Penultimate Draft

"Models and Explanation"
Published in L. Magnani and T. Bertolotti (eds.)
Handbook of Model-based Science (Springer, 2017): 103-118.
Alisa Bokulich
Philosophy Department

Boston University

abokulic@bu.edu
Summary
Detailed examinations of scientific practice have revealed that the use of idealized
models in the sciences is pervasive. These models play a central role in not only the
investigation and prediction of phenomena, but in their received scientific explanations as
well. This has led philosophers of science to begin revising the traditional philosophical
accounts of scientific explanation in order to make sense of this practice. These new
model-based accounts of scientific explanation, however, raise a number of key
questions: Can the fictions and falsehoods inherent in the modeling practice do real
explanatory work? Do some highly abstract and mathematical models exhibit a non-
causal form of scientific explanation? How can one distinguish an exploratory "how-
possibly" model explanation from a genuine "how-actually" model explanation? Do
modelers face tradeoffs such that a model that is optimized for yielding explanatory

insight, for example, might fail to be the most predictively accurate, and vice versa? This

chapter explores the various answers that have been given to these questions.



4.1 Overview

Explanation is one of the central aims of science, and the attempt to understand
the nature of scientific explanation is at the heart of the philosophy of science. An
explanation can be analyzed as consisting of two parts, a phenomenon or event to be
explained, known as the explanandum, and that which does the job of explaining, the
explanans. On the traditional approach, to explain a phenomenon is either to deduce the
explanandum phenomenon from the relevant laws of nature and initial conditions, such as
on the deductive-nomological (DN) account (Hempel 1965 [1]), or to trace the detailed
causal chain leading up to that event, such as on the causal-mechanical account (Salmon
1984 [2]). Underlying this traditional approach are the assumptions that, in order to
genuinely explain, the explanans must be entirely true, and that the more complete and
detailed the explanans is, the better the scientific explanation.

As philosophers of science have turned to more careful examinations of actual
scientific practice, however, there have been three key observations that have challenged
this traditional approach: first, many of the phenomena scientists seek to explain are
incredibly complex; second, the laws of nature supposedly needed for explanation are
either few and far between or entirely absent in many of the sciences; and third, a detailed
causal description of the chain of events and interactions leading up to a phenomenon are
often either beyond our grasp or not in fact what is most important for a scientific

understanding of the phenomenon.



More generally, there has been a growing recognition that much of science is a
model-based activity." Models are by definition incomplete and idealized descriptions of
the systems they describe. This practice raises all sorts of epistemological questions,
such as, how can it be that false models lead to true insights? And most relevant to our
discussion here, how might the extensive use of models in science lead us to revise our

philosophical account of scientific explanation?

4.2 The Explanatory Function of Models: How Model-Based Explanations Work
Model-based explanations (or model explanations, for short) are explanations in
which the explanans appeals to certain properties or behaviors observed in an idealized
model or computer simulation as part of an explanation for why the (typically real-world)
explanandum phenomenon exhibits the features that it does. For example, one might
explain why sparrows of a certain species vary in their feather coloration from pale to
dark by appealing to a particular game theory model: although coloration is unrelated to
fitness, such a polymorphism can be a badge of status that allows the sparrows to avoid
unnecessary conflicts over resources; dark birds are dominant and displace the pale birds
from food sources. The model demonstrates that such a strategy is stable and successful,
and hence can be used as part of the explanation for why we find this polymorphism
among sparrows (Maynard Smith 1982 [4]; see Potochnik (manuscript [5]) for further

discussion).

! For an overview of many different types of models in science, and some of the
philosophical issues regarding the nature and use of such models, see Frigg and
Hartmann (2012 [3]).



There are of course many perils in assuming that just because we see a
phenomenon or pattern exhibited in a model that it therefore explains why we see it in the
real world: the same pattern or phenomenon could be produced in multiple, very different
ways, and hence it might be only a phenomenological model at best, useful for
prediction, but not a genuine explanation. Explanation and the concomitant notion of
understanding are what we call success terms: if the purported explanation is not in fact
right (right in some sense that will need to be spelled out) and the understanding is only
illusory, then it is not in fact a genuine explanation. Determining what the success
conditions are for a genuine explanation is the central philosophical problem in scientific
explanation.

Those who have defended the explanatory power of models have typically argued
that further conditions must be met in order for a model's exhibiting of a salient pattern or
phenomenon to count as part of a genuine explanation of its real-world counterpart. Not
all models are explanatory, and an adequate account of model explanation must provide
grounds for making such discriminations. As we will see, however, different approaches
have filled in these further requirements in different ways.

One of the earliest defenses of the view that models can explain is Ernan
McMullin's (1978 [6]) "hypothetico-structural" account of model explanations. In a
hypothetico-structural (HS) explanation, one explains a complex phenomenon by
postulating an underlying structural model whose features are causally responsible for the
phenomenon to be explained. McMullin notes that such models are often tentative or
metaphorical, but that a good model explanation will lay out a research program for the

further refinement of the model. On his account, the justification of the model as



genuinely explanatory involves a process known as de-idealization, where features that
were left out are added back in or a more realistic representation of those processes is
given. More specifically he requires that one be able to give a theoretical justification for
this de-idealization process, so that it is not merely an ad hoc fitting of the model to the
data. He writes,

[If] techniques for which no theoretical justification can be given have to be

utilized to correct a formal idealization, this is taken to count against the

explanatory propriety of that idealization. The model itself in such a case is
suspect, no matter how good the predictive results it may produce. (McMullin

1985 [7], p. 261)

He further notes that a theoretical justification for the de-idealization process will only
succeed if the original model has successfully captured the real structure of the
phenomenon of interest.

As an example, McMullin (1984 [8]) describes the fertility of the continental drift
model in explaining why the continents seem to fit together like pieces of a puzzle and
why similar fossils are found at distant locations. The continental drift model involved
all sorts of idealizations and gaps: most notably, the chief proponent of this approach,
Alfred Wegener, could offer no account of the forces or mechanisms by which the
massive continents could move. We now know that the continental drift model is strictly
speaking false, and has been supplanted by plate tectonics. But as McMullin notes, the
continental drift model nonetheless captures key features of the real structure of the
phenomenon of interest, and hence succeeds in giving genuine explanatory insight.

While McMullin's account of HS model explanations fits many cases, there are

other examples of model explanations in the sciences that do not seem to fit his account.

First, there seem to be examples of model explanations where the idealizations are



ineliminable, and hence they cannot be justified through anything like the de-idealization
analysis that McMullin describes (Batterman 2005a [9]). Second, not all models are
related to their target phenomena via an idealization: some models represent through a
fictionalization (Bokulich 2009 [10]). Third, insofar as McMullin's HS model
explanations are a subspecies of causal explanations, they do not account for non-causal
model explanations. These sort of cases will be discussed more fully in subsequent
sections.

