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Il volume raccoglie gli atti della XIlIl Scuola Eg# di Filosofia della Fisica,
tenutasi a Cesena dal 13 al 18 settembre 2010rtAkepdal 1998, il Centro
Interuniversitario di ricerca in Filosofia e Fondami della Fisica (Urbino,
Bologna, Salento e Insubria) organizza annualmante scuola estiva in
collaborazione con la Societa Italiana di Logic&iesofia delle Scienze
(SILFS) e il Comune di Cesena. La scuola, diven@imai punto di
riferimento annuale per studenti, insegnanti e ietiddi varie discipline,
affronta ogni anno un tema differente invitando aggiori esperti italiani
sullargomento. Dedicata a “Complessita e Riduzmom”, I'edizione del
2010 si e avvalsa anche della collaborazione d&dlaola di Dottorato in
Antropologia ed Epistemologia della Complessital’'dalversita degli
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Studi di Bergamo che, dal 2002, promuove in Itaianel mondo la
formazione e il perfezionamento di ricercatori e8prella complessita
storica, filosofica e antropologica delle scienaéunali e umane.
Come mostrano i contributi qui raccolti, durantdavori della scuola,
complessita e riduzionismo sono stati affrontati wdatori a partire da
prospettive diverse e sotto differenti punti dit&is

Gian-Italo Bischi, dopo aver brevemente delinelostoria della
progressiva matematizzazione dell’economia, si Eceotrato soprattutto
sull'utilizzo di modelli dinamici non lineari. Swippati inizialmente in
ambito fisico e basati su equazioni di evoluzida&,modelli deterministici
vengono utilizzati per prevedere — ed eventualmeotatrollare —
I'evoluzione temporale di sistemi reali. SecondsdBi, la scoperta che
modelli dinamici non lineari (tipici dei sistemi dali che presentano
continue interazioni e meccanismi di feed-back) spas esibire
comportamenti di caos deterministico, caratterizzealla proprieta di
amplificare in modo difficilmente prevedibile perbazioni arbitrariamente
piccole, ha suscitato un certo imbarazzo e neleropb creato nuove
possibilitda. Imbarazzo perché la presenza di casteriohinistico rende
insostenibile I'ipotesi dellagente economico ramte, ovvero capace di
prevedere correttamente; ma apre anche nuove pibgsilpoiché tale
scoperta mostra che quei sistemi economici e s$ocalatterizzati da
fluttuazioni in apparenza casuali potrebbero intaeassere governati da
leggi del moto deterministiche (anche se non lifear

Se Bischi ha affrontato il tema della complesasitambito economico,
Salvo D’Agostino ha invece introdotto e approfoadit problema dei
successi e dei fallimenti dell’'assiomatizzazioneampo fisico. Uno degli
aspetti piu dibattuti della complessita sul versasttientifico e filosofico e
infatti quello della supposta rinuncia a una gelerazione dei
procedimenti assiomatico-deduttivi come metodo pmaedella ricerca
scientifica. A partire dalla considerazione chefitdca pre-relativistica e
spesso stata considerata fondata prevalentemdnigosio di tale metodo,
D’Agostino ha evidenziato la presenza di una poseiantagonista presente
gia in Newton e ripresa successivamente da Ampé&texavell. Alternativa
al metodo assiomatico-deduttivo, tale prospettiviosda sul ricorso alla
cosiddetta deduzione dai fenomeni. Una variazionk tema, €& stata
individuata da D’Agostino anche nel contributo dnd&fein in cui alla
celebrazione del metodo assiomatico-deduttivo sitrappone una lode
dell'osservazione dei fenomeni e della riflessionggli esperimenti: e
proprio ponendo il problema di una scelta o coazibne fra le due che
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Einstein avrebbe, secondo D’Agostino, il meritoadier aperto la via al
pensiero scientifico moderno.

Sempre in ambito fisico, Arcangelo Rossi ha traogida un punto di
vista storico, il passaggio dai modelli riduziorasthe hanno caratterizzato
lo studio delle realta fisica nella scienza classall’emergere della
guestione della complessita nella scienza conteamgar. In particolare, a
partire dall’affermazione di Ernst Cassirer secondbla piena transizione
da un’accezione sostantiva ed esplicativa dei nliodeluna formale e
funzionale sarebbe rintracciabile gia alle origdella scienza moderna,
Rossi ha mostrato come la visione della naturaesherge dalla scienza
classica illuminista fosse comunque realista eziwhista. Benché alcuni
aspetti e alcune visioni non propriamente qualtiltacome riduzioniste e
meccaniciste siano gia presenti all’interno deti@isza classica, la tematica
della complessitd comincia a svilupparsi in fisiemlo alla fine
dell'Ottocento.

