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1. Introduction 
 A central component of Thomas Kuhn’s philosophy of measurement is what he calls the 
fifth law of thermodynamics.  According to this “law,” there will always be discrepancies 
between experimental results and scientists’ prior expectations, whether those expectations arise 
from theory or from other experimental data.  These discrepancies often take the form of what 
Kuhn calls quantitative anomalies, and they play a central role in both normal and revolutionary 
science.  Whether the effort to resolve these anomalies is taken to be a part of normal or 
revolutionary science depends in part on the ever-evolving and context-dependent standards of 
what Kuhn calls reasonable agreement.  In The Structure of Scientific Revolutions, Kuhn 
identifies as one of the most important types of experiments those aimed at determining the 
values of the fundamental physical constants.  Why would he emphasize this seemingly obscure 
class of experiments?  The answer, we argue, requires paying closer attention to, first, the 
historical context of a prominent research program in the Physics Department at Berkeley when 
Kuhn arrived in the 1950s, and second, Kuhn’s broader philosophy of measurement and data.  As 
we show, the fifth law of thermodynamics and the failure of reasonable agreement played a 
fundamental role in both.   
 In Section 2, we reconstruct Kuhn's philosophy of measurement and philosophy of data, 
as laid out primarily in his 1961 paper "The Function of Measurement in Modern Physical 
Science," where he introduces this fifth law.  We discuss the important role of quantitative 
anomalies in Kuhn’s philosophy, noting his emphasis on the iterative process of improving 
reasonable agreement.  Section 3 turns to the historical context at Berkeley and the research 
program initiated by the long-time physics chair, Raymond T. Birge, who first called attention to 
the widespread discrepancies and inconsistencies in the experimental data on fundamental 
constants.  We illustrate the quantitative anomalies uncovered in this research on constants, using 
the example of the speed of light (c), for which there were many different (and inconsistent!) 
experimentally determined values measured during the Birge-Kuhn era.  

We follow this important research program forward in time in Section 4, highlighting 
Kuhnian elements taken up by the metrology institution subsequently charged with periodically 
adjusting the values of the fundamental constants, known as Committee on Data for Science and 
Technology (CODATA).  In particular, we identify three striking points of similarity: First, like 
Kuhn, these metrologists emphasize the iterative and ever-changing standards of reasonable 
agreement, prioritizing the identification of quantitative anomalies.  Second, the metrology 
community also expresses a fundamental skepticism about scientists’ ability to ever know the 
“true value” of a fundamental constant.  Third, in the absence of any access to the true values of 
the constants, these metrologists emphasize the values of consistency and coherence as the only 
arbiters in deciding what numerical value to adopt.  We connect these points to the ongoing 
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effort to determine the value of the gravitational constant (G), which is the fundamental constant 
that Kuhn emphasizes as being particularly problematic in the Structure.   

In Section 5, we discuss Kuhn’s later reflections on the formative role that his earlier 
work on the philosophy of measurement and data had for the development of his views in the 
Structure.  By paying closer attention to Kuhn’s work on the philosophy of measurement we are 
also able to recover a key notion of scientific progress in Kuhn’s thinking that goes beyond the 
increase in puzzle-solving ability later identified in the Postscript to the Structure.  We conclude 
by reflecting on the continuing relevance of Kuhn’s views for the philosophy of metrology and 
philosophy of data today.   
 
 
2. Kuhn’s Philosophy of Measurement & Data 
 In The Structure of Scientific Revolutions, Kuhn highlights as one of the "most important 
of all" classes of experiments in normal science the "determination of physical constants" 
([1962] 1996, p. 27).  He notes, for example, the "improved values of the gravitational constant 
[G] have been the object of repeated efforts ever since [the 1790s] by a number of outstanding 
experimentalists" (pp. 27-28).  Kuhn goes on to mention the ongoing work to improve the values 
of several other fundamental constants, such as “the astronomical unit [AU], Avogadro’s number 
[NA], Joule’s coefficient [µJT], the electronic charge [e], and so on” (p. 28).  This emphasis on the 
iterative determination of the values of fundamental constants might prima facie be surprising 
given the paucity of attention this topic has received from philosophers of science.  However, 
when Kuhn arrived at Berkeley in the mid-1950s he was surrounded by discussions of the 
adjustment of fundamental physical constants, which was one of the towering achievements of 
his colleague Raymond T. Birge, who had served as chair of the Berkeley physics department for 
over 20 years.1  While the “true values” of the fundamental physical constants are assumed to be 
constant, their values can only be known empirically through experimentation and measurement.  
And as Kuhn and his Berkeley colleagues were acutely aware, the empirically determined values 
of these constants over time are anything but constant.   
 In order to better understand Kuhn’s views on this work, and its possible influences, we 
must look to Kuhn’s writings on the philosophy of measurement and philosophy of data, which 
are worked out in detail in a paper he published just one year before the Structure titled “The 
Function of Measurement in Modern Physical Science.”2  It is in this paper that Kuhn introduces 
the eponym for the title of our paper: the fifth law of thermodynamics.  In physics, of course, 
there are only the three traditional laws of thermodynamics, related to the conservation of 
energy, the increase of entropy, and the limit of absolute zero.3  Both the fourth and fifth laws of 
thermodynamics are humorous aphorisms of the experimental sciences.  The more familiar 
fourth law (which Kuhn relegates to a passing footnote) states that “no piece of experimental 
apparatus works the first time it is set up.”  However, Kuhn’s primary interest is in articulating 
what he calls the fifth law of thermodynamics, which states that “no experiment gives quite the 
expected numerical result” (Kuhn [1961] 1977, p. 184).   