Another early account of the explanatory power of models is Nancy Cartwright's
(1983 [11]) "simulacrum" account of explanation, which she introduces as an alternative
to the deductive-nomological (DN) account of explanation and elaborates in her book
How the Laws of Physics Lie. Drawing on Pierre Duhem's (1914/1954 [12]) theory of
explanation, she argues,

To explain a phenomenon is to find a model that fits it into the basic framework

of the theory and that thus allows us to derive analogues for the messy and

complicated phenomenological laws which are true of it. (Cartwright 1983 [11],

p. 152).
According to Cartwright, the laws of physics do not describe our real messy world, only
the idealized world we construct in our models. She gives the example of the harmonic
oscillator model, which is used in quantum mechanics to describe a wide variety of
systems. One describes a real-world helium-neon laser as if it were a van der Pol
oscillator; this is how the phenomenon becomes tractable and we are able to make use of
the mathematical framework of our theory. The laws of quantum mechanics are true in
this model, but this model is just a simulacrum of the real world phenomenon. By

'model’, Cartwright means "a specially prepared, usually fictional description of the



system under study" (Cartwright 1983 [11], p. 158). She notes that while some of the
properties ascribed to the objects in the models are idealizations, there are other
properties that are pure fictions, hence one should not think of models in terms of
idealizations alone.

Although Cartwright's simulacrum account is highly suggestive, it leaves
unanswered many key questions, such as when a model should or should not be counted
as explanatory. Mehmet Elgin and Elliott Sober (2002 [13]) offer a possible emendation
to Cartwright's account that they argue discriminates which sorts of idealized causal
models can explain. The key, according their approach, is to determine whether or not
the idealizations in the model are what they call "harmless." A harmless idealization is
one that if corrected "wouldn't make much difference in the predicted value of the effect
variable" (Elgin and Sober 2002 [13], p. 448). They illustrate this approach using the
example of optimality models in evolutionary biology. Optimality models are models
that determine what value of a trait maximizes fitness (is optimal) for an organism given
certain constraints (e.g., the optimal length of a bear's fur, given the benefits of longer fur
and the costs of growing it, or the optimal height at which crows should drop walnuts in
order to crack open the shells, given the costs of flying higher, etc.). If organisms are
indeed fitter the closer a trait is to the optimal value, and if natural selection is the only
force operating, then the optimal value for that trait will evolve in the population. Thus
optimality models are used to explain why organisms have trait values at or near the
optimal value (e.g., why crows drop walnuts from an average of 3 meters high (Cristol

and Switzer 1999 [14])).



As Elgin and Sober note, optimality models contain all sorts of idealizations:
"they describe evolutionary trajectories of populations that are infinitely large in which
reproduction is asexual with offspring always resembling their parents, etc." (Elgin and
Sober 2002 [13], p. 447). Nonetheless they argue that these models are genuinely
explanatory when it can be shown that the value described in the explanandum is close to
the value predicted by the idealized model; when this happens we can conclude that the
idealizations in the model are harmless (p. 448). Apart from this concession about
"harmless" idealizations, Elgin and Sober's account of explanation remains close to the
traditional DN account in that they further require (i) the explanans must cite the cause of
the explanandum; (ii) the explanans must cite a law; (iii) all of the explanans propositions
must be true (p. 446), though their condition (ii1) might better be stated as all the
explanans propositions are either true or harmlessly false.

As a general account of model explanations, however, one might argue that the
approaches of Cartwright, Elgin and Sober are too restrictive. As noted before, this
approach still depends on there being laws of nature from which the phenomenon is to be
derived, and such laws just might not be available. Moreover, it is not clear that
explanatory models will contain only harmless idealizations. There may very well be
cases in which the idealizations make a difference (are not harmless) and yet are essential
to the explanation (see, for example, Batterman 2009 [15] and Kennedy 2012 [16]) .

While the simulacrum approach of Cartwright, especially as further developed by
Elgin and Sober, largely draws its inspiration from the traditional DN approach to
explanation, there are other approaches to model explanation that are tied more closely to

the traditional causal-mechanical approach to explanation. Carl Craver (2006 [17]), for



example, has argued that models are explanatory when they describe mechanisms. He
writes "...the distinction between explanatory and non-explanatory models is that the
[former], and not the [latter] describe mechanisms" (p. 367). The central notion of
mechanism, here, can be understood as consisting of the various components or parts of
the phenomenon of interest, the activities of those components, and how they are
organized in relation to each other.

Craver imposes rather strict conditions on when such mechanistic models can be
counted as explanatory; he writes, "to characterize the phenomenon correctly and
completely is the first restrictive step in turning a model into an acceptable mechanistic
explanation” (p.369).> Craver analyzes the example of the Hodgkin-Huxley
mathematical model of the action potential in an axon (nerve fiber). Despite the fact that
this model allowed Hodgkin and Huxley to derive many electrical features of neurons,
and the fact that it was based on a number of fundamental laws of physics and chemistry,
Craver argues that it was not in fact an explanatory model. He describes it instead as
merely a phenomenological model because it failed to accurately describe the details of
the underlying mechanism.

A similar mechanistic approach to model explanation has been developed by
David Michael Kaplan (2011 [19]), who introduces what he calls the mechanism-model-
mapping (or 3M) constraint. He defines the 3M constraint as follows:

A model of a target phenomenon explains that phenomenon to the extent that (a)

the variables in the model correspond to identifiable components, activities, and
organizational features of the target mechanism that produces, maintains, or

* Some have argued that if one has a complete and accurate description of the system or
phenomenon of interest, then it is not clear that one has a model at all, since models are
by definition incomplete and, in some respects at least, inaccurate descriptions of the
systems they describe (Bokulich 2011 [18]).



underlies the phenomenon, and (b) the (perhaps mathematical) variables in the

model correspond to causal relations among the components of the target

mechanism. (Kaplan 2011 [19], p. 347)

Kaplan takes this 3M constraint to provide a demarcation line between explanatory and
non-explanatory models. He further notes that "3M aligns with the highly plausible
assumption that the more accurate and detailed the model is for a target system or
phenomenon the better it explains that phenomenon" (p. 347). Models that do not
comply with 3M are rejected as non-explanatory, being at best phenomenological
models, useful for prediction, but giving no explanatory insight. In requiring that
explanatory models describe the "real components and activities in the mechanism that
are in fact responsible for producing the phenomenon" (Craver 2006 [17], p. 361; Kaplan
2011 [19], p. 353) Craver and Kaplan rule out the possibility that fictional, metaphorical,
or strongly idealized models can be explanatory.

One of the most comprehensive defenses of the explanatory power of models is
given by Alisa Bokulich (2008a [20], 2008b [21]; 2011 [18]; 2012 [22]), who argues that
model explanations such as the three discussed previously (McMullin, Cartwright-Elgin-
Sober, and Craver-Kaplan), can be seen as special cases of a more general account of the
explanatory power of models. Bokulich's approach draws on James Woodward's
counterfactual account of explanation, in which "the explanation must enable us to see
what sort of difference it would have made for the explanandum if the factors cited in the
explanans had been different in various possible ways" (Woodward 2003 [23], p.11).
She argues that model explanations typically share the following three features: First, the
explanans makes essential reference to a scientific model, which, as is the case with all

models, will be an idealized, abstracted, or fictionalized representation of the target
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system. Second, the model explains the explanandum by showing how the elements of
the model correctly capture the patterns of counterfactual dependence in the target
system, enabling one to answer a wide-range of what Woodward calls "what-if-things-
had-been-different" questions. Finally, there must be what Bokulich calls a "justificatory
step", specifying the domain of applicability of the model and showing where and to what
extent the model can be trusted as an adequate representation of the target for the
purpose(s) in question (Bokulich 2011 [18], p. 39; see also Bokulich 2012 [22], p. 730).
She notes that this justificatory step can proceed bottom-up through something like a de-
idealization analysis (as McMullin, Elgin and Sober describe), top-down through an
overarching theory (such as in the semiclassical mechanics examples Bokulich (2008a
[20], 2008b [21]) discusses), or through some combination.

