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Abstract: 
 The geosciences include a wide spectrum of disciplines ranging from 
paleontology to climate science, and involve studies of a vast range of spatial and 
temporal scales, from the deep-time history of microbial life to the future of a system no 
less immense and complex than the entire earth.  Modeling is thus a central and 
indispensible tool across the geosciences.  Here we review both the history and current 
state of model-based inquiry in the geosciences.  Research in these fields makes use of a 
wide variety of kinds of models, including conceptual, physical, and numerical models, 
and more specifically cellular automata, artificial neural networks, agent-based models, 
coupled models, and hierarchical models.  We note the increasing demands to incorporate 
biological and social systems into geoscience modeling, challenging the traditional 
boundaries of these fields.  Understanding and articulating the many different sources of 
scientific uncertainty--and finding tools and methods to address them--has been at the 
forefront of much research in geoscience modeling.  We discuss not only structural model 
uncertainties, parameter uncertainties, and solution uncertainties, but also the diverse 
sources of uncertainty arising from the complex nature of geoscience systems themselves.  
Without an examination of the geosciences, our philosophies of science and our 
understanding of the nature of model-based science are incomplete. 
 
 
I. Introduction: What are the Geosciences? 
 The geosciences (sometimes also referred to as the earth sciences) cover a very 
broad spectrum of disciplines including geology, paleontology, hydrology (the 
distribution and movement of water, on the surface and underground), glaciology (the 
study of ice and glaciers), climate science, oceanography, geophysics (the internal 
structure of the earth, its gravitational and magnetic fields, plate tectonics, and 
volcanology), and geomorphology (how surface landscapes change over time).  There is 
significant overlap between these different subfields because the various subsystems of 
the earth they describe are not isolated from one another and are often interacting in 
complex ways.  Usually the geosciences are understood as ending where biological 
systems begin, but given, for example, the great relevance of plants for the hydrological 
cycle (e.g., ecohydrology) and erosion phenomena (e.g., biogeomorphology), as well as 
the great relevance of human activity in altering the climate, landscapes, and oceans, this 
division is becoming increasingly difficult to maintain (Oreskes 2015).   
 Although the geosciences have traditionally focused on the earth, the conceptual 
and disciplinary divides between studies of the Earth and studies of other planets is also 
breaking down.  For example, the wealth of new information coming from the space 
program (e.g., the Mars Rovers, HiRise images from the Mars Reconnaissance Orbiter, 
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and images of various planets and moons from the Cassini-Huygens spacecraft and the 
New Horizons Pluto mission) has helped to generate the field of planetary 
geomorphology in addition to terrestrial (Earth) geomorphology.  Planetary 
geomorphology includes the study of landscapes on not only planets, but also on moons 
(such as Saturn's moon Titan, which has the largest dune field in our solar system) and 
other large celestial bodies (such as the comet 67P which was determined by the Rosetta-
Philae lander module to have water).  
 The phenomena that geoscientists investigate are extremely complex and can span 
a vast range of spatial and temporal scales.  Hence, idealized models play a central role in 
all of the geosciences. These models are used for a variety of purposes, including both 
prediction and explanation.  They are used not only for basic scientific research 
(theoretical tools for advancing insight and understanding) but also for planning 
purposes, policy, and hazard mitigation. Models are used to forecast a wide range of 
phenomena of human interest, such as earthquakes, volcanic eruptions, landslides, 
flooding, the movement of groundwater and spread of contaminants, and coastal erosion.   
 The geosciences are one of the most rapidly growing areas of interest in scientific 
modeling.  This is led, in large part, by the tremendous amount of attention and resources 
that have been invested recently in climate modeling.  Climate science is not unique, 
however, and many of the methodological issues found there are in fact widespread 
among the earth sciences.  Although, traditionally, philosophers of science have largely 
neglected the geosciences, leaving it a philosophical terra incognita (Kleinhans et al. 
2005), it is increasingly being recognized that our picture of the nature of science is 
inadequate if we do not take this research in the geosciences into account.   
 A complete review of all the relevant work in the diverse domains of the 
geosciences–and all the conceptual and methodological issues in modeling that arise 
within these different fields–is not possible in a single chapter.  We provide here an 
overview of philosophical perspectives on this research that we hope will encourage more 
scholars to explore these topics further.  The sections are organized primarily by the 
relevant conceptual and methodological issues. 
 
 
II. Kinds of Models in the Geosciences 

a. Conceptual Models 
 Conceptual models are the first step one takes before creating a more formal 
model (i.e., either a physical or numerical model).  It is a conceptualization of the key 
processes operating in the system of interest and the interactions between the 
components in the system.  A conceptual model can simply take a narrative form or it 
can be an elaborate diagram.  Typically, however, conceptual models can yield only 
qualitative predictions.   
 Some of the earliest models in geomorphology were conceptual models.  Two 
historically important examples of conceptual models are Grove Karl Gilbert's  (1843-
1918) "Balance of Forces" conceptual model and William Morris Davis's (1850-1934) 
"Cycle of Erosion" conceptual model.  In 1877 Gilbert introduced a conceptual model 
of a stream that appealed to physical concepts such as equilibrium, balance of forces, 
and work to explain the tendency of a stream to produce a uniform-grade bed.   Gilbert 
describes his conceptual model as follows:  
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Let us suppose that a stream endowed with a constant volume of water, is at some 
point continuously supplied with as great a load as it is capable of carrying. For so 
great a distance as its velocity remains the same, it will neither corrade 
(downward) nor deposit, but will leave the grade of its bed unchanged. But if in 
its progress it reaches a place where a less declivity of bed gives a diminished 
velocity, its capacity for transportation will become less than the load and part of 
the load will be deposited. Or if in its progress it reaches a place where a greater 
declivity of bed gives an increased velocity, the capacity for transportation will 
become greater than the load and there will be corrasion of the bed. In this way a 
stream which has a supply of débris equal to its capacity, tends to build up the 
gentler slopes of its bed and cut away the steeper. It tends to establish a single, 
uniform grade. (Gilbert 1877, p. 112) 

