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Il volume raccoglie gli atti della XIII Scuola Estiva di Filosofia della Fisica, 
tenutasi a Cesena dal 13 al 18 settembre 2010. A partire dal 1998, il Centro 
Interuniversitario di ricerca in Filosofia e Fondamenti della Fisica (Urbino, 
Bologna, Salento e Insubria) organizza annualmente una scuola estiva in 
collaborazione con la Società Italiana di Logica e Filosofia delle Scienze 
(SILFS) e il Comune di Cesena. La scuola, diventata ormai punto di 
riferimento annuale per studenti, insegnanti e studiosi di varie discipline, 
affronta ogni anno un tema differente invitando i maggiori esperti italiani 
sull’argomento. Dedicata a “Complessità e Riduzionismo”, l’edizione del 
2010 si è avvalsa anche della collaborazione della Scuola di Dottorato in 
Antropologia ed Epistemologia della Complessità dell’Università degli 
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Studi di Bergamo che, dal 2002, promuove in Italia e nel mondo la 
formazione e il perfezionamento di ricercatori esperti nella complessità 
storica, filosofica e antropologica delle scienze naturali e umane. 
Come mostrano i contributi qui raccolti, durante i lavori della scuola, 
complessità e riduzionismo sono stati affrontati dai relatori a partire da 
prospettive diverse e sotto differenti punti di vista.  
 Gian-Italo Bischi, dopo aver brevemente delineato la storia della 
progressiva matematizzazione dell’economia, si è concentrato soprattutto 
sull’utilizzo di modelli dinamici non lineari. Sviluppati inizialmente in 
ambito fisico e basati su equazioni di evoluzione, tali modelli deterministici 
vengono utilizzati per prevedere – ed eventualmente controllare – 
l’evoluzione temporale di sistemi reali. Secondo Bischi, la scoperta che 
modelli dinamici non lineari (tipici dei sistemi sociali che presentano 
continue interazioni e meccanismi di feed-back) possono esibire 
comportamenti di caos deterministico, caratterizzato dalla proprietà di 
amplificare in modo difficilmente prevedibile perturbazioni arbitrariamente 
piccole, ha suscitato un certo imbarazzo e nel contempo creato nuove 
possibilità. Imbarazzo perché la presenza di caos deterministico rende 
insostenibile l’ipotesi dell’agente economico razionale, ovvero capace di 
prevedere correttamente; ma apre anche nuove possibilità, poiché tale 
scoperta mostra che quei sistemi economici e sociali caratterizzati da 
fluttuazioni in apparenza casuali potrebbero in realtà essere governati da 
leggi del moto deterministiche (anche se non lineari).  
 Se Bischi ha affrontato il tema della complessità in ambito economico, 
Salvo D’Agostino ha invece introdotto e approfondito il problema dei 
successi e dei fallimenti dell’assiomatizzazione in campo fisico. Uno degli 
aspetti più dibattuti della complessità sul versante scientifico e filosofico è 
infatti quello della supposta rinuncia a una generalizzazione dei 
procedimenti assiomatico-deduttivi come metodo generale della ricerca 
scientifica. A partire dalla considerazione che la fisica pre-relativistica è 
spesso stata considerata fondata prevalentemente sul trionfo di tale metodo, 
D’Agostino ha evidenziato la presenza di una posizione antagonista presente 
già in Newton e ripresa successivamente da Ampère e Maxwell. Alternativa 
al metodo assiomatico-deduttivo, tale prospettiva si fonda sul ricorso alla 
cosiddetta deduzione dai fenomeni. Una variazione sul tema, è stata 
individuata da D’Agostino anche nel contributo di Einstein in cui alla 
celebrazione del metodo assiomatico-deduttivo si contrappone una lode 
dell’osservazione dei fenomeni e della riflessione sugli esperimenti: è 
proprio ponendo il problema di una scelta o conciliazione fra le due che 
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Einstein avrebbe, secondo D’Agostino, il merito di aver aperto la via al 
pensiero scientifico moderno. 
 Sempre in ambito fisico, Arcangelo Rossi ha tracciato, da un punto di 
vista storico, il passaggio dai modelli riduzionistici che hanno caratterizzato 
lo studio delle realtà fisica nella scienza classica all’emergere della 
questione della complessità nella scienza contemporanea. In particolare, a 
partire dall’affermazione di Ernst Cassirer secondo cui la piena transizione 
da un’accezione sostantiva ed esplicativa dei modelli a una formale e 
funzionale sarebbe rintracciabile già alle origini della scienza moderna, 
Rossi ha mostrato come la visione della natura che emerge dalla scienza 
classica illuminista fosse comunque realista e riduzionista. Benché alcuni 
aspetti e alcune visioni non propriamente qualificabili come riduzioniste e 
meccaniciste siano già presenti all’interno della scienza classica, la tematica 
della complessità comincia a svilupparsi in fisica solo alla fine 
dell’Ottocento. 