 
1 We will return to discuss Birge’s program of the periodic adjustment of physical constants and the legacy of its 
influence on the philosophy of metrology in the next section.   
2 This paper, originally published in 1961 in the journal Isis, is reprinted in Kuhn’s (1977) collection of essays The 
Essential Tension, which is the source for our page numbers cited here. 
3 To complicate the numbering, there is also a “zeroth law of thermodynamics”, which establishes a kind of 
transitivity relation for systems in thermal equilibrium.   
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These prior “expected numerical results” can come from two kinds of sources: On the 
one hand, they can be based on data from other experiments that have measured the same 
quantity, either by the same experimental method (an attempted replication), or via a different 
experimental approach.  On the other hand, expected numerical results can also come from 
predictions that were calculated on the basis of theory.  For example, in a collision experiment 
involving rigid bodies in a low friction environment, one would theoretically expect momentum 
to be conserved.  As anyone who has been in a high school physics lab knows, however, it can be 
extremely difficult to get the experimental data to come out exactly the way the theory predicts.  
Indeed, Kuhn rightly argues that the numbers will never agree exactly, even in the best-case 
scenario, due to the resolution limits of the measuring instruments employed, which will always 
yield fewer decimal places than one could in principle calculate from theory.  More importantly, 
Kuhn argues that the theoretical expectations will involve various idealizations, and the 
experimental setup various “approximations,” such that the concrete experiment will never be a 
perfect realization of the theoretical schema of the experiment.  There will be any number of 
interfering influences, some perhaps known or guessed at, but others unknown.  For all these 
reasons, experimenters are constrained by the fifth law of thermodynamics and can at best hope 
for what Kuhn calls “reasonable agreement.”  This notion of reasonable agreement is a crucial 
one for Kuhn, which we will discuss in more detail shortly, but before doing so it may be helpful 
to provide some background and terminology in the philosophy of measurement and data to help 
understand Kuhn’s ideas.   
 In trying to better understand the discrepancy that Kuhn identifies in his fifth law of 
thermodynamics, it is helpful to turn to Pierre Duhem’s chapter on “Experiment in Physics” from 
his book The Aim and Structure of Physical Theory.4  In this chapter, Duhem introduces the 
following distinction: “When a physicist does an experiment, two very distinct representations of 
the instrument . . . fill his mind: one is the image of the concrete instrument that he manipulates 
in reality; the other is a schematic model of the same instrument, constructed with the aid of 
symbols supplied by theories” (Duhem ([1914] 1954), pp. 155-156).  Duhem goes on to explain 
that “[t]he schematic instrument is not and cannot be the exact equivalent of the real instrument” 
(p. 157).  He continues, “the physicist, after reasoning on a schematic instrument that is too 
simple . . . will seek to substitute for it a more complicated scheme that resembles reality more.  
This passage from a certain schematic instrument to another which better symbolizes the 
concrete instrument is essentially the operation that the word correction designates in physics” 
([1914] 1954), p. 157, emphasis added).  Kuhn describes this very process using the example of 
Newton’s theoretical description of a pendulum and a concrete pendulum in the lab: 

“The suspensions of laboratory pendula are neither weightless nor perfectly elastic; air 
resistance damps the motion of the bob; besides, the bob itself is of finite size. . . . If these 
three aspects of the experimental situation are neglected, only the roughest sort of 
quantitative agreement between theory and observation can be expected.  But 
determining how to reduce them . . . and what allowance to make for the residue are 
themselves problems of the utmost difficulty.  Since Newton’s day much brilliant 
research has been devoted to their challenge.” (Kuhn [1961] 1977, p. 191) 

 
As Kuhn emphasizes, this gap between theory and data is not one that is initially directed at the 
theory, or yet attempting any sort of confirmation or falsification.  Instead, the theory is initially 

 
4 Duhem’s book was originally published in 1906, and his work influenced many of the authors that Kuhn cites.  
Here we quote from the second edition of Duhem’s book, published in 1914.  
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held “fixed,” while scientists attempt to bridge the gap through a complexification of our 
understanding of the experimental apparatus and an extended process of wrestling with various 
‘corrections’ to the data. 

The process that Kuhn describes here is similar to what metrologists today would refer to 
as creating a model of the measurement process and an associated uncertainty budget.  The 
international organization responsible for coordinating the vocabulary and standards of 
measurements in metrology (i.e., the science of measurement) is the International Bureau of 
Weights and Measures, known by the acronym of its French title BIPM, which was established 
by the Metre Convention in 1875.  In discussing measurements in physics, it is helpful to briefly 
review some of the basic terminology in metrology to bring philosophical clarity to the 
discussion.  The quantity one is trying to measure in the world is known as the measurand, 
which is assumed to have some definite, but unknown (and arguably unknowable) true value.  
When a measurement is performed using some apparatus, the scientist will obtain what is called 
a measurement indication—a reading on the dial, for example.  A measurement result requires 
turning this measurement indication into a measurement outcome which is the scientist’s 
considered estimate of the measurand’s “true value”.  As Eran Tal explains,  

“‘indication’ . . . does not presuppose reliability or success . . . but only an intention to 
use such outputs for reliable indication of some property of the sample being measured. . 
. . A measurement outcome, by contrast, is an estimate of the quantity value associated 
with the object being measured . . . inferred from one or more indications. . . . and 
include[s] either implicitly or explicitly, an estimate of uncertainty” (2012, pp. 143-144).  

 
Turning measurement indications into measurement outcomes (or “results”) can involve all sorts 
of theoretical calculations, such as equations that allow one to convert the measured quantity 
(e.g., travel time of a light signal measured in seconds) into the quantity of interest (e.g., distance 
measured in kilometers), a process that is known as data conversion (see, e.g., Bokulich 2020a).  
More broadly, it depends on having a detailed understanding, or model, of the measurement 
process, as well as an estimate of the various sources of error that may be affecting the 
measurement indications given by the measurement apparatus.  These sources of error, or 
uncertainty, can be detailed in an uncertainty budget, which tries to estimate how these various 
sources of error likely influenced the measurement.  Kuhn is calling attention to these many 
possible sources of error in his discussion of examples like the “vacuum is not perfect” and “the 
‘linearity’ of vacuum tube characteristics” (Kuhn [1961] 1977, p. 184)).  The data that is 
obtained from a measurement indication, thus often needs to be corrected or processed (i.e., 
undergo data correction) in order to turn it into a measurement outcome.   
 This metrological distinction between indications and outcomes helps us understand 
Kuhn’s philosophy of data: as he notes in the Structure, “the measurements that a scientist 
undertakes in the laboratory are not ‘the given’ of experience but rather ‘the collected with 
difficulty’ ” ([1962] 1996, p. 126).  This key insight is also elaborated in his earlier article on the 
function of measurement:  

“the scientist often seems rather to be struggling with the facts, trying to force them into 
conformity with a theory he does not doubt.  Quantitative facts cease to seem simply ‘the 
given.’  They must be fought for and with.” (Kuhn [1961] 1977, p. 193; emphasis added)   

