\negOwx
proof -
    assume ( \existsw.\negOwx)
```

```
    hence }\forallw.Pw(\sigmaz.\negOzx)\longleftrightarrow\negOw
    by (rule disjoint-fusion)
    thus }\existsz.\forallw.Pwz\longleftrightarrow\negOwx.
qed
end
sublocale GEM\subseteqCEMC
proof
    fix x y
    show - x=(THE z.\forallw.Pwz\longleftrightarrow\negOwx)
        using complement-eq.
    show }(\existsw.\negOwx)\Longrightarrow(\existsz.\forallw.Pwz=(\negOwx)
        using complement-closure.
    show }x\ominusy=(\mathrm{ THE z. }\forallw.Pwz=(Pwx\wedge\negOwy)
        using difference-eq.
    show }u=(THE x.\forally.P y x
        using universe-eq.
qed
context GEM
begin
corollary complement-is-disjoint-fusion:
    \exists}.\negOwx\Longrightarrow-x=(\sigmaz.\negOzx
proof -
    assume \existsw.\negOwx
    hence }\forallw.Pw(\sigmaz.\negOzx)\longleftrightarrow\negOw
        by (rule disjoint-fusion)
    thus -x=(\sigmaz.\negOzx)
    by (rule complement-intro)
qed
theorem strong-fusion: \existsx.Fx\Longrightarrow
    \existsx.(\forally.Fy\longrightarrowPyx)^(\forally.Pyx\longrightarrow(\existsz.Fz\wedgeOyz))
proof -
    assume }\existsx.F
    have (\forally.Fy\longrightarrowPy(\sigmav.Fv))^
        (\forally.Py(\sigmav.Fv)\longrightarrow(\existsz.Fz\wedgeOyz))
    proof
        show }\forally.Fy\longrightarrowPy(\sigmav.Fv
        proof
        fix y
        show Fy\longrightarrowPy(\sigmav.Fv)
        proof
            assume F y
                thus P y (\sigmav.Fv)
                    by (rule fusion-part)
        qed
```

```
    qed
    next
    have (\forally.P y (\sigmav.Fv)\longleftrightarrow
        (\forallw.Pwy\longrightarrow(\existsv.Fv\wedgeOwv)))
        using {\existsx.F x\rangle by (rule fusion-part-character)
    hence P(\sigmav.Fv)(\sigmav.Fv)\longleftrightarrow(\forallw.Pw(\sigmav.Fv)\longrightarrow
        (\existsv.Fv\wedgeOwv))..
        thus }\forallw.Pw(\sigmav.Fv)\longrightarrow(\existsv.Fv\wedgeOwv) usin
part-reflexivity..
    qed
    thus ?thesis..
qed
theorem strong-fusion-eq: \existsx.Fx\Longrightarrow(\sigmax.Fx)=
    (THEx. (\forally.Fy\longrightarrowPyx)^(\forally.P y x \longrightarrow (\existsz.Fz\wedgeOyz)))
proof -
    assume }\existsx.F
    have (THE x. (\forally.Fy\longrightarrowPyx)^(\forally.Pyx\longrightarrow(\existsz.Fz\wedgeO
yz)))}=(\sigmax.Fx
    proof (rule the-equality)
    show (\forally.Fy\longrightarrowPy(\sigmax.Fx))\wedge(\forally.Py(\sigmax.Fx)\longrightarrow(\existsz.
Fz\wedgeOyz))
    proof
        show }\forally.Fy\longrightarrowPy(\sigmax.Fx
        proof
            fix y
            show Fy\longrightarrowPy(\sigmax.Fx)
            proof
                    assume F y
                    thus P y (\sigmax.F x)
                        by (rule fusion-part)
                qed
        qed
    next
        show }(\forally.Py(\sigmax.Fx)\longrightarrow(\existsz.Fz\wedgeOyz)
        proof
            fix y
            show Py(\sigmax.Fx)\longrightarrow(\existsz.Fz\wedgeOyz)
            proof
                    have }\forally.Py(\sigmav.Fv)\longleftrightarrow(\forallw.Pwy\longrightarrow(\existsv.Fv\wedge
    wv))
                using \\existsx.F x\rangle by (rule fusion-part-character)
                    hence Py(\sigmav.Fv)\longleftrightarrow(\forallw.Pwy\longrightarrow(\existsv.Fv\wedgeOw
    v))..
            moreover assume P y (\sigmax.Fx)
            ultimately have }\forallw.Pwy\longrightarrow(\existsv.Fv\wedgeOwv).
            hence P y y\longrightarrow(\existsv.Fv\wedgeOyv)..
            thus \existsv.Fv\wedgeOyv using part-reflexivity..
        qed
```

```
            qed
    qed
    next
    fix }
    assume x: (\forally.Fy\longrightarrowPyx)^(\forally.Pyx\longrightarrow(\existsz.Fz\wedgeOy
z))
    have }\forally.Oyx\longleftrightarrow(\existsz.Fz\wedgeOyz
    proof
        fix y
        show Oyx\longleftrightarrow(\existsz.Fz\wedgeOyz)
        proof
            assume O y x
            with overlap-eq have \existsv. Pv y^Pvx..
            then obtain v}\mathrm{ where v: Pvy^Pvx..
            from }x\mathrm{ have }\forally.P y x\longrightarrow(\existsz.Fz\wedgeOyz).
            hence Pvx\longrightarrow(\existsz.Fz\wedgeOvz)..
            moreover from v have P vx..
            ultimately have }\existsz.Fz\wedgeOvz.
            then obtain z where z:Fz\wedgeOvz..
            hence Fz..
            from v have P v y..
            moreover from z have Ovz..
            hence Ozv by (rule overlap-symmetry)
            ultimately have Ozy by (rule overlap-monotonicity)
            hence Oyz by (rule overlap-symmetry)
            with }\langleFz\rangle\mathrm{ have Fz^Oyz..
            thus \existsz.Fz\wedgeOyz..
            next
            assume }\existsz.Fz\wedgeOy
            then obtain z where z:Fz\wedgeOyz..
            from }x\mathrm{ have }\forally.Fy\longrightarrowPyx.
            hence F z\longrightarrowPzx..
            moreover from z have Fz..
            ultimately have Pzx..
            moreover from z have Oyz..
            ultimately show O y x
            by (rule overlap-monotonicity)
        qed
    qed
    hence ( }\sigmax.Fx)=
            by (rule fusion-intro)
    thus }x=(\sigmax.Fx).
    qed
    thus ?thesis..
qed
lemma strong-sum-eq: x }\oplusy=(THEz. (Pxz\wedgePyz)\wedge(\forallw.P
z\longrightarrowOwx\veeOwy))
proof -
```