Sergio Chibarro, Lamberto Rondoni e Angelo Vulpiaanno affrontato
il ruolo del caos e I'emergenza di proprieta ctilet all'interno della
meccanica statistica. In particolare, hanno mastilasistenza di due
posizioni nettamente diverse: da una parte il puhteista “tradizionale”,
risalente a Boltzmann e parzialmente formalizzadtinchin, secondo cui
la meccanica statistica sarebbe caratterizzatarimopluogo dall’enorme
numero di gradi di liberta; dall'altro la scuola éaherna” cresciuta intorno a
Prigogine e ai suoi collaboratori, che consideraaibs come I'ingrediente
fondamentale. Anche attraverso alcune simulaziameriche, gli autori
hanno mostrato come anche all’interno della meceastatistica si faccia
avanti il problema della complessita e del ridudoro. Sebbene i risultati
di Khinchin non siano in grado di rispondere in madkfinitivo a tutti i
problemi sollevati dalla relazione fra termodiname meccanica statistica,
il numero estremamente grande di gradi di libehi& tale approccio prende
in considerazione permettéemergere nei sistemi macroscopici, di
proprieta del tutto assenti in sistemi piccoli.

Giorgio Turchetti ha introdotto il problema delsgaggio dai modelli
fisici ai sistemi complessi mostrando come i limithe il disegno
riduzionista incontra gia per i sistemi fisici ditgno decisamente piu forti
nel caso dei sistemi complessi. La grande diffexdna un sistema fisico e
un sistema complesso risiederebbe infatti, secdndohetti, nel fatto che il
primo, fissate le condizioni esterne, ha semprankxesime proprieta,
mentre il secondo cambia con il fluire del tempaerché la sua
organizzazione interna muta non solo al cambiar&atthri ambientali ma
anche con il succedersi delle generazioni. E ia tabspettiva che egli
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giunge a definire complessi non tanto i sistemattarizzati da proprieta
emergenti e da interazioni non lineari tra i looonponenti (definibili come
sistemi dinamici), ma piuttosto i sistemi viventigoelli di vita artificiale
che ne condividono le proprieta essenziali.

Il problema di complessita e riduzionismo in cantpologico & stato
poi affrontato in maniera diretta da Luciano BalaRoberto Serra. Il primo
ha mostrato come lo studio del comportamento dicandelle strutture
cellulari non possa essere descritto con suffieieatcuratezza né dalla
convenzionale dinamica dell’equilibrio né da modeilatici e richieda
quindi nuovi strumenti. In particolare, egli harafftato la necessita — per
una comprensione del comportamento dei sistemafaiici) complessi — di
un'adeguata conoscenza delle caratteristiche cheete topologiche delle
loro componenti. A differenza dello studio dei matismi molecolari,
I'analisi del comportamento dinamico delle strugteellulari non necessita
tanto di una profonda e dettagliata conoscenzaamportamento di ogni
singola molecola, ma piuttosto delle regole cheegaano il comportamento
globale e collettivo dei sistemi.

In consonanza con il contributo di Boi, Serra Ipgegato come la
scienza dei sistemi complessi abbia mostrato tesza di “leggi” in gran
parte indipendenti dalle specifiche caratteristidele entitd microscopiche
che tuttavia ne descrivono il comportamento edliazione. Se la ricerca di
proprieta generali ha ormai assunto una grandeariza in ambito fisico,
nelle scienze biologiche si trova ancora nei suomip stadi di vita.
Attraverso una serie di esempi, Serra ha mostr@ataoectale approccio, da
considerarsi non in opposizione alla biologia molae classica ma a essa
complementare, sembra pero portare anche in arioitmgico a importanti
e promettenti risultati. Emblematico in questo se@ger Serra il lavoro di
Kauffman che rivela come un sistema dinamico dii gé&e interagiscono
fra loro mostri delle proprieta di auto-organizzam che spiegano alcuni
aspetti della vita, fra cui I'esistenza di un numkmitato di tipi cellulari in
ogni organismo multicellulare.

Pierluigi Graziani ha affrontato invece il problendella complessita
computazionale in riferimento alla decidibilita ldefjeometria elementare di
Tarski. A partire soprattutto dai lavori di Fishdkabin e Meyers e in
confronto con il lavoro di Tarski, Graziani ha amahto come il problema
della decisione si trasformi nella determinaziongquénto tempo e spazio di
memoria impieghi un algoritmo di decisione per tewia a determinare se
un enunciato della teoria ne sia 0 meno un teoreimateoria della
complessita  computazionale, infattii, si assume chgano
computazionalmente intrattabili quei compiti chehredono risorse di
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tempo e spazio di memoria (le cosiddette risorsepedazionali) che

crescono esponenzialmente con la lunghezza deltine che siano

computazionalmente trattabili quelli che richiedarsmrse che crescono al
pit in modo polinomiale con la lunghezza dell'inplut tale prospettiva, la
complessita computazionale non concerne dunqueteuanrse richiede lo

svolgere un determinato compito, bensi quanto atanenle risorse

richieste al crescere delle dimensioni dei dati.