 
These uses of the term “given” are of course references to the Latin roots of the word datum, or 
data (from the past-tense of the verb, dare, to give).  Not only must data be fought for, with the 
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design and execution of careful experiments, but as Kuhn says they must also be fought with, 
through various forms of data correction and data processing.  How does the scientist judge when 
the data corrections have been adequately completed?  Kuhn explains, “the tests for reliability of 
existing instruments and manipulative techniques must inevitably be their ability to give results 
that compare favorably with existing theory” (Kuhn [1961] 1977, p. 194).  In other words, when 
the data are in “reasonable agreement” with theory.   
 What counts as a “reasonable agreement,” and when is a discrepancy a problematic 
anomaly?  As Kuhn explains, there is no single, universal criterion; it is instead highly context 
dependent. “‘Reasonable agreement’ varies from one part of science to another, and within any 
part of science it varies with time” (Kuhn [1961] 1977, p. 185).  First, reasonable agreement is 
usually field-dependent: the standard of accuracy for an experimental result to be in agreement 
with theory varies widely across research fields. For example, Kuhn notices that in 
“spectroscopy ‘reasonable agreement’ means agreement in the first six or eight left-hand digits in 
the numbers of a table of wave lengths” (Kuhn [1961] 1977, p. 185).  In contrast, “there are parts 
of astronomy in which any search for even so limited an agreement must seem utopian. In the 
theoretical study of stellar magnitudes agreement to a multiplicative factor of ten is often taken 
to be ‘reasonable’” (p. 185).  Evolving norms for reasonable agreement—as established by a 
given subfield, for a particular quantity, and at a moment in time—set the standards and 
expectations that practitioners in that field must abide by in their research. 

As scientists come to understand the measurement process and the various sources of 
error better over time—resulting in improved experimental design and protocols, a more detailed 
model of the measurement process, and improved uncertainty budgeting and data correction—
the gap between theory and measurement data should gradually close.  George Smith (2014) 
describes this as a process of “closing the loop,” noting its critical role in the Newtonian research 
program, and spectacularly illustrated by the discovery of Neptune from the no-longer-
reasonable agreement between Newton’s theory and the observed orbit of Uranus.5   

Similarly, Kuhn notes that “in overwhelming proportion, these discrepancies disappear 
upon closer scrutiny.  They may prove to be instrumental effects, or they may result from 
previously unnoticed approximations in the theory, or they may, simply and mysteriously, cease 
to occur when the experiment is repeated under slightly different conditions (Kuhn [1961] 1977, 
p. 202).  Even if the mismatch between the measurements and theoretical prediction tends to 
shrink as measurements get more and more refined, the gap is never completely eliminated.  In 
the most troubling manifestation of the fifth law of thermodynamics, however, an anomaly can 
prove recalcitrant:  

“a quantitative anomaly [can resist] all the usual efforts at reconciliation.  Once the 
relevant measurements have been stabilized and the theoretical approximations fully 
investigated, a quantitative discrepancy proves persistently obtrusive” (Kuhn [1961] 
1977, p. 209).   

 
It is in the course of this “mop-up” work (as Kuhn, in an overly disparagingly way, describes it) 
of stabilizing the measurements and theoretical approximations that the most productive 

 
5 The Neptune case illustrates the theory-data discrepancy, and is discussed many places, including in Smith (2014). 
For a fuller discussion of a case involving data-data discrepancy, or more specifically how the iterative comparison 
between two different experimental approaches to measuring the same quantity can help identify and resolve 
anomalies in each experimental method, gradually closing the loop, see Bokulich’s (2020b) “Calibration, 
Coherence, and Consilience in Radiometric Measures of Geologic Time.” 
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quantitative anomalies are revealed.  At this point, the disagreement between theory and data is 
no longer reasonable, and the quantitative anomaly could precipitate a crisis. 
 
 
3. Kuhn, Birge, & the Adjustment of Physical Constants at Berkeley 
 With this background on Kuhn’s philosophy of measurement, data, and quantitative 
anomalies in place, we have one of two key components needed to understand Kuhn’s puzzling 
remarks in the Structure about one of the most important classes of experiments in normal 
science being the iterative improvement of the values of the fundamental constants.  However, 
the complete story also requires paying attention to the historical context in which Kuhn found 
himself at U.C. Berkeley when he was working out these ideas and writing the Structure.   
 When Kuhn arrived at Berkeley in 1956, one of the most prominent figures in the Physics 
Department was Raymond T. Birge—a figure who has largely been forgotten today.  Birge 
served as the Chair of the Physics Department from 1932 to 1955, and is credited with being the 
architect behind the department’s rise to international prominence, helping to recruit the likes of 
E. O. Lawrence and J. R. Oppenheimer (Helmholtz 1980).  Birge’s impact on Berkeley was so 
great, that when the new physics building was completed in 1964, it was named Birge Hall.  
More importantly for our purposes here, Birge was also the architect behind the project to 
coordinate a set of best current values for all the major fundamental physical constants to be 
prescribed for the entire physics community—a Herculean feat that made him few friends.   
When Birge started this project in the late 1920s, the physics community was in disarray, using 
many different—and often inconsistent—values for the fundamental constants.  Birge reports a 
“surprising lack of consistency, both in regard to the actually adopted values and to the origin of 
such values” (Birge 1929, p. 2), not least because of ‘some peculiar national flavor’ (1957, p.40) 
in the choice of values.  This lack of standardization undermined any attempt to compare 
measurement results from different researchers across different labs and in different countries.   

Birge’s task was to comb through the entire physics literature for the various 
experimental determinations of the value of some physical constant—which were often arrived at 
via quite different experimental methods—and then decide which values should be combined to 
produce an averaged best estimate for the constant, and which values should be discarded as 
outliers.  This project often required that Birge go back to the raw data (measurement 
indications) from these experiments and reprocess the data himself using improved data 
correction methods to achieve a better value (or measurement outcome) for the constant.  This 
project of estimating a best value for a given fundamental constant is complicated by the fact that 
many fundamental constants are part of an interdependent web, and hence cannot have their 
values fixed in isolation from the values of other fundamental constants.  For example, the 
Rydberg constant, R¥, is defined by Bohr’s formula in terms of electron mass (me), electric 
charge (e), Planck’s constant (h), and the speed of light (c), and hence the adopted values for all 
these fundamental constants must “form a self-consistent system, as judged by the Bohr formula 
for R¥” (Birge 1929, p. 71).  In order to see how this project of determining the values of 
fundamental constants relates to Kuhn’s fifth law of thermodynamics, it is helpful to examine 
some concrete examples.   