```
have (THE z. \((P x z \wedge P y z) \wedge(\forall w . P w z \longrightarrow O w x \vee O w y))\)
\(=x \oplus y\)
    proof (rule the-equality)
    show \((P x(x \oplus y) \wedge P y(x \oplus y)) \wedge(\forall w . P w(x \oplus y) \longrightarrow O w\)
\(x \vee O w y)\)
    proof
        show \(P x(x \oplus y) \wedge P y(x \oplus y)\)
            proof
                show \(P x(x \oplus y)\) using first-summand-in-sum.
                show \(P\) y \((x \oplus y)\) using second-summand-in-sum.
        qed
        show \(\forall w . P w(x \oplus y) \longrightarrow O w x \vee O w y\)
        proof
            fix \(w\)
        show \(P w(x \oplus y) \longrightarrow O w x \vee O w y\)
        proof
            assume \(P w(x \oplus y)\)
            hence \(O w(x \oplus y)\) by (rule part-implies-overlap)
            with sum-overlap show \(O w x \vee O w y\)..
        qed
        qed
    qed
    fix \(z\)
    assume \(z:(P x z \wedge P y z) \wedge(\forall w . P w z \longrightarrow O w x \vee O w y)\)
    hence \(P x z \wedge P y z\)..
    have \(\forall w . O w z \longleftrightarrow(O w x \vee O w y)\)
    proof
        fix \(w\)
        show \(O w z \longleftrightarrow(O w x \vee O w y)\)
        proof
            assume \(O w z\)
            with overlap-eq have \(\exists v . P v w \wedge P v z .\).
            then obtain \(v\) where \(v: P v w \wedge P v z\)..
            hence \(P v w\)..
            from \(z\) have \(\forall w . P w z \longrightarrow O w x \vee O w y\)..
            hence \(P v z \longrightarrow O v x \vee O v y\)..
            moreover from \(v\) have \(P v z\)..
            ultimately have \(O v x \vee O v y\)..
            thus \(O w x \vee O w y\)
            proof
                assume \(O v x\)
                hence \(O x v\) by (rule overlap-symmetry)
                with \(\langle P v w\rangle\) have \(O x w\) by (rule overlap-monotonicity)
                hence \(O w x\) by (rule overlap-symmetry)
                thus \(O w x \vee O w y\)..
            next
                assume \(O v y\)
                hence \(O\) y \(v\) by (rule overlap-symmetry)
                with \(\langle P v w\rangle\) have \(O y w\) by (rule overlap-monotonicity)
```

```
            hence \(O w y\) by (rule overlap-symmetry)
            thus \(O w x \vee O w y\).
        qed
    next
        assume \(O w x \vee O w y\)
        thus \(O w z\)
        proof
            from \(\langle P x z \wedge P y z\rangle\) have \(P x z .\).
            moreover assume \(O w x\)
            ultimately show \(O w z\)
                by (rule overlap-monotonicity)
    next
            from \(\langle P x z \wedge P y z\rangle\) have \(P y z\)..
            moreover assume \(O w y\)
            ultimately show \(O w z\)
                by (rule overlap-monotonicity)
            qed
        qed
    qed
    hence \(x \oplus y=z\) by (rule sum-intro)
    thus \(z=x \oplus y\)..
    qed
    thus ?thesis..
qed
```


10.2 General Products

lemma general-product-intro: $(\forall y . O y x \longleftrightarrow(\exists z .(\forall y . F y \longrightarrow P z$ $y) \wedge O y z)) \Longrightarrow(\pi x . F x)=x$ proof -
assume $\forall y . O$ y $x \longleftrightarrow(\exists z .(\forall y . F y \longrightarrow P z y) \wedge O y z)$
hence $(\sigma x . \forall y . F y \longrightarrow P x y)=x$ by (rule fusion-intro)
with general-product-eq show ($\pi x . F x)=x$ by (rule ssubst)
qed
lemma general-product-idempotence: $(\pi z . z=x)=x$
proof -
have $\forall y . O$ y $x \longleftrightarrow(\exists z .(\forall y . y=x \longrightarrow P z y) \wedge O y z)$
by (meson overlap-eq part-reflexivity part-transitivity)
thus $(\pi z . z=x)=x$ by (rule general-product-intro)
qed
lemma general-product-absorption: $(\pi z . P x z)=x$
proof -
have $\forall y . O y x \longleftrightarrow(\exists z .(\forall y . P x y \longrightarrow P z y) \wedge O y z)$
by (meson overlap-eq part-reflexivity part-transitivity)
thus $\left(\begin{array}{ll}\pi & z . P\end{array} x z\right)=x$ by (rule general-product-intro)
qed

```
lemma general-product-character: \(\exists z . \forall y . F y \longrightarrow P z y \Longrightarrow\)
    \(\forall y . O y(\pi x . F x) \longleftrightarrow(\exists z .(\forall y . F y \longrightarrow P z y) \wedge O y z)\)
proof -
    assume \((\exists z . \forall y . F y \longrightarrow P z y)\)
    hence \((\exists x . \forall y . O y x \longleftrightarrow(\exists z .(\forall y . F y \longrightarrow P z y) \wedge O y z))\)
        by (rule fusion)
    then obtain \(x\) where \(x\) :
        \(\forall y . O y x \longleftrightarrow(\exists z .(\forall y . F y \longrightarrow P z y) \wedge O y z) .\).
    hence \((\pi x . F x)=x\) by (rule general-product-intro)
    thus \((\forall y . O y(\pi x . F x) \longleftrightarrow(\exists z .(\forall y . F y \longrightarrow P z y) \wedge O y z))\)
        using \(x\) by (rule ssubst)
qed
corollary \(\neg(\exists x . F x) \Longrightarrow u=(\pi x . F x)\)
proof -
    assume antecedent: \(\neg(\exists x . F x)\)
    have \(\forall y . P y(\pi x . F x)\)
    proof
        fix \(y\)
        show \(P y(\pi x . F x)\)
        proof (rule ccontr)
            assume \(\neg P y(\pi x . F x)\)
    hence \(\exists z . P z y \wedge \neg O z(\pi x . F x)\) by (rule strong-supplementation)
            then obtain \(z\) where \(z: P z y \wedge \neg O z(\pi x . F x)\)..
            hence \(\neg O z(\pi x . F x)\)..
            from antecedent have bla: \(\forall y . F y \longrightarrow P z y\) by simp
            hence \(\exists v . \forall y . F y \longrightarrow P v y .\).
            hence \((\forall y . O y(\pi x . F x) \longleftrightarrow(\exists z .(\forall y . F y \longrightarrow P z y) \wedge O y\)
z)) by (rule general-product-character)
            hence \(O z(\pi x . F x) \longleftrightarrow(\exists v .(\forall y . F y \longrightarrow P v y) \wedge O z v)\)..
            moreover from bla have \((\forall y . F y \longrightarrow P z y) \wedge O z z\)
                using overlap-reflexivity..
            hence \(\exists v .(\forall y . F y \longrightarrow P v y) \wedge O z v .\).
            ultimately have \(O z(\pi x\). \(F x)\)..
            with \(\neg O z(\pi x . F x)\rangle\) show False..
        qed
    qed
    thus \(u=(\pi x . F x)\)
    by (rule universe-intro)
qed
end
```


10.3 Strong Fusion

An alternative axiomatization of general extensional mereology adds a stronger version of the fusion axiom to minimal mereology, with correspondingly stronger definitions of sums and general
sums. ${ }^{36}$
locale $G E M 1=M M+$