Claudio Calosi e Vincenzo Fano hanno mostrato cbpreblema della
complessita e del riduzionismo riguardi anche gp@to fra psicologia e
fisica. In particolare, hanno proposto qui un nuesperimento mentale che
hanno chiamato Shem-Shaun — dal nome dei due gemnatagonisti del
Finnegan’s Wakeli Joyce — e che solleva un problema per il Hisicw
minimale in filosofia della mente. Il fisicalismo imimale viene infatti
caratterizzato come quella tesi secondo cui le ret@Ep mentali
sopravvengono nomologicamente sulla proprieta Hesicuna forma di
riduzionismo per cui, stabilite le proprieta fisictlel mondo, quelle mentali
sarebbero necessariamente determinate. Gli aubstersgono che, o il
Fisicalismo minimale é incapace di dare un resarorideguato
dell’esperimento Shem-Shaun o ne deve dare unaespche € in forte
tensione con la nostra attuale immagine scientdalanondo.

Nel loro insieme, i lavori presentati testimoniatheo un lato la vivacita
degli studi epistemologici sulla complessita e 'dhtb I'importanza del
concetto di complessita per la filosofia della sze e, in particolare, della
fisica.



Remarks on the Geometry
of Complex Systems and Self-Organization

) L,uciano Boi
Ecole des Hautes Etudes en Sciences Sociales, Paris
luciano.boi@ehess.fr

1. Introductory remarks on the geometry of complexity

Let us start by some general definitions of theceph of complexity. We
take a complex system to be one composed by a tangder of parts, and
whose properties are not fully explained by an wustdading of its
components parts. Studies of complex systems rézedjthe importance of
“wholeness”, defined as problems of organizationd(af regulation),
phenomena non resolvable into local events, dyrammi@ractions in the
difference of behaviour of parts when isolated rotigher configuration,
etc., in short, systems of various orders (or Evebt understandable by
investigation of their respective parts in isolatitn a complex system it is
essential to distinguish between ‘global’ and ‘lbgeioperties. Theoretical
physicists in the last two decades have discoveéhed the collective
behaviour of a macro-system, i.e. a system compofsgthny objects, does
not change qualitatively when the behaviour of lgengomponents are
modified slightly. Conversely, it has been also rdu that the
behaviour of single components does change wheowell behaviour of
the system is modified.

There are many universal classes which describe cibigective
behaviour of the system, and each class has its awanacteristics; the
universal classes do not change when we perturbsyeem. The most
interesting and rewarding work consists in findihgse universal classes
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and in spelling out their properties. This conaapthas been followed in
studies done in the last twenty years on seconer qrdase transitions. The
objective, which has been mostly achieved, wadasstdy all possible types
of phase transitions in different universality sles and to compute the
parameters that control the behaviour of the systear the transition (or
critical or bifurcation) point as a function of thaiversality class.

This point of view is not very different from then® expressed by

Thom in the introduction obtructural Stability and Morphogenegi975).
It differs from Thom’s program because there isangriori idea of the
mathematical framework which should be used. Ind€edm considers
only a restricted class of models (ordinary difféi@ equations in low
dimensional spaces) while we do not have any piggucegarding which
models should be accepted.

One of the most interesting and surprising resaliteined by studying
complex systems is the possibility of classifyiig tconfigurations of the
system taxonomically. It is well-known that a wédunded taxonomy is
possible only if the objects we want to classifydnaome unique properties,
l.e. species may be introduced in an objective oy if it is impossible to
go continuously from one specie to another; in aremmathematical
language, we say that objects must have the psopeditrametricity. More
precisely, it was discovered that there are comltiunder which a class of
complex systems may only exist in configurationsatthhave the
ultrametricity property and consequently they cam dlassified in a
hierarchical way. Indeed, it has been found thdy a@his ultrametricity
property is shared by the near-optimal solutionsnafny optimization
problems of complex functions, i.e. corrugated taghes in Kauffman’s
language. These results are derived from the sbfidpin glass model, but
they have wider implications. It is possible thia¢ kind of structures that
arise in these cases is present in many other apghaunrelated problems.