Sergio Chibarro, Lamberto Rondoni e Angelo Vulpiani hanno affrontato 
il ruolo del caos e l’emergenza di proprietà collettive all’interno della 
meccanica statistica. In particolare, hanno mostrato l’esistenza di due 
posizioni nettamente diverse: da una parte il punto di vista “tradizionale”, 
risalente a Boltzmann e parzialmente formalizzato da Khinchin, secondo cui 
la meccanica statistica sarebbe caratterizzata in primo luogo dall’enorme 
numero di gradi di libertà; dall’altro la scuola “moderna” cresciuta intorno a 
Prigogine e ai suoi collaboratori, che considera il caos come l’ingrediente 
fondamentale. Anche attraverso alcune simulazioni numeriche, gli autori 
hanno mostrato come anche all’interno della meccanica statistica si faccia 
avanti il problema della complessità e del riduzionismo. Sebbene i risultati 
di Khinchin non siano in grado di rispondere in modo definitivo a tutti i 
problemi sollevati dalla relazione fra termodinamica e meccanica statistica, 
il numero estremamente grande di gradi di libertà che tale approccio prende 
in considerazione permette l’emergere, nei sistemi macroscopici, di 
proprietà del tutto assenti in sistemi piccoli.  
 Giorgio Turchetti ha introdotto il problema del passaggio dai modelli 
fisici ai sistemi complessi mostrando come i limiti che il disegno 
riduzionista incontra già per i sistemi fisici diventino decisamente più forti 
nel caso dei sistemi complessi. La grande differenza tra un sistema fisico e 
un sistema complesso risiederebbe infatti, secondo Turchetti, nel fatto che il 
primo, fissate le condizioni esterne, ha sempre le medesime proprietà, 
mentre il secondo cambia con il fluire del tempo, perché la sua 
organizzazione interna muta non solo al cambiare di fattori ambientali ma 
anche con il succedersi delle generazioni. È in tale prospettiva che egli 
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giunge a definire complessi non tanto i sistemi caratterizzati da proprietà 
emergenti e da interazioni non lineari tra i loro componenti (definibili come 
sistemi dinamici), ma piuttosto i sistemi viventi o quelli di vita artificiale 
che ne condividono le proprietà essenziali. 
 Il problema di complessità e riduzionismo in campo biologico è stato 
poi affrontato in maniera diretta da Luciano Boi e da Roberto Serra. Il primo 
ha mostrato come lo studio del comportamento dinamico delle strutture 
cellulari non possa essere descritto con sufficiente accuratezza né dalla 
convenzionale dinamica dell’equilibrio né da modelli statici e richieda 
quindi nuovi strumenti. In particolare, egli ha affrontato la necessità – per 
una comprensione del comportamento dei sistemi (dinamici) complessi – di 
un’adeguata conoscenza delle caratteristiche cinetiche e topologiche delle 
loro componenti. A differenza dello studio dei meccanismi molecolari, 
l’analisi del comportamento dinamico delle strutture cellulari non necessita 
tanto di una profonda e dettagliata conoscenza del comportamento di ogni 
singola molecola, ma piuttosto delle regole che governano il comportamento 
globale e collettivo dei sistemi.  
 In consonanza con il contributo di Boi, Serra ha spiegato come la 
scienza dei sistemi complessi abbia mostrato l’esistenza di “leggi” in gran 
parte indipendenti dalle specifiche caratteristiche delle entità microscopiche 
che tuttavia ne descrivono il comportamento e l’interazione. Se la ricerca di 
proprietà generali ha ormai assunto una grande rilevanza in ambito fisico, 
nelle scienze biologiche si trova ancora nei suoi primi stadi di vita. 
Attraverso una serie di esempi, Serra ha mostrato come tale approccio, da 
considerarsi non in opposizione alla biologia molecolare classica ma a essa 
complementare, sembra però portare anche in ambito biologico a importanti 
e promettenti risultati. Emblematico in questo senso è per Serra il lavoro di 
Kauffman che rivela come un sistema dinamico di geni che interagiscono 
fra loro mostri delle proprietà di auto-organizzazione che spiegano alcuni 
aspetti della vita, fra cui l’esistenza di un numero limitato di tipi cellulari in 
ogni organismo multicellulare.  
 Pierluigi Graziani ha affrontato invece il problema della complessità 
computazionale in riferimento alla decidibilità della geometria elementare di 
Tarski. A partire soprattutto dai lavori di Fisher, Rabin e Meyers e in 
confronto con il lavoro di Tarski, Graziani ha analizzato come il problema 
della decisione si trasformi nella determinazione di quanto tempo e spazio di 
memoria impieghi un algoritmo di decisione per una teoria a determinare se 
un enunciato della teoria ne sia o meno un teorema. In teoria della 
complessità computazionale, infatti, si assume che siano 
computazionalmente intrattabili quei compiti che richiedono risorse di 
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tempo e spazio di memoria (le cosiddette risorse computazionali) che 
crescono esponenzialmente con la lunghezza dell’input; e che siano 
computazionalmente trattabili quelli che richiedono risorse che crescono al 
più in modo polinomiale con la lunghezza dell’input. In tale prospettiva, la 
complessità computazionale non concerne dunque quante risorse richiede lo 
svolgere un determinato compito, bensì quanto aumentano le risorse 
richieste al crescere delle dimensioni dei dati. 
 Claudio Calosi e Vincenzo Fano hanno mostrato come il problema della 
complessità e del riduzionismo riguardi anche il rapporto fra psicologia e 
fisica. In particolare, hanno proposto qui un nuovo esperimento mentale che 
hanno chiamato Shem-Shaun – dal nome dei due gemelli protagonisti del 
Finnegan’s Wake di Joyce – e che solleva un problema per il Fisicalismo 
minimale in filosofia della mente. Il fisicalismo minimale viene infatti 
caratterizzato come quella tesi secondo cui le proprietà mentali 
sopravvengono nomologicamente sulla proprietà fisiche, una forma di 
riduzionismo per cui, stabilite le proprietà fisiche del mondo, quelle mentali 
sarebbero necessariamente determinate. Gli autori sostengono che, o il 
Fisicalismo minimale è incapace di dare un resoconto adeguato 
dell’esperimento Shem-Shaun o ne deve dare un resoconto che è in forte 
tensione con la nostra attuale immagine scientifica del mondo. 
 Nel loro insieme, i lavori presentati testimoniano da un lato la vivacità 
degli studi epistemologici sulla complessità e dall’altro l’importanza del 
concetto di complessità per la filosofia della scienza e, in particolare, della 
fisica. 
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Remarks on the Geometry 
of Complex Systems and Self-Organization 