```
    assumes strong-fusion: \(\exists x . F x \Longrightarrow \exists x .(\forall y . F y \longrightarrow P y x) \wedge(\forall y\).
```

$P y x \longrightarrow(\exists z . F z \wedge O y z))$
assumes strong-sum-eq: $x \oplus y=($ THE z. $(P x z \wedge P y z) \wedge(\forall w$.
$P w z \longrightarrow O w x \vee O w y))$
assumes product-eq:
$x \otimes y=($ THE $z . \forall v . P v z \longleftrightarrow P v x \wedge P v y)$
assumes difference-eq:
$x \ominus y=($ THE $z . \forall w . P w z=(P w x \wedge \neg O w y))$
assumes complement-eq: $-x=($ THE $z . \forall w . P w z \longleftrightarrow \neg O w x)$
assumes universe-eq: $u=($ THE $x . \forall y . P$ y $x)$
assumes strong-fusion-eq: $\exists x . F x \Longrightarrow(\sigma x . F x)=($ THE $x .(\forall y$.
$F y \longrightarrow P y x) \wedge(\forall y . P y x \longrightarrow(\exists z . F z \wedge O y z)))$
assumes general-product-eq: $(\pi x . F x)=(\sigma x . \forall y . F y \longrightarrow P x y)$
begin
theorem fusion:
$\exists x . \varphi x \Longrightarrow(\exists z . \forall y . O y z \longleftrightarrow(\exists x . \varphi x \wedge O y x))$
proof -
assume $\exists x . \varphi x$
hence $\exists x .(\forall y . \varphi y \longrightarrow P y x) \wedge(\forall y . P y x \longrightarrow(\exists z . \varphi z \wedge O y$
$z)$) by (rule strong-fusion)
then obtain x where x :
$(\forall y . \varphi y \longrightarrow P y x) \wedge(\forall y . P y x \longrightarrow(\exists z . \varphi z \wedge O y z)) .$.
have $\forall y . O y x \longleftrightarrow(\exists v . \varphi v \wedge O y v)$
proof
fix y
show $O y x \longleftrightarrow(\exists v . \varphi v \wedge O y v)$
proof
assume O y x
with overlap-eq have $\exists z . P z y \wedge P z x .$.
then obtain z where $z: P z y \wedge P z x$..
hence $P z x$. .
from x have $\forall y . P y x \longrightarrow(\exists v . \varphi v \wedge O y v) .$.
hence $P z x \longrightarrow(\exists v . \varphi v \wedge O z v)$..
hence $\exists v . \varphi v \wedge O z v$ using $\langle P z x\rangle$..
then obtain v where $v: \varphi v \wedge O z v$..
hence $O z v$..
with overlap-eq have $\exists w . P w z \wedge P w v$..
then obtain w where $w: P w z \wedge P w v$..
hence $P w z$..
moreover from z have $P z y$..
ultimately have $P w y$
by (rule part-transitivity)
moreover from w have $P w$..
ultimately have $P w y \wedge P w v .$.

[^22]```
 hence \(\exists w . P w y \wedge P w v .\).
 with overlap-eq have \(O\) y v..
 from \(v\) have \(\varphi v\)..
 hence \(\varphi v \wedge O y v\) using \(\langle O y v\rangle .\).
 thus \(\exists v . \varphi v \wedge O y v\)..
 next
 assume \(\exists v . \varphi v \wedge O y v\)
 then obtain \(v\) where \(v: \varphi v \wedge O y v\)..
 hence \(O\) y \(v\)..
 with overlap-eq have \(\exists z . P z y \wedge P z v .\).
 then obtain \(z\) where \(z: P z y \wedge P z v\)..
 hence \(P z v\)..
 from \(x\) have \(\forall y . \varphi y \longrightarrow P y x\)..
 hence \(\varphi v \longrightarrow P v x\)..
 moreover from \(v\) have \(\varphi v\)..
 ultimately have \(P v x\)..
 with \(\langle P z v\rangle\) have \(P z x\)
 by (rule part-transitivity)
 from \(z\) have \(P z y\)..
 thus \(O\) y \(x\) using \(\langle P z x\rangle\)
 by (rule overlap-intro)
qed
qed
thus \((\exists z . \forall y . O y z \longleftrightarrow(\exists x . \varphi x \wedge O y x)) .\).
qed
lemma pair: \(\exists v .(\forall w .(w=x \vee w=y) \longrightarrow P w v) \wedge(\forall w . P w v\)
\(\longrightarrow(\exists z \cdot(z=x \vee z=y) \wedge O w z))\)
proof -
 have \(x=x\)..
 hence \(x=x \vee x=y\)..
 hence \(\exists v . v=x \vee v=y\)..
 thus ?thesis
 by (rule strong-fusion)
qed
lemma or-id: \((v=x \vee v=y) \wedge O w v \Longrightarrow O w x \vee O w y\)
proof -
 assume \(v:(v=x \vee v=y) \wedge O w v\)
 hence \(O w v\)..
 from \(v\) have \(v=x \vee v=y\)..
 thus \(O w x \vee O w y\)
 proof
 assume \(v=x\)
 hence \(O w x\) using \(\langle O w v\rangle\) by (rule subst)
 thus \(O w x \vee O w y\)..
next
 assume \(v=y\)
 hence \(O w y\) using \(\langle O w v\rangle\) by (rule subst)
```

```
 thus Owx\veeOwy..
 qed
qed
```