The first fundamental constant that Birge discusses in his seminal 1929 article is the 
speed of light, c.  Birge notes that there are three different cutting-edge experimental methods for 
determining the speed of light: First, there is Albert Michelson’s (1927) method using a rotating 
mirror; second, there is Jean Mercier’s (1924) method measuring the velocity of stationary 



 

 7 

electric waves along a wire; and a third method is Edward Rosa and Noah Dorsey’s (1907) 
indirect determination from the measured ratio of electrostatic to electromagnetic units for an 
electric charge.  The values for c obtained from these three different measurement approaches 
are listed in Figure 1.   
 

Experimental Method Value Speed of Light (c) 
km/sec 

Uncertainty/Error  
km/sec 

Michelson (1927) 299,796  ± 4 
Mercier (1924) 299,700 ± 30 

Rosa & Dorsey (1907) 299,710 (reported) 
299,790 (Birge corrected) 

± 30 
± 10 

 
Figure 1: Values of speed of light based on different experimental determinations discussed in Birge 
(1929). 

 
The first thing to note is that the experimental values for the speed of light in the center column 
are not all identical.  While at one point in the history of physics they may have been considered 
to be in “reasonable agreement,” by Birge’s time, the demands of high-precision measurement 
physics required a consistent value to higher-resolution.  At first glance, Rosa and Dorsey’s 
reported value appears to be in closer agreement with Mercier’s value, suggesting that 
Michelson’s result is the outlier.  However, as Birge notes, in calculating their value for the 
speed of light Rosa and Dorsey used the international ohm, and this needs to be converted to 
absolute ohms in order to obtain a proper value for the speed of light; hence, their result needs to 
undergo data correction.  As Birge further emphasizes, it is essential that the “probable error” or 
uncertainty of a measurement value also be taken into consideration when determining whether 
or not results are in “reasonable agreement”.6  Birge goes on to reassesses the uncertainties 
associated with the Rosa-Dorsey measurement values by changing their maximum uncertainty 
value of ± 30 km down to a probable error value of ±10 km.  When these data corrections are 
taken into account, it turns out their measured value for the speed of light is in closer agreement 
with Michelson’s, and it is instead the Mercier value that is the outlier.  Birge concludes that 
Rosa and Dorsey are in fact in “beautiful agreement with Michelson’s recent value” (Birge 1929, 
p. 10) and given that the Rosa-Dorsey probable error is over twice that of Michelson’s, Birge 
recommends adopting Michelson’s result as the recommended value for c.  Unfortunately, this 
“beautiful agreement” would not last, and the estimate for the speed of light would drop 
precipitously in the next decade, before rising again, as seen in Figure 3 (from Henrion & 
Fischhoff 1986, p. 793) which we discuss below.   
 Notice that in the case of the speed of light, Birge opted to use the other values of c only 
as a kind of coherence test to help pick out one “best” value.7  Alternatively, he could have 
combined the various experimental values for the fundamental constant, such as by weighting 
and averaging the values in some way, or even just by expanding the associated uncertainty 
estimate.8  In his excellent article on the history and philosophy of the adjustment of fundamental 
physical constants, Fabien Grégis (2019a) describes these two approaches as arbitrage and 

 
6 There are subtle differences between “uncertainty” and “probable error”, which we do not engage here. 
7 For a discussion of coherence testing of multiple measurement methods, see for example Bokulich 2020b on 
radiometric dating. 
8 As we discuss below, in his later reassessment of the speed of light in 1941, Birge does opt for the “compromise” 
over “arbitrage” approach.   
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compromise respectively, noting that Birge adopts different methods for different constants at 
different times, depending on the nature of the discordant data.  We’ll come back to discuss the 
compromise approach in a moment, but first let us take a closer look at Birge’s philosophical 
views underlying the process of adjusting fundamental physical constants.   
 In this same 1929 article, Birge lays out a remarkably Peircean9 view on the process of 
determining the values of fundamental constants.  In particular, Birge sees this as an ongoing, 
iterative project: “The need is continuous since the most probable value of to-day is not that of 
to-morrow, because of the never-ending progress of scientific research” (Birge 1929, p. 2).  In 
addition, Birge highlights the social dimensions of this iterative project of determining the value 
of physical constants: “there is required the unbiased cooperation of many persons situated in 
scientific laboratories throughout the world” (p. 2).  Although the true value of the constant may 
not be determinable at any given moment of history, it should be a probable value, and more 
importantly the same value must be coordinated and adopted across the entire scientific 
community.  Though grounded in the best available scientific evidence, the particular value 
chosen at any given time will, as Birge acknowledges, involve an irreducible element of 
subjective judgement.  For example, the adjuster must make a judgement about what data is 
“good” and hence will be incorporated into the adjustment, and what data is “bad,” and hence 
may be discarded.   
 Another noteworthy aspect of Birge’s philosophy of data is the careful attention he paid 
not only to the value of the fundamental constant, but also to its associated uncertainty or 
probable error.10  In metrology, measurement uncertainty provides the boundaries to the likely 
range of values within which the “true” measurement value is supposed to lie.  He writes, “Some 
estimate of the probable error is . . . as important as the constant itself” (Birge 1929, p. 4).  Such 
a strong emphasis on uncertainty marks an epochal change in precision measurement physics 
(see Cohen and DuMond 1957; Gregis 2019a). Birge reflects on this important turning point in 
the physics community in 1943:  

“Previous to the time that I began publishing critical values of the general physical 
constants [in 1929], it was rather exceptional to attach a probable error, or other measure 
of reliability, to suggested "most probable" values.  It seemed to me, however, desirable 
to attempt such an estimate, even in cases where the estimate was admittedly almost a 
pure guess.” (Birge 1943, p. 213)  

 
Acknowledging the necessity of uncertainty estimates, even if highly speculative, is connected to 
the recognition, encoded in the fifth law of thermodynamics, that measurements are never a 
perfect revelation of the true value of any quantity. 