Luciano Boi 
École des Hautes Études en Sciences Sociales, Paris 

luciano.boi@ehess.fr  

1. Introductory remarks on the geometry of complexity 

Let us start by some general definitions of the concept of complexity. We 
take a complex system to be one composed by a large number of parts, and 
whose properties are not fully explained by an understanding of its 
components parts. Studies of complex systems recognized the importance of 
“wholeness”, defined as problems of organization (and of regulation), 
phenomena non resolvable into local events, dynamics interactions in the 
difference of behaviour of parts when isolated or in higher configuration, 
etc., in short, systems of various orders (or levels) not understandable by 
investigation of their respective parts in isolation. In a complex system it is 
essential to distinguish between ‘global’ and ‘local’ properties. Theoretical 
physicists in the last two decades have discovered that the collective 
behaviour of a macro-system, i.e. a system composed of many objects, does 
not change qualitatively when the behaviour of single components are 
modified slightly. Conversely, it has been also found that the 
behaviour of single components does change when the overall behaviour of 
the system is modified. 

There are many universal classes which describe the collective 
behaviour of the system, and each class has its own characteristics; the 
universal classes do not change when we perturb the system. The most 
interesting and rewarding work consists in finding these universal classes 
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and in spelling out their properties. This conception has been followed in 
studies done in the last twenty years on second order phase transitions. The 
objective, which has been mostly achieved, was to classify all possible types 
of phase transitions in different universality classes and to compute the 
parameters that control the behaviour of the system near the transition (or 
critical or bifurcation) point as a function of the universality class.  

This point of view is not very different from the one expressed by 
Thom in the introduction of Structural Stability and Morphogenesis (1975). 
It differs from Thom’s program because there is no a priori idea of the 
mathematical framework which should be used. Indeed Thom considers 
only a restricted class of models (ordinary differential equations in low 
dimensional spaces) while we do not have any prejudice regarding which 
models should be accepted. 

One of the most interesting and surprising results obtained by studying 
complex systems is the possibility of classifying the configurations of the 
system taxonomically. It is well-known that a well founded taxonomy is 
possible only if the objects we want to classify have some unique properties, 
i.e. species may be introduced in an objective way only if it is impossible to 
go continuously from one specie to another; in a more mathematical 
language, we say that objects must have the property of ultrametricity. More 
precisely, it was discovered that there are conditions under which a class of 
complex systems may only exist in configurations that have the 
ultrametricity property and consequently they can be classified in a 
hierarchical way. Indeed, it has been found that only this ultrametricity 
property is shared by the near-optimal solutions of many optimization 
problems of complex functions, i.e. corrugated landscapes in Kauffman’s 
language. These results are derived from the study of spin glass model, but 
they have wider implications. It is possible that the kind of structures that 
arise in these cases is present in many other apparently unrelated problems. 

