
Logics for Belief as Maximally Plausible
Possibility

Giacomo Bonanno∗

Department of Economics, University of California, Davis, USA
gfbonanno@ucdavis.edu

June, 2018. Revised, May 2019.

Abstract

We consider a basic logic with two primitive uni-modal operators: one for
certainty and the other for plausibility. The former is assumed to be a normal
operator (corresponding - semantically - to a binary Kripke relation), while
the latter is merely a classical operator (corresponding - semantically - to a
neighborhood structure). We then define belief, interpreted as “maximally
plausible possibility”, in terms of these two notions: the agent believes φ
if (1) she cannot rule out φ (that is, it is not the case that she is certain
that ¬φ), (2) she judges φ to be plausible and (3) she does not judge ¬φ
to be plausible. We consider four interaction properties between certainty
and plausibility and study how these properties translate into properties
of belief (e.g. positive and negative introspection and their converses). We
then prove that all the logics considered are minimal logics for the high-
lighted theorems. We also consider a number of possible interpretations of
plausibility, identify the corresponding logics and show that some notions
considered in the literature are special cases of our framework.

∗This research supported by a grant from the University of California, Davis.
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1 Introduction

There is a large body of literature in philosophy devoted to investigating the
notions of knowledge and belief. One strand in the literature takes belief as
primitive and addresses the question “what is needed in order for belief to
constitute knowledge?”.1 Another strand takes knowledge as primitive and de-
fines belief in terms of knowledge.2 Yet another strand in the literature takes
both knowledge and belief as primitive notions and investigates the interaction
between the two: for example, whether it is reasonable to postulate that if the
individual believes φ then she should believe that she knows φ.3

Another body of literature (mainly in modal logic, computer science and
game theory) takes belief as primitive but distinguishes two different, yet co-
existing, types of belief, one often referred to as knowledge and the other as belief.4

Knowledge is interpreted as a stronger doxastic attitude, for example reflecting
strong evidence, while belief represents a weaker doxastic attitude, reflecting
an assessment of likelihood or plausibility. Some of this literature suggests
that the difference between the two notions reflects a distinction between hard
information and soft information. For example, van Benthem writes (van Benthem
2007, p.2):

“[...] hard information, [...] changes what I know. If I see that the
Ace of Spades is played on the table, I come to know that no one
holds it any more. [...] Soft information, [...] affects my beliefs
without affecting my knowledge about the cards. I see you smile.
This makes it more likely that you hold a trump card, but it does
not rule out that you have not got one.”

The distinction between hard information (giving rise to knowledge) and soft
information (giving rise to belief) has been investigated within the context of
belief revision.5

In this paper we start with two primitive notions and obtain from them
belief as a derived notion.

1See, for example, Gettier (1963), Lehrer and Paxson (1969), Swain (1974), Williamson (2000).
2For example, belief has been defined as the epistemic possibility of knowledge: Lenzen (1978),

Stalnaker (2006).
3See, for example, Hintikka (1962), Klein et al. (2018), Lenzen (1978; 2004), Stalnaker (2006).
4See, for example, Aumann (1976; 1999), Balbiani et al. (2018), Battigalli and Bonanno (1999),

Friedman and Halpern (1997), van der Hoek and Meyer (1995), Kraus and Lehmann (1988), Voor-
braak (1992).

5See, for example Baltag and Smets (2008), van Ditmarsch et al. (2007), van Benthem (2007; 2011)
and the overview in Fiutek (2013).
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The first primitive notion corresponds to what is usually taken to be knowl-
edge, but we replace it with certainty: for the sake of generality, we do not
impose any of the properties that are normally associated with knowledge (e.g.
positive and/or negative introspection, truth), although those properties can be
added if deemed appropriate; indeed, all our results remain true if one adds to
the logic of certainty the axioms that are normally used to define knowledge.6

We call our second primitive notion plausibility, representing a judgment of
credibility (alternative possible interpretations of ‘plausibility’ are discussed in
Section 6). Thus, to borrow van Benthem’s example quoted above, I can be
certain that no one holds the Ace of Spades (because I see it on the table) and
consider it plausible that you hold a trump card (because you are grinning);
furthermore, this latter judgment can co-exist with the judgment that it is also
plausible that you do not hold a trump card (because I know that you are
good at faking facial expressions), that is, both φ and ¬φ can, in principle, be
considered plausible. Plausibility differs from possibility. The latter relates to
certainty: one considers φ possible if one is not certain that ¬φ is the case. One
might consider φ possible and, at the same time, not plausible or not credible.7

From the two notions of certainty and plausibility we obtain belief as a
derived notion, by defining belief as maximally plausible possibility, in the sense
that the agent believes that φ if and only if:

1. she