Indeed, Birge saw this as one of the strongest arguments for using the now widely 
adopted least squares method11 for combining the different measured values of a particular 

 
9 The influence of Charles S. Peirce’s pragmatic philosophy on Birge is explored by one of us in another work 
(Bokulich, Book Manuscript In Progress). 
10 As we noted before, although “probable error” was the quantity and term used in Birge’s time, today the 
metrology community prefers to use “uncertainty”, rather than “error”.  See Grégis (2019b) for a more detailed 
discussion of the shift in the meaning of uncertainty. 
11 Birge in his 1932 expository article defines the least squares method as a statistical method for “(1) the calculation 
of the "most probable" values of certain quantities, from a given set of experimental data, (2) the calculation of the 
"probable error" of each of the quantities just evaluated, (3) the calculation of the reliability, or probable error, of the 
probable errors so evaluated.”(Birge 1932, p. 207).  The method goes back to the 18th century work Adrien Marie 
Legendre and Carl Friedrich Gauss’s work in geodesy (see Struik 1954 for a history).   
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constant: “Now in order to evaluate the probable error it is necessary to use the method of least 
squares. One great objection, it appears to me, to certain methods which have been proposed as 
substitutes for least squares, is that they give no objective criterion for the error” (1929, p. 4).  In 
a later work, Birge recalls his seminal role in spreading the use of the least squares method from 
astronomy and geodesy to the rest of physics: “When I started my work on the calculation of the 
general constants, the method of least squares was in common use by surveyors and by 
astronomers.  But it was seldom used by anyone else” (Birge 1957, p. 42).  Birge himself made 
many contributions to the refinement of the least squares method, which had an impact far 
beyond determining the values of constants.  Birge also notes, however, the limits of the least 
squares method.  He writes,  

“one must use some judgement in applying the method of least squares.  Otherwise the 
results may well be absurd.  Such a solution applies only to observations which are 
affected merely by accidental errors of observation.  If a particular observation deviates 
too widely from a smooth curve, it should be rejected before attempting to treat the data 
by least squares” (Birge 1929, p. 6). 

 
He recognizes here that although the least squares method is well-suited for handling random 
errors, it does not address the possibility of systematic errors that will skew the result in a 
particular direction.  Another problem with least squares, noted by subsequent researchers 
(Taylor et al. 1969, p. 379) and discussed by Grégis (2019a, p. 49), is that by discarding outliers, 
this method leads to an underestimation of uncertainty and an overconfidence in the convergence 
of results.   
 Later, in his 1957 article, Birge grapples with a further problem, now often referred to as 
the bandwagon effect (or intellectual phase locking), which he defines as follows: the “tendency 
of a series of experimental results, at a certain epoch, to group themselves around a certain 
value”— even when that value turns out not to be correct.  Convergence, or an agreement of 
measurement values, is often seen as a hallmark of their accuracy or truth.  But, of course, there 
can be other explanations for such a convergence, apart from the measurements correctly hitting 
upon the “true value.”  Birge recounts a conversation he had with his Berkeley colleague, the 
Nobel-prize winning experimental physicist Ernest Lawrence, who suggested an alternative 
explanation based on his own experience as an experimentalist: 

“In any highly precise experimental arrangement there are initially many instrumental 
difficulties that lead to numerical results far from the accepted value of the quantity being 
measured. . . . [T]he investigator searches for the source or sources of such errors, and 
continues to search until he gets a result close to the accepted value.  Then he stops! . . . 
In this way one can account for the close agreement of several different results and also 
for the possibility that all of them are in error by an unexpectedly large amount.” (Birge 
1957, p. 51) 

 
Interestingly, Kuhn draws attention to this same phenomenon in his “Function of Measurement” 
paper when he notes that measurements can be ‘self-fulfilling prophecies’ in the sense that they 
are adjusted to conform with an expected standard (Kuhn 1961 [1977], p. 196).  Birge offers as a 
partial solution to this problem the use of multiple different experimental approaches to 
measuring a quantity, which insofar as they involve very different experimental paths are less 
likely to suffer from the same systematic errors.  Given the common target quantity and much of 
the common (potentially erroneous) background knowledge, it is unlikely that all systematic 
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errors can be avoided in this way.  As we will see next, Birge’s own work on the adjustment of 
fundamental physical constants would also turn out to be plagued by the bandwagon effect. 
 The experimental work on the speed of light in the decades following Birge’s 1929 
recommended value turned out to be an illustration of the bandwagon effect in action, as Max 
Henrion and Barauch Fischhoff (1986) have argued.  In 1941 Birge published a reassessment of 
the value of the speed of light, prompted by new experimental determinations of c that some in 
the physics community took as evidence that the speed of light was not in fact a constant, but 
rather was either steadily decreasing or varying sinusoidally.12  Birge rejected this as nonsense—
to echo Kuhn, the theory of the constancy of the speed of light was, for Birge, never in doubt, 
rather the anomaly was to be located in the data, which had to be forced into conformity with the 
theory.  Birge then turned back to Michelson’s (1927) value to identify previously unrecognized 
systematic errors, such as Michelson’s mistaken use of the wave index of refraction instead of 
the correct group index of refraction in correcting from the measurement in air to the needed 
speed in a vacuum, applying the needed corrections to Michelson’s original data, and even 
exploring possible tectonic changes that might have affected the measured distances of the base 
line used in the experiment (Birge 1941, p. 93).  Birge similarly revises the Rosa and Dorsey 
(1907) value, removing a rounding error and substituting in an updated value for one of the 
quantities in the calculation, again illustrating the ongoing, iterative process of data correction 
(e.g., Bokulich 2020a; Bokulich and Parker 2021).  To these two determinations he adds six 
more recent experimental measures, concluding that these eight values for the speed of light are 
all that need to be taken into account in generating the most probable value for c.   

Unlike in his 1929 determination of the speed of light where he opted for arbitrage, 
selecting one best value, in this 1941 reassessment of the constants he adopts the compromise 
approach, weighting the different values according to the reciprocal of the square of the probable 
error to obtain the value 299,776 ±4 km/sec.  This value is considerably smaller than Birge’s 
1929 adopted value of 299,796 ±4 km/sec—and notably well outside the uncertainty bounds of 
the previous estimate.  To address the claim that the value of the speed of light might actually be 
changing, Birge calculates the weighted average of five measurements of the speed light carried 
out before the Rosa and Dorsey (1907) experiments.  Birge concludes that these  

“five older results [yielding by a weighted average 299,873 km/sec] . . . are entirely 
consistent among themselves, but their average is nearly 100 km/sec greater than that 
given by the eight more recent results.  The cause of the sudden change in the 
experimentally determined values of c, at the opening of the 20th century might be an 
interesting subject for investigation, but I would hesitate to believe this 100 km/sec 
change is real.” (Birge 1941, p. 100) 

 
The fact that the five older values for c agreed well with each other, and that the eight new values 
also agreed well with each other—but not with the five older values—suggests two possible 
hypotheses: First, this robust result across multiple experiments from these two different time 
periods could be interpreted as evidence that the speed of light was in fact physically changing 
over time—a possibility that, as we saw earlier, Birge rejected.  Second, this differential 
clustering of experimental values for the speed of light at two different time periods could 
alternatively be interpreted as a social phenomenon—the bandwagon effect.   