Before to go on with our considerations, we have to pick in mind two 
main complementary ideas about complexity. (i) According to the prevalent 
and usual point of view, the essence of complex systems lies in the 
emergence of complex structures from the non-linear interaction of many 
simple elements that obey simple rules. Typically, these rules consist of 0–1 
alternatives selected in response to the input received, as in many prototypes 
like cellular automata, Boolean networks, spin systems, etc. Quite intricate 
patterns and structures can occur in such systems. However, what can be 
also said is that these are toy systems, and the systems occurring in reality 
rather consist of elements that individually are quite complex themselves. 
(ii) So, this bring a new aspect that seems essential and indispensable to the 
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emergence and functioning of complex systems, namely the coordination of 
individual agents or elements that themselves are complex at their own scale 
of operation. This coordination dramatically reduces the degree of freedom 
of those participating agents. Even the constituents of molecules, i.e. the 
atoms, are rather complicated conglomerations of subatomic particles, 
perhaps ultimately excitations of patterns of superstrings. Genes, the 
elementary biochemical coding units, are very complex macromolecular 
strings, as are the metabolic units, the proteins. Neurons, the basic elements 
of cognitive networks, themselves are cells.  

In those mentioned and in other complex systems, it is an important 
feature that the potential complexity of the behaviour of the individual 
agents gets dramatically simplified through the global interactions within 
the system. The individual degrees of freedom are drastically reduced, or, in 
a more formal terminology, the factual space of the system is much smaller 
than the product of the state space of the individual elements. That is one 
key aspect. The other one is that on this basis, that is utilizing the 
coordination between the activities of its members, the system then becomes 
able to develop and express a coherent structure at a higher level, that is, an 
emergent behaviour (and emergent properties) that transcends what each 
element is individually capable of.  

 
 

2. Complex systems 
 

There are many different definitions of a complex system. It may range 
from the classical algorithmic complexity (Kolmogorov, Chaitin) to more 
recent and sophisticated definitions, such as: chemical definitions, 
statistical-physics definitions, topological-dynamic definitions, biological 
definition, etc. We already have given the most common and general 
definition in the literature of complex systems. It should be clear, however, 
that any given definition (especially a mathematical one) couldn’t capture 
all the complex meaning we associate with the word complexity. 

One interesting definition rest on the basic idea that the more complex 
the system, the more can be said about. I am excluding the factual 
description of the system, which may be very long. I refer only to the global 
characteristics. A few examples will help clarify this point. If I have a 
sequence of randomly tossed coins, 50% probability head, I have described 
the system. The only improvement would be the knowledge of the sequence 
itself. If on the contrary the sequence of bits represents a book, there is 
much more information, such as style, choice of words, the plot and so on. 
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If the book is really deep, complex, there are a very large number of things 
that can be said about it. Sometimes the complexity is related to the 
existence of different levels of description: one can describe an Escherichia 
coli at the molecular level, at the biochemical level, and at the functional 
level.  

If we move towards a mathematical definition, we must realize that the 
concept of complexity, like entropy, is of probabilistic nature and it can be 
defined more precisely if we try to define the complexity of ensembles of 
objects of the same category. This is related to the notion of classification. 
The meaning of a complex classification is quite clear intuitively: a 
classification is very complex if there are many levels (i.e. orders, families, 
genera) and there are many elements in each level. Consequently a 
reasonable mathematical definition of the complexity of a classification 
should be possible. 

3. External and internal complexity  

Let’s now introduce the notions of external and internal complexity of 
complex adaptive systems. These concepts are especially useful to analyze 
relations between an adaptive system and its environment. All open 
systems, let they be either thermodynamics, biological or cognitive, are 
chiefly concerned with this relation. 

A complex adaptive system is situated in an environment. That 
environment is always more complex than the system itself, and therefore, it 
can never be completely predictable for the system, but the system depends 
on regularities of the environment for maintaining its energy supply needed 
to support its internal structure. 

One important hypothesis one can suggest is that complex adaptive 
systems try to increase their external complexity and to reduce internal 
complexity. Each of two processes will operate on its own scale, but they 
are also intricately linked and mutually dependent upon each other.  

The increase of internal complexity can for example occur through the 
creation of redundancy, e.g. duplication of some internal units or structures. 
The property of redundancy is very important in biological systems at the 
genetic level as well as at other more complex levels; for example, a same 
gene may realize different functions and, on the other hand, many genes 
may accomplish the same function. Upon this redundancy, a process of 
differentiation or specialization can operate, through controlled random 
mechanisms or internal selection, so that the system will become able to 
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handle more diverse input and thereby increase its external complexity. 
Once this happened, the system can then again try to represent this newly 
acquired input more efficiently and thus decrease its internal complexity. 
Conversely, for the decrease of internal complexity, the system can also find 
some of its input as irrelevant and meaningless for its purposes and thus 
decrease the external complexity. 

As first definition, one can say that external complexity measures the 
amount of input, information, energy obtained from the environment that 
the system is capable of handling, processing. It is important that this can be 
measured as an entropy – and therefore, terms like “energy” need some 
qualification when employed in this context. In this sense, external 
complexity is data complexity. 