Before to go on with our considerations, we haveitk in mind two
main complementary ideas about complexity. (i) Adatg to the prevalent
and usual point of view, the essence of complexesys lies in the
emergence of complex structures from the non-linetraction of many
simple elements that obey simple rules. Typicdhgse rules consist of 0—1
alternatives selected in response to the inpuiwedgeas in many prototypes
like cellular automata, Boolean networks, spin @y, etc. Quite intricate
patterns and structures can occur in such systelmsever, what can be
also said is that these are toy systems, and #tersg occurring in reality
rather consist of elements that individually arétegeomplex themselves.
(i) So, this bring a new aspect that seems esdantd indispensable to the
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emergence and functioning of complex systems, nathel coordination of
individual agents or elements that themselves amgtex at their own scale
of operation. This coordination dramatically reduitiee degree of freedom
of those participating agents. Even the constisi@ftmolecules, i.e. the
atoms, are rather complicated conglomerations dfateumic particles,
perhaps ultimately excitations of patterns of sspergs. Genes, the
elementary biochemical coding units, are very caxpinacromolecular
strings, as are the metabolic units, the protéilesirons, the basic elements
of cognitive networks, themselves are cells.

In those mentioned and in other complex systems &n important
feature that the potential complexity of the bebaviof the individual
agents gets dramatically simplified through thebglointeractions within
the system. The individual degrees of freedom eastitally reduced, or, in
a more formal terminology, the factual space ofdpgtem is much smaller
than the product of the state space of the indaligdements. That is one
key aspect. The other one is that on this basiat th utilizing the
coordination between the activities of its memb#rs,system then becomes
able to develop and express a coherent structuaen@her level, that is, an
emergent behaviour (and emergent properties) thasdends what each
element is individually capable of.

2. Complex systems

There are many different definitions of a complgstem. It may range
from the classical algorithmic complexity (Kolmogwr Chaitin) to more
recent and sophisticated definitions, such as: da@mdefinitions,
statistical-physics definitions, topological-dynamaefinitions, biological
definition, etc. We already have given the most mmm and general
definition in the literature of complex systemssittould be clear, however,
that any given definition (especially a mathematmae) couldn’t capture
all the complex meaning we associate with the veordplexity.

One interesting definition rest on the basic ideat the more complex
the system, the more can be said about. | am exguthe factual
description of the system, which may be very |drmgfer only to the global
characteristics. A few examples will help clarifyig point. If | have a
sequence of randomly tossed coins, 50% probalbiégd, | have described
the system. The only improvement would be the kedgé of the sequence
itself. If on the contrary the sequence of bitsrespnts a book, there is
much more information, such as style, choice ofdspthe plot and so on.
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If the book is really deep, complex, there are iy V@&ge number of things
that can be said about it. Sometimes the complesityelated to the
existence of different levels of description: om& cescribe akscherichia
coli at the molecular level, at the biochemical lew#id at the functional
level.

If we move towards a mathematical definition, westmealize that the
concept of complexity, like entropy, is of probaiit nature and it can be
defined more precisely if we try to define the cdemgy of ensembles of
objects of the same category. This is related ¢ontbtion of classification.
The meaning of a complex classification is quiteacl intuitively: a
classification is very complex if there are manyels (i.e. orders, families,
genera) and there are many elements in each |&@hsequently a
reasonable mathematical definition of the compjexit a classification
should be possible.

3. External and internal complexity

Let’'s now introduce the notions axternal and internal complexity of
complex adaptive systems. These concepts are aelipageful to analyze
relations between an adaptive system and its amwient. All open
systems, let they be either thermodynamics, bioklgor cognitive, are
chiefly concerned with this relation.

A complex adaptive systens situated in an environment. That
environment is always more complex than the systesif, and therefore, it
can never be completely predictable for the systarhthe system depends
on regularities of the environment for maintainitgyenergy supply needed
to support its internal structure.

One important hypothesis one can suggest is thaiplex adaptive
systems try to increase their external complexitg @ reduce internal
complexity. Each of two processes will operate t8nown scale, but they
are also intricately linked and mutually dependgyin each other.

The increase of internal complexity can for examgaeur through the
creation of redundancy, e.g. duplication of sontermal units or structures.
The property of redundancy is very important inldigical systems at the
genetic level as well as at other more complexlgever example, a same
gene may realize different functions and, on theeohand, many genes
may accomplish the same function. Upon this redoogaa process of
differentiation or specialization can operate, tlgio controlled random
mechanisms or internal selection, so that the systdl become able to
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handle more diverse input and thereby increasextsrnal complexity.
Once this happened, the system can then agaio trgpresent this newly
acquired input more efficiently and thus decredseinternal complexity.
Conversely, for the decrease of internal complexitg system can also find
some of its input as irrelevant and meaninglessitfopurposes and thus
decrease the external complexity.

As first definition, one can say thakternal complexityneasures the
amount of input, information, energy obtained fréime environment that
the system is capable of handling, processing.ilhportant that this can be
measured as an entropy — and therefore, terms‘dikergy” need some
qualification when employed in this context. In sthsense, external
complexity is data complexity.