lemma strong-sum-closure:
$\exists z .(P x z \wedge P y z) \wedge(\forall w . P w z \longrightarrow O w x \vee O w y)$
proof -
from pair obtain $z$ where $z:(\forall w .(w=x \vee w=y) \longrightarrow P w z) \wedge$
$(\forall w . P w z \longrightarrow(\exists v .(v=x \vee v=y) \wedge O w v)) .$.
have $(P x z \wedge P y z) \wedge(\forall w . P w z \longrightarrow O w x \vee O w y)$
proof
from $z$ have allw: $\forall w .(w=x \vee w=y) \longrightarrow P w z .$.
hence $x=x \vee x=y \longrightarrow P x z$..
moreover have $x=x \vee x=y$ using refl..
ultimately have $P x z$..
from allw have $y=x \vee y=y \longrightarrow P$ y $z$..
moreover have $y=x \vee y=y$ using refl..
ultimately have $P y z$..
with $\langle P x z\rangle$ show $P x z \wedge P y z .$.
next
show $\forall w . P w z \longrightarrow O w x \vee O w y$
proof
fix $w$
show $P w z \longrightarrow O w x \vee O w y$
proof
assume $P w z$
from $z$ have $\forall w . P w z \longrightarrow(\exists v .(v=x \vee v=y) \wedge O w v) .$.
hence $P w z \longrightarrow(\exists v .(v=x \vee v=y) \wedge O w v)$..
hence $\exists v .(v=x \vee v=y) \wedge O w v$ using $\langle P w z\rangle$..
then obtain $v$ where $v:(v=x \vee v=y) \wedge O w v$..
thus $O w x \vee O w y$ by (rule or-id)
qed
qed
qed
thus ?thesis..
qed
end
sublocale $G E M 1 \subseteq G M M$
proof
fix $x y \varphi$
show $(\exists x . \varphi x) \Longrightarrow(\exists z . \forall y . O y z \longleftrightarrow(\exists x . \varphi x \wedge O y x))$ using
fusion.
qed
context GEM1
begin
lemma least-upper-bound:
assumes $s f$ :
$((\forall y . F y \longrightarrow P y x) \wedge(\forall y . P y x \longrightarrow(\exists z . F z \wedge O y z)))$
shows lub:
$(\forall y . F y \longrightarrow P y x) \wedge(\forall z .(\forall y . F y \longrightarrow P y z) \longrightarrow P x z)$
proof
from sf show $\forall y . F y \longrightarrow P y x .$.
next
show $(\forall z .(\forall y . F y \longrightarrow P y z) \longrightarrow P x z)$
proof
fix $z$
show $(\forall y . F y \longrightarrow P y z) \longrightarrow P x z$
proof
assume $z: \forall y . F y \longrightarrow P y z$
from pair obtain $v$ where $v:(\forall w .(w=x \vee w=z) \longrightarrow P w v)$
$\wedge(\forall w . P w v \longrightarrow(\exists y .(y=x \vee y=z) \wedge O w y)) .$.
hence left: $(\forall w .(w=x \vee w=z) \longrightarrow P w v)$..
hence $(x=x \vee x=z) \longrightarrow P x v$..
moreover have $x=x \vee x=z$ using refl..
ultimately have $P x v$..
have $z=v$
proof (rule ccontr)
assume $z \neq v$
from left have $z=x \vee z=z \longrightarrow P z v$. .
moreover have $z=x \vee z=z$ using refl..
ultimately have $P z v$..
hence $P z v \wedge z \neq v$ using $\langle z \neq v\rangle$..
with nip-eq have $P P z v$..
hence $\exists w$. $P w v \wedge \neg O w z$ by (rule weak-supplementation)
then obtain $w$ where $w: ~ P w v \wedge \neg O w z$..
hence $P w v$..
from $v$ have right:
$\forall w . P w v \longrightarrow(\exists y .(y=x \vee y=z) \wedge O w y) .$.
hence $P w v \longrightarrow(\exists y .(y=x \vee y=z) \wedge O w y)$..
hence $\exists y$. $(y=x \vee y=z) \wedge O w y$ using $\langle P w v\rangle$..
then obtain $s$ where $s:(s=x \vee s=z) \wedge O w s$..
hence $s=x \vee s=z$. .
thus False
proof
assume $s=x$
moreover from $s$ have $O \mathrm{ws}$..
ultimately have $O w x$ by (rule subst)
with overlap-eq have $\exists t$. $P t w \wedge P t x$..
then obtain $t$ where $t: P t w \wedge P t x$..
hence $P t x$..
from $s f$ have $(\forall y . P y x \longrightarrow(\exists z . F z \wedge O y z)) .$.
hence $P t x \longrightarrow(\exists z . F z \wedge O t z)$..
hence $\exists z . F z \wedge O t z$ using $\langle P t x\rangle$..
then obtain $a$ where $a: F a \wedge O t a$..

```
 hence F a..
 from sf have ub:\forally.Fy\longrightarrowPyx..
 hence Fa\longrightarrowPax..
 hence P a x using <F a`..
 moreover from a have Ota..
 ultimately have Otx
 by (rule overlap-monotonicity)
 from t have Ptw..
 moreover have Ozt
 proof -
 from z have F a\longrightarrowPaz..
 moreover from a have Fa..
 ultimately have Paz..
 moreover from a have Ota..
 ultimately have Otz
 by (rule overlap-monotonicity)
 thus O zt by (rule overlap-symmetry)
 qed
 ultimately have Ozw
 by (rule overlap-monotonicity)
 hence Owz by (rule overlap-symmetry)
 from w have ᄀO wz..
 thus False using <O wz\rangle..
 next
 assume s=z
 moreover from s have O ws..
 ultimately have O wz by (rule subst)
 from w have \neg O wz..
 thus False using {O wz`..
 qed
 qed
 thus P x z using <P x v> by (rule ssubst)
qed
qed
qed
corollary strong-fusion-intro: (}\forally.Fy\longrightarrowPyx)\wedge(\forally.Pyx
(\existsz.Fz\wedgeOyz))\Longrightarrow(\sigmax.Fx)=x
proof -
 assume antecedent: (\forally.Fy\longrightarrowPyx)\wedge(\forally.P y x \longrightarrow (\existsz.Fz
^O yz))
 with least-upper-bound have lubx:
 (\forally.Fy\longrightarrowPyx)^(\forallz.(\forally.Fy\longrightarrowPyz)\longrightarrowPxz).
 from antecedent have }\forally.Pyx\longrightarrow(\existsz.Fz\wedgeOyz).
 hence }Pxx\longrightarrow(\existsz.Fz\wedgeOxz).
 hence \existsz.Fz\wedgeOxz using part-reflexivity..
 then obtain z}\mathrm{ where z: Fz^Oxz..
 hence F z..
 hence }\existsz.Fz.
```

```
hence (\sigmax.F x) = (THE x. (\forally.Fy\longrightarrowPyx)^(\forally.Pyx\longrightarrow
(\existsz.Fz\wedgeOyz))) by (rule strong-fusion-eq)
 moreover have (THE x. (\forally.Fy\longrightarrowP y x)^(\forally.P y x\longrightarrow
(\existsz.Fz^O y z))) =x
 proof (rule the-equality)
 show (\forally.Fy\longrightarrowPyx)^(\forally.Pyx\longrightarrow(\existsz.Fz\wedgeOyz))
 using antecedent.
 next
 fix w
 assume w:
 (\forally.Fy\longrightarrowPyw)\wedge(\forally.Pyw\longrightarrow(\existsz.Fz\wedgeOyz))
 with least-upper-bound have lubw:
 (\forally.Fy\longrightarrowPyw)^(\forallz.(\forally.Fy\longrightarrowPyz)\longrightarrowPwz).
 hence (\forallz. (\forally.Fy\longrightarrowPyz)\longrightarrowPwz)..
 hence (}\forally.Fy\longrightarrowPyx)\longrightarrowPwx.
 moreover from antecedent have }\forally.Fy\longrightarrowPyx.
 ultimately have P wx..
 from lubx have (}\forallz.(\forally.Fy\longrightarrowPyz)\longrightarrowPxz).
 hence (}\forally.Fy\longrightarrowPyw)\longrightarrowPxw.
 moreover from lubw have (}\forally.Fy\longrightarrowPyw).
 ultimately have P x w..
 with }\langlePwx\rangle\mathrm{ show w}=
 by (rule part-antisymmetry)
 qed
 ultimately show (\sigma x.F x)=x by (rule ssubst)
qed
lemma strong-fusion-character: \existsx.Fx\Longrightarrow((\forally.Fy\longrightarrowPy(\sigmax.
Fx))^(\forally.Py(\sigmax.Fx)\longrightarrow(\existsz.Fz\wedgeOyz)))
proof -
 assume }\existsx.F
 hence (}\existsx.(\forally.Fy\longrightarrowPyx)\wedge(\forally.Pyx\longrightarrow(\existsz.Fz\wedgeO
z))) by (rule strong-fusion)
 then obtain }x\mathrm{ where }x\mathrm{ :
 (\forally.Fy\longrightarrowPyx)^(\forally.Pyx\longrightarrow(\existsz.Fz\wedgeOyz))..
 hence (}\sigmax.Fx)=x\mathrm{ by (rule strong-fusion-intro)
 thus ?thesis using x by (rule ssubst)
qed
lemma F-in: \existsx.Fx\Longrightarrow(\forally.Fy\longrightarrowPy(\sigmax.Fx))
proof -
 assume }\existsx.F
 hence ((\forally.Fy\longrightarrowPy(\sigmax.Fx))\wedge(\forally.Py(\sigmax.Fx)\longrightarrow
(\existsz.Fz\wedgeO yz))) by (rule strong-fusion-character)
 thus }\forally.Fy\longrightarrowPy(\sigmax.Fx).
qed
lemma parts-overlap-Fs:
 \existsx.Fx\Longrightarrow(\forally.Py(\sigmax.Fx)\longrightarrow(\existsz.Fz\wedgeOyz))
```

```
proof -
 assume }\existsx.F
 hence }((\forally.Fy\longrightarrowPy(\sigmax.Fx))\wedge(\forally.Py(\sigmax.Fx)
(\existsz.Fz\wedgeOyz))) by (rule strong-fusion-character)
 thus (\forally.Py(\sigmax.Fx)\longrightarrow(\existsz.Fz\wedgeOyz))..
qed
lemma in-strong-fusion: Pz(\sigmax.z=x)
proof -
 have }\existsy.z=y\mathrm{ using refl..
 hence }\forally.z=y\longrightarrowPy(\sigmax.z=x
 by (rule F-in)
 hence }z=z\longrightarrowPz(\sigmax.z=x).
 thus Pz(\sigmax.z=x) using refl..
qed
lemma strong-fusion-in: P(\sigmax.z=x)z
proof -
 have }\existsy.z=y\mathrm{ using refl..
 hence sf:
 (\forally.z=y\longrightarrowPy(\sigmax.z=x))\wedge(\forally.Py(\sigmax.z=x)\longrightarrow
(\existsv.z=v^Oyv))
 by (rule strong-fusion-character)
 with least-upper-bound have lub: (}\forally.z=y\longrightarrowPy(\sigmax.z=x)
\wedge(\forallv.(\forally.z=y\longrightarrowPyv)\longrightarrowP(\sigmax.z=x)v).
 hence (\forallv. (\forally.z=y\longrightarrowPyv)\longrightarrowP(\sigmax.z=x)v)..
 hence (\forally.z=y\longrightarrowPyz)\longrightarrowP(\sigmax.z=x)z..
 moreover have (\forally.z=y\longrightarrowPyz)
 proof
 fix y
 show z=y\longrightarrowPyz
 proof
 assume z=y
 thus P y z using part-reflexivity by (rule subst)
 qed
 qed
 ultimately show P (\sigmax.z=x)z..
qed
lemma strong-fusion-idempotence: (}\sigmax.z=x)=
 using strong-fusion-in in-strong-fusion by (rule part-antisymmetry)
```