Arguably one of the advantages of Bokulich's approach is that it is not tied to one
particular conception of scientific explanation, such as the DN or mechanistic accounts.
By relaxing Woodward's manipulationist construal of the counterfactual condition,
Bokulich's approach can even be extended to highly abstract, structural, or mathematical
model explanations. She argues that the various "subspecies" of model explanation can
be distinguished by noting what she calls the "origin" or ground of the counterfactual
dependence. She explains, it could be either

the elements represented in the model causally producing the explanandum (in

the case of causal model explanations), the elements of the model being the

mechanistic parts which make up the explanandum-system whole (in the case of
mechanistic model explanations), or the explanandum being a consequence of the
laws cited in the model (in the case of covering law model explanations).

(Bokulich 2011 [18], p. 40).

She goes on to identify a fourth type of model explanation, which she calls structural

model explanation, in which the counterfactual dependence is grounded in the typically
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mathematical structure of the theory, which limits the sorts of objects, properties, states,
or behaviors that are admissible within the framework of that theory (Bokulich 2011 [18],
p. 40). Bokulich’s approach can be thought of as one way to flesh out Margaret
Morrison’s suggestive, but unelaborated, remark that “the reason models are explanatory
is that in representing these systems, they exhibit certain kinds of structural
dependencies” (Morrison 1999 [24], p. 63).

More recently Collin Rice (forthcoming [25]) has drawn on Bokulich's account to
develop a similar approach to the explanatory power of models that likewise uses
Woodward's counterfactual approach without the manipulation condition. He writes,

The requirement that these counterfactuals must enable one to, in principle,

intervene in the system restricts Woodward’s account to specifically causal

explanations. However, I think it is a mistake to require that all scientific
explanations must be causal. Indeed, if one looks at many of the explanations

offered by scientific modelers, causes are not mentioned. (Rice forthcoming [25],

p. 20)°
Rice rightly notes that the question of causation is conceptually distinct from the question
of what explains. He further requires on this approach that model explanations provide
two kinds of counterfactual information, namely both what the phenomenon depends on
and what sorts of changes are irrelevant to that phenomenon. Following Robert

Batterman (2002 [26], 2005a [9], 2009 [15]), he notes that for explanations of phenomena

that exhibit a kind of universality, an important part of the explanation is understanding

3 Compare this to Bokulich's statement "I think it is a mistake to construe all scientific
explanation as a species of causal explanation, and more to the point here, it is certainly
not the case that all model explanations should be understood as causal explanations.
Thus while I shall adopt Woodward's account of explanation as the exhibiting of a pattern
of counterfactual dependence, I will not construe this dependence narrowly in terms of
the possible causal manipulations of the system" (Bokulich 2011 [18], p. 39).
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that the particular causal details or processes are irrelevant--the same phenomenon would
have been reproduced even if the causal details had been different in certain ways.

As an illustration, Rice discusses the case of optimality modeling in biology. He
notes that optimality models are not only highly idealized, but also can be understood as a
type of equilibrium explanation, where "most of the explanatory work in these models is
done by synchronic mathematical representations of structural features of the system"
(Rice forthcoming [25], p. 8). He connects this to the counterfactual account of model
explanation as follows:

Optimality models primarily focus on noncausal counterfactual relations between

structural features and the system’s equilibrium point. Moreover, these features

can sometimes explain the target phenomenon without requiring any additional
causal claims about the relationships represented in the model." (Rice

forthcoming [25], p. 17)

These causal details are irrelevant because the structural features cited in the model are
multiply realizable, indeed this is what allows optimality models to be used in explaining
a wide variety of features across a diversity of biological systems.

In the approaches to model explanations discussed here, two controversial issues
have arisen that merit closer scrutiny: First, whether the fictions or falsehoods in models
can themselves do real explanatory work (that is, even when they are neither "harmless",
"de-idealizable", nor eliminable), and second, whether many model explanations

illustrate an important, but often overlooked, non-causal form of explanation. These

issues will be taken up in turn in the next two sections.
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4.3 Explanatory Fictions: Can Falsehoods Explain?

Models contain all sorts of falsehoods, from omissions, abstractions, and
idealizations to outright fictions. One of the most controversial issues in model
explanations is whether these falsehoods, which are inherent in the modeling practice, are
compatible with the explanatory aims of science. Julian Reiss in the context of
explanatory models in economics has called this tension the "explanation paradox": he
writes,

[T]hree mutually inconsistent hypotheses concerning models and explanation are

widely held: (1) economic models are false; (2) economic models are nevertheless

explanatory; and (3) only true accounts explain. Commentators have typically
resolved the paradox by rejecting either one of these hypotheses. I will argue that
none of the proposed resolutions work and conclude that therefore the paradox is

genuine and likely to stay. (Reiss 2012 [27], p. 43)"

The field has largely split into two camps on this issue: those who think it is only the true
parts of models that do explanatory work, and those who think the falsehoods play an
essential role in the model explanation. Those in the former camp rely on things like “de-
idealization” and “harmless” analyses to show that the falsehoods do not get in the way
of the true parts of the model that do the real explanatory work. Those in the latter camp
have the challenging task of showing that some idealizations are essential and some
fictions yield true insights.

The "received view" is that the false parts of models only concern those things

that are explanatorily irrelevant. Defenders of the received view include Michael

* This paradox, and some criticisms to Reiss's approach (such as Miki 2013 [28]) are
explored in a special issue of the journal Journal of Economic Methodology (volume 20,
issue 3).
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Strevens, who in his book detailing his kairetic’ account of scientific explanation, writes,
“No causal account of explanation--certainly not the kairetic account--allows
nonveridical models to explain" (Strevens 2008 [29], p. 297). He spells out more
carefully how such a view is to be reconciled with the widespread use of idealized
models to explain phenomena in nature, by drawing the following distinction:

The content of an idealized model, then, can be divided into two parts. The first

part contains the difference-makers for the explanatory target. . . . The second part

is all idealization; its overt claims are false but its role is to point to parts of the
actual world that do not make a difference to the explanatory target. (Strevens

2008 [29], p. 318)

In other words, it is only the true parts of the model that do any explanatory work. The
false parts are harmless, and hence should be able to be de-idealized away without
affecting the explanation.