Internal complexity can be defined as what that measures the
complexity of the representation of this input bg tsystem. In this sense,
internal complexity is model complexity. The systesiti try to increase (or
maximize) its external complexity, and to reduce rfenimize) its internal
complexity.

We now proceed to give formal definitions of oumngmexity notions
based on the concept of entropy from statisticathraeics and information
theory. Given a mode¥b, the system can model data ¥&), with X =
(X1,..., X), and we assume tha{(6 introduces an internal probability
distribution P(X(8)) so that an entropy can be computed in (1) bellOwr
hypothesis then is that the system will try to maixe the external
complexity,

— Y% POX(8) loge P(X(8). 1)

The purpose of the probability distributi®iX(8) is simply to qualify the
information value of the datd(8). In principle, this quantification is also
possible through other means, for example, throtigh length of the
representation of the data in the internal codéhefsystem. If we assume
optimal coding, however, which is a consequencéhef minimization of
internal complexity, then the length of the repréaBon of a datunX(6)
behaves like logP(Xi(8) (a code is god if frequent inputs are represente
by short code words.)

The system can try to increase the amount of indtion X(8) that is
meaningful within the given modé& on a short time scale, or it can adapt
the model@on a larger time scale so as to be able to prauess inputs as
meaningful. When the input is given, however, foample when the
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system has gathered input on a time scale wherigtebution of input
patterns & becomes stationary, then the model should be wegrcto
handle that input as efficiently as possible, t@.decrease the internal
complexity which we now define as follows

= —Y %=1 P(&(8) log, P(s/(§) — log P(6). (2)
The variation is given by
ming (— log P(£6) — log P(8)). (3)

The expression to be minimized now consists of teons, the first
measuring how efficiently the data are encoded h®y model, and the
second one how complicated the model is. Of cotheeprobabilityP(6)
assigned to a model depends on the internal steuctuthe system, and in
principle, that internal structure then also becanigect to optimization, in
the sense that frequently used or otherwise impbontaodels get higher
probabilities than obscure ones.

3.1.Pattern recognition in a neural network

We only mention the principle according to whicmeural network can
recognize patterns on the basis of a selectiveuatiah of inputs features
via an internal feedback loop. (No detailed desicnipwill be presented
here).

We assume that the network or system has storedlemtified a
collection of patterns labelled by = 1,..., n. These patterns might
correspond to faces, visual shapes or other gemnadijects; for thinking
about this example, it is probably useful to thiakout patterns to be
recognized in visual scenes. Also, on its inpué #Hystem can evaluate
certain featuresr = 1,..., m, like edges, corners, or better, features of a
somewhat higher level, like specific distributioh input pixels on some
small sub-regions of the retina, or relative distsn between certain
conspicuous points of the scene. It is important daderstanding the
purpose of the network (the system) that we asgonre a situation where
the network is not capable of evaluating all thesgide features

! We use a different letter now to denote the infagsause we are now considering
patterns on a different time scale.
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simultaneously in its inputs, simply because tlaeetypically far too many
possibilities.

Rather the idea is that the network will selecveberform
observations, that is, evaluate those featureshidnas the highest potential
for discriminating between these patterns thapaobable candidates on the
basis of the observations already performed. Titmesbasic design principle
is a feedback loop between observations that afteet probability
distribution in the space of patterns and the seleof further observations
on the basis of that probability distribution.

We first need to implement the relationship betwgmatterns and
features. This can be done on the basis of sugehesarning as is standard
in neural networks. So, the observed valuésof the features induces
activationsy' of the patterns:

Y f(Z wiax), (4)

wheref might be a sigmoid functiofi(s) = 1/1+™, where for our purpose

a rather large value of the paramekemight be best so as to get a sharp
threshold later on. Namely, we call a patteractivated ify' > @ is some
threshold that we can turn to our convenience, gEstagain by supervised
learning. Thew,, are weights that can likewise be learned through
supervised Hebbian learning. The essential pointhad they should be
positive, and perhaps large, if featureccurs in pattern and O or negative

if not.

4. Examples of complex systems

Let us now give briefly some examples of complestayms took from
different disciplines: chemistry, biology and phogsiln all this examples,
understanding how parts of a living system — gemasolecules — interacts
is just as important as understanding the partasbebres.

In Chemistry the worccomplexity present some ambiguity and it is
highly dependent on context. In one characterinaticcomplex system is:
(i) one whose evolution is very sensitive to inittanditions or to small
perturbations; (ii)) one in which the number of ipdedent interacting
components is large; (iii) or, one in which there aultiple pathways by
which the system can evolve. Analytical descripgioof such systems
typically require nonlinear differential equatioms.chemistry, almost every
thing of interest is complex by one or both deforis.
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We are here concerned with “tractable complexitg’: subset of
complex problems (for example, oscillating reactjoprovides classical
examples of complex systems in the sense that tlaey be described
analytically by relative simple sets of nonlinedfetential equations. But,
there are other complex problems of general impogdor which there are
no simple general solutions.