Internal complexity can be defined as what that measures the 
complexity of the representation of this input by the system. In this sense, 
internal complexity is model complexity. The system will try to increase (or 
maximize) its external complexity, and to reduce (or minimize) its internal 
complexity.  

We now proceed to give formal definitions of our complexity notions 
based on the concept of entropy from statistical mechanics and information 
theory. Given a model θ, the system can model data as X(θ), with X = 
(X1,…, Xk), and we assume that X(θ) introduces an internal probability 
distribution P(X(θ)) so that an entropy can be computed in (1) bellow. Our 
hypothesis then is that the system will try to maximize the external 
complexity, 

– ∑k
i=1 P(Xi(θ)) log2 P(Xi(θ)).  (1) 

The purpose of the probability distribution P(X(θ)) is simply to qualify the 
information value of the data X(θ). In principle, this quantification is also 
possible through other means, for example, through the length of the 
representation of the data in the internal code of the system. If we assume 
optimal coding, however, which is a consequence of the minimization of 
internal complexity, then the length of the representation of a datum Xi(θ) 
behaves like log2 P(Xi(θ)) (a code is god if frequent inputs are represented 
by short code words.) 

The system can try to increase the amount of information X(θ) that is 
meaningful within the given model θ on a short time scale, or it can adapt 
the model θ on a larger time scale so as to be able to process more inputs as 
meaningful. When the input is given, however, for example when the 
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system has gathered input on a time scale when the distribution of input 
patterns ε1 becomes stationary, then the model should be improved to 
handle that input as efficiently as possible, i.e. to decrease the internal 
complexity which we now define as follows 

= – ∑k
i=1 P(εi(θ)) log2 P(εi/(θ)) – log2 P(θ). (2) 

The variation is given by 

minθ (– log2 P(ε/θ) – log2 P(θ)). (3) 

The expression to be minimized now consists of two terms, the first 
measuring how efficiently the data are encoded by the model, and the 
second one how complicated the model is. Of course the probability P(θ) 
assigned to a model depends on the internal structure of the system, and in 
principle, that internal structure then also became subject to optimization, in 
the sense that frequently used or otherwise important models get higher 
probabilities than obscure ones. 

3.1. Pattern recognition in a neural network 

We only mention the principle according to which a neural network can 
recognize patterns on the basis of a selective evaluation of inputs features 
via an internal feedback loop. (No detailed description will be presented 
here). 

We assume that the network or system has stored or identified a 
collection of patterns labelled by i = 1,…, n. These patterns might 
correspond to faces, visual shapes or other geometric objects; for thinking 
about this example, it is probably useful to think about patterns to be 
recognized in visual scenes. Also, on its input, the system can evaluate 
certain features α = 1,…, m, like edges, corners, or better, features of a 
somewhat higher level, like specific distribution of input pixels on some 
small sub-regions of the retina, or relative distances between certain 
conspicuous points of the scene. It is important for understanding the 
purpose of the network (the system) that we assume to in a situation where 
the network is not capable of evaluating all the possible features 

                                                 
1 We use a different letter now to denote the inputs because we are now considering 
patterns on a different time scale.  
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simultaneously in its inputs, simply because there are typically far too many 
possibilities. 

Rather the idea is that the network will selectively perform 
observations, that is, evaluate those features that have the highest potential 
for discriminating between these patterns that are probable candidates on the 
basis of the observations already performed. Thus, the basic design principle 
is a feedback loop between observations that affect the probability 
distribution in the space of patterns and the selection of further observations 
on the basis of that probability distribution. 

We first need to implement the relationship between patterns and 
features. This can be done on the basis of supervised learning as is standard 
in neural networks. So, the observed values xα of the features induces 
activations yi of the patterns: 

yi : ƒ(
α
Σ  wiα xα), (4) 

where ƒ might be a sigmoid function ƒ(s) = 1/1+e–ks, where for our purpose 
a rather large value of the parameter k might be best so as to get a sharp 
threshold later on. Namely, we call a pattern i activated if yi > θ is some 
threshold that we can turn to our convenience, perhaps again by supervised 
learning. The wiα are weights that can likewise be learned through 
supervised Hebbian learning. The essential point is that they should be 
positive, and perhaps large, if feature α occurs in pattern i, and 0 or negative 
if not. 

4. Examples of complex systems 

Let us now give briefly some examples of complex systems took from 
different disciplines: chemistry, biology and physics. In all this examples, 
understanding how parts of a living system – genes or molecules – interacts 
is just as important as understanding the parts themselves. 