On the other side, a number of scholars have argued for the counterintuitive
conclusion that sometimes it is in part because of their falsehoods--not despite them--that
models explain. Robert Batterman (2002 [26], 2005a [9], 2009 [15]), for example, has
argued that some idealizations are explanatorily ineliminable, that is, the idealizations or
falsehoods themselves do real explanatory work. Batterman considers continuum model
explanations of phenomena such shocks (e.g., compressions traveling through a gas in a
tube) and breaking drops (e.g., the shape of water as it drips from a faucet). In order to
explain such phenomena, scientists make the idealization that the gas or fluid is a

continuum (rather than describing it veridically as a collection of discrete gas or water

molecules). These false continuum assumptions are essential for obtaining the desired

> Strevens takes the term kairetic from the ancient Greek word kairos, meaning crucial
moment (Strevens 2008 [28], p. 477).
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explanation. In the breaking drops case, it turns out that different fluids of different
viscosities dripping from faucets of different widths will all exhibit the same shape upon
breakup. The explanation depends on a singularity that exists only in the (false)
continuum model; such an explanation does not exist on the de-idealized molecular
dynamics approach (Batterman 2009 [15], pp. 442-443). Hence, he concludes,
"continuum idealizations are explanatorily ineliminable and . . . a full understanding of
certain physical phenomena cannot be obtained through completely detailed, non-
idealized representations" (Batterman 2009 [15], 427). If such analyses are right, then
they show that not all idealizations can be de-idealized, and moreover, those falsehoods
can play an essential role in the explanation.

Alisa Bokulich (2008a [20], 2008b [21]; 2009 [10]; 2012 [22]) has similarly
defended the view that it is not just the true parts of models that can do explanatory work,
arguing that in some cases even fictions can be explanatory. She writes, "some fictions
can give us genuine insight into the way the world is, and hence be genuinely explanatory
and yield real understanding" (Bokulich 2009 [10], p. 94). She argues that some fictions
are able to do this by capturing in their fictional representation real patterns of structural
dependencies in the world. As an example, she discusses semiclassical models whereby
fictional electron orbits are used to explain peculiar features of quantum spectra.
Although, according to quantum mechanics, electrons do not follow definite trajectories
or orbits (i.e., such orbits are fictions), physicists recognized that puzzling peaks in the
recurrence spectrum of atoms in strong magnetic fields have a one-to-one correspondence
with particular closed classical orbits:

The resonances . . . form a series of strikingly simple and regular organization, not
previously anticipated or predicted. . . . The regular type resonances can be
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physically rationalized and explained by classical periodic orbits of the electron

on closed trajectories starting at and returning to the proton as origin. (Main et al.

1986 [30], pp. 2789-2790, quoted in Bokulich 2009 [10], p. 99)

As she explains, at no point are these physicists challenging the status of quantum
mechanics as the true, fundamental ontological theory; rather, they are deploying the
fiction with the express recognition that it is indeed a literally false representation.’
Nonetheless it is a representation that is able to yield true physical insight and
understanding by carefully capturing in its fictional representation the appropriate
patterns of counterfactual dependence of the target phenomenon.

Bokulich (2008a [20], 2008b [21]; 2009 [10]; 2012 [22]) offers several such
examples of explanatory fictional models from semiclassical mechanics, where the
received explanation of quantum phenomena appeals to classical structures, such as the
Lyapunov (stability) exponents of classical trajectories, that have no clear quantum
counterpart. Moreover, she notes that these semiclassical models with their fictional
assumption of classical trajectories are valued not primarily as calculation tools (often
they require calculations that are just as complicated), but rather are valued as models
that provide an unparalleled level of physical insight into the structure of the quantum
phenomena. Bokulich is careful to note that not just any fiction can do this kind of
explanatory work, indeed most fictions cannot. She shows more specifically how these

semiclassical examples meet the three criteria of her account of model-based explanation,

discussed above (see, for example, Bokulich 2009 [10], p. 106).

% Interestingly this was one of the Hans Vaihinger's criteria for a scientific fiction, namely
that there must be "an express awareness that the fiction is just a fiction" (Vaihinger
1911/1952 [31], p. 98).
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A more pedestrian example of an explanatory fiction, and one that brings out
some of the objections to such claims, is the case of light rays postulated by the ray (or
geometrical) theory of optics. Light rays are strictly speaking, a fiction. The currently
accepted fundamental theory of wave optics denies that they exist. Yet light rays seem to
play a central role in the scientific explanation of lots of phenomena, such as shadows
and rainbows. The physicists Dan Kleppner and John Delos, for example, note, "When
one sees the sharp shadows of buildings in a city, it seems difficult to insist that light-rays
are merely calculational tools that provide approximations to the full solution of the wave
equation" (Kleppner and Delos 2001 [32], p. 610). Similarly, Batterman argues, "one
cannot explain various features of the rainbow (in particular, the universal patterns of
intensities and fringe spacings) without ultimately having to appeal to the structural
stability of ray theoretic structures called caustics—focal properties of families of rays"
(Batterman 2005b [33], pp. 154-155). Batterman is quite explicit that he does not think
that an explanatory appeal to these ray-theoretic structures requires reifying the rays; they
are indeed fictions.

Some, such as Gordon Belot, want to dismiss ray optics models as nothing but a
mathematical device devoid of any physical content outside of the fundamental (wave)
theory. He writes,

The mathematics of the less fundamental theory is definable in terms of that of the

more fundamental theory; so the requisite mathematical results can be proved by

someone whose repertoire of interpreted physical theories included only the latter.

(Belot 2005 [34], p. 151)

The point is roughly this: it looks like in Batterman's examples that one is making an

explanatory appeal to fictional entities from a "less fundamental” theory that has been

superseded (e.g., ray optics or classical mechanics). However, all one needs from that

18



superseded theory is the mathematics--one doesn't need to give those bits of mathematics
a physical interpretation in terms of the fictional entities or structures. Moreover, that
mathematics appears to be definable in terms of the mathematics of the true
"fundamental" theory. Hence, those fictional entities are not in fact playing an
explanatory role.

Batterman has responded to these objections, arguing that in order to have an
explanation, one does in fact need the fictional physical interpretation of that
mathematics, and hence the explanatory resources of the non-fundamental theory. He
explains,

Without the physical interpretation to begin with, we would not know what

boundary conditions to join to the differential equation. Neither, would we know

how to join those boundary conditions to the equation. Put another way, we must
examine the physical details of the boundaries (the shape, reflective and refractive
details of the drops, etc.) in order to set up the boundary conditions required for

the mathematical solution to the equation. (Batterman 2005b [33], p. 159)

In other words, without appealing to the fictional rays we would not have the relevant
information we need to appropriately set up and solve the mathematical model that is
needed for the explanation.