 
As Grant et al. note, "Gilbert's greatest and most enduring contribution to conceptual 
models in geomorphology. . . was the application of basic principles of energy and 
thermodynamics to the behavior of rivers.  He did so with clarity of expression and an 
absence of mathematics that appeals directly to intuition, logic, and analog reasoning" 
(Grant et al. 2013, p. 9).  Note that Gilbert's model provides the conceptual foundation 
on which a numerical model, giving an equation to describe the balance of these forces, 
could be constructed, though he himself does not take this further step.   
 Another seminal conceptual model in the history of geomorphology is Davis's 
"Cycle of Erosion."  Davis was a professor of geology at Harvard University; in an 
1899 article entitled "The Geographical Cycle,” he established a framework for 
thinking about modeling in geomorphology:  "All the varied forms of the lands are 
dependent upon--or, as the mathematician would say, are functions of--three variable 
quantities, which may be called structure, process, and time" (Davis 1899, p. 481).  The 
evolution of a landscape may be understood as a cycle, which begins with a 'peneplain' 
(a low relief plain) near a base (e.g., sea) level, is followed by rapid uplift leading to a 
'youthful' stage of rugged topograph, in which streams become established, and then a 
mature stage of tectonic stability in which those streams widen and gradually erode the 
landscape back down toward the base level.  Finally there will be an 'old age' stage, 
involving low-relief landscapes with hills where mountains used to be.  This then 
becomes eroded back to the peneplain stage until tectonic activity resumes and the 
cycle begins again.  He used this idea to explain, for example, the features of the 
Appalachian Mountains.  It was a qualitative and explanatory conceptual model: it 
sought to explain and provide qualitative predictions for various features of a 
landscape.   
 For Davis, the conceptual model was the end point of his research; in recent years, 
most geoscientists have sought to quantify these sorts of processes. Thus conceptual 
models can be seen as either the final product (an end it itself), or as a preliminary step 
in the process of creating a physical or mathematical model.  In the case of 
mathematical models, there are two levels of modeling at which questions can be 
raised: Is the fundamental conceptual model adequate? And has that conceptual model 
been adequately represented or captured by that particular choice of mathematical 
equations? 
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b. Physical Models 
 Until the mid-twentieth century, most  conceptual models in the geosciences were 
realized as physical models.  Physical models, also sometimes referred to as 'hardware' or 
'table top' models, are a (usually, but not always) scaled-down version of the physical 
system of interest.  In the geosciences, the systems of interest are typically large-scale, 
complex, open systems that are not amenable to experimental manipulation.  A physical 
model allows the geoscientist to bring a version of the landscape into the laboratory, 
manipulate various variables in a controlled way, and explore hypothetical scenarios.   
 One of the central questions for geologists in the late 19th century was the origin 
of mountains (a subject known as orogenesis, from the Greek word 'oros' meaning 
mountain).  A popular orogenic theory in the 19th century was that mountains resulted 
from an overall contraction of the Earth, which was thought to be a consequence of the 
nebular hypothesis, first proposed by Immanuel Kant (1755) and Pièrre-Simone Laplace 
(1796).  To explore this hypothesis, the Swiss geologist Alphonse Favre (1815-1890) 
built a physical model involving layers of clay on a piece of stretched rubber, which was 
then released and the resulting structures observed.  The ability of this model to 
successfully reproduce some of the features of mountains led Favre to conclude that it 
supported the plausibility of the hypothesis (Oreskes 2007, p. 96).  It was, what we would 
today call, a "how-possibly model explanation" (see Bokulich (2016), this volume, 
Section 4.5).  
 One of the great challenges for physical modeling in the geosciences, however, is 
that the relevant pressures, temperatures, durations, etc. of geological processes are 
largely beyond our reach.  This limitation was recognized in the 19th century by the 
French geologist and director of the Ècole Nationale des Mines, Auguste Daubrée (1814-
1896), who notes, "[T]he equipment and forces that we can set to work are always 
circumscribed, and they can only imitate geological phenomena at the scale . . . of our 
own actions" (Daubrée 1879, p. 5; quoted in Oreskes 2007, p. 99).  In order to make 
further advances in physical modeling in the geosciences, it was realized that the relevant 
forces and processes would have to be appropriately scaled in the model.  The 
quantitative mathematical theory by which such scaling could be achieved, however, 
would not be developed until the work of M. King Hubbert (1903-1989), an American oil 
company geologist, in the late 1930s and 1940s.   
 Hubbert's work provided "the first fully quantitative treatment of the question how 
to choose the physical properties of materials in a model to account for the much smaller 
scale and time frame as compared with nature" (Oreskes 2007, p. 110).  Hubbert's 1945 
paper begins by noting the paradox that has long perplexed the geologic sciences: How 
could an Earth whose surface is composed of hard, rigid rock have undergone repeated 
deformations as if it were composed of a plastic material, as field observations of 
mountains and strata suggest?  He notes that this paradox is a result of failing to 
adequately consider the concept of physical similarity, which like geometric similarity in 
a map, requires that all the relevant physical quantities (not just lengths, but densities, 
forces, stresses, strengths, viscosities, etc.) bear constant ratios to one another. He notes 
that when the strengths are appropriately scaled, the resulting strength of the rock on a 
human scale is "comparable to that of very soft mud or pancake batter" (ibid).  So, for 
example, since the elastic properties of solids depend on the strain rate, scale models that 
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operate orders of magnitude faster than terrestrial processes need to use materials that are 
orders of magnitude weaker than terrestrial rocks (Oreskes 2007, p. 113).  Hubbert's work 
on scaling not only helped explain the puzzling field observations, but also provided the 
key to more adequate physical modeling.   
 Physical models can be classified by how they do or do not scale down.  At one 
extreme there are "life size" (1:1) replica models of the system of interest.  Sometimes 
such 1:1 physical models are a localized study of a particular process, such as Reginald 
Bagnold's (1941) use of a wind tunnel to study how grains of sand saltate and form 
ripples.  However full-scale physical model can also be an entire complex system, such as 
the Outdoor StreamLab at the University of Minnesota.  In this full-scale river model, 
water and sediment flow down an artificial river system where the sediment is collected, 
measured and recirculated to a sediment feeder.  Although such replica models are able to 
avoid some of the problems arising from scaling issues (discussed below), they still 
involve simplifications and "laboratory effects" that can affect the reliability of the 
conclusions drawn for their real-world counterparts.  More generally, however, many of 
the systems that geoscientists are interested in (e.g., mountain ranges and coastlines) are 
simply too large to be recreated on a 1:1 scale, hence this type of physical model is 
typically not feasible.   
 Scale models are physical models that have been shrunk down according to some 
scale ratio (scale models can in principle be enlarged versions of their real-world 
counterparts, though this is not typical in the geosciences).  For example a 500 meter-
wide real river may be represented by a 5 meter-wide scaled physical model, in which 
case the scale is 1:100.  As Hubbert realized, simply shrinking a system down by some 
factor, however, will rarely preserve the necessary dynamical relations: "A true scaled 
model requires perfect geometric, kinematic and dynamic similitude, something that 
cannot be achieved when using the same fluid as in the real world system due to 
equivalent gravitational and fluid motion forces" (Green 2014, p. 4).  Further 
complicating accurate scale modeling is the fact that different hydrodynamic processes 
are occurring at different spatial scales, and different physical effects can become 
dominant at those different scales too. For example, when scaling down one might 
substitute a fine sand for a pebbly gravel, but then cohesive forces can become dominant 
in the model when they are negligible in the target.  These are examples of what are 
known as "scale effects", when the force ratios are incomparable between the model and 
target.  In such cases one might need to substitute a liquid with a different viscosity or a 
different bed material into the model to try to overcome these scaling limitations--an 
example of how modelers sometimes deliberately get things more wrong in the model in 
order to get the conclusions to come out more right.   
 More often physical models are "distorted scale models", where not all factors are 
scaled by the same ratio.  The San Francisco Bay model, which is a table-top working 
hydraulic model of the San Francisco Bay and Sacramento-San Joaquin River Delta 
System built by the U.S. Army Corps of Engineers, is an example of a geometrically 
distorted scale model, with the horizontal scale ratio being 1:1,000, while the vertical 
scale ratio is only 1:100, and the time scale being 15 minutes to one day (for a 
philosophical discussion of this model see Weisberg (2013)). Relaxing scale 
requirements further gets what are sometimes referred to as "analogue physical models", 
where one reproduces certain features of a target system without satisfying the scale 
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requirements.  These are typically seen as a physical system to be investigated in their 
own right for what they can teach us about certain physical processes, rather than a 
miniature version of some specific real system (Green 2014, p. 5).   
 Physical models have their own strengths and weaknesses.  The strengths, as 
mentioned, involve bringing a version of the system of interest into the laboratory as a 
closed system that is amenable to experimental manipulation and control.  One does not 
need to have a mathematical representation of the system in order to explore its behavior.  
The weaknesses, or limitations, of physical models predominantly fall into two classes: 
laboratory effects and scale effects.  Laboratory effects are those that occur in the 
laboratory system but not in the real-world counterpart.  These can be related to model 
boundary conditions (sometimes literally the wall or edge of the table) where the 
behavior can drastically change, unrealistic forcing conditions, or the omission of 
causally relevant factors in the model.  Scale effects refer to problems in maintaining the 
correct relations between variables when they are scaled down.  This can lead to certain 
forces (e.g., cohesive forces) becoming dominant in the model that are not dominant in 
nature.  More generally, these laboratory and scale effects are yet another example of the 
problem of external validity: Does the model accurately reflect the behavior of the system 
in the real world?  This problem is pervasive among the sciences, and physical models 
are no more immune to it, despite dealing with the same "physical stuff" as their target.   
 
