THE NUMBER OF BRICKS IN A ZIGGURAT

BEN BLUMSON AND JARINAH JABBAR

Abstract. The number of bricks in a ziggurat is a sum of consecutive squares.

Theorem 1. The number of square bricks in a hollow ziggurat n stories high and of base width n is $n^{2}+(n-1)^{2}$.

Figure 1

Recall that a centered square number is one that can be formed by placing one dot to serve as a center, and then by surrounding that center with square layers. Figure (2a) is a well-known visual proof that a centred square is the sum of consecutive squares (See Conway and Guy (1996, 41-2) and Deza and Deza $(2012,54)$). So comparing it with figure (2b), of a ziggurat from above, provides another proof of the theorem.

[^0]

Figure 2

1

References

Conway, J. H. and Guy, R. K. (1996). The Book of Numbers, Springer, New York.
Deza, E. and Deza, M. (2012). Figurate Numbers, World Scientific, Singapore.

[^1]
[^0]: Date: May 21, 2020.

[^1]: ${ }^{1}$ For comments on this paper, we thank an anonymous referee, Jeremiah Joaquin, Mike Pelczar, and Weng Hong Tang