In a paper with Lina Jansson, Belot has raised similar objections against
Bokulich's arguments that classical structures can play a role in explaining quantum
phenomena. They write,

Bokulich and others see explanations that draw on semiclassical considerations as

involving elements of classical physics as well as of quantum physics. . . . But

there is an alternative way of thinking of semiclassical mechanics: . . . starting
with the formalism of quantum mechanics one proves theorems about
approximate solutions--theorems that happen to involve some of the mathematical

apparatus of classical mechanics. But this need not tempt us to think that there is
[classical] physics in our explanations. (Belot and Jansson 2010 [35], p. 82)
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Once again we see the objection that it is just the bare mathematics, not the mathematics
with its physical interpretation that is involved in the explanation. On Bokulich's view,
however, it is precisely by connecting that "mathematical apparatus" to its physical
interpretation in terms of classical mechanics, that one gains a deeper physical insight
into the system one is studying. On her view, explanation is importantly about advancing
understanding, and for this the physical interpretation is important.” Even though
classical mechanics is not the true fundamental theory, there are important respects in
which it gets things right, and hence reasoning with fictional classical structures within
the well-established confines of semiclassical mechanics, can yield explanatory insight
and deepen our understanding.

As we have seen, these claims that fictions can explain (in special cases such as
ray optics and classical structures) remain controversial and involve subtle issues. These
debates are not entirely new, however, and they have some interesting historical
antecedents, for example, in the works of Niels Bohr and James Clerk Maxwell. More
specifically, when Bohr is articulating his widely misunderstood "correspondence
principle",® he argues that one can explain why only certain quantum transitions between
stationary states in atoms are allowed by appealing to which harmonic components

appear in the Fourier decomposition of the electron's classical orbit (see Bokulich 2008a

7 Potochnik (forthcoming [5], Chapter 5) has also argued for a tight connection between
explanation and understanding, responding to some of the traditional objections against
this association. More broadly she emphasizes the communicative function of
explanation over the ontological approach to explanation, which makes more room for
non-veridical model explanations than the traditional approach.

¥ For an accessible discussion of the various interpretations (and misinterpretations) of
the correspondence principle see Bokulich's (2010 [36]) entry on the correspondence
principle for the online Stanford Encyclopedia of Philosophy.
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[20], Section 4.2 and references therein). He does this even long after he has conceded to
the new quantum theory that classical electron trajectories in the atom are impossible
(i.e., they are a fiction). Although Heisenberg used this formulation of the
correspondence principle to construct his matrix mechanics, he argued that "[it] must be
emphasized that this [correspondence] is a purely formal result" (Heisenberg 1930 [37],
p. 83), and should not be thought of as involving any physical content from the other
theory. Bohr, by contrast, was dissatisfied with this interpretation of the correspondence
principle as "pure mathematics", arguing instead that it revealed a deep physical
connection between classical and quantum mechanics. Even earlier, we can see some of
these issues arising in the work of Maxwell, who, in exploiting the utility of fictional
models and physical analogies between disparate fields, argued, "My aim has been to
present the mathematical ideas to the mind in an embodied form . . . not as mere symbols,
which convey neither the same ideas, nor readily adapt themselves to the phenomena to
be explained" (Maxwell 1855/1890 [38], p. 187; for a discussion see Bokulich 2015
[39D).

Three other challenges have been raised against the explanatory power of fictional
models. First, there is a kind of slippery-slope worry, that once we admit some fictional
models as explanatory, we will not have any grounds on which to dismiss other fictional
models as nonexplanatory. Bokulich (2012 [22]) in her paper "Distinguishing
Explanatory from Nonexplanatory Fictions" introduces a framework for addressing this
problem. Second, Samuel Schindler (2014 [40]) has raised what he sees as a tension in
Bokulich's account. He claims that on one hand she says semiclassical explanations of

quantum phenomena are autonomous in the sense that they provide more insight than the
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quantum mechanical ones. Yet on the other hand, she notes that semiclassical models are
justified through semiclassical theory, which connects these representations as a kind of
approximation to the full quantum mechanics. Hence, they cannot be autonomous. This
objection seems to trade on an equivocation of the term 'autonomous': in the first case
'autonomous' is used to mean "a representation of the phenomenon that yields more
physical insight" and in the second case 'autonomous' is used to mean "cannot be
mathematical justified through various approximation methods." These seem to be two
entirely different concepts, and hence not really in tension with each other. Moreover,
Bokulich never uses the term 'autonomous' to describe either, so this seems to be a
misleading reading of her view.

Schindler also rehearses the objection, raised by Belot and Jansson (2010 [35]),
that by eliminating the interventionist condition in Woodward's counterfactual approach
to explanation she loses what he calls "the asymmetry-individuating function," by which
he means her account seems susceptible to the traditional problem of asymmetry that
plagued the DN account of explanation (for example that falling barometers could be
used to explain impending storms or shadows could used to explain the height of flag
poles, to recall Sylvain Bromberger's well-known examples). This problem was taken to
be solved by the causal approach to explanation, whereby one secures the explanatory
asymmetry simply by appealing to the asymmetry of causation. It is important to note,
however that this is not an objection specifically to Bokulich's account of structural

model explanation, but rather is a challenge for any noncausal account of explanation.’

? Bokulich outlines a solution to the problem of asymmetry for her account in Bokulich
(2012 [22]).
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Since many examples of explanatory models purport to be non-causal explanations, we
will examine this topic more fully in the next section.

Another context in which this issue about the explanatory power of fictional
models arises is in connection with cognitive models in psychology and cognitive
neuroscience. Daniel Weiskopf, for example, discusses how psychological capacities are
often understood in terms of cognitive models that functionally abstract from the
underlying real system. More specifically, he notes, "In attempting to understand the
high level dynamics of complex systems like brains, modelers have recourse to many
techniques for constructing such indirect accounts . . . reification, functional abstraction,
and fictionalization" (Weiskopf 2011 [41], p. 328). By reification he means "positing
something with the characteristics of a more or less stable and enduring object, where in
fact no such thing exists" (p. 328). He gives as an example the positing of symbolic
representations in classical computational systems, even though he notes that nothing in
the brain seems to 'stand still' or be manipulable in the way symbols do. Functional
abstraction, he argues occurs when we "decompose a modeled system into subsystems
and other components on the basis of what they do, rather than their correspondence with
organizations and groupings in the target system" (p. 329). He notes that this occurs
when there are cross-cutting functional groupings that don't map onto the structural or
anatomical divisions of the brain. He notes that this strategy emphasizes "networks, not
locations" in relating cognition to neural structures. Finally, there is also fictionalization,
which, as he describes, "involves putting components into a model that are known not to
correspond to any element of the modeled system, but which serve an essential role in

getting the models to operate correctly" (Weiskopf 2011 [41], p. 331). He gives as an
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example of a fiction in cognitive modeling what are called 'Fast Enabling Links' (FELSs),
which are independent of the channels by which cells actually communicate and are
assumed to have functionally infinite propagation speeds, allowing two cells to fire in
synchrony (p. 331). Despite being false in these ways, some modelers take these fictions
to be essential to the operation of the model and not likely to be eliminated in future
versions.

Weiskopf concludes that models involving reifications, functional abstractions,
and fictions, can nonetheless in some cases succeed in "meeting the general normative
constraints on explanatory models perfectly well" (p. 332), and hence such models can be
counted as genuinely explanatory. Although Weiskopf recognizes the many great
successes of mechanistic explanations in biological and neural systems, he wants to resist
an "imperialism" that attempts to reduce all cases of model explanations in these fields to
mechanistic model explanations.