### 10.4 Strong Sums

lemma pair-fusion: $(P x z \wedge P y z) \wedge(\forall w . P w z \longrightarrow O w x \vee O w$ $y) \longrightarrow(\sigma z . z=x \vee z=y)=z$ proof
assume $z:(P x z \wedge P y z) \wedge(\forall w . P w z \longrightarrow O w x \vee O w y)$ have $(\forall v . v=x \vee v=y \longrightarrow P v z) \wedge(\forall v . P v z \longrightarrow(\exists z .(z=x$

```
\(\vee z=y) \wedge O v z))\)
 proof
 show \(\forall v . v=x \vee v=y \longrightarrow P v z\)
 proof
 fix \(w\)
 from \(z\) have \(P x z \wedge P y z .\).
 show \(w=x \vee w=y \longrightarrow P w z\)
 proof
 assume \(w=x \vee w=y\)
 thus \(P w z\)
 proof
 assume \(w=x\)
 moreover from \(\langle P x z \wedge P y z\rangle\) have \(P x z .\).
 ultimately show \(P w z\) by (rule ssubst)
 next
 assume \(w=y\)
 moreover from \(\langle P x z \wedge P y z\rangle\) have \(P y z .\).
 ultimately show \(P w z\) by (rule ssubst)
 qed
 qed
 qed
 show \(\forall v . P v z \longrightarrow(\exists z .(z=x \vee z=y) \wedge O v z)\)
 proof
 fix \(v\)
 show \(P v z \longrightarrow(\exists z .(z=x \vee z=y) \wedge O v z)\)
 proof
 assume \(P v z\)
 from \(z\) have \(\forall w . P w z \longrightarrow O w x \vee O w y .\).
 hence \(P v z \longrightarrow O v x \vee O v y\)..
 hence \(O v x \vee O v y\) using \(\langle P v z\rangle\)..
 thus \(\exists z .(z=x \vee z=y) \wedge O v z\)
 proof
 assume \(O v x\)
 have \(x=x \vee x=y\) using refl..
 hence \((x=x \vee x=y) \wedge O v x\) using \(\langle O v x\rangle\)..
 thus \(\exists z .(z=x \vee z=y) \wedge O v z .\).
 next
 assume \(O v y\)
 have \(y=x \vee y=y\) using refl..
 hence \((y=x \vee y=y) \wedge O v y\) using \(\langle O v y\rangle\)..
 thus \(\exists z .(z=x \vee z=y) \wedge O v z .\).
 qed
 qed
 qed
qed
 thus \((\sigma z . z=x \vee z=y)=z\)
 by (rule strong-fusion-intro)
qed
```

```
corollary strong-sum-fusion: \(x \oplus y=(\sigma z . z=x \vee z=y)\)
proof -
 have \((\) THE \(z .(P x z \wedge P y z) \wedge\)
 \((\forall w . P w z \longrightarrow O w x \vee O w y))=(\sigma z . z=x \vee z=y)\)
 proof (rule the-equality)
 have \(x=x \vee x=y\) using refl..
 hence exz: \(\exists z . z=x \vee z=y\)..
 hence allw: \((\forall w . w=x \vee w=y \longrightarrow P w(\sigma z . z=x \vee z=y))\)
 by (rule \(F\)-in)
 show \((P x(\sigma z . z=x \vee z=y) \wedge P y(\sigma z . z=x \vee z=y)) \wedge\)
 \((\forall w . P w(\sigma z . z=x \vee z=y) \longrightarrow O w x \vee O w y)\)
 proof
 show \((P x(\sigma z . z=x \vee z=y) \wedge P y(\sigma z . z=x \vee z=y))\)
 proof
 from allw have \(x=x \vee x=y \longrightarrow P x(\sigma z . z=x \vee z=y) .\).
 thus \(P x(\sigma z . z=x \vee z=y)\)
 using \(\langle x=x \vee x=y\)...
 next
 from allw have \(y=x \vee y=y \longrightarrow P y(\sigma z . z=x \vee z=y) .\).
 moreover have \(y=x \vee y=y\)
 using refl..
 ultimately show \(P y(\sigma z . z=x \vee z=y)\)..
 qed
 next
 show \(\forall w . P w(\sigma z . z=x \vee z=y) \longrightarrow O w x \vee O w y\)
 proof
 fix \(w\)
 show \(P w(\sigma z . z=x \vee z=y) \longrightarrow O w x \vee O w y\)
 proof
 have \(\forall v . P v(\sigma z . z=x \vee z=y) \longrightarrow(\exists z .(z=x \vee z=y)\)
\(\wedge O v z\)) using exz by (rule parts-overlap-Fs)
 hence \(P w(\sigma z . z=x \vee z=y) \longrightarrow(\exists z .(z=x \vee z=y) \wedge\)
O wz)..
 moreover assume \(P w(\sigma z . z=x \vee z=y)\)
 ultimately have \((\exists z .(z=x \vee z=y) \wedge O w z)\)..
 then obtain \(z\) where \(z:(z=x \vee z=y) \wedge O w z\)..
 thus \(O w x \vee O w y\) by (rule or-id)
 qed
 qed
 qed
 next
 fix \(z\)
 assume \(z:(P x z \wedge P y z) \wedge(\forall w . P w z \longrightarrow O w x \vee O w y)\)
 with pair-fusion have \((\sigma z . z=x \vee z=y)=z\)..
 thus \(z=(\sigma z . z=x \vee z=y)\)..
 qed
 with strong-sum-eq show \(x \oplus y=\left(\begin{array}{ll}\sigma & z . z=x \vee z=y) ~\end{array}\right.\)
 by (rule ssubst)
qed
```

```
corollary strong-sum-intro:
 (Pxz\wedgePyz)\wedge(\forallw.Pwz\longrightarrowOwx\veeOwy)\longrightarrowx\oplusy=z
proof
 assume z:(Pxz\wedgePyz)\wedge(\forallw.Pwz\longrightarrowOwx\veeOwy)
 with pair-fusion have (}\sigmaz.z=x\veez=y)=z.
 with strong-sum-fusion show (}x\oplusy)=
 by (rule ssubst)
qed
```