c. Numerical models 
 Numerical models are mathematical models that represent natural systems and 
their interactions by means of a system of equations.  These equations are typically so 
complex that they cannot be solved analytically and so they have to be solved by 
numerical methods (such as finite difference or finite volume methods) that provide an 
approximate solution or the equations need to be substituted with alternative algorithms, 
such as cellular automaton models.  Numerical models are often implemented on a 
computer in a simulation that shows how the model will behave over an extended period 
of time, with some sort of graphical output to visualize that behavior (for a review of 
some of the philosophical issues in computer simulations see Winsberg (2015)).  This has 
enabled geoscientists to do something that they were generally unable (and often 
unwilling) to do in the past: to expand the goals of the geosciences to include forecasting 
and prediction as well as explanation. 
 In the context of the geosciences, there are many different kinds of numerical 
models, which can be categorized in different ways.  The British geomorphologist 
Michael Kirkby and colleagues (1987), for example, distinguish the following four broad 
types of numerical models: black-box models, process models, mass-energy balance 
models and stochastic models.  As Kirkby et al. explain, black-box models are models 
where "the system is treated as a single unit without any attempt to unravel its internal 
structure" (Kirkby et al. 1987, p. 16).  Greg Tucker (2004) gives as an example of a 
black-box model what is known as "Horton's Laws" of river network topology.  The law 
predicts the average number of branching stream segments of a certain order (roughly 
size or width).  It was discovered by Robert Horton in 1945 from purely empirical 
analyses of stream basins, but gives no insight into why this "law" would hold (it is not a 
law in the traditional sense, in that it does not hold universally).  Black-box models are 
phenomenological models that involve a brute fitting to the empirical data.  Although 
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such models give no insight or understanding of the internal processes, they can be useful 
for making predictions. 
 At the other extreme of numerical modeling are process models, which try to 
describe the internal mechanisms giving rise to the empirical relations.  Tucker explains, 
while "a black-box model of soil erosion would be based on regression equations 
obtained directly from data . . . a process model would attempt to represent the mechanics 
of overland flow and particle detachment" (Tucker 2004, p. 687).  In between these two 
extremes are what Kirkby et al. (1987) have called "grey-box models", where some 
mechanisms may be known and included, but the rest is filled by empirical relations.   
 An important class of process models are landscape evolution models, or LEMs 
for short.  LEMs are numerical models in which the evolution of the landscape is related 
to the key underlying physical processes.  These include, for example, the physical and 
chemical processes of rock weathering leading to rock disintegration and regolith 
production ('regolith' is generic term referring to loose rock material, such as dust, soil, 
and broken rock, that covers solid rock), gravity-driven mass movement/landsliding, and 
water flow/run off processes (e.g., represented by the St. Venant shallow-water equations, 
which are a vertically integrated form of the Navier-Stokes equations).  Each of these 
processes is represented mathematically by a "geomorphic transport function" (GTF), 
which get linked together to form the landscape evolution model.  Landscape evolution 
models are often constructed as a software framework within which a variety of different 
component processes (represented by a particular choice of GTFs or equations), arranged 
in a particular configuration, can be implemented.  Examples of such LEMs include the 
Channel-Hillslope Integrated Landscape Development (CHILD) model, developed by 
Greg Tucker and colleagues (2001), and the Cellular Automaton Evolutionary Slope and 
River (CAESAR) model developed by Tom Coulthard and colleagues (Coulthard et al. 
2002).  These LEMs can simulate the evolution of landscapes on scales ranging from 
1km2 to 500 km2 and temporal scales ranging from days to millennia.   
 Often a component of LEMs, but sometimes presented as a model on their own 
are mass-balance models (or energy-balance models).  Mass-balance models use the 
fact that mass-energy is conserved to develop a continuity equation to describe the 
movement of mass (or energy) between different "stores."  A store could be anything 
ranging from water in lake, the population of a species in ecosystem, the energy stored as 
latent heat in an atmospheric column, the carbon mass in a tree, or the depth of soil at a 
point on a hillslope (Tucker 2004, p. 688).  An example of a mass-balance numerical 
model is a glacier model that describes the relation between ice accumulation and 
ablation (by melting and sublimation) at a given point of time under certain climate 
conditions (Rowan 2011).  Similarly, an energy-balance model in glaciology would be 
one that calculates the energy (heat) fluxes at the surface of the glacier that control 
melting and affect mass balance.   
 Climate science is an area of the geosciences in which both energy-balance and 
process numerical models have been developed to a high level of sophistication.  Energy-
balance models represent the climate of the Earth as a whole, without detailed 
information about processes or geographical variation.  General circulation models 
(GCM) go a step further in explicitly representing atmospheric and oceanic processes.  
The most recent generation of climate models are Earth system models (ESM), which 
additionally include information about the carbon cycle and relevant biogeochemical 
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processes.  More specifically, ESM models are a composite of a large number of coupled 
models or "modules", including an atmospheric general circulation model, an oceanic 
general circulation model, an ice dynamics model, biogeochemistry modules for land and 
ocean (e.g., for tracking the carbon cycle), and a software architecture or framework in 
which all these modules are integrated and able to communicate with each other.  
Developing and running GCMs and ESMs require large numbers of collaborating 
scientists (scores to hundreds), significant supercomputing time, and many millions of 
dollars.  Because of the resource-intensive nature of such modeling projects, there are 
currently only a few dozen of them, and their outputs are periodically compared in 
intercomparison projects (e.g., CMIP5 2011).  (For more on coupled models and 
intermodel comparison projects, see Section VII below).  At present, GCMs and ESMs 
typically have a spatial resolution of 100-300 km; to fill this gap at the finer level of 
resolution, regional climate models (RCM) have been developed for various locations.   
 While the trend in climate modeling has been towards increasing the complexity 
of these models with ever more process modules being added, there has recently been an 
interesting debate about whether a fundamentally new approach to climate modeling is 
required (for an excellent review and assessment of the leading proposals see Katzav and 
Parker 2015).  More generally the trend towards ever more complex models in the 
geosciences has led to what Naomi Oreskes calls the "model-complexity paradox": 
 

The attempt to make models capture the complexities of natural systems leads to a 
paradox: the more we strive for realism by incorporating as many as possible of 
the different processes and parameters that we believe to be operating in the 
system, the more difficult it is for us to know if our tests of the model are 
meaningful. (Oreskes 2003, p. 13) 

 
In opposition to this trend, many geoscience modelers have started developing what are 
known as reduced complexity models, which are motivated by the idea that complex 
phenomena do not always need complex models, and simpler models may be easier to 
understand and test.  A simpler model may also be run more often, and with more 
different parameters, making it more amenable to sensitivity analysis (see Section IV.c 
below). 
 In the context of geomorphology, reduced complexity modeling is often defined 
in contrast with what is termed "simulation" modeling ('simulation' here refers not to 
models run as a computer simulation, but rather models that try to simulate or mimic all 
the details of nature as closely as possible).   While simulation models try to remain 
grounded in the fundamental laws of classical mechanics and try to represent as many of 
the processes operating, and in as much detail, as is computationally feasible, reduced 
complexity models model a complex system with just a few simple rules formulated at a 
higher level of description.  As physical geographers Andrew Nicholas and Timothy 
Quine note,  
 

In one sense, the classification of a model as a ‘reduced-complexity’ approach 
appears unnecessary since, by definition, all models represent simplifications of 
reality. However, in the context of fluvial geomorphology, such terminology says 
much about both the central position of classical mechanics within theoretical and 
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numerical modelling, and the role of the individual modeller in defining what 
constitutes an acceptable representation of the natural environment. (Nicholas and 
Quine 2007, p. 319)  

 
One of the first successful reduced complexity models in geomorphology was a cellular 
automata-type model of a braided river (i.e., a river with a number of interwoven 
channels that shift over time) that used just two key rules (Murray and Paola 1994).  This 
model was heralded as a "paradigm shift" in geomorphic modeling (Coulthard et al. 
2007, p. 194).  As Brad Murray, one of the proponents of this approach, argues, knowing 
how the many small-scale processes give rise to the large-scale variables in the 
phenomenon of interest is a separate scientific endeavor from modeling that large-scale 
phenomenon (Murray 2003; see also Werner 1999).  Although reduced complexity 
models may seem like caricatures of their target systems, they can be surprisingly 
successful in generating realistic behaviors and providing explanatory insight (for further 
philosophical discussion of reduced complexity models and this case see Bokulich (2013) 
and Murray 2007).   
 
 
III. Bringing the Social Sciences into Geoscience Modeling 
 The geosciences are considered a branch of the physical sciences, being 
concerned with the chemistry and physics of the Earth, its history, and (more recently) its 
future.  As such, the geosciences are typically thought of as excluding the domains of 
both the biological sciences and the social sciences.  Maintaining these artificial 
divisions, however, has increasingly become difficult.  As Oreskes argues, 
 

Many, perhaps, most, significant topics in earth science research today address 
matters that involve not only the functioning of physical systems, but the 
interaction of physical and social systems.  Information and assumptions about 
human behavior, human institutions, and infrastructures, and human reactions and 
responses are now built into various domains of earth scientific research, 
including hydrology, climate research, seismology and volcanology. (Oreskes 
2015, p. 247) 

 
For example, hydrological models that attempt to predict groundwater levels on the basis 
of physical considerations alone, can be inadequate for failing to include possible 
changes in human groundwater pumping activity, an external forcing function that can 
have dramatic effects on the physical system.   
 Climate science is another domain of the geosciences in which the need to 
incorporate the social sciences (specifically patterns and projections of human behavior 
involving, for example, emission scenarios and deforestation practices) is evident.  The 
Intergovernmental Panel on Climate Change (IPCC) has attempted to incorporate these 
social factors by three separate working groups, the first on the physical basis and the 
others on the social and policy dimensions, each issuing separate reports, released at 
different times.  But, as Oreskes notes, the social variables are not just relevant to the 
social-policy questions, but to "the work that provides the (allegedly) physical science 
basis as well" (Oreskes 2015, p. 253).   
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 Increasingly geoscientists are being called upon to not only use their models to 
predict geoscience phenomena, but also to perform risk assessments and to communicate 
those risks to the public.  Given that geoscientists are typically not trained in risk 
assessment, risk policy, or public communication, the results can be troubling.  Oreskes 
recounts the high-profile case of the 2009 earthquake in central Italy that killed 309 
people, and for which six geophysicists were sentenced to six years in prison for 
involuntary manslaughter in connection with those deaths.  Although the international 
scientific community expressed outrage that these seismologists were being charged with 
failing to predict the unpredictable, the prosecutor, as reported in Nature painted a 
different picture: 
 

"I'm not crazy," Picuti says. "I know they can't predict earthquakes. The basis of 
the charges is not that they didn't predict the earthquake. As functionaries of the 
state, they had certain duties imposed by law: to evaluate and characterize the 
risks that were present in L'Aquila." Part of that risk assessment, he says, should 
have included the density of the urban population and the known fragility of many 
ancient buildings in the city centre. "They were obligated to evaluate the degree 
of risk given all these factors," he says, "and they did not." (Hall 2011, p. 266; 
quoted in Oreskes 2015, p. 257). 