In the sequence of complexity — from static equilliim, to dynamic
steady state, to dynamic complexity, to chaos fettewe chosen sets of
chemical reactions whose properties make them pppte as case studies
in complexity. Oscillating reactions of the typepresented by the
Belousov-Zhabotinsky reaction are perhaps the kestvn example. This
class of chemical reactions has the charactertbit the simultaneous
operation of two processes, reaction and diffusresults in a system in
which the concentration of reactants and produstsllate temporally and
spatially and in which this oscillation can resalordered patterns. In other
words, coupled chemical reactions cause change&snoentration of the
reagents that, in turn, cause local changes iroxidation potential of the
solution. These potentials can be visualized adlatatg travelling waves
in such a reaction.

These reactions can be described mathematicallya bgystem of
nonlinear equations of greater or lesser complexity equations bellow
represent a minimum set of two reaction-diffusiguagions

aulét = F(u, v) + Dy O%u (5.1)
oviot = eG(u, v) + D, 0% (5.2)

Here, u is the concentration of a species that catalyaetien; v is the
concentration of a species that inhibits reacti@usjt and ov/ot describe
changes in concentration af andv, respectively with timefF(u, v) and
&G(u, V) characterize reactions betweerandv, respectively; andu and
Dv are the diffusion coefficients ofandv, respectively.

An important motivation in chemistry of studyingnaplexity has been
to learn about processes in living systems. Onethef most striking
characteristics of cells is the sheer complexitym&tabolism. The human
genome probably has on the order of 105 expresseel groducts; many of
these proteins are enzymes, receptors, and mewi&gnalling sequences,
that is, functional parts of metabolism. Understagda system with this
many interacting components is clearly out of theggion. A more tractable
problem is to examine discrete, relatively selftaimed sections of
metabolism. One metabolic cycle that has been edduiti substantial detail
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is glycolysis, that is, the conversion of glucose gyruvate with the
production of adenosine '-Fiphosphate and the reduced form of
nicotinamide adenine dinucleotide (NAD)This sequence of reactions
involves 10 enzymes, with various levels of modatatof the catalytic
activities of some of these enzymes by the produfotghers.

The second example of complexity | would like tonti@n concerns
biological signalling systemdBiological signalling pathways interact with
one another to form complex networks. Complexitges from the large
number of components, many with isomorphs that haaatially
overlapping functions; from the connections amooggonents; and forms
the spatial relationship between components.

Signalling in biological systems occurs at multigvels. Already
compartmentalization introduces several levels ahglexity. First, many
signalling components and their substrates are caadhin the plasma
membrane. The plasma membrane provides a milieubfochemical
reactions that is quite distinct from the cytoplasnits properties. The lipid
environment enables a new class of reactions imghhydrophobic
interactions. Organelle formation leads to a furésgansion of the possible
cellular microenvironments, each with differentdsiemical properties and
signalling capabilities. Second, the separatiomeafctions in space allows
the same molecules in the same cell to carry épntdiéferent signals. In
other words, we already have signalling “wires” tidiguished by the
identity of the molecules in the pathways. Comparitalization duplicates
these existing wires and separates them in sp&te nultiplies the number
of signals they can carry about.

In addition to sub-cellular compartmentalizatiorcaet research has
highlighted the role of molecular scaffolds thatoypde regional
organization by assembling signalling componentgo irfunctional
complexes. The cytoskeleton is a dynamic framewartkwhich the cell
builds this regional organization. The most dramatixample of its
dynamism is cell division. In the quiescent cdllisiboth the substrate and
the scaffold for signalling processes.

2 Nicotinamide adenine dinucleotide (NAD and itsati®le nicotinamide adenine

dinucleotide phosphate (NADP) are two of the mospartant coenzymes in the cell.
NADP is simply NAD with a third phosphate groupaatied. NAD participates in many

redox reactions in cells, including those in glysid, and most of those in the citric acid
cycle of cellular respiration. NADP is the reduciagent produced by the light reactions
of photosynthesis, consumed in the Calvin cycleplobtosynthesis, and used in many
other anabolic reactions in both plants and animals
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A prime example of its dual role is its synapsereHie cytoskeleton,
in particular the pre- and postsynaptic structuaes,the anchors for a wide
array of synaptic signalling molecules. Conseqyemtiodifications of the
synaptic cytoskeleton are a likely candidate farstag long-term changes
in synaptic efficacy.