corollary strong-sum-character: $(P x(x \oplus y) \wedge P y(x \oplus y)) \wedge(\forall w$.
$P w(x \oplus y) \longrightarrow O w x \vee O w y)$
proof -
from strong-sum-closure obtain $z$ where $z$ :
$(P x z \wedge P y z) \wedge(\forall w . P w z \longrightarrow O w x \vee O w y) .$.
with strong-sum-intro have $x \oplus y=z$..
thus ?thesis using $z$ by (rule ssubst)
qed
corollary summands-in: $(P x(x \oplus y) \wedge P y(x \oplus y))$
using strong-sum-character..
corollary first-summand-in: $P x(x \oplus y)$ using summands-in..
corollary second-summand-in: $P y(x \oplus y)$ using summands-in..
corollary sum-part-overlap: $(\forall w . P w(x \oplus y) \longrightarrow O w x \vee O w y)$
using strong-sum-character..
lemma strong-sum-absorption: $y=(x \oplus y) \Longrightarrow P x y$
proof -
assume $y=(x \oplus y)$
thus $P x y$ using first-summand-in by (rule ssubst)
qed
theorem strong-supplementation: $\neg P x y \Longrightarrow(\exists z . P z x \wedge \neg O z y)$
proof -
assume $\neg P x y$
have $\neg(\forall z . P z x \longrightarrow O z y)$
proof
assume $z: \forall z . P z x \longrightarrow O z y$
have $(\forall v . y=v \longrightarrow P v(x \oplus y)) \wedge$
$(\forall v . P v(x \oplus y) \longrightarrow(\exists z \cdot y=z \wedge O v z))$
proof
show $\forall v . y=v \longrightarrow P v(x \oplus y)$
proof
fix $v$
show $y=v \longrightarrow P v(x \oplus y)$
proof

```
 assume y=v
 thus Pv(x\oplusy)
 using second-summand-in by (rule subst)
 qed
 qed
 show }\forallv.Pv(x\oplusy)\longrightarrow(\existsz.y=z\wedgeOvz
 proof
 fix v
 show Pv(x\oplusy)\longrightarrow(\existsz.y=z^Ovz)
 proof
 assume Pv(x\oplusy)
 moreover from sum-part-overlap have
 Pv(x\oplusy)\longrightarrowOvx\veeOvy..
 ultimately have Ovx\veeOvy by (rule rev-mp)
 hence Ovy
 proof
 assume Ovx
 with overlap-eq have \existsw. P wv^P wx..
 then obtain w where w: Pwv^Pwx..
 from z have Pwx\longrightarrowOwy..
 moreover from w have Pwx..
 ultimately have O wy..
 with overlap-eq have }\existst.Ptw\wedgePty.
 then obtain t where t:Ptw\wedgePty..
 hence Ptw..
 moreover from w have Pwv..
 ultimately have P tv
 by (rule part-transitivity)
 moreover from t have Pty..
 ultimately show Ovy
 by (rule overlap-intro)
 next
 assume Ovy
 thus Ovy.
 qed
 with refl have }y=y\wedgeOvy.
 thus }\existsz.y=z\wedgeOvz.
 qed
 qed
qed
hence (\sigma z. y=z)=(x\oplusy) by (rule strong-fusion-intro)
with strong-fusion-idempotence have }y=x\oplusy\mathrm{ by (rule subst)
hence P x y by (rule strong-sum-absorption)
with «\negP x y show False..
qed
thus \existsz.Pzx\wedge\negOzy by simp
qed
lemma sum-character: }\forallv.Ov(x\oplusy)\longleftrightarrow(Ovx\veeOvy
```

```
proof
 fix \(v\)
 show \(O v(x \oplus y) \longleftrightarrow(O v x \vee O v y)\)
 proof
 assume \(O v(x \oplus y)\)
 with overlap-eq have \(\exists w . P w v \wedge P w(x \oplus y) .\).
 then obtain \(w\) where \(w: P w v \wedge P w(x \oplus y) .\).
 hence \(P w v\)..
 have \(P w(x \oplus y) \longrightarrow O w x \vee O w y\) using sum-part-overlap..
 moreover from \(w\) have \(P w(x \oplus y)\)..
 ultimately have \(O w x \vee O w y\)..
 thus \(O v x \vee O v y\)
 proof
 assume \(O w x\)
 hence \(O x w\)
 by (rule overlap-symmetry)
 with \(\langle P w v\rangle\) have \(O x v\)
 by (rule overlap-monotonicity)
 hence \(O v x\)
 by (rule overlap-symmetry)
 thus \(O v x \vee O v y\)..
 next
 assume \(O w y\)
 hence \(O\) y \(w\)
 by (rule overlap-symmetry)
 with \(\langle P w v\rangle\) have \(O y v\)
 by (rule overlap-monotonicity)
 hence \(O v y\) by (rule overlap-symmetry)
 thus \(O v x \vee O v y\)..
 qed
next
 assume \(O v x \vee O v y\)
 thus \(O v(x \oplus y)\)
 proof
 assume \(O v x\)
 with overlap-eq have \(\exists w . P w v \wedge P w x .\).
 then obtain \(w\) where \(w: P w v \wedge P w x\)..
 hence \(P w v\)..
 moreover from \(w\) have \(P w x\)..
 hence \(P w(x \oplus y)\) using first-summand-in
 by (rule part-transitivity)
 ultimately show \(O v(x \oplus y)\)
 by (rule overlap-intro)
 next
 assume \(O\) v y
 with overlap-eq have \(\exists w . P w v \wedge P w y .\).
 then obtain \(w\) where \(w: P w v \wedge P w y\)..
 hence \(P w v\)..
 moreover from \(w\) have \(P\) wy..
```

```
 hence Pw(x\oplusy) using second-summand-in
 by (rule part-transitivity)
 ultimately show Ov(x\oplusy)
 by (rule overlap-intro)
 qed
 qed
qed
lemma sum-eq: x \oplusy=(THEz.\forallv.Ovz=(Ovx\veeOvy))
proof -
 have (THEz.\forallv.Ovz\longleftrightarrow(Ovx\veeOvy))=x\oplusy
 proof (rule the-equality)
 show }\forallv.Ov(x\oplusy)\longleftrightarrow(Ovx\veeOvy)\mathrm{ using sum-character.
next
 fix }
 assume z:\forallv.Ovz\longleftrightarrow(Ovx\veeOvy)
 have (Pxz\wedgePyz)^(\forallw.Pwz\longrightarrowOwx\veeOwy)
 proof
 show Pxz}\Py
 proof
 show P x z
 proof (rule ccontr)
 assume \negP x z
 hence }\existsv.Pvx\wedge\negOv
 by (rule strong-supplementation)
 then obtain v where v: Pvx\wedge\negOvz..
 hence \neg O v z..
 from z have Ovz\longleftrightarrow(Ovx\veeOvy)..
 moreover from v}\mathrm{ have P v x..
 hence Ovx by (rule part-implies-overlap)
 hence Ovx\veeOvy..
 ultimately have O v z..
 with }\negOvz\rangle\mathrm{ show False..
 qed
 next
 show P y z
 proof (rule ccontr)
 assume }\negPy
 hence }\existsv.Pvy^\negOv
 by (rule strong-supplementation)
 then obtain v}\mathrm{ where v: Pvy^ᄀOvz..
 hence }\negOvz.
 from z have Ovz\longleftrightarrow(Ovx\veeOvy)..
 moreover from v have P v y..
 hence Ovy by (rule part-implies-overlap)
 hence Ovx\veeOvy..
 ultimately have O v z..
 with }\negO|z`\mathrm{ show False..
 qed
```

```
 qed
 show }\forallw.Pwz\longrightarrow(Owx\veeOwy
 proof
 fix w
 show }Pwz\longrightarrow(Owx\veeOwy
 proof
 from z have Owz\longleftrightarrowOwx\veeOwy..
 moreover assume P wz
 hence }Owz\mathrm{ by (rule part-implies-overlap)
 ultimately show Owx\vee Owy..
 qed
 qed
 qed
 with strong-sum-intro have }x\oplusy=z.
 thus z=x\oplusy..
 qed
 thus ?thesis..
qed
theorem fusion-eq: \existsx.Fx\Longrightarrow
 (\sigmax.F x)=(THEx.\forally.Oyx\longleftrightarrow(\existsz.Fz\wedgeOyz))
proof -
 assume }\existsx.F
 hence bla: }\forally.Py(\sigmax.Fx)\longrightarrow(\existsz.Fz\wedgeOyz
 by (rule parts-overlap-Fs)
 have (THE x.\forally.Oyx\longleftrightarrow(\existsz.Fz\wedgeOyz))=(\sigmax.Fx)
 proof (rule the-equality)
 show }\forally.Oy(\sigmax.Fx)\longleftrightarrow(\existsz.Fz\wedgeOyz
 proof
 fix }
 show Oy(\sigmax.Fx)\longleftrightarrow(\existsz.Fz\wedgeOyz)
 proof
 assume O y (\sigmax.F x)
 with overlap-eq have \existsv.Pvy^Pv(\sigmax.Fx)..
 then obtain v where v: Pvy^Pv(\sigmax.Fx)..
 hence P v y..
 from bla have Pv(\sigmax.Fx)\longrightarrow(\existsz.Fz\wedgeOvz)..
 moreover from v have Pv(\sigmax.Fx)..
 ultimately have (}\existsz.Fz\wedgeOvz).
 then obtain z where z:Fz\wedgeOvz..
 hence F z..
 moreover from z have Ovz..
 hence Ozv by (rule overlap-symmetry)
 with \langlePvy\rangle}\mathrm{ have Ozy by (rule overlap-monotonicity)
 hence O y z by (rule overlap-symmetry)
 ultimately have Fz}\Oyz.
 thus (\existsz.Fz\wedgeOyz)..
 next
 assume \existsz.Fz\wedgeOyz
```

```
 then obtain z}\mathrm{ where z:Fz^Oyz..
 from}\\existsx.Fx\rangle\mathrm{ have (}\forally.Fy\longrightarrowPy(\sigmax.Fx)
 by (rule F-in)
 hence }Fz\longrightarrowPz(\sigmax.Fx).
 moreover from z have Fz..
 ultimately have Pz(\sigmax.F x)..
 moreover from z have Oyz..
 ultimately show O y (\sigmax.Fx)
 by (rule overlap-monotonicity)
 qed
 qed
next
 fix }
 assume }x:\forally.O y x\longleftrightarrow(\existsv.Fv\wedgeOyv
 have (\forally.Fy\longrightarrowPyx)^(\forally.Pyx\longrightarrow(\existsz.Fz\wedgeOyz))
 proof
 show }\forally.Fy\longrightarrowPy
 proof
 fix y
 show Fy\longrightarrowPyx
 proof
 assume F y
 show P y x
 proof (rule ccontr)
 assume \negP y x
 hence }\existsz.Pzy^\negOz
 by (rule strong-supplementation)
 then obtain z where z:Pzy^\negOzx..
 hence ᄀ O z x..
 from x have }Ozx\longleftrightarrow(\existsv.Fv\wedgeOzv).
 moreover from z have Pzy..
 hence Ozy by (rule part-implies-overlap)
 with }\langleFy\rangle\mathrm{ have F y ^Ozy..
 hence \existsy.Fy^Ozy..
 ultimately have Ozx..
 with }\negOzx\rangle\mathrm{ show False..
 qed
 qed
 qed
 show }\forally.Pyx\longrightarrow(\existsz.Fz\wedgeOyz
 proof
 fix y
 show P y x \longrightarrow (\existsz.Fz\wedgeOyz)
 proof
 from x have O y x \longleftrightarrow (\existsz.Fz^Oyz)..
 moreover assume P y x
 hence O y x by (rule part-implies-overlap)
 ultimately show }\existsz.Fz\wedgeOyz.
 qed
```

```
 qed
 qed
 hence (}\sigmax.Fx)=
 by (rule strong-fusion-intro)
 thus }x=(\begin{array}{l}{\sigma}
 qed
 thus }(\sigmax.Fx)=(THEx.\forally.Oyx\longleftrightarrow(\existsz.Fz\wedgeOyz)).
qed
end
sublocale GEM1\subseteqGEM
proof
 fix }xy
 show \negP x y \Longrightarrow\existsz.Pzx\wedge\negOzy
 using strong-supplementation.
 show }x\oplusy=(\mathrm{ THE z. }\forallv.Ovz\longleftrightarrow(Ovx\veeOvy)
 using sum-eq.
 show }x\otimesy=(THEz.\forallv.Pvz\longleftrightarrowPvx\wedgePvy
 using product-eq.
 show }x\ominusy=(\mathrm{ THE z. }\forallw.Pwz=(Pwx\wedge\negOwy)
 using difference-eq.
 show - x=(THE z.\forallw.Pwz\longleftrightarrow}\longleftrightarrow\Owx
 using complement-eq.
 show }u=(THEx.\forally.Pyx
 using universe-eq.
 show \existsx.Fx\Longrightarrow(\sigmax.Fx)=(THE x. \forally.O y x \longleftrightarrow (\existsz.Fz
\wedgeOyz)) using fusion-eq.
 show (\pix.Fx)=(\sigmax.\forally.Fy\longrightarrowPxy)
 using general-product-eq.
qed
sublocale GEM\subseteqGEM1
proof
 fix }xy
 show }\existsx.Fx\Longrightarrow(\existsx.(\forally.Fy\longrightarrowPyx)\wedge(\forally.Pyx\longrightarrow(\existsz
Fz\wedgeO y z))) using strong-fusion.
 show \existsx.Fx\Longrightarrow(\sigmax.Fx)=(THEx. (\forally.Fy\longrightarrowPyx)^
(\forally.Pyx\longrightarrow(\existsz.Fz\wedgeOyz))) using strong-fusion-eq.
 show (}\pix.Fx)=(\sigmax.\forally.Fy\longrightarrowPxy)\mathrm{ using general-product-eq.
 show }x\oplusy=(THEz.(Pxz\wedgePyz)\wedge(\forallw.Pwz\longrightarrowOwx
Owy)) using strong-sum-eq.
 show }x\otimesy=(THEz.\forallv.Pvz\longleftrightarrowPvx\wedgePvy
 using product-eq.
 show }x\ominusy=(\mathrm{ THE z. }\forallw.Pwz=(Pwx\wedge\negOwy)
 using difference-eq.
 show -x=(THEz.\forallw.Pwz\longleftrightarrow}\longleftrightarrow\Owx) using complement-eq
 show }u=(THEx.\forally.Pyx) using universe-eq
qed
```