 
Oreskes concludes from this case, "[s]eismology in the twenty-first century, it would 
seem, is not just a matter of learning about earthquakes, it is also about adequately 
communicating what we have (and have not) learned" (p. 257).  Whether it is 
communicating the risks revealed by geoscience models or incorporating social variables 
directly into geoscience models, geoscientists are increasingly under pressure to find 
ways to model these hybrid geo-social systems.   
 In some areas, such as geomorphology, agent-based models (which are common 
in fields such as economics) are starting to be used.  Agent-based models (ABMs) consist 
of a set of agents with certain characteristics, following certain rules of self-directed 
behavior, a set of relationships describing how agents can interact with each other, and an 
environment both within which, and on which, the agents can act.  As John Wainwright 
and James Millington note,  
 

Despite an increasing recognition that human activity is currently the dominant 
force modifying landscapes, and that this activity has been increasing through the 
Holocene, there has been little integrative work to evaluate human interactions 
with geomorphic processes.  We argue that agent-based models (ABMs) are a 
useful tool for overcoming limitations of existing...approaches" (Wainwright and 
Millington 2010, p. 1) 
 

These ABM models, with their simplistic representation of human behavior, however, 
face many challenges, including not only difficulties in integrating the different 
disciplinary perspectives required to model these hybrid geo-social systems, but also 
issues of model evaluation. 
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IV. Testing Models: From Calibration to Validation 
a. Data and Models  
 Empirical data was long assumed to be the objective and unimpeachable ground 
against which theories or theoretical models are judged; when theory and data clashed, it 
was the theory or model that was expected to bend.  Beginning in the early 1960s, 
however, philosophers of science including Thomas Kuhn (1962, pp. 133-134), Patrick 
Suppes (1962), and Imre Lakatos (1970, pp. 128-130) began to realize that this is not 
always the case: sometimes it is reasonable to view the theory as correct and use it to 
interpret data as either reliable or faulty. In a 1962 paper called "Models of Data" Suppes 
argued that theories or theoretical models are not compared with raw empirical data, but 
rather with models of the data, which are a cleaned up, organized, and processed version 
of the data of experience.  The production of a data model can involve, among other 
things, "data reduction" (any data points that are due to error or noise, or what are 
otherwise artifacts of the experimental conditions are eliminated from consideration) and 
"curve fitting" (a decision about which of several possible curves compatible with the 
data will be drawn).   
 This same insight has been recognized by scientists as well.  The ecological 
modeler Edward Rykiel, for example, writes, "Data are not an infallible standard for 
judging model performance.  Rather the model and data are two moving targets that we 
try to overlay one upon the other" (1996, p. 235).  Similarly Wainwright and Mulligan 
argue that the data of measurements are an abstraction from reality depending on timing, 
technique, spatial distribution, scale, and density of sampling.  They continue,  
 

If a model under-performs in terms of predictive or explanatory power, this can be 
the result of inappropriate sampling for parametrization or validation as much as 
model performance itself.  It is often assumed implicitly that data represents 
reality better than a model does (or indeed that data is reality).  Both are models 
and it is important to be critical of both. (Wainwright and Mulligan 2013, p. 13) 
 

 
 A similar point has been made by the historian Paul Edwards (2010) in his book 
on the development of climate modeling.  There he traces in detail the changing meaning 
of 'data' in meteorology and atmospheric science, noting how the existing incomplete, 
inconsistent, and heterogeneous data had to be transformed into a complete and coherent 
global data set, with large numbers of missing gridpoint values interpolated from 
computer models in a process known as "objective analysis" (p. 252).  Edwards further 
argues that even the data coming from measuring instruments is model-laden.  He notes, 
for example, that 
 

meteorology's arsenal of instrumentation grew to include devices, from Doppler 
radar to satellites, whose raw signals could not be understood as meteorological 
information.  Until converted--through modeling--into quantities such as 
temperature, pressure, and precipitation, these signals did not count as data at all. 
(Edwards 2010, pp. 282-283) 
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The importance of recognizing this model-ladenness of data is vividly illustrated in 
Elizabeth Lloyd's (2012) recounting of the high-profile case in which it was claimed in a 
U.S. Congressional hearing that data from satellites and weather balloons contradicted 
climate model evidence that greenhouse warming was occurring.  In the end, the climate 
models were vindicated as more reliable than the data. Lloyd concludes from this case 
that we need to move towards a more complex empiricist understanding of the nature of 
data. 
 The data from measurements can, for example, be skewed by the fact that 
measurements are local, and yet the model might require a more global value (especially 
when there is significant heterogeneity), or more generally that measurements can only 
be made at one scale, and yet have to be extrapolated to another scale.  Hence, when 
using data to parameterize, calibrate, or validate a model (see below) it is important to be 
aware of the limitations of the "data model" as well, and pay attention to any biases or 
errors that may have been introduced in the collecting and processing of that data.   
 In some areas of the geosciences, such as paleontology, models have even been 
used to correct biases in available data.  For example, one aim of paleontology is to 
gather information about the deep-time history of biodiversity (ranging from the 
Cambrian explosion to the various mass extinctions) on the basis of the observed fossil 
record.  The conditions under which fossils are formed, preserved, and revealed are not 
only rare, but highly contingent and uneven with respect to space, time, and type of 
organism.  Hence, there is arguably a strong detection (or sampling) bias in the 
observations.  While some have taken the paleodiversity curves constructed from these 
fossil observations as a literal description of ancient biodiversity, others have argued that 
observed paleodiversity is a composite pattern, representing a biological signal that is 
overprinted by variation in sampling effort and geological drivers that have created a 
non-uniform fossil record (Benson and Mannion 2012; McGowan and Smith 2011).  
Before any evolutionary theories can be tested against the data of the fossil record, these 
data needs to be corrected to extract the relevant biological signal from other 
confounding factors.  Thus, for example, "many vertebrate paleodiversity studies have 
relied on modelling approaches [e.g., multivariate regression models] to 'correct' data for 
uneven sampling" (Benson and Mannion p. 127).  Of course, how the data are to be 
properly corrected, including which models of possible drivers and sources of bias are 
included in the multivariate analysis yielding the corrected 'data,' involves substantial 
theoretical assumptions.  As Kuhn noted years ago, observations are not the "given of 
experience," but are the "collected with difficulty" (Kuhn [1962] 2012, p. 126).   
 The model-ladenness of data has led philosophers such as Ron Giere to claim that 
"it is models almost all the way down" (Giere 1999, p. 55)--a conclusion Edwards argues 
is strongly supported by his historical analysis of the nature of data in meteorology and 
atmospheric science.  Others, such as Stephen Norton and Frederick Suppe, have taken 
this conclusion even further, arguing that it is models all the way down. They write, 
 

Whether physically or computationally realized, all data collection from 
instruments involves modeling.  Thus raw data also are models of data.  
Therefore, there is no important epistemological difference between raw and 
reduced data.  The distinction is relative. (Norton and Suppe 2001, p. 73) 
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However, saying that all data is model-laden to some degree does not imply that there is 
no epistemological difference, nor that all models are epistemically on par (e.g., Oreskes 
2012, pp. 103-104).  One of the most under-developed issues in this literature on data 
models is an analysis of what makes some data models better than others, and under what 
sorts of conditions data models should--or should not--be taken as more reliable than 
more theoretical models. 
 