To conclude this section, we point out some thémaktemarks about
characteristic properties of complex living systerst’s start with some
observations.

4.1.Network behaviours and emergent properties

1. Today, it is clear that the specificity of a quex biological activity
does not arise from the specificity of the indivadlumolecules that are
involved, as these components frequently work imyrdifferent processes.
For instance, genes that affect memory formatiorhm fruit fly encode
proteins in the cyclic adenosine monophosphate (@RMsignalling
pathway that are not specific to memory. Biologsaécificity results from
the way in which these components assemble and wodether.
Interactions between the parts, as well as inflasrforom the environment,
give rise to new features, such as network behaviou

2. Consequently, “emergence” has appeared as acoeweept that
complements “reduction” when reduction fails. Engrigproperties resist
any attempt at being predicted or deduced by ekpiaiculation or any
other means. In this regard, emergent propertiéerdirom resultant
properties, which usually can be predicted fromdop¥evel information.
For example the resultant mass of a multi-compopeotein assembly is
simply equal to the sum of the masses of each isha component.
However, the way in which we test the saltinessadium chloride is not
reducible to the properties of sodium and chlogas.

An important aspect of emergent properties is they have their own
causal powers, which are not reducible to the pswértheir constituents.
For instance, the experience of pain can alter mub®haviour, but the

¢ Cyclic adenosine monophosphate (cAMP, cyclic AMP 35'-cyclic adenosine
monophosphate) is a second messenger importanariy bological processes. CAMP is
derived from adenosine triphosphate (ATP) and dsedhtracellular signal transduction
in many different organisms, conveying the cAMP-@egent pathway. One important
intracellular signal transduction is the transfagriof the effects of hormones like
glucagon and adrenaline, which cannot pass thrthegltell membrane. It is involved in
the activation of protein kinases and regulatesetifects of adrenaline and glucagon. It
also regulates the passage of‘Garough ion channels.
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lower-level chemical reactions in the neurons the¢ involved in the

perception of pain are not the cause of the altéedthviour as the pain
itself has causal efficacy. It should be added thatconcept of emergence
implies “down-ward causation” by which higher-lev&stems influence

lower-level con figurations.

3. The constituents of complex systems interactmany ways,
including negative feedback and feed-forward cdntwehich lead to
dynamic features (i.e., evolving in time and chaggwith time) that cannot
be predicted satisfactorily by linear mathematiocaddels that disregard
cooperativity and non-additive effects.

4. Robustness is another essential property ofodpichl systems.
Understanding the mechanisms and principles underlybiological
robustness is necessary for an in-depth undersignofi biology at the
system level. The phenomenological properties etdulby robust systems
can be classified into three areasaflpptation which denotes the ability to
cope with environmental changes; (iparameter insensitiviy which
indicate a system’s relative insensitivity to sfiedkinetic parameters; (iii)
graceful degradationwhich reflects the characteristic slow degradatba
system’s functions after damage, rather than cafast failure.

In other systems, such as fluid-mechanics systangsalso engineering
systems, robustness is attained by using the follpwroperties: (a) the
capability to form a system control such as negateedback and feed-
forward control; (b) redundancy whereby multiple components with
equivalent functions are introduced for backup; $tjuctural stability,
where intrinsic mechanisms are built to promotebifitg;, and (d)
modularity, where sub-systems are physically orctiomally insulated so
that failure in one module does not spread to oplaets an lead to system-
wide catastrophe.

5. Remarks about the property of structural stability and on self-
organization

It remains an open question whether the properstrottural stability used
in the biological context present some similar elsteristics with respect to
the concept of structural stability as it has belfined in differential
topology in the 1960s by R. Thom and S. Smale.

Intuitively, a phase portrait (i.e. all the qualitatively different
trajectories of the system) is structural stabletsf topology cannot be
changed by an arbitrarily small perturbation toketor field. For instance,
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the phase portrait of a saddle point is structurstihble, but that of a center
Is not: an arbitrarily small amount of damping certs the center to a spiral.
Related to the concept of structural stability, wave the notions of
attractor and strangattractor. The term attractor is difficult to define in a
rigorous way. Loosely speaking, an attractor is ed ® which all
neighbouring trajectories converge. More precisely define an attractor to
be a closed s&& with the following properties: (i\ is an invariant set: any
trajectoryx(t) that starts irA stays inA for all times; (ii) A attracts an open
set of initial conditions: there is an open HetontainingA such that ifx(0)

0 U, then the distance from(t) to A tends to zero a@s- . This means that
A attracts all trajectories that start sufficiertlgse to it. The largest suth

is called thebasin of attraction of A(iii)) A is minimal: there is no proper
subset ofA that satisfies conditions (i) and (ii).