## References

[Bittner, 2018] Bittner, T. (2018). Formal ontology of space, time, and physical entities in classical mechanics. Applied Ontology, 13(2):135-179.
[Casati and Varzi, 1999] Casati, R. and Varzi, A. C. (1999). Parts and Places. The Structures of Spatial Representation. MIT Press, Cambridge, Mass.
[Cotnoir, 2010] Cotnoir, A. J. (2010). Anti-Symmetry and Non-Extensional Mereology. The Philosophical Quarterly, 60(239):396-405.
[Cotnoir, 2016] Cotnoir, A. J. (2016). Does Universalism Entail Extensionalism? Noûs, 50(1):121-132.
[Cotnoir, 2018] Cotnoir, A. J. (2018). Is Weak Supplementation analytic? Synthese.
[Cotnoir and Bacon, 2012] Cotnoir, A. J. and Bacon, A. (2012). Non-Wellfounded Mereology. The Review of Symbolic Logic, 5(2):187-204.
[Donnelly, 2011] Donnelly, M. (2011). Using Mereological Principles to Support Metaphysics. The Philosophical Quarterly, 61(243):225-246.
[Hovda, 2009] Hovda, P. (2009). What is Classical Mereology? Journal of Philosophical Logic, 38(1):55-82.
[Kearns, 2011] Kearns, S. (2011). Can a Thing be Part of Itself? American Philosophical Quarterly, 48(1):87-93.
[Leonard and Goodman, 1940] Leonard, H. S. and Goodman, N. (1940). The Calculus of Individuals and Its Uses. The Journal of Symbolic Logic, 5(2):45-55.
[Masolo and Vieu, 1999] Masolo, C. and Vieu, L. (1999). Atomicity vs. Infinite Divisibility of Space. In Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science, Lecture Notes in Computer Science, pages 235-250, Berlin. Springer.
[Obojska, 2013] Obojska, L. (2013). Some Remarks on Supplementation Principles in the Absence of Antisymmetry. The Review of Symbolic Logic, 6(2):343-347.
[Parsons, 2014] Parsons, J. (2014). The Many Primitives of Mereology. In Mereology and Location. Oxford University Press, Oxford.
[Pietruszczak, 2018] Pietruszczak, A. (2018). Metamereology. Nicolaus Copernicus University Scientific Publishing House, Turun.
[Pontow, 2004] Pontow, C. (2004). A note on the axiomatics of theories in parthood. Data \& Knowledge Engineering, 50(2):195-213.
[Sen, 2017] Sen, A. (2017). Computational Axiomatic Science. PhD thesis, Rensselaer Polytechnic Institute.
[Simons, 1987] Simons, P. (1987). Parts: A Study in Ontology. Oxford University Press, Oxford.
[Smith, 2009] Smith, D. (2009). Mereology without Weak Supplementation. Australasian Journal of Philosophy, 87(3):505-511.
[Tarski, 1983] Tarski, A. (1983). Foundations of the Geometry of Solids. In Logic, Semantics, Metamathematics, pages 24-29. Hackett Publishing, Indianapolis, second edition.
[Varzi, 1996] Varzi, A. C. (1996). Parts, wholes, and part-whole relations: The prospects of mereotopology. Data \& Knowledge Engineering, 20(3):259-286.
[Varzi, 2006] Varzi, A. C. (2006). A Note on the Transitivity of Parthood. Applied Ontology, 1(2):141-146.
[Varzi, 2008] Varzi, A. C. (2008). The Extensionality of Parthood and Composition. The Philosophical Quarterly, 58(230):108-133.
[Varzi, 2009] Varzi, A. C. (2009). Universalism entails Extensionalism. Analysis, 69(4):599-604.
[Varzi, 2016] Varzi, A. C. (2016). Mereology. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2016 edition.