More recently Cameron Buckner (forthcoming [42]) has criticized Weiskopf's
arguments that functionalist models involving fictions, abstractions, and reification can
be explanatory and defended the mechanist's maxim (e.g., as articulated by Craver and
Kaplan) that only mechanistic models can genuinely explain. Buckner employs two
strategies in arguing against Weiskopf: first, in cases where the models do explain, he
argues that they are really just mechanism sketches, and where they cannot be
reconstructed mechanistically, he dismisses them as impoverished explanations. He
writes,

Concerning fictionalization and reification, I concede that models featuring such

components cannot be interpreted as mechanism sketches, but argue that

interpreting their nonlocalizable components as natural kinds comes with clear
costs in terms of those models' counterfactual power. . . . Functional abstraction,

24



on the other hand, can be considered a legitimate source of kinds, but only on the

condition that the functionally abstract models be interpreted as sketches that

could be elaborated into a more complete mechanistic model. (Buckner

forthcoming [42], p. 3)

An essential feature of mechanistic models seems to be that their components are
localizable. Weiskopf argues, however, that his functional kinds are multiply realizable,
that is, they apply to many different kinds of underlying mechanisms, and that in some
cases they are distributed in the sense that they ascribe to a given model component
capacities that are distributed amongst distinct parts of the physical system. Hence,
without localization, such models cannot be reconstructed as mechanistic models.

What of Buckner's claim that fictional models will be impoverished with regard to
their counterfactual power? Consider again Weiskopf's example of the fictional FELs,
which are posited in the model to allow the cells to achieve synchrony. Buckner argues
explanations involving models with FELs are impoverished in that if one had a true
account of synchrony, that model explanation would support more counterfactual
knowledge. It is not clear, however, that this objection undermines the explanatory
power of models involving FELs per se; rather it seems only to suggest that if we knew
more and had the true account of synchrony we might have a deeper explanation'® (at
least on the assumption that this true account of synchrony would allow us to answer a
wider range of what-if-things-had-been-different questions). However, the explanation
involving the fiction might still be perfectly adequate for the purpose for which it is being

deployed, and hence it need not even be counted as impoverished. For example, there

might be some explananda (ones other than the explanadum of "how do cells achieve

19 For an account of explanatory depth, see Hitchcock and Woodward (2003 [43]).
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synchrony") for which it simply doesn't matter #ow cells achieve synchrony; the fact that
they do achieve synchrony might be all that is required for some purposes.

Weiskopf is not alone in trying to make room for non-mechanistic model
explanations; Elizabeth Irvine (forthcoming [44]) and Lauren Ross (2015 [45]) have also
recently defended non-mechanistic model explanations in cognitive science and biology.
Their approaches argue for non-causal forms of model explanation, which we will turn to

next.

4.4 Explanatory Models and Non-Causal Explanations

Recently there has been a growing interest in non-causal forms of explanation.
Similar to Bokulich's (2008a [20], 2008b [21]) approach, many of these seek to
understand non-causal explanations within the context of Woodward's (2003 [23])
counterfactual approach to explanation without the interventionist criterion that restricts
his account specifically to causal explanation (e.g., Saatsi and Pexton 2013 [46] and Rice
forthcoming [25]). Non-causal explanations are usually defined negatively as explaining
by some means other than citing causes, though this is presumably a heterogeneous
group. We have already seen one type of non-causal model-based explanation:
Bokulich’s (2008a [20], 2008b [21]) structural model explanations in physics. More
recently, examples have been given in fields ranging from biology to cognitive science.
Highly mathematical model explanations are another type of non-causal explanation,
though not all mathematical models are non-causal. A few recent examples are

considered here.
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In the context of biology and cognitive science, Elizabeth Irvine (forthcoming
[44]) has argued for the need to go beyond the causal-mechanical account of model
explanation and defends what she calls a non-causal structural form of model
explanation. She focuses specifically on reinforcement learning (RL) models in cognitive
science and optimality models in biology. She notes that although RL and optimality
models can be construed as providing causal explanations in some contexts, there are
other contexts in which causal explanations miss the mark. She writes,

In the account developed here, it is not the presence of idealisation or abstraction

in models that is important, nor the lack of description of causal dynamics or use

of robustness analyses to test the models. Instead, it is the bare fact that some

models and target systems have equilibrium points [that] are highly O-robust with

respect to initial conditions and perturbations. . . .This alone can drive a claim

about non-causal structural explanations. (Irvine forthcoming [44], p. [11])
By O-robustness, Irvine means a robust convergence to an optimal state across a range of
interventions, whether it be an optimization of fitness or an optimization of decision
making strategies. Her argument is that since interventions (in the sense of Woodward)
don't make a difference to the convergence on the optimal state, that convergence cannot
be explained causally, and is instead due to structural features of the model and target
system it explains.

Another recent approach to non-causal model explanation is Batterman and Rice's
(2014 [47]) minimal model explanations. Minimal models are models that explain
patterns of macroscopic behavior for systems that are heterogeneous at smaller scales.
Batterman and Rice discuss two examples of minimal models in depth: the Lattice Gas
Automaton model, which is used to explain large-scale patterns in fluid flow, and Fisher's

Sex Ratio model, which is used to explain why one typically finds a 1:1 ratio of males to

females, across diverse populations of species. In both cases, they argue,
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these minimal models are explanatory because there is a detailed story about why

the myriad details that distinguish a class of systems are irrelevant to their large-

scale behavior. This story demonstrates, rather than assumes, a kind of stability
or robustness of the large-scale behavior we want to explain under drastic changes

in the various details of the system. (Batterman and Rice 2014 [47], p. 373)

They make two further claims about these minimal model explanations. First, they argue
that these explanations are "distinct from various causal, mechanical, difference making,
and so on, strategies prominent in the philosophical literature" (Batterman and Rice 2014
[47], p. 349). Second, they argue that the explanatory power of minimal models cannot
be accounted for by any kind of mirroring or mapping between the model and target
system (what they call the "common features" account). Instead, these non-causal
explanations work by showing that the minimal model and diverse real-world systems
fall into the same universality class. This latter claim has been challenged by Marc
Lange (2015 [48]) who, though sympathetic to their claim that minimal models are a non-
causal form of model explanation, argues that their explanatory power does in fact derive
from the model sharing features in common with the diverse systems it describes (i.e., the
"common features" account Batterman and Rice reject).

Lauren Ross (2015 [45]) has applied the minimal models account to dynamical
model explanations in the neurosciences. More specifically she considers as an
explanandum phenomenon the fact that a diverse set of neural systems (e.g., rat
hippocampal neurons, crustacean motor neurons, and human cortical neurons)'', which
are quite different at the molecular level, nonetheless all exhibit the same "type 1"

excitability behavior. She shows that the explanation for this involves applying

mathematical abstraction techniques to the various detailed models of each particular

! These are examples given by Ross (2015 [45], p. 48).
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type of neural system and then showing that all these diverse systems converge on one
and the same canonical model (known as the Ermentrout-Kopell model). After defending
the explanatory power of these canonical models, Ross then contrasts this kind of non-
causal model explanation with the causal-mechanical model approach:

The canonical model approach contrasts with Kaplan and Craver's claims because

it is used to explain the shared behavior of neural systems without revealing their

underlying causal mechanical structure. As the neural systems that share this
behavior consist of differing causal mechanisms . . . a mechanistic model that
represented the causal structure of any single neural system would no longer

represent the entire class of systems. (Ross 2015 [45], p. 46)

Her point is that a non-causal explanation is called for in this case because the particular
causal details are irrelevant to the explanation of the universal behavior of class I
neurons. The minimal models approach, as we saw above, is designed precisely to
capture these sort explanations involving universality.