In Chemistry the word complexity present some ambiguity and it is 
highly dependent on context. In one characterization a complex system is: 
(i) one whose evolution is very sensitive to initial conditions or to small 
perturbations; (ii) one in which the number of independent interacting 
components is large; (iii) or, one in which there are multiple pathways by 
which the system can evolve. Analytical descriptions of such systems 
typically require nonlinear differential equations. In chemistry, almost every 
thing of interest is complex by one or both definitions.  
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We are here concerned with “tractable complexity”: a subset of 
complex problems (for example, oscillating reactions) provides classical 
examples of complex systems in the sense that they can be described 
analytically by relative simple sets of nonlinear differential equations. But, 
there are other complex problems of general importance for which there are 
no simple general solutions. 

In the sequence of complexity – from static equilibrium, to dynamic 
steady state, to dynamic complexity, to chaos – there are chosen sets of 
chemical reactions whose properties make them appropriate as case studies 
in complexity. Oscillating reactions of the type represented by the 
Belousov-Zhabotinsky reaction are perhaps the best-known example. This 
class of chemical reactions has the characteristic that the simultaneous 
operation of two processes, reaction and diffusion, results in a system in 
which the concentration of reactants and products oscillate temporally and 
spatially and in which this oscillation can result in ordered patterns. In other 
words, coupled chemical reactions cause changes in concentration of the 
reagents that, in turn, cause local changes in the oxidation potential of the 
solution. These potentials can be visualized as oscillating travelling waves 
in such a reaction.  

These reactions can be described mathematically by a system of 
nonlinear equations of greater or lesser complexity, but equations bellow 
represent a minimum set of two reaction-diffusion equations 

∂u/∂t = F(u, v) + Du ∇2u (5.1) 

∂v/∂t = εG(u, v) + Dv ∇2v (5.2) 

Here, u is the concentration of a species that catalyze reaction; v is the 
concentration of a species that inhibits reactions; ∂u/∂t and ∂v/∂t describe 
changes in concentration of u and v, respectively with time; F(u, v) and 
εG(u, v) characterize reactions between u and v, respectively; and Du and 
Dv are the diffusion coefficients of u and v, respectively. 

An important motivation in chemistry of studying complexity has been 
to learn about processes in living systems. One of the most striking 
characteristics of cells is the sheer complexity of metabolism. The human 
genome probably has on the order of 105 expressed gene products; many of 
these proteins are enzymes, receptors, and members of signalling sequences, 
that is, functional parts of metabolism. Understanding a system with this 
many interacting components is clearly out of the question. A more tractable 
problem is to examine discrete, relatively self-contained sections of 
metabolism. One metabolic cycle that has been studied in substantial detail 
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is glycolysis, that is, the conversion of glucose to pyruvate with the 
production of adenosine 5′-triphosphate and the reduced form of 
nicotinamide adenine dinucleotide (NAD)2. This sequence of reactions 
involves 10 enzymes, with various levels of modulation of the catalytic 
activities of some of these enzymes by the products of others. 

The second example of complexity I would like to mention concerns 
biological signalling systems. Biological signalling pathways interact with 
one another to form complex networks. Complexity arises from the large 
number of components, many with isomorphs that have partially 
overlapping functions; from the connections among components; and forms 
the spatial relationship between components. 

Signalling in biological systems occurs at multiple levels. Already 
compartmentalization introduces several levels of complexity. First, many 
signalling components and their substrates are anchored in the plasma 
membrane. The plasma membrane provides a milieu for biochemical 
reactions that is quite distinct from the cytoplasm in its properties. The lipid 
environment enables a new class of reactions involving hydrophobic 
interactions. Organelle formation leads to a further expansion of the possible 
cellular microenvironments, each with different biochemical properties and 
signalling capabilities. Second, the separation of reactions in space allows 
the same molecules in the same cell to carry entirely different signals. In 
other words, we already have signalling “wires” distinguished by the 
identity of the molecules in the pathways. Compartmentalization duplicates 
these existing wires and separates them in space. This multiplies the number 
of signals they can carry about. 

In addition to sub-cellular compartmentalization recent research has 
highlighted the role of molecular scaffolds that provide regional 
organization by assembling signalling components into functional 
complexes. The cytoskeleton is a dynamic framework on which the cell 
builds this regional organization. The most dramatic example of its 
dynamism is cell division. In the quiescent cell, it is both the substrate and 
the scaffold for signalling processes. 

                                                 
2 Nicotinamide adenine dinucleotide (NAD and its relative nicotinamide adenine 
dinucleotide phosphate (NADP) are two of the most important coenzymes in the cell. 
NADP is simply NAD with a third phosphate group attached. NAD participates in many 
redox reactions in cells, including those in glycolysis, and most of those in the citric acid 
cycle of cellular respiration. NADP is the reducing agent produced by the light reactions 
of photosynthesis, consumed in the Calvin cycle of photosynthesis, and used in many 
other anabolic reactions in both plants and animals.  
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A prime example of its dual role is its synapse. Here the cytoskeleton, 
in particular the pre- and postsynaptic structures, are the anchors for a wide 
array of synaptic signalling molecules. Consequently, modifications of the 
synaptic cytoskeleton are a likely candidate for causing long-term changes 
in synaptic efficacy. 