 
12 For a discussion and references see Birge 1941, p. 92; Birge 1957, p. 50; and Henrion & Fischhoff 1986, pp. 793-
794.   
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Figure 2: Birge’s 1941 table showing the clustering of the 5 earlier experimentally measured values 
for the speed of light around a significantly higher value than the 8 later measurements that cluster 
around a much lower value for c—a difference he interpreted as a sort of Bandwagon effect, rather 
than evidence that the constant was really changing. (Reprinted with permission of IOP Publishing.)   

 
 Focusing on the eight more recent determinations of the speed of light (listed in Fig. 2 
above), Birge writes, “[T]hese eight results, obtained by six different investigators, using four 
completely different experimental methods, agreed. . . . one would scarcely anticipate that the 
several final systematic errors should all be in the same direction and of roughly the same 
magnitude” (Birge 1957, p. 50).  But as Birge had realized by 1957, this is in fact just what had 
happened!  Although Birge had hoped in 1941 that “after a long and, at times, hectic history, the 
value of c [had] at last settled down” (1941, p. 101), the consensus value for c was about to jump 
again, up to around 299,792.4 km/s.  Henrion and Fischhoff (1986) provide the following helpful 
graph showing how estimates of the speed of light changed dramatically in this period of 1929 – 
1973 (Fig. 3) 

 
Figure 3: Recommended values for speed of light from 1929-1973, from Henrion and Fischhoff 
1986, p. 793). 
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 These remarkably large swings in the “consensus” recommended values of c within a 
space of just 30 years sent ripples throughout the physics community.  In his 1957 paper 
describing this surprising reversal, Birge remarks,  

“This may well be the last paper I will ever write on the subject of the general physical 
constants.  For that reason I should like to take the opportunity to consider briefly some 
aspects of the human side of the subject. . . . For if I have, to any degree, succeeded in 
calling attention to the numerous pitfalls that menace every research worker in science, 
and that lead so often to false results and conclusions, I consider that to be a far more 
valuable accomplishment than any specific scientific advance.” (Birge 1957, p. 39) 

 
It was in this growing mood of crisis and turn to philosophy by one of the most influential 
members of the physics department, that marked Kuhn’s first year at Berkeley.  It is no wonder 
that Kuhn decided to formulate the fifth law of thermodynamics as the centerpiece of his 
philosophy of measurement and data, just a few years later.   
 1957 also marked a symbolic passing of the baton from Birge to another Berkeley 
physics colleague, Kenneth Crowe, and two other California physicists, E. Richard Cohen and 
Jesse DuMond, who took up Birge’s adjustment project with the publication of their book The 
Fundamental Constants of Physics, which they dedicated to Birge that same year.  It should be 
emphasized that the speed of light was not the only fundamental constant whose experimentally 
determined values were misbehaving.13  Similar problems plagued the value for electron charge, 
e, in the wake of R. A. Millikan’s oil-drop experiments, which, as Cohen, Crowe, and DuMond 
discuss in this book, had a “systematic error [that] remained completely unsuspected for a period 
of about 15 years. . . . Because of the great importance of e and its close relationship to many 
other atomic constants this error had quite far-reaching effects” (p. 116).  There were similarly 
problems with Newton’s universal constant of gravitation, G—which was one of the 
fundamental constants whose determination Kuhn singles out in the Structure as being the object 
of repeated effort by experimentalists ever since the 1790s ([1962] 1996, p. 27).14  It was 
becoming increasingly clear that the project of updating and coordinating a consistent set of 
values for all the fundamental physical constants, with an ever-growing influx of new 
experimental data, was neither a project for just one individual, nor a project that was ever truly 
finished.  By the late 1960s, the Committee on Data for Science and Technology, known as 
CODATA, was formed to oversee the project for the entire physics community, and the 
readjustment of fundamental physical constants would eventually come to be regularized to 
every four years.   
 

 
13 In 1983 it was decided that c would no longer be empirically determined, but instead would become 
conventionally defined through the redefinition of the meter, tying both to the standard second, which is given in 
terms of a cesium atom transition (see Tal 2011for discussion of standard second and see Quinn 2011 for 
conventional stipulation of c through redefinition of meter).  That is why when you look up the value for c today it 
says 299,792,458 m/s “exact”—it is because the value became one that was conventionally stipulated, not because 
of any change in experimental methodology that eliminated all uncertainty—something that would violate Kuhn’s 
fifth law of thermodynamics!  As W. Rowley further clarifies, “in making the speed of light a fixed constant, we are 
not attempting to dictate the laws of nature, but merely changing the viewpoint.  We are not stating that the speed of 
light can never change; rather that, if it does, then the size of the metric length unit will change in sympathy so that 
the numerical value is preserved” (Rowley 1984, p. 284). 
14 We will return to briefly discuss ongoing efforts to determine the gravitational constant, G, in the following 
section.   
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4. Data, Anomalies, & the CODATA Philosophy of Metrology 
 The subsequent history of the process of adjusting the fundamental physical constants is 
an important one that is only now beginning to receive attention from philosophers of science 
(e.g., Smith 2010; Grégis 2019a).  Relevant for our project here are the number of striking points 
of similarity between the emerging philosophy of metrology espoused by the CODATA 
metrologists and Kuhn’s own philosophy of measurement.15  Cohen and DuMond articulate their 
philosophical approach to the adjustment of physical constants more clearly in a subsequent 
review paper, where they open with a discussion of the moving goal post of what Kuhn describes 
as “reasonable agreement,” and how the discovery of anomalies propels this process forward:  

“[T]he very process of improvement in accuracy and reliability (which the specialists in 
reviewing the constants themselves stimulate by calling attention to the discrepancies and 
troubles) whets the appetite for increasing precision, so that the discrepancies, which 
would have been of negligible magnitude a few years before, become of increasing 
importance.” (Cohen and DuMond 1965, p. 538) 

 
What counts as reasonable agreement is not fixed once and for all, but rather evolves with the 
increasing standards of precision as the program to measure a fundamental constant unfolds.  To 
put it in Kuhnian terms, it is only by knowing in detail what to expect the measurement values to 
be, that scientists can recognize a quantitative anomaly in the numbers not turning out as 
expected.  This leads to corrections in either the measurement process, data, or background 
theory, which in turn yields more precise expectations.  As we saw with the case of the value of 
the speed of light, this is often not a linear process of convergence, but it is one where, gradually 
over time, the expectation of number of decimal places to which results should agree increases.   