More generally, many highly abstract or highly mathematical model explanations
also seem to fall into this general category of non-causal model explanations.
Christopher Pincock, for example, identifies a type of explanation that he calls "abstract
explanation", which could be extended to model-based explanations. He writes "the best
recent work on causal explanation is not able to naturally accommodate these abstract
explanations" (Pincock forthcoming [49], p. 11). Although some of the explanations
Pincock cites, such as the topological (graph theory) explanation for why one cannot
cross the seven bridges of Konigsberg exactly once in a non-backtracking circuit, seem to
be genuinely non-causal explanations, it is not clear that all "abstract" explanations are
necessarily non-causal. Alexander Reutlinger and Holly Andersen (manuscript [50])

have recently raised this objection against Pincock's account, arguing that an

explanation's being abstract is not a sufficient condition for it being non-causal. They
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argue that many causal explanations can be abstract too and so more work needs to be
done identifying what makes an explanation truly non-causal. This is a particularly
pressing issue in model-based explanations, since many scientific models are abstract in
this sense of leaving out microphysical or concrete causal details about the explanandum
phenomenon.

Marc Lange (2013 [51]) has also identified a kind of non-causal explanation that
he calls a "distinctively mathematical" explanation. Lange considers a number of
candidate mathematical explanations, such as why one cannot divide twenty-three
strawberries evenly among three children, why cicadas have life-cycle periods that are
prime, and why honeybees build their combs on a hexagonal grid. Lange notes that
whether these are to count as distinctively mathematical explanations depends on
precisely how one construes the explanandum phenomenon. If we ask why honeybees
divide the honeycomb into hexagons, rather than other polygons, and we cite that it is
selectively advantageous for them to minimize the wax used, together with the
mathematical fact that a hexagonal grid has the least total perimeter, then it is an ordinary
causal explanation (it works by citing selection pressures). If, however, "we narrow the
explanandum to the fact that in any scheme to divide their combs into regions of equal
area, honeybees would use at least the amount of wax they would use in dividing their
combs into hexagons. . . [t]his fact has a distinctively mathematical explanation" (Lange
2013 [50], p. 500). As Lange explains more generally,

These explanations are non-causal, but this does not mean that they fail to cite the

explanandum's causes, that they abstract away from detailed causal histories, or

that they cite no natural laws. Rather, in these explanations, the facts doing the

explaining are modally stronger than ordinary causal laws. (Lange 2013 [51], p.
485)
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The key issue is not whether the explanans cites the explanandum's causes, but whether
the explanation works by virtue of citing those causes. Distinctively mathematical (non-
causal) explanations show the explanandum to be necessary to a stronger degree than
would result from the causal powers alone.

As this literature makes clear, distinguishing causal from non-causal explanations
is a subtle and open problem, but one crucial for understanding the wide-spread use of

abstract mathematical models in many scientific explanations.

4.5 How-Possibly vs. How-Actually Model Explanations

Models and computer simulations can often generate patterns or behaviors that
are strikingly similar to the phenomenon to be explained. As we have seen, however, that
is typically not enough to conclude that the model thereby explains the phenomenon. An
important distinction here is that between a 'how-possibly' model explanation and a 'how-
actually' model explanation.

The notion of a how-possibly explanation was first introduced in the 1950s by
William Dray in the context of explanations in history. Dray conceived of how possibly
explanations as a rival to the DN approach, which he labeled 'why-necessarily'
explanations (Dray 1957 [52], 161). Dray interpreted how-possibly explanations as ones
that merely aim to show why a particular phenomenon or event "need not have caused
surprise" (p. 157), hence they are answers to a different kind of question and can be
considered complete explanations in themselves. Although Dray's approach was
influential, subsequent authors have interpreted this distinction in different ways. Robert

Brandon, in the context of explanations in evolutionary biology, for example writes,
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A how-possibly explanation is one where one or more of the explanatory
conditions are speculatively postulated. But if we gather more and more evidence
for the postulated conditions, we can move the how-possibly explanation along
the continuum until finally we count it as a how-actually explanation. (Brandon

1990 [53], p. 184).

On this view the distinction is a matter of the degree of confirmation, not a difference of
kind: as we get more evidence that the processes cited in the model are the processes
operating in nature, we move from a how-possibly to how-actually explanation.

Patrick Forber (2010 [54]), however, rejects this interpretation of the distinction
as marking a degree of empirical support, and instead defends Dray's original contention
that they mark different kinds of explanations. More specifically Forber distinguishes
two kinds of how-possibly explanations that he labels "global how-possibly" and "local
how possibly" explanations:

The global how-possibly explanations have theory, mathematics, simulations, and

analytical techniques as the resources for fashioning such explanations. . . . The

local how-possibly explanations draw upon the models of evolutionary processes
and go one step further. They speculate about the biological possibilities relative
to an information set enriched by the specific biology of a target system. . . . How-
actually explanations, carefully confirmed by empirical tests, aim to identify the
correct evolutionary processes that did, in fact, produce the target outcome.

(Forber 2010 [54], p. 35)

Although Forber's distinction is conceptually helpful, it is not clear whether global versus
local how-possibly explanations should in fact be seen as two distinct categories, rather
than simply two poles of a spectrum.

Carl Craver draws a distinction between how-possibly models and how-actually
models that is supposed to track the corresponding two kinds of explanations. He notes
that how-possibly models purport to explain (unlike phenomenological models, which do

not purport to explain), but they are only loosely constrained conjectures about the

mechanism. How-actually models, by contrast, describe the detailed components and
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activities that in fact produce the phenomenon. He writes, “How-possibly models are . . .
not adequate explanations. In saying this I am saying not merely that the description
must be true (or true enough) but further, that the model must correctly characterize the
details of the mechanism” (Craver 2006 [17], p. 361). Craver seems to see the distinction
resting not just on the degree of confirmation (truth) but also on the degree of detail.

Bokulich (2014 [55]) defends another construal of the how-possibly/how-actually
distinction and applies it to model-based explanations more specifically. She considers,
as an example, model-based explanations of a puzzling ecological phenomenon known as
tiger bush. Tiger bush is a striking periodic banding of vegetation in semi-arid regions,
such as southwest Niger. A surprising feature of tiger bush is that it can occur for a wide
variety of different kinds of plants and soils, and it is not induced by any local
heterogeneities or variations in topography. By tracing how scientists use various
idealized models (e.g., Turing models or differential flow models) to explain phenomena
such as this, Bokulich argues new insight into the how-possibly/how-actually distinction
can be gained.