To conclude this section, we point out some theoretical remarks about 
characteristic properties of complex living systems. Let’s start with some 
observations. 

4.1. Network behaviours and emergent properties 

1. Today, it is clear that the specificity of a complex biological activity 
does not arise from the specificity of the individual molecules that are 
involved, as these components frequently work in many different processes. 
For instance, genes that affect memory formation in the fruit fly encode 
proteins in the cyclic adenosine monophosphate (cAMP)3 signalling 
pathway that are not specific to memory. Biological specificity results from 
the way in which these components assemble and work together. 
Interactions between the parts, as well as influences from the environment, 
give rise to new features, such as network behaviour. 

2. Consequently, “emergence” has appeared as a new concept that 
complements “reduction” when reduction fails. Emergent properties resist 
any attempt at being predicted or deduced by explicit calculation or any 
other means. In this regard, emergent properties differ from resultant 
properties, which usually can be predicted from lower-level information. 
For example the resultant mass of a multi-component protein assembly is 
simply equal to the sum of the masses of each individual component. 
However, the way in which we test the saltiness of sodium chloride is not 
reducible to the properties of sodium and chlorine gas.  

An important aspect of emergent properties is that they have their own 
causal powers, which are not reducible to the powers of their constituents. 
For instance, the experience of pain can alter human behaviour, but the 
                                                 
3 Cyclic adenosine monophosphate (cAMP, cyclic AMP or 3′-5′-cyclic adenosine 
monophosphate) is a second messenger important in many biological processes. cAMP is 
derived from adenosine triphosphate (ATP) and used for intracellular signal transduction 
in many different organisms, conveying the cAMP-dependent pathway. One important 
intracellular signal transduction is the transferring of the effects of hormones like 
glucagon and adrenaline, which cannot pass through the cell membrane. It is involved in 
the activation of protein kinases and regulates the effects of adrenaline and glucagon. It 
also regulates the passage of Ca2+ through ion channels.  
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lower-level chemical reactions in the neurons that are involved in the 
perception of pain are not the cause of the altered behaviour as the pain 
itself has causal efficacy. It should be added that the concept of emergence 
implies “down-ward causation” by which higher-level systems influence 
lower-level con figurations. 

3. The constituents of complex systems interact in many ways, 
including negative feedback and feed-forward control, which lead to 
dynamic features (i.e., evolving in time and changing with time) that cannot 
be predicted satisfactorily by linear mathematical models that disregard 
cooperativity and non-additive effects.  

4. Robustness is another essential property of biological systems. 
Understanding the mechanisms and principles underlying biological 
robustness is necessary for an in-depth understanding of biology at the 
system level. The phenomenological properties exhibited by robust systems 
can be classified into three areas: (i) adaptation, which denotes the ability to 
cope with environmental changes; (ii) parameter insensitivity, which 
indicate a system’s relative insensitivity to specific kinetic parameters; (iii) 
graceful degradation, which reflects the characteristic slow degradation of a 
system’s functions after damage, rather than catastrophic failure. 

In other systems, such as fluid-mechanics systems, and also engineering 
systems, robustness is attained by using the following properties: (a) the 
capability to form a system control such as negative feedback and feed-
forward control; (b) redundancy, whereby multiple components with 
equivalent functions are introduced for backup; (c) structural stability, 
where intrinsic mechanisms are built to promote stability; and (d) 
modularity, where sub-systems are physically or functionally insulated so 
that failure in one module does not spread to other parts an lead to system-
wide catastrophe. 

5. Remarks about the property of structural stability and on self-
organization 

It remains an open question whether the property of structural stability used 
in the biological context present some similar characteristics with respect to 
the concept of structural stability as it has been defined in differential 
topology in the 1960s by R. Thom and S. Smale.  

Intuitively, a phase portrait (i.e. all the qualitatively different 
trajectories of the system) is structural stable if its topology cannot be 
changed by an arbitrarily small perturbation to the vector field. For instance, 
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the phase portrait of a saddle point is structurally stable, but that of a center 
is not: an arbitrarily small amount of damping converts the center to a spiral. 
Related to the concept of structural stability, we have the notions of 
attractor and strange attractor. The term attractor is difficult to define in a 
rigorous way. Loosely speaking, an attractor is a set to which all 
neighbouring trajectories converge. More precisely, we define an attractor to 
be a closed set A with the following properties: (i) A is an invariant set: any 
trajectory x(t) that starts in A stays in A for all times; (ii) A attracts an open 
set of initial conditions: there is an open set U containing A such that if x(0) 
∈ U, then the distance from x(t) to A tends to zero as t → ∞. This means that 
A attracts all trajectories that start sufficiently close to it. The largest such U 
is called the basin of attraction of A; (iii) A is minimal: there is no proper 
subset of A that satisfies conditions (i) and (ii). 