Within this CODATA community, the search for anomalies, or what they call 
discrepancies, is one of the most important parts of the readjustment process—perhaps even 
more important than the new value of the constant itself.  Cohen and DuMond write, “it should 
be clear that the prime object of these re-evaluations of the constants must always be to look for 
discrepancies and to resolve them by finding errors in either theory or experiment which account 
for them” (1965, p. 540).  One implication of this approach, is the recommendation not to expand 
the uncertainty estimates attached to values of the fundamental constants in the hope that the 
“true value” will be contained within that expanded uncertainty, as the “safety” approach would 
recommend.  Grégis (2019a) has described this as the dilemma of safety versus precision in the 
philosophy of measurement, noting that for the CODATA scientists, precision was to be favored 
over safety, because of its ability to more readily reveal anomalies.  Although the values of the 
constants are less likely to be revised outside of the previous uncertainty bounds on the “safety” 
approach, doing so makes the measurements a less sensitive instrument for detecting anomalies.  
Since it is the disagreement and discrepancies that drive science and lead to new discoveries, the 
narrower uncertainty estimations of the “precision” approach are to be preferred.   

The dismissal of “safety” by the CODATA group working on the revisions of 
fundamental physical constants also relates to another point of overlap with Kuhn’s philosophy, 

 
15 Due to the lack of citations between Kuhn on the one hand and his colleagues Birge, Crowe, Cohen, and DuMond 
on the other hand, we make no strong pronouncements about arrows of causation, noting only points of similarity 
and possible synergy.  Our primary interest is in the continuing value of these two threads of ideas for understanding 
philosophy of measurement and data today.   
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namely a fundamental skepticism about scientists’ ability to ever come to know the true value of 
a fundamental constant.  Cohen and DuMond express this antirealism when they write, 

“No one can guarantee that an evaluation of the fundamental constants at a given epoch 
yields the ‘true’ values.  Absolute truth, if these words have any meaning, is beyond the 
realm of physics.  All we can do at each time of re-evaluation is to try to determine a set 
of values which, in the sense of least squares, and in the light of accepted theory at that 
time, does least violence to a chosen budget of observational data then believed to be the 
‘best’.” (Cohen and DuMond 1965, p. 540) 

 
Like Kuhn, these physicists take absolute truth to be unattainable, and so outside of scientific 
practice, instead adopting a more pragmatic or instrumentalist view.  The antirealism of the 
CODATA metrologists seems to be shaped by the same general considerations that influenced 
Kuhn: first, a kind of skeptical induction arising from the surprising twists and turns of the 
history of readjustments, and second, a kind of two-world metaphysics, where true values are 
something forever beyond our reach.16   
 A third point of similarity between Kuhn and these metrologists involved in the 
readjustment of fundamental physical constants is an emphasis on the values of consistency and 
coherence as key arbiters in a conflict between different experimental results, coupled with a 
commitment to scientific holism.  Cohen and DuMond write, 

“[F]ew physicists or chemists fully realize in what a complicated, intricate way the 
fundamental constants, together with the measurements from which they are derived, are 
interconnected and interrelated.  Everything depends upon everything else . . . and one 
flaw in the picture propagates its defect, to a greater or lesser extent, throughout all the 
numerical values of the fundamental constants and conversion factors we seek.” (1965, p. 
538) 

 
This is reminiscent of Kuhn’s idea of the knowledge within a paradigm forming a strongly 
interconnected web that if modified has to be all together “shifted and laid down again on nature 
whole” (Kuhn [1962] 1996, p. 149).  The fact that the fundamental constants of physics are 
interconnected, exhibiting this holism, also means that they must be evaluated together, and since 
there is no external arbiter, they must be assessed by the values of consistency and coherence: 

“[T]he greatest merit in a re-evaluation of the constants resides not in the numerical 
output values . . . but in the fact that the reevaluation constitutes a new test of the validity 
of all our theoretical preconceptions and their experimental verification over the widest 
possible domain.  The only test of such validity we have is the consistency of the data, 
and this is indeed all we ask for.” (Cohen and DuMond 1965, p. 540) 

 
This emphasis on holism and the search for quantitative anomalies has come to be a central part 
of CODATA’s philosophy of metrology, as we also see in the writings of Barry Taylor, a 
metrologist who joined the U.S. National Bureau of Standards (now NIST) in 1970 and who is 
still involved in the most recent readjustment (Tiesinga et al. 2021).  To emphasize the fallible 
and ever-iterative project of determining the values for fundamental constants, Taylor 
recommends that all reported values be accompanied by a warning label: 

 
16 For an introduction to these arguments for antirealism and some realist responses, see for example McMullin 
(1984). 
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“[I]n order to bring home to the average worker that a set of recommended constants is 
not inviolate and handed down on stone tablets, every table of constants, whether original 
or reprinted, should probably start off with some type of warning label (preferably in 
large bright red letters) such as:  

Warning! 
Because of the intimate relationships which exist among least-squares adjusted values of 
the fundamental constants, a significant shift in the numerical value of one will generally 
cause significant shifts in others.” (Taylor 1971, p. 497) 

 
Like for Kuhn, there is a delicate balance to be struck by the scientific community between, on 
the one hand, typically suppressing anomalies by excluding outliers from the least-squares 
adjustment, and on the other hand, periodically allowing these anomalies to trigger an adjustment 
that, because of this tightly interconnected web, can end up having far-reaching consequences, 
even for other accepted values that had been thought secure.   
 The periodic adjustment of fundamental physical constants is still an ongoing project 
today, and since 1998 has been institutionalized by CODATA to be undertaken every four 
years.17  Figure 4 shows the results of the most recent (2018) adjustment for twenty-seven 
fundamental physical constants in relation to the previous 2014 values.   
 

 
Figure 4: Comparison of the new 2018 values for 27 fundamental physical constants (listed on y-
axis) with the previously recommended 2014 values for those constants.  The vertical solid red line 
and yellow band represent the 2014 values and their standard uncertainties.  The black circles with 

 
17 The next adjustment slated for 2022 has not been released yet, and typically lags by a year or so from the official 
date.  More information about the CODATA Task Group on Fundamental Physical Constants and the periodic 
readjustments can be found here: https://codata.org/initiatives/data-science-and-stewardship/fundamental-physical-
constants/ 
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error bars show the difference between the 2018 and 2014 values divided by standard uncertainty 
of 2014 value (From Tiesinga et al. 2021, p. 55). 