 
b. Parametrization, Calibration, and Validation  
 In mathematical modeling one can distinguish variables, which are quantities that 
can vary and are to be calculated as part of the modeling solution, and parameters, which 
are quantities used to represent intrinsic characteristics of the system and are specified 
external to the model by the modeler.  Also specified external to the model are the 
boundary conditions and the initial conditions (the latter describe the values of the 
variables at the beginning of a model run).  Whether something is a variable or parameter 
depends on how it is treated in a particular model.  Parameters need not be a constant and 
can also vary across space, for example, but how they vary is specified external to the 
model.  One can further distinguish two general types of parameters: those related to 
characteristics of the dynamics of a process and those related to the characteristics of the 
specific system or location where the model is being applied (Beven 2009, p. 7).   
 Sometimes parameters can be universal constants (e.g., gravitational acceleration 
or the latent heat of water), in which case specifying their values is relatively 
unproblematic (though the process by which the values of constants are initially 
determined is nontrivial, and as Hasok Chang (2004) cogently argues, challenges arise 
even in "basic" measurements, such as temperature).  More typically in the geosciences, 
however, the value of a parameter has to be determined on the basis of complex 
measurements, and even an idealization or averaging of those measurements (such as in 
the case of the parameter for "bed roughness" of a stream bed).  The process by which 
input parameters are initially chosen has not been well-studied, and is greatly in need of 
better understanding.  What has been the subject of considerable attention is the problem 
of calibration: the adjustment of model parameters in response to inadequate model 
performance.   
 In an ideal world, modelers would build a model based on physical principles and 
the equations that represent them, and then, with the use of appropriate input parameters 
for physical variables (like temperature, pressure, permeability, equilibrium constants, 
etc.), build a numerical simulation that accurately reflects the system under analysis.  But 
most models do not do this: for a variety of reasons the match between the model output 
and available empirical information is often quite poor (Oreskes et al., 1994).  Therefore, 
modelers ‘calibrate’ their models: they adjust the input parameters until the fit of the 
model to available information is improved to a level that they consider “acceptable.”   
 There are several concerns that can be raised about this process.  One is that 
parameterized models are non-unique, and there is no way to know which particular set 
of parameterizations (if any) is the “right” one; many different parameterizations may 
produce a given output.  (This may be understood as a variation on the theme of under-
determination, discussed further below).  As hydrologist Keith Beven notes, "parameters 
are usually calibrated on the basis of very limited measurements, by extrapolation from 
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applications at other sites, or by inference from a comparison of model outputs and 
observed responses at the site of interest" (Beven 2009, p. 7).   Moreover, because of the 
variability and uniqueness of many complex systems, parameter values extrapolated from 
one site may not be appropriate for another.  Even if one restricts oneself to a given site, a 
model calibrated for one purpose (e.g., predicting peak runoff) may be predictively 
useless for another purpose (e.g., predicting total runoff) (Wainright and Mulligan 2013, 
p. 15). Indeed, if the chosen parameterization is not an accurate representation of the 
physical system under consideration, it is likely that the model will not perform reliably 
when used for other purposes. This helps to explain the observation that many calibrated 
models fail, not only when used for purposes other than that for which they were 
calibrated, but sometimes even when used for their intended purposes (Oreskes and 
Belitz 2001). 
 Once a model has been built and calibrated, many modelers engage in an activity 
they call model validation.  By this they normally mean the testing of the model against 
available data to determine whether the model is adequate for the purpose in question.  
Many geoscientists acknowledge that the use of the term 'validation' should not be taken 
to imply that the model is true or correct, but rather only that "a model is acceptable for 
its intended use because it meets specified performance requirements" (Rykiel 1996, p. 
229).  Rykiel thus argues that before validation can be undertaken, the following must be 
specified:  a) the purpose of the model, b) the performance criteria, and c) the context of 
the model.  However, many “validated” models have failed even in their “intended” use.  
For example, in a 2001 study, Oreskes and Belitz showed that many hydrological models 
fail because of unanticipated changes in the forcing functions of the systems they 
represent.  More broadly, “validated” models may fail for the following reasons: first, 
systems may have emergent properties not evident on smaller scales; second, small errors 
that do not impact the fit of the model with the observed data may nonetheless 
accumulate over time and space to compromise the fit of the model in the long run; and, 
third, models that predict long-term behavior may not anticipate changes in boundary 
conditions or forcing functions that can radically alter the system's behavior (Oreskes 
2007, p. 119).  
 The idea that a model can be validated has been critiqued on both semantic and 
epistemic grounds.  Semantically, Oreskes and colleagues have noted that the 
terminology of ‘validation’ implies that the model is valid---and thus serves as a claim 
about the legitimacy or accuracy—a claim that, as already suggested above, cannot be 
sustained philosophically and is often disproved in practice (Oreskes et al., 1994, Oreskes 
1998).  Hence, a better term than model validation might be model evaluation.  Even with 
this change in terminology, however, epistemological challenges remain.  In many cases, 
the available empirical data (e.g., historic temperature records) have already been used to 
build the model, and therefore cannot also be used to test it without invoking circular 
reasoning.  Some modelers attempt to avoid this circularity by calibrating and validating 
the model against different historical time periods, with respect to different variables, or 
even different entities and organisms.    
 Paleontologists, for example, use biomechanical models to try to answer 
functional questions about extinct animals based on the structures found in the fossil 
record (which is a subtle and difficult process, e.g., Lauder 1995).  These biomechanical 
models, which are used to make predictions about paleospecies, are "validated" or tested 
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against data for present-day species.  More specifically, John Hutchinson and colleagues 
have used such models to determine how fast large theropod dinosaurs, such as 
Tyrannosaurus rex, could run.  They write,  
 

The model's predictions are validated for living alligators and chickens. . . . 
[m]odels show that in order to run quickly, an adult Tyrannosaurus would have 
needed an unreasonably large mass of extensor muscle (Hutchinson and Garcia 
2002, p. 1018).   

 
Such an approach may work in cases where very large amounts of data are available, or 
where there are clearly distinct domains that may be enlisted.  In many areas of the 
geosciences, however, data is scant and all available data needs to be used in the initial 
construction of the model.  
 
c. Sensitivity Analysis and other Model Tests 
 Irrespective of the difficulties of model construction and calibration, models can 
be highly effective in helping to identify the relative importance of variables, through 
techniques such as sensitivity analyses.  Sensitivity analysis–also known (inversely) as 
robustness analysis–is the process of determining how changes in model input parameters 
affect the magnitude of changes in the output (for philosophical discussions of robustness 
analyses see, for example, Weisberg 2006 or Calcott 2011; for a comprehensive, 
technical introduction to sensitivity analysis in a variety of domains see Saltelli et al. 
2009).  For example, in the context of the paleontology research on models of 
Tyrannosaurus rex introduced above, Hutchinson writes: 
 

Because any model incorporates assumptions about unknown parameters, those 
assumptions need to be explicitly stated and their influences on model predictions 
need to be quantified by sensitivity analysis. . . . In many models this can be 
determined by varying one parameter at a time between minimal and maximal 
values (e.g., crouched and columnar limb poses) and evaluating the changes in 
model output (e.g., the required leg muscle mass). (Hutchinson 2012, p. 116)  

 
Varying one parameter at a time is known as a "local" sensitivity analysis.  However, for 
some sorts of systems (especially systems in which nonlinearities and thresholds operate), 
a complicating factor is that model sensitivity to a parameter can also depend on the 
values of the other model parameters (Hamby 1994, p. 141; Wainwright & Mulligan 
2013, p. 18).  Hence, in these latter cases, one needs to perform what is known as a 
"global" sensitivity analysis, where all the parameters are varied simultaneously to assess 
how their interactions might affect model output (e.g., Saltelli et al. 2008).    
 Sensitivity analysis is used in nearly all domains of modeling, and it can be an 
important guide to data collection: alerting the scientific community to where additional 
or better empirical information is most likely to make a difference.  That is to say, 
sensitivity analyses can reveal which parameters are most important in a model (and 
hence should be targeted for additional data collection) and which parameters are 
relatively unimportant or even negligible.  It may thus suggest parameters that should be 
omitted, which can save on computational time.  Sensitivity analyses can also help 
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determine whether a model might be overparametrized, which involves a kind of 
overfitting to the data that occurs when too many parameters are included and fixed. 
 Model testing can involve a wide spectrum of different techniques, ranging from 
subjective expert judgments to sophisticated statistical techniques.  Rykiel (1996) has 
assembled a list of 13 different procedures, which he calls 'validation' procedures.  
However, given the concerns raised above about the term validation, and the 
heterogeneity of the procedures collected in his list, the broader rubric of 'model tests' is 
arguably more appropriate.  Rykiel's list is the following: 1. Face validity, where experts 
are asked if the model and its behavior are reasonable; 2. "Turing-test" validity, where 
experts assess whether they can distinguish between system and model outputs; 3. visual 
validation, where visual outputs of model are (subjectively) assessed for visual goodness 
of fit; 4. inter-model comparisons; 5. internal validity of model; 6. qualitative validation: 
the ability to produce proper relationships among model variables and their dynamic 
behavior (not quantitative values); 7. historical data validation, where part of the 
historical data is used to build the model and part used to validate it; 8. extreme 
conditions tests, model behavior is checked for unlikely conditions; 9. "traces": the 
behavior of certain variables is traced through the model to see if it remains reasonable at 
intermediate stages; 10. sensitivity analyses: the parameters to which the model is 
sensitive is assessed against the parameters to which the system is or is not sensitive; 11. 
multistage validation: validation at certain critical stages throughout the model-building 
process; 12. predictive validation: model predictions compared to system behavior;  
13. statistical validation: statistical properties of model output are evaluated and errors 
are statistical analyzed (Rykiel 1996, pp. 235-237).  Although as noted before, the term 
validation is inappropriate, and this heterogeneous list could be usefully organized into 
different categories, it nonetheless provides a good sense of the broad spectrum of 
techniques that modelers deploy in testing and evaluating their models. Each of the 
procedures on this list can play an important role in the modeling process and is arguably 
worthy of further philosophical and methodological reflection.   
 