Finally, we define a strange attractor to be an attractor that exhibits 
sensitive dependence on initial conditions. Examples of strange attractors 
are fractal sets and also chaotic attractors. Just to conclude this section, let 
us remark that the four properties listed above are also found in biological 
systems. Bacterial chemotaxis4 is an example of negative feedback that 
attains all three aspects of robustness. Redundancy is seen at the gene level, 
where it functions in control of the cell cycle and circadian rhythms, and at 
the circuit level, where it operates in alternative metabolic pathways in E. 
coli. Structural stability provides insensitivity to parameter changes in the 
network responsible for segment formation in Drosophila. And modularity 
is exploited at various scales, from the cell itself to compartmentalized yet 
interacting signal-transduction cascades. 

Lastly, the concept of self-organization in cellular architecture is linked 
to the complexity of biological systems. A central question in modern cell 
biology is how large, macroscopic cellular structures are formed and 
maintained. It is unknown what determines the different shapes and sizes of 
cellular organelles, why specific structures form in particular places, and 
how cellular architecture is affected by function and vice-versa. 

                                                 
4 Chemotaxis is the phenomenon in which somatic cells, bacteria, and other single-cell or 
multicellular organisms direct their movements according to certain chemicals in their 
environment. This is important for bacteria to find food (for example, glucose) by 
swimming towards the highest concentration of food molecules, or to flee from poisons 
(for example, phenol). In multicellular organisms, chemotaxis is critical to early 
development (e.g. movement of sperm towards the egg during fertilization) and 
subsequent phases of development (e.g. migration of neurons or lymphocytes) as well as 
in normal functions. In addition, it has been recognized that mechanisms that allows 
chemotaxis in animals can be subverted during cancer metastasis.  
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Two fundamentally different mechanisms exist to generate 
macromolecular structures: self-assembly and self-organization. Whereas 
self-assembly involves the physical association of molecules into an 
equilibrium structure, self-organization involves the physical interaction of 
molecules in a steady-state structure. For example, virus and phage proteins 
self-assemble to true equilibrium and form stable, static structures. In 
contrast, most cellular structures (i.e., the cytoskeleton, nuclear 
compartments, or endocytic compartments) are open for exchange of energy 
and matter and are governed by steady-state dynamics.  

The concept of self-organization is based on observations of chemical 
reactions far from equilibrium, and it is well established in chemistry, 
physics and ecology. Self-organization in the context of cell biology can be 
defined as the capacity of a macromolecular complex or organelle to 
determine is own structure based on the functional interactions of its 
components. In a self-organized system, the interactions of its molecular 
parts (and not the molecular parts them-selves) determine its architectural 
and functional features. The processes that occur within a self-organized 
structure are not underpinned by a rigid architectural framework; rather, 
they determine its organization. 

For self-organization to act on macroscopic cellular structures, three 
requirements must be fulfilled: (i) a cellular structure must be dynamic; (ii) 
matter and energy must be continuously exchanged; (iii) overall stable 
configuration must be generated from dynamic components.  

Recent studies indicate that many cellular structures fulfil the 
requirements for self-organization. Particularly, self-organization seems to 
play an important role in the construction and dynamics of three major 
macroscopic cellular structures: namely the cytoskeleton, the cell nucleus, 
and the Golgi complex.  

Why self-organization? And why self-organization is related to 
complexity? To answer these questions, consider the followings facts. 
Macroscopic cellular structures are characterized by two apparently 
contradictory properties. On one hand, they must be architecturally stable; 
on the other hand, they must be flexible and prepared for change. Self-
organization ensures structural stability without loss of plasticity. 
Fluctuations in the interactions properties of its components do not have 
deleterious effects on the structure as a whole. However, global and 
persistent changes rapidly result in morphological transformations. The 
basis for the responsiveness of self-organized structures is the transient 
nature of the interactions among their components. 
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The dynamic interplay of components generates frequent windows of 
opportunity during which proteins can change their interaction partners or 
be modified. The effective availability of components is controlled by 
posttranslational modifications via signal transduction pathways. 

Self-organization is an elegant, efficient way to organize complex 
structures. The properties that determine the organization are the intrinsic 
properties of the structure’s components. In protein polymers, the protein-
protein interaction properties determine the architecture; in membrane 
structures the flow of membranes determines the architecture. Thus, self-
organization is a simple but effective way to optimally organize cellular 
structures. 

The study of complex dynamic behaviour of cellular structures requires 
new tools. The behaviour of dynamic cellular structures cannot be described 
accurately by conventional equilibrium dynamics or by static models. To 
understand the behaviour of complex (dynamic) systems, the kinetic and 
topological characteristics of their components must be known. In contrast 
to the study of molecular mechanisms, isn’t must sufficient to understand in 
detail the behaviour of single molecules; rather, the rules that govern the 
global and collective behaviour of systems must be uncovered. 
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