 
Particularly noteworthy is how many constants have updated values that fall outside of the 
uncertainty bounds of their previously recommended values.  The constants without error bars 
that are listed as “exact” are ones that are no longer empirically determined values, but rather are 
conventionally defined values due to revisions in the International System of units (SI).   
 Let us return to the fundamental physical constant that was the primary focus Kuhn’s 
discussion of constants in the Structure—the gravitational constant, G—and assess the status of 
current efforts to determine its value.  As Kuhn notes, G does not appear in Newton’s Principia, 
and it was only introduced later when his universal law of gravitation was formulated as the 
following equation: 

𝐹 = 𝐺
𝑚!𝑚"

𝑟"  
 
The gravitational constant, or “big G” as it is sometimes called, has been the subject of the 
longest program of experimental investigation of any of the fundamental constants, but at the 
same time has also had the most problematic history in terms of resisting a reduction in the 
uncertainty of its value.  Kuhn cites a classic review article by J.H. Poynting that “reviews some 
two dozen measurements of the gravitational constant between 1741 and 1901” (Kuhn [1962] 
1996, p. 28).  A more recent review of experimental determinations of G that also begins with 
Poynting’s review, but brings it up to the present, is that of Christian Rothleitner and Stephan 
Schlamminger (2017).  They provide the following figure (Fig. 5) summarizing recent measures 
of G from 1982 through 2014: 

 
Figure 5: Measurement of the gravitational constant, G, from 1982 through 2014, involving seven 
different experimental methods, with the 2014 CODATA recommended value given by the vertical 
black line. (From Rothleitner and Schlamminger 2017, p. 22; with permission from AIP Publishing).  

 
One of the continuing problems with the gravitational constant (G) is that there is a large spread 
in the data arising from different experimental methods, far more than the uncertainties identified 
in any individual measurement.  As Rothleitner and Schlamminger note, there are three possible 
explanations for the inconsistent data: 
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“1. Some or all of the experiments suffer from an unknown bias . . . [or] systematic effect 
that shifts the measured result from the true value by a predictable amount. . . .  
2. Some or all of the experiments underestimate the relative uncertainty of the 
measurement.  Hypothetically, all of the reported values of the measurements may be 
correct, but the uncertainties reported may be too small.  If the true uncertainty were five 
times larger, the data set would be perfectly consistent. . . .  
3. The most exciting, yet least probable explanation is that new unknown forms of 
physics can explain the variation in the data.” (2017, p. 22) 

 
The experimental measurements of G are thus a very dramatic illustration of Kuhn’s fifth law of 
thermodynamics that no experiment yields quite the expected value.  Even more troubling is that 
the different experimental determinations of G are not in “reasonable agreement”—their scatter 
is far outside of the uncertainty bounds attached to each experiment.  As in Kuhn’s day, the value 
of the gravitational constant remains a puzzle, and it is not yet known whether this quantitative 
anomaly will someday be resolved within the current physical paradigm, or will turn out to 
someday require fundamentally new physics, hence precipitating a scientific revolution.  
 
 
5. Conclusion: Kuhn’s Account of Progress in Measurement 
 The history of experiments to determine the values of the fundamental constants offers a 
striking illustration of Kuhn’s fifth law of thermodynamics, with no experiment giving quite the 
expected result.  Instead, determining the values of the constants involves a long process of data 
wrangling and remeasurement in an effort to iteratively improve their reasonable agreement with 
both theory and other experimental data.  Kuhn knew well that there was a long history of 
troubling anomalies for even the most central of constants, such as the speed of light (c) and the 
gravitational constant (G).  While Kuhn was working out his views on the “fifth law” and the 
philosophy of measurement at Berkeley in the years leading up to the Structure, the 
experimentalists in the Physics Department were simultaneously struggling with the realization 
that social phenomena, such as the bandwagon effect or “intellectual phase locking”, could 
influence experimental data.  As we saw, this was coupled with an emerging philosophy of 
metrology that viewed any talk of “true values” as beyond the realm of physics.  Instead, the 
adequacy of an interdependent web of fundamental constants was to be determined by the values 
of consistency and coherence.  There was thus a remarkable synchronicity—if not synergy—
between these two intellectual developments concerning the history and philosophy of physics at 
Berkeley in the late 1950s and early 1960s.   
 In his later reflections, Kuhn remarked on what a central role this paper on the philosophy 
of measurement had for his thinking in the Structure: “Earlier at Berkeley I was asked to do a 
command performance . . . on ‘the role of measurement in xyz.’ . . . The paper that ultimately 
emerges is The Function of Measurement in Physical Science, and that really was extremely 
important . . . that’s where the notion of normal science enters my thinking” (Kuhn 2000, p. 
295).  Despite the central role of this work in Kuhn’s own thinking, his views about the 
philosophy of measurement and philosophy of data have been largely eclipsed by the theory-
centric focus of the Structure.  This is unfortunate because it obscures a key notion of scientific 
progress that Kuhn identifies in this 1961 work—one that goes beyond the instrumentalist 
increase in puzzle-solving ability identified in the Postscript to the Structure (p. 206).  In this 
pre-Structure paper he writes,  
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“I know of no case in the development of science which exhibits a loss of quantitative 
accuracy as a consequence of the transition from an earlier to a later theory. . . . Probably 
for the same reasons that make them particularly effective in creating scientific crises, the 
comparison of numerical predictions, where they have been available, has proved 
particularly successful in bringing scientific controversies to a close.” (Kuhn [1961] 
1997, p. 213; italics removed)   

 
This emphasis on quantitative accuracy, or perhaps more accurately quantitative resolution 
(understood as an ever-increasing number of decimals places required for reasonable agreement) 
is a remarkably robust and paradigm-neutral form of progress for Kuhn to have identified.  And 
it is moreover a type of progress that has traditionally been neglected, along with a broader 
neglect of measurement and data in the philosophy of science until relatively recently.  More 
generally, we hope that by situating Kuhn’s views in the Structure within both the broader 
philosophical context of his contemporaneous views on measurement and data, and the broader 
historical context of work being done by Kuhn’s colleagues at Berkeley to determine the values 
of fundamental physical constants, we can gain a deeper appreciation of the extent to which 
Kuhn’s philosophy remains relevant for the philosophy of metrology and philosophy of data 
today.   
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