 
V.  Inverse Problem Modeling  
 One of the central tasks of geophysics is to determine the properties of the interior 
structure of the Earth on the basis of measurements made at the surface.  The primary 
method by which this is done is known as "inverse problem" modeling.  Most broadly, an 
inverse problem is defined as that of reconstructing the parameters of a system or model 
based on the data it produces; in other words, one starts with a set of observational data 
and then tries to reason back to the causal structure that might have produced it.  The 
inverse problem is contrasted with the "forward problem", which involves starting with a 
known model and then calculating what observations or data that model structure will 
produce.  Inverse problems are found across the sciences, such as in finding the quantum 
potential in the Schrödinger equation on the basis of scattering experiments, diagnostic 
imaging in medicine using X-ray computer assisted tomography, or, most relevantly here, 
determining information about the interior structure of the earth on the basis of travel-
time data of waves (e.g., earthquakes).  Indeed, the first methods for solving inverse 
problems were developed in the context of seismology by German mathematical 
physicist Gustav Herglotz (1881-1953) and the geophysicist Emil Wiechert (1861-1928).   
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 The fundamental challenge for inverse modeling methods is the problem of 
underdetermination:  
 

[T]he model one aims to determine is a continuous function of the space 
variables.  This means the model has infinitely many degrees of freedom.  
However, in a realistic experiment the amount of data that can be used for the 
determination of the model is usually finite.  A simple count of variables shows 
that the data cannot carry sufficient information to determine the model uniquely. 
(Snieder and Trampert 1999, p. 120) 

 
In other words, the solution to the inverse problem is not unique: there are many different 
models that can account for any given set of data equally well.  This is true for both linear 
and nonlinear inverse problems (Backus and Gilbert 1967).  
 One method for trying to constrain this underdetermination is known as the 
model-based inversion approach, which involves introducing a second, intermediary 
model known as the "estimated" or "assumed" model (Sen and Stoffa 2011, p. 626).  The 
estimated model is used in the forward direction to generate "synthetic" data, which is 
then compared with the observational data.  On the basis of the discrepancy between the 
two data sets, the estimated model is modified and the synthetic data it produces is again 
compared in an iterative optimization process.  As Snieder and Trampert note, however, 
 

there are two reasons why the estimated model differs from the true model.  The 
first reason is the non-uniqueness of the inverse problem that causes several 
(usually infinitely many) models to fit the data. . . . The second reason is that real 
data . . . are always contaminated with errors and the estimated model is therefore 
affected by these errors as well. (Snieder and Trampert 1999, p. 121) 

 
In other words, one must also be aware of errors arising from the data model (as 
discussed earlier).  Different modeling approaches for dealing with inverse problems in 
geophysics have been developed, such as the use of artificial neural network (ANN) 
models (see, e.g., Sandham and Hamilton 2011 for a brief review).  
 Recently a number of philosophers of science have highlighted the philosophical 
implications of the underdetermination one finds in geophysical inverse problems.  
Gordon Belot (2015), for example, argues that this "down to earth" underdetermination 
shifts the burden of proof in the realism-antirealism debate by showing that a radical 
underdetermination of theory by (all possible) data is not just possible, but actual, and 
likely widespread in the geosciences (and elsewhere).  Teru Miyake similarly calls 
attention to the problem of underdetermination in these earth models and notes that there 
are additional sources of uncertainty that are not even considered in the setting up of the 
inverse problem (Miyake forthcoming 2016).  He argues that thinking of these earth 
models as a case of what philosophers (e.g., Tal 2012) call 'model-based measurement' is 
important for understanding the epistemology of seismology.   
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VI. Uncertainty in Geoscience Modeling 
 Geoscientists have paid considerable attention to the problem of model 
uncertainty and sources of error, but many (if not all) of the sources of uncertainty they 
identify are not unique to the geosciences.  There are different ways in which one can 
construct a taxonomy of the sources of uncertainty in modeling.  One can, for example, 
organize the sources of uncertainty by the relevant stage in the modeling process.  Here 
one can group the various uncertainties into the following three categories:  

1. Structural Model Uncertainties  
2. Parameter Uncertainties 
3. Solution Uncertainties.   

Alternatively, one can also organize the sources of uncertainty in modeling on the basis 
of various complexities that arise for the sort of systems one is trying to model.  This 
latter approach is taken by geomorphologist Stanley Schumm (1991), who organizes the 
sources of uncertainty into the following three categories:  

1¢. Problems of Scale and Place 
2¢. Problems of Cause and Process 
3¢. Problems of System Response   

Each of these ways of thinking about sources of uncertainty in modeling serves to 
highlight a different set of philosophical and methodological issues.   
 Uncertainties can be identified at each step of the modeling process.  During the 
construction phase of the model there are a number of uncertainties that can be grouped 
together under the broad rubric of "structural model uncertainties."  In this category there 
are what are termed closure uncertainties, which involve uncertainties about what 
processes to include or not include in the model (e.g., Lane [2003] 2010, p. 291).  There 
can be uncertainties regarding both which processes are in fact operating in the target 
system (some processes might be unknown) and which of the processes known to be 
operating are in fact important to include (we may know that a process is operating, but 
not think it is relevant). Sometimes whether a process is important, however, depends on 
what other processes are included in the model, as well as other factors, such as the 
relevant spatio-temporal scale over which the model will be applied.  As an example of 
this type of structural model ("closure") uncertainty, O’Reilly et al. (2011) discuss the 
example of early attempts to model stratospheric ozone depletion (that resulted in the 
unexpected "ozone hole" in the Antarctic, which was discovered in 1985).  They write,  
 

[B]efore the ozone hole discovery led scientists to rethink their conceptual 
models, ozone assessments had not considered such multiphase reactions [i.e., 
heterogeneous chemical reactions] to be important.  At the time, gas-phase 
atmospheric chemistry was much better understood than multiphase chemistry, 
and heterogeneous reactions were seen as arcane and generally unimportant in 
atmospheric processes. (O’Reilly et al. 2011, p. 731) 

 
Because these chemical processes were not well understood scientifically and were not 
recognized as important to this phenomenon, they were left out of the model, leading to a 
drastic under-prediction of the rate at which ozone depletion would take place.  More 
generally, as Oreskes and Belitz have noted, when modelers lack reliable information 
about known or suspected processes, they may simply leave out those processes entirely, 
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which effectively amounts to assigning them a value of zero (Oreskes and Belitz 2001; 
O'Reilly et al. 2011).  Such closure uncertainties in modeling can thus lead to significant 
errors.   
 Second, there are process uncertainties, which are concerned with how those 
processes should be mathematical represented in the model.  For many processes in the 
geosciences, there is no consensus on the right way to represent a given process 
mathematically, and different representations may be more or less appropriate for 
different applications.  For example, there are different ways that turbulence can be 
represented in models of river flow, from the greatly simplified to the highly complex 
(Lane [2003] 2010, p. 291).   
 Third, there are what are more narrowly called structural uncertainties; these 
are uncertainties in the various ways the processes can be linked together and represented 
in the model.  Included in this category are uncertainties associated with whether a 
component is taken to be active (allowed to evolve as dictated by the model) or passive 
(e.g., treated as a fixed boundary condition).  Stuart Lane ( [2003] 2010, p. 291) gives the 
example of the different ways the ocean can be treated in global climate models: because 
of water's high specific heat capacity, the ocean responds slowly to atmospheric changes; 
hence, if used on short enough time scales, the modeler can represent the ocean as a 
passive contributor to atmospheric processes (as a source of heat and moisture, but not 
one that in turn responds to atmospheric processes).  Wendy Parker (2010) also discusses 
structural uncertainty in climate modeling, with regard to choice of model equations.   
 Structural model uncertainties can give rise to "structural model error," which 
Roman Frigg and co-authors (2014) define broadly as a discrepancy between the model 
dynamics and target system dynamics.  They demonstrate that in a nonlinear model, even 
a small structural model error can lead to divergent outcomes more drastic than those due 
to the sensitive dependence on initial conditions characteristic of chaotic systems.  In 
analogy with the well-known "butterfly effect," they (following Thompson 2013) call this 
the "hawkmoth effect."  They conclude that structural model error in a nonlinear model 
"is a poison pill . . . operational probability forecasts are therefore unreliable as a guide to 
rational action if interpreted as providing the probability of various outcomes" (Frigg et 
al. 2014, p. 57).  Nonetheless, they note that such models may still be useful for 
generating insight and understanding.   
 In addition to these three types of structural model uncertainty (closure, process, 
and structure uncertainties), another significant source of uncertainty is parameter 
uncertainty.  As discussed earlier, models contain both variables (whose values are 
determined by the model itself) and parameters (whose values must be specified 
externally by the modeler).  In the global circulation or earth system models of climate 
science, parameters are used, for example, in representations of unresolved processes 
(such as cloud systems or ocean eddies) that are on a finer-grained scale than that on 
which the model operates.  Ideally the value of a parameter is determined directly by field 
measurements, but often this is not possible.  In many cases the parameter is either 
prohibitively difficult to measure or has no simple field equivalent.  The parameters then 
need to be estimated or calculated on the basis of other models (e.g., as detailed by 
Edwards 2010 in his discussion of parameters in meteorology and atmospheric science).  
Beven (2009, p. 8) gives the example of the parameter representing soil hydraulic 
conductivity in hydrology.  Measurements of soil hydraulic conductivity are typically 



 20 

made on soil samples in a small area, but are known to exhibit order of magnitude 
variability over even short distances.  Often, however, the model will require a value of 
hydraulic conductivity over a much larger spatial scale (e.g., the whole catchment area).  
Hence, substantial uncertainties can arise as one tries to determine an effective value for 
the parameter.   
 Parameters can also take on different values than their real-world counterparts 
during the process of calibration or optimization.  An example is the bed roughness 
parameter, which is used to represent the grain size of a river bed affecting the friction 
and turbulence of the flow.  As Odoni and Lane note,  
 

it is common to have to increase this quite significantly at tributary junctions, to 
values much greater than might be suggested by . . . the bed grain size.  In this 
case there is a good justification for it, as one-dimensional models represent not 
only bed roughness effects but also two- and three-dimensional flow processes 
and turbulence (Odoni and Lane 2011, 169). 