Finally, we define a strange attractor to be amaetidr that exhibits
sensitive dependence on initial conditions. Exase strange attractors
are fractal sets and also chaotic attractors. tdusbnclude this section, let
us remark that the four properties listed aboveatse found in biological
systems. Bacterial chemotakis an example of negative feedback that
attains all three aspects of robustness. Redundarsgen at the gene level,
where it functions in control of the cell cycle aadcadian rhythms, and at
the circuit level, where it operates in alternatmetabolic pathways k.
coli. Structural stability provides insensitivity torpeneter changes in the
network responsible for segment formation in Drdslep And modularity
is exploited at various scales, from the cell ftselcompartmentalized yet
interacting signal-transduction cascades.

Lastly, the concept of self-organization in celtudachitecture is linked
to the complexity of biological systems. A centgalestion in modern cell
biology is how large, macroscopic cellular strueturare formed and
maintained. It is unknown what determines the d#fié shapes and sizes of
cellular organelles, why specific structures fonmparticular places, and
how cellular architecture is affected by functiomavice-versa.

+ Chemotaxigs the phenomenon in which somatic cells, bactama other single-cell or
multicellular organisms direct their movements adow to certain chemicals in their
environment. This is important for bacteria to fifidod (for example, glucose) by
swimming towards the highest concentration of foealecules, or to flee from poisons
(for example, phenol). In multicellular organismshemotaxis is critical to early
development (e.g. movement of sperm towards the égdng fertilization) and
subsequent phases of development (e.g. migratiorewfons or lymphocytes) as well as
in normal functions. In addition, it has been redagd that mechanisms that allows
chemotaxis in animals can be subverted during canetastasis.
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Two fundamentally different mechanisms exist to eagate
macromolecular structureself-assemblyand self-organization Whereas
self-assembly involves the physical association noblecules into an
equilibrium structure, self-organization involvdsetphysical interaction of
molecules in a steady-state structure. For examples and phage proteins
self-assemble to true equilibrium and form staldgtic structures. In
contrast, most cellular structures (i.e., the dyteton, nuclear
compartments, or endocytic compartments) are opeexichange of energy
and matter and are governed by steady-state dysamic

The concept of self-organization is based on olagems of chemical
reactions far from equilibrium, and it is well ddiahed in chemistry,
physics and ecology. Self-organization in the ceinté cell biology can be
defined as the capacity of a macromolecular commexorganelle to
determine is own structure based on the functiontdractions of its
components. In a self-organized system, the intierac of its molecular
parts (and not the molecular parts them-selvegrehete its architectural
and functional features. The processes that ocdtlirwa self-organized
structure are not underpinned by a rigid architettéramework; rather,
they determine its organization.

For self-organization to act on macroscopic cetlidauctures, three
requirements must be fulfilled: (i) a cellular stiure must be dynamic; (ii)
matter and energy must be continuously exchangey;oyerall stable
configuration must be generated from dynamic corepts)

Recent studies indicate that many cellular strestuffulfil the
requirements for self-organization. Particularlg/f-®rganization seems to
play an important role in the construction and dyits of three major
macroscopic cellular structures: namely the cytleska, the cell nucleus,
and the Golgi complex.

Why self-organization? And why self-organization iglated to
complexity? To answer these questions, consider ftlewings facts.
Macroscopic cellular structures are characterizead tiwo apparently
contradictory properties. On one hand, they musargsaitecturally stable;
on the other hand, they must be flexible and pespdor change. Self-
organization ensures structural stability withoudsd of plasticity.
Fluctuations in the interactions properties of dsmponents do not have
deleterious effects on the structure as a wholewdver, global and
persistent changes rapidly result in morphologitahsformations. The
basis for the responsiveness of self-organizedctstres is the transient
nature of the interactions among their components.
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The dynamic interplay of components generates é&sgjwindows of
opportunity during which proteins can change theieraction partners or
be modified. The effective availability of compomgns controlled by
posttranslational modifications via signal trangdhrcpathways.

Self-organization is an elegant, efficient way togamize complex
structures. The properties that determine the azgtan are the intrinsic
properties of the structure’s components. In profmlymers, the protein-
protein interaction properties determine the aedtitre; in membrane
structures the flow of membranes determines thhitacture. Thus, self-
organization is a simple but effective way to ogatily organize cellular
structures.

The study of complex dynamic behaviour of celligauctures requires
new tools. The behaviour of dynamic cellular stoues cannot be described
accurately by conventional equilibrium dynamicshbgr static models. To
understand the behaviour of complex (dynamic) systethe kinetic and
topological characteristics of their components naesknown. In contrast
to the study of molecular mechanisms, isn’t muffigant to understand in
detail the behaviour of single molecules; rathbg tules that govern the
global and collective behaviour of systems musim&vered.
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