The first lesson she draws is that there are different levels of abstraction at which
the explanandum phenomenon can be framed, which correspond to different explanatory
contexts (p. 33). These different explanatory contexts can be clarified by considering the
relevant contrast class of explanations.'> Second, she argues pace Craver that the how-
possibly/how-actually distinction does not track how detailed the explanation is. She

explains,

2 For a discussion of contrast classes and their importance in scientific explanation, see
van Fraassen (1980 [56], Chapter 5).
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It is not the amount of detail that is relevant, but rather whether the mechanism
represented in the model is the mechanism operating in nature. Indeed as we saw
in the tiger bush case, the more abstractly the explanatory mechanism is specified,
the easier it is to establish it as a how-actually explanation; whereas the more
finely the explanatory mechanism is specified, the less confident scientists
typically are that their particular detailed characterization of the mechanism is the
actual one. (Bokulich 2014 [55], p. 334)
Hence, somewhat counterintuitively, model explanations at a more fine-grained level are
more likely to be how-possibly model explanations, even when they are nested within a
higher-level how-actually model explanation of a more abstract characterization of the
phenomenon. She concludes that when assessing model explanations it is important to

pay attention to what might be called the scale of resolution at which the explanandum

phenomenon is being framed in a particular explanatory context.

4.6 Tradeoffs in Modeling: Explanation vs. Other Functions for Models

Different scientists will often create different models of a given phenomenon,
depending on their particular interests and aims. Following Ron Giere we might note that
“[t]here is no best scientific model of anything; there are only models more or less good
for different purposes” (Giere 2001 [57], p. 1060). If this is right, then it raises the
following questions: What are the features that make a model particularly good for the
purpose of explanation? Are there tradeoffs between different modeling aims, such that
if one optimizes a model for explanation, for example, then that model will fail to be

optimized for some other purpose, such as prediction?
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One of the earliest papers to explore this theme of tradeoffs in modeling is
Richard Levins’ paper “The Strategy of Model Building in Population Biology.” Levins
writes,

It is of course desirable to work with manageable models which maximize

generality, realism, and precision toward the overlapping but not identical goals

of understanding, predicting, and modifying nature. But this cannot be done.

(Levins 1966 [58], p. 422)

Levins then goes on to describe various modeling strategies that have evolved among
modelers, such as sacrificing realism to generality and precision, or sacrificing precision
to realism and generality. Levins in his own work on models in ecology favored this
latter strategy, where he notes his concern was primarily qualitative not quantitative
results, and he emphasizes the importance of robustness analyses in assessing these
models.

Although Levins’s arguments have not gone unchallenged, John Matthewson and
Michael Weisberg have recently defended the view that some tradeoffs in modeling are
genuine. They focus on precision and generality, given the relevance of this tradeoff to
the aim of explanatory power. After a technical demonstration of different kinds of
tradeoffs between two different notions of generality and precision, they conclude,

These accounts all suggest that increases in generality are, ceteris paribus,

associated with an increase in explanatory power. The existence of tradeoffs

between precision and generality indicates that one way to increase an
explanatorily valuable desideratum is by sacrificing precision. Conversely,
increasing precision may lead to a decrease in explanatory power via its effect on

generality. (Matthewson and Weisberg 2009 [59], p. 189)

Mapping out the various tensions and tradeoffs modelers may face in developing models

for various aims, such as scientific explanation, remains a methodologically important,

though underexplored topic.
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More recently, Alisa Bokulich (2013 [60]) has explored such tradeoffs in the
context of modeling in geomorphology, which is the study of how landscapes and
coastlines change over time. Even when it comes to a single phenomenon, such as
braided rivers (i.e., rivers in which there is a number of interwoven channels and bars that
dynamically shift over time), one finds that scientists use different kinds of models
depending on whether their primary aim is explanation or prediction. When they are
interested explaining why rivers braid geomorphologists tend to use what are known as
“reduced complexity models”, which are typically very simple cellular automata models
with a highly idealized representation of the fluvial dynamics (Murray 2003 [61]). The
goal is to try to abstract away and isolate the key mechanisms responsible for the
production of the braided pattern. This approach is contrasted with an alternative
approach to modeling in geomorphology known as ‘reductionist’ modeling. Here one
tries to simulate the braided river in as much accurate detail and with as many different
processes included as is computationally feasible, and then tries to solve the relevant
Navier-Stokes equations in three dimensions. These reductionist models are the best
available tools for predicting the features of braided rivers (Murray 2003 [61], p. 159),
but they are so complex that they yield very little insight into why the patterns emerge as
they do.

Bokulich uses cases such as these to argue for what she calls a division of
cognitive labor among models:

[I]f one’s goal is explanation, then reduced complexity models will be more likely

to yield explanatory insight than simulation models; whereas if one’s goal is

quantitative predictions for concrete systems, then simulation models are more

likely to be successful. I shall refer to this as the division of cognitive labor
among models (Bokulich 2013 [60], 121).
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As Bokulich notes, however, one consequence of this division of cognitive labor is that a
model that was designed to optimize explanatory insight might fail to make quantitatively
accurate predictions (a different cognitive goal). She continues,
This failure in predictive accuracy need not mean that the basic mechanism
hypothesized in the explanatory model is incorrect. Nonetheless, explanatory
models need to be tested to determine whether the explanatory mechanism
represented in the model is in fact the real mechanism operating in nature.
(Bokulich 2013 [60], p. 121)
She argues for the importance of robustness analyses in assessing these explanatory
models, noting that while robustness analyses cannot themselves function as a non-

empirical mode of confirmation, they can be used to identify those gualitative predictions

or trends in the model that can appropriately be compared with observations.

4.7 Conclusion

There is a growing realization that the use of idealized models to explain
phenomena is pervasive across the sciences. The appreciation of this fact has led
philosophers of science to begin to introduce model-based accounts of explanation in
order to bring the philosophical literature on scientific explanation into closer agreement
with actual scientific practice.

A key question here has been whether the idealizations and falsehoods inherent in
modeling are "harmless" in the sense of doing no real explanatory work, or whether they
have an essential--maybe even ineliminable--role to play in some scientific explanations.
Are such fictions compatible with the explanatory aims of science, and if so, under what
circumstances? While some inroads have been made on this question, it remains an

ongoing area of research. As we saw, yet another controversial issue concerns the fact
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that many highly abstract and mathematical models seem to exemplify a non-causal form
of explanation, contrary to the current orthodoxy in scientific explanation. Determining
what is or is not to count as a causal explanation turns out to be a subtle issue.

Finally, just because a model or computer simulation can reproduce a pattern or
behavior that is strikingly like the phenomenon to be explained, does not mean that it
thereby explains that phenomenon. An important distinction here is that between a how-
possibly model explanation and a how-actually model explanation. Despite the wide
agreement that such a distinction is important, there has been less agreement concerning
how precisely these lines should be drawn.

Although significant progress has been made in recent years in understanding the
role of models in scientific explanation, there remains much work to be done in further
clarifying many of these issues. However, as the articles reviewed here reveal, exploring
just how and when models can explain is a rich and fruitful area of philosophical

investigation and one essential for understanding the nature of scientific practice.
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