 
In other words, the "bed roughness" parameter in the model is used to capture not just 
bed roughness, but other effects that act like bed roughness on the behavior of the flow.  
This is another example of what was earlier called "getting things more wrong in order to 
get them more right."  More generally, parameter values determined for one model may 
be calibrated for that particular model structure, and hence not be independent of that 
model structure or even different discretizations or numerical algorithms of that model 
structure, and therefore are not transferable to other models without additional error 
(Beven 2009, p. 8).  Hence, one must be aware of the problem of "parameter 
incommensurability," where parameters that share the same name might in fact "mean" 
different things (ibid). 
 Although they are not strictly speaking parameters, one can also include under 
this umbrella category uncertainties in the initial conditions and the boundary conditions, 
which also need to be specified externally by the modeler in order to operate the model.  
Examples include "the geometry of the problem (e.g., the morphology of the river and 
floodplain system that is being used to drive the model) or boundary conditions (e.g., the 
flux of nutrients to a lake in a eutrophication model)" (Odoni and Lane 2011, p. 169).  In 
order to integrate a model forward in time, one needs to first input the current state of the 
system as initial conditions.  Not only can there be uncertainties in the current state of the 
system, but also some chaotic models will be very sensitive to such errors in the initial 
conditions.   
 The final category of model uncertainties are solution uncertainties.  Once the 
model equations are set up, the parameters fixed, and the initial and boundary conditions 
are specified, the next step is to solve or run the model.  Often in geoscience modeling 
the governing equations are nonlinear partial differential equations that do not have 
general analytic solutions.  In such cases one must resort to various discretization or 
numerical approximation algorithms (e.g., finite difference methods, finite element 
methods, boundary element methods, etc.) to obtain solutions, which will not be exact 
(though they can often be benchmarked against analytic solutions).  There can also be 
uncertainties introduced by the way the algorithm is implemented on a computer for a 
simulation model.  Beven notes,  
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[D]ifferent implementations will, of course, give different predictions depending 
on the coding and degree of approximation.  [The] computer code . . . represents a 
further level of approximation to the processes of the real system" (Beven 2009, 
p. 6)  

 
In implementing a model on a computer, decisions must be made about the appropriate 
choice of time steps and spatial discretizations, and these and other solution uncertainties 
can lead to further sources of error.  

In his book To Interpret the Earth: Ten Ways to be Wrong, Schumm identifies ten 
sources of uncertainty, which he organizes into the three categories of problems of scale 
and place, problems of cause and process, and problems of system response.  The first 
source of uncertainty concerns time.  Compared to the long-time history over which 
Earth's landscapes evolve, the time-scale of human observation is extremely short.  There 
can be short term patterns in geoscience phenomena that are very different from the long-
term pattern one is trying to predict or explain, hence extrapolations from short-term 
observations may not be reliable (e.g., the short-term wind direction you observe may not 
be indicative of the prevailing long-term wind direction that predominantly shapes the 
landscape).  Also different features of a landscape (and the corresponding different 
processes) can become salient as different time-scales are considered.  The processes that 
are most relevant on a short time scale (such as storm events) may be insignificant on a 
long-time scale, as well as the reverse (e.g., uplift phenomena are negligible over the 
short term, but are such stuff as the Himalayas are made of over the long term).  Hence 
inadequate attention to these issues of time, both in the construction and application of 
the model, can be a significant source of uncertainty.  The second source of uncertainty, 
space, is analogous to these problems of time.  For example, to understand how water 
moves through the ground on a small spatial scale, the type of soil or rock (e.g., its 
porousness) might be most relevant to model, while on a large scale, the overall topology 
of the landscape (e.g., whether it is on a steep slope) and whether it has large-scale rills 
(cracks or channels) might be more relevant.  The third source of uncertainty Schumm 
calls location, which relates to the uniqueness of geomorphic systems (e.g., there is a 
sense in which no two rivers are exactly the same, and hence models developed for one 
location, might not be applicable to other locations).   
 In the next cluster, Schumm identifies convergence as a fourth source of 
uncertainty.  Convergence is the idea that different processes or causes can produce 
similar effects.  For example, sinuous rills on the moon look like dried river beds formed 
by flowing water, but were later concluded to be the result of collapsed lava tubes 
(Schumm 1991, p. 59).  Hence one needs to be careful in inferring cause from effect, and 
in drawing an analogy from the causes of an effect at one location to the causes of a very 
similar effect at another location.  The fifth source of uncertainty, divergence, is the 
opposite of convergence: namely, that the "same" cause can produce different effects.  
Schumm gives the example of glacio-eustasy, or the change of sea levels due to the 
melting of glaciers and ice sheets.  He explains, "With the melting of the Pleistocene 
continental ice sheets the assumption is that a global sea-level rise will submerge all 
coastlines. However, the results are quite variable. . . . [a]s a result of isostatic uplift 
following melting of the continental ice sheets" (Schumm 1991, p. 64).  Isostatic uplift 
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refers to the rebounding or rise of land masses that were depressed under the massive 
weight of the ice sheets (this rebound is still ongoing and averages at the rate of a 
centimeter per year: see, e.g., Sella et al. 2007).  In other words, the melting of glaciers 
and icesheets can cause sea levels both to rise and to fall (depending on the location): one 
cause, two different (and opposite) effects.   
  A sixth source of uncertainty Schumm identifies is what he calls efficiency, 
which he identifies with the assumption that the more energy expended the greater the 
response or work done.  He notes that this will not generally be the case,  
 

when more than one variable is acting or when a change of the independent 
variable, such as precipitation, has two different effects, for example, increased 
runoff and increased vegetation density, there may be a peak of efficiency at an 
intermediate condition (p. 66).   

 
He gives as an example the rate of abrasion of a rock by blown sand, which has a 
maximum abrasion efficiency at relatively low rates of sand feed (presumably due to an 
interference of rebounding particles with incoming particles).   
 The seventh source of uncertainty he identifies is multiplicity, which is the idea 
that there are often multiple causes operating in coordination to produce a phenomenon, 
and hence one should adopt a "multiple explanation approach."  This concept originated 
in the work of the American geologist Thomas C. Chamberlin (1843-1928), in his 
method of “multiple working hypotheses,” a method which he urged was beneficial not 
only to scientific investigation, but also to education and citizenship.  In his 1890 article 
introducing this method he considers the example of explaining the origin of the Great 
Lake basins.  Chamberlin writes, 
 

It is practically demonstrable that these basins were river-valleys antecedent to the 
glacial incursion, and that they owe their origin in part to the pre-existence of 
those valleys and to the blocking-up of their outlets. . . . So, again, it is 
demonstrable that they were occupied by great lobes of ice, which excavated them 
to a marked degree, and therefore the theory of glacial excavation finds 
support. . . . I think it is furthermore demonstrable that the earth's crust beneath 
these basins was flexed downward, and that they owe . . . their origin to crustal 
deformation. (Chamberlin 1890, p. 94) 

 
What might initially appear to be a scientific controversy involving rival hypotheses or 
competing explanations, in fact turns out to be a case where each hypothesis correctly has 
part of the story.  Chamberlin concludes that one benefit of considering diverse 
explanations for observed phenomena is that it forces the geologist to move beyond hasty 
or simplistic explanations, and instead consider the possibility that more than one 
relevant process has been involved. (For a philosophical discussion of the method of 
multiple hypotheses in the case of plate tectonics, see Rachel Laudan (1980).) 
 An example of this from paleontology is the long-standing debate about the cause 
of the Cretaceous (K-T) mass extinction (in which 70% of all species, including all the 
(non-avian) dinosaurs, went extinct).  The favored explanation of this extinction event is 
the impact hypothesis: that the extinction was caused by the large comet or asteroid that 
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hit Earth near present-day Chicxulub, Mexico.  While the fact that this impact occurred is 
not in doubt, some scientists question whether the impact hypothesis can explain the 
gradual and stepwise extinction pattern that is observed in the fossil record.  They favor 
instead an explanation that appeals to massive volcanism and climate change, which was 
already underway.  While often viewed as rivals, these two explanations might be 
complementary (e.g., Richards 2015).  Schumm concludes, "if there is more than one 
cause of a phenomenon, unless all are comprehended, extrapolation will be weak and 
composite explanations are needed" (pp. 74-75).  (For a more general philosophical 
discussion of explanation in the earth sciences, including a discussion of the explanation 
of the K-T extinction, see Cleland (2011)). 
 The final three sources of uncertainty Schumm identifies are singularity, the idea 
that landforms, though also having many commonalities, have features that make them 
unique, and hence respond to changes in slightly different ways or at different rates; 
sensitivity, the idea that small perturbations to a system can have significant effects, 
especially when a system involves either internal or external thresholds; and the 
complexity of geomorphic systems, which means they have numerous interconnected 
parts interacting in typically nonlinear ways.  An example of an important threshold in 
the geosciences is the velocity at which a sediment particle of a given size is set in 
motion by a particular fluid (e.g., water or wind).  This is an example of an extrinsic 
threshold involving changes in an external variable.  There can, however, also be intrinsic 
thresholds in which there is an abrupt change in a system without there being a 
corresponding change in an external variable.  For example, under constant weathering 
conditions the strength of materials can be weakened until there is an abrupt adjustment 
of the system (such as a landslide).  Another example of an intrinsic threshold is when a 
bend or loop in a meandering river will suddenly be cut off by the formation of a new 
channel.  More generally, geomorphic systems often exhibit what are called autogenic 
behaviors, in which there can be a sudden and pronounced change in the system's 
behavior or characteristics, not due to an external cause, but rather due to internal 
feedbacks in the system, in which gradual changes can result in sudden, threshold-like 
responses (for a discussion see Murray et al. 2014; for an example of an autogenic 
behavior discovered in the St. Anthony's Falls physical model discussed earlier, see Paola 
et al. 2009).   Schumm concludes, "The recognition of sensitive threshold conditions 
appears to be essential in order that reasonable explanations and extrapolations can be 
made in geomorphology, soil science, sedimentology and stratigraphy, and many 
environmental and ecosystem areas" (Schumm 1991, p. 84).   
 So far we have reviewed five sources of uncertainty arising during stages of the 
modeling process and ten sources of uncertainty arising from the complexity of 
geoscience systems.  A further complication arises from the fact that even models with 
these sorts of errors can generate predictions that agree reasonably well with 
observations–a case of getting the right answer for the wrong reason.  Hence, on pain of 
committing the fallacy of affirming the consequent, one cannot deductively conclude that 
one's model is right, just because it produces predictions that match observations.  More 
generally, this is related to the fact that more than one model or theory can account for a 
given set of observations: the data underdetermine the model or theory choice.  In the 
philosophical literature this is known as the problem of underdetermination (e.g., Duhem 
[1906] 1954, or for contemporary discussion see Stanford 2013; for a philosophical 
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discussion of underdetermination in the earth sciences see Kleinhans et al. 2005).  In the 
geoscience literature the problem of underdetermination is sometimes referred to  as the 
problem of non-uniqueness, or equifinality (e.g., Beven 1993). Beven writes: 
 