[^0]:    ${ }^{1}$ For similar developments see [Sen, 2017] and [Bittner, 2018].
    ${ }^{2}$ For help with this project I am grateful to Zach Barnett, Sam Baron, Bob Beddor, Olivier Danvy, Mark Goh, Jeremiah Joven Joaquin, Wang-Yen Lee, Kee Wei Loo, Bruno Woltzenlogel Paleo, Michael Pelczar, Hsueh Qu, Abelard Podgorski, Divyanshu Sharma, Manikaran Singh, Neil Sinhababu, Weng-Hong Tang and Zhang Jiang.
    ${ }^{3}$ See [Simons, 1987] pp. 99-100 for a helpful comparison of alternative notations.
    ${ }^{4}$ For discussion of reflexivity see [Kearns, 2011]. For transitivity see [Varzi, 2006].
    ${ }^{5}$ Hence the name premereology, from [Parsons, 2014] p. 6.
    ${ }^{6}$ See [Simons, 1987] p. 28, [Varzi, 1996] p. 261 and [Casati and Varzi, 1999] p. 36.

[^1]:    ${ }^{7}$ For this axiomatization of ground mereology see, for example, [Varzi, 1996] p. 261 and [Casati and Varzi, 1999] p. 36. For discussion of the antisymmetry of parthood see, for example, [Cotnoir, 2010]. For the definition of proper parthood as nonidentical parthood, see for example, [Leonard and Goodman, 1940] p. 47.

[^2]:    ${ }^{8}$ See, for example, [Varzi, 1996] p. 261 and [Casati and Varzi, 1999] p. 36. For the distinction between nonmutual and nonidentical parthood, see [Parsons, 2014] pp. 6-8.
    ${ }^{9}$ See [Cotnoir, 2010] p. 398, [Donnelly, 2011] p. 233, [Cotnoir and Bacon, 2012] p. 191, [Obojska, 2013] p. 344, [Cotnoir, 2016] p. 128 and [Cotnoir, 2018].

[^3]:    ${ }^{10}$ For this point see especially [Parsons, 2014] pp. 9-10.

[^4]:    ${ }^{11}$ For this point see [Cotnoir, 2010] p. 401 and [Cotnoir and Bacon, 2012] p. 191-2.

[^5]:    ${ }^{12}$ See, for example, [Simons, 1987], p. 26 and [Casati and Varzi, 1999] p. 37.

[^6]:    ${ }^{13}$ See [Varzi, 1996] and [Casati and Varzi, 1999] p. 39. The name minimal mereology reflects the, controversial, idea that weak supplementation is analytic. See, for example, [Simons, 1987] p. 116, [Varzi, 2008] p. 110-1, and [Cotnoir, 2018]. For general discussion of weak supplementation see, for example [Smith, 2009] pp. 507 and [Donnelly, 2011].

[^7]:    ${ }^{14}$ See [Simons, 1987] p. 28.

[^8]:    ${ }^{15}$ See [Simons, 1987] p. 27. For the names weak company and strong company see [Cotnoir and Bacon, 2012] p. 192-3 and [Varzi, 2016].
    ${ }^{16}$ See [Cotnoir, 2010] p. 399, [Donnelly, 2011] p. 232, [Cotnoir and Bacon, 2012] p. 193 and [Obojska, 2013] pp. 235-6.

[^9]:    ${ }^{17}$ See [Donnelly, 2011] p. 232 and [Cotnoir, 2018].

[^10]:    ${ }^{18}$ See [Simons, 1987] p. 29, [Varzi, 1996] p. 262 and [Casati and Varzi, 1999] p. 39-40.
    ${ }^{19}$ See [Simons, 1987] p. 29 and [Casati and Varzi, 1999] p. 40.
    ${ }^{20}$ [Casati and Varzi, 1999] p. 40.
    ${ }^{21}$ See [Simons, 1987] pp. 28-9 and [Varzi, 1996] p. 263.

[^11]:    ${ }^{22}$ See [Simons, 1987] p. 28, [Varzi, 1996] p. 263 and [Casati and Varzi, 1999] p. 40.

[^12]:    ${ }^{23}$ See [Parsons, 2014] p. 4.

[^13]:    ${ }^{24}$ See [Masolo and Vieu, 1999] p. 238. [Varzi, 1996] p. 263 and [Casati and Varzi, 1999] p. 43 give a slightly weaker version of the sum closure axiom, which is equivalent given axioms considered later.

[^14]:    ${ }^{25}$ See, for example, [Varzi, 1996] p. 263 and [Masolo and Vieu, 1999] p. 238.

[^15]:    ${ }^{26}$ See, for example, [Varzi, 1996] p. 264 and [Casati and Varzi, 1999] p. 45.

[^16]:    ${ }^{27}$ See, for example, [Varzi, 1996] p. 264 and [Casati and Varzi, 1999] p. 45.

[^17]:    ${ }^{28}$ See [Varzi, 1996] p. 263 and [Casati and Varzi, 1999] p. 43.
    ${ }^{29}$ See [Casati and Varzi, 1999] p. 43.
    ${ }^{30}$ See [Simons, 1987] p. 31 and [Casati and Varzi, 1999] p. 44.

[^18]:    ${ }^{31}$ See [Simons, 1987] p. 36, [Varzi, 1996] p. 265 and [Casati and Varzi, 1999] p. 46.

[^19]:    ${ }^{32}$ See [Casati and Varzi, 1999] p. 46.

[^20]:    ${ }^{33}$ For this mistake see [Simons, 1987] p. 37 and [Casati and Varzi, 1999] p. 46. The mistake is corrected in [Pontow, 2004] and [Hovda, 2009]. For discussion of the significance of this issue see, for example, [Varzi, 2009] and [Cotnoir, 2016].
    ${ }^{34}$ For this axiomatization see [Varzi, 1996] p. 265 and [Casati and Varzi, 1999] p. 46.

[^21]:    ${ }^{35}$ See [Pontow, 2004] pp. 202-9.

[^22]:    ${ }^{36}$ See [Tarski, 1983] p. 25. The proofs in this section are adapted from [Hovda, 2009].