It may be endemic to mechanistic modelling of complex environmental systems 
that there are many different model structures and many different parameter sets 
within a chosen model structure that may be . . . acceptable in reproducing the 
observed behavior of that system.  This has been called the equifinality concept 
(Beven and Freer 2001, p. 11).   

 
In other words, the data are not sufficient to uniquely pick out a model structure or 
parameter set.  (A similar sort of equifinality was seen in the nonuniqueness of inverse 
problems discussed earlier.)  Moreover, the acceptable parameter sets may be scattered 
throughout parameter space (i.e., not localized around some "optimum" parameter set).  
This problem of equifinality is not just hypothesized, but has been demonstrated in 
computer simulations, which are now cheap and efficient enough to allow explorations of 
the parameter space of models of a variety of geoscience systems.   
 The problem of equifinality has led Beven and co-workers to develop a method to 
deal with uncertainty that they call the Generalized Likelihood Uncertainty Estimation, or 
GLUE methodology.  GLUE involves a kind of Monte Carlo method with a random 
sampling of the space of possible model-parameter combinations, in which each possible 
set of parameters is assigned a likelihood function (assessing the fit between model 
predictions and observations).  The idea is not to pick one "best" model-parameter set, 
but rather to take into account the predictions of all acceptable models (models not ruled 
out by current data or knowledge), weighted by their relative likelihood or acceptability, 
in something like a Bayesian averaging of models and predictions.  (For a recent review 
and discussion of objections to the GLUE methodology see Beven and Binley 2014).   
 
 
VII. Multi-Model Approaches in Geosciences: 
 The GLUE methodology is just one of several different approaches that try to use 
multiple models in concert to reduce uncertainty.  The GLUE methodology requires a 
large number of runs to adequately explore the parameter space.  However this is not 
typically feasible in computationally intensive models.  An alternative approach that can 
be used with more complex models is the metamodel approach (for a review see 
Kleijnen 1998).  A metamodel is a simplified surrogate model that is abstracted from the 
primary model and used to aid in the exploration of the primary model and its parameter 
space.  While metamodels have long been used in engineering research, they have only 
recently begun to be applied to models in the geosciences.   
 Nicholas Odoni (2007), for example has applied the metamodel approach to the 
study of a landscape evolution model (LEM) developed by Slingerland and Tucker 
(1994) known as GOLEM (where GO stands for geomorphic-orogenic).  GOLEM has 
been used, for example, to model the evolution of a catchment landscape of the Oregon 
Coast Range around the headwaters of the Smith River over a period of 100,000 years.  
In order to understand how equifinality manifests itself in GOLEM, Odoni selected 10 
parameters (related to mass movement, channel formation, fluvial erosion and weathering 
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processes) to vary over a range of values that was determined to be consistent with the 
location based on published data and calibration.  The model outputs used to describe the 
landscape at 100,000 years include sediment yield, drainage density, sediment delivery 
ratio, and a topographic metric.  Rather than trying to solve the full GOLEM model for 
the immense number of possible parameter value combinations, Odoni derived a 
metamodel, or set of regression equations, that described each model output as a function 
of the GOLEM parameters.  As he explains, "The parameter space is then sampled 
rapidly and densely (>>106 times), using each metamodel to predict GOLEM's output at 
each sample point" (Odoni 2007, i).  In this way metamodels yield a clearer picture of 
what drives model output (leading to a possible further simplification of the model) and 
an understanding of where equifinality may be lurking.  It is important to note that this 
equifinality is not just an abstract "cooked-up" possibility, but a genuine, wide-spread 
practical problem, making it yet another example of what Belot termed "down-to-earth 
underdetermination."   
 More common than both the GLUE and metamodel approaches are classic 
intermodel comparison projects.  The most well-known here are the large-scale, 
multiphase intercomparison projects used by the Intergovernmental Panel on Climate 
Change (IPCC) in their assessments.  The most recent coupled model intercomparison 
project (CMIP5), for example, compares the predictions of dozens of climate models 
running the same set of scenarios.  The aim of such multi-model ensembles is to "sample 
uncertainties in emission scenarios, model uncertainty and initial condition uncertainty, 
and provide a basis to estimate projection uncertainties" (Knutti and Sedlácek 2013, p. 
369).  Elizabeth Lloyd has emphasized the strength of such multimodel approaches, 
arguing that it is “a version of reasoning from variety of evidence, enabling this 
robustness to be a confirmatory virtue” (Lloyd 2010, p. 971). 
 The proper assessment of such intermodel comparisions for robustness and 
uncertainty reduction involves some subtleties, however (see, e.g., Parker 2011, 2013; 
Lenhard and Winsberg 2010).  Models can, for example, agree because they share some 
common model structure, rather than indicating model accuracy.  As David Masson and 
Reto Knutti explain,  
 

All models of course contain common elements (e.g., the equations of motion) 
because they describe the same system, and they produce similar results.  But if 
they make the same simplifications in parameterizing unresolved process, use 
numerical schemes with similar problems, or even share components or parts 
thereof (e.g., a land surface model), then their deviations from the true system or 
other models will be similar (Masson and Knutti 2011, 1).   

 
In such cases an agreement among climate models does not indicate that modelers are on 
the right track.  It remains unclear how best to conceptualize and assess model 
independence (Katzav and Parker 2015, p. 485).  More generally, the spread of an 
ensemble of models is often taken to approximate the uncertainty in our predictions; 
however, as Knutti and co-authors (2010) have argued, these are "ensembles of 
opportunity", not systematic explorations of model or parameter space.  They suggest a 
number of ways forward, including having a larger diversity of models to help find 
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constraints valid across structurally different models, and developing new statistical 
methods for incorporating structural model uncertainty (Knutti et al. 2010, p. 2755). 
There are many other multimodel approaches used in the geosciences, including coupled 
models and hierarchical modeling (for a philosophical discussion see Bokulich (in 
progress)). 
 
 
VIII. Conclusions 
 The geosciences provide a rich and fruitful context in which to explore 
methodological issues in scientific modeling.  The problem of understanding and 
articulating scientific uncertainty has particularly come to the fore in these fields.  The 
complex and multi-scale nature of geological and geophysical phenomena require that a 
wide variety of kinds of models be deployed and a broad spectrum of sources of 
uncertainty be confronted.  Most modelers do not expect their models to give specific, 
quantitative predictions of the detailed behavior of the systems under investigation. 
Rather, they are understood as providing a tool by which scientists can test hypotheses 
(including causal ones), evaluate the relative importance of different elements of the 
system, develop model-based explanations (e.g., Bokulich 2011, 2016), and generate 
qualitatively accurate projections of future conditions. Indeed, it is precisely by grappling 
with these many sources of uncertainty that geoscientists gain insight and understanding 
into the various processes that shape the earth, their relative importance and patterns of 
dependence, and the emergent structures that they produce.  
 The geosciences, which include geology, paleontology, hydrology, glaciology, 
climate science, oceanography, geophysics (e.g., seismology, volcanology), and 
geomorphology (both planetary and terrestrial), constitute a significant portion of 
scientific research today.  Our philosophies of science and our understanding of the 
nature of model-based inquiry are inadequate if we do not take this research into account.  
As we hope this review has made clear, "the earth sciences are profoundly important, not 
only because they challenge conventional philosophical portraits of how scientific 
knowledge is produced, tested, and stabilized, but also because they matter for the future 
of the world" (Oreskes 2012, p. 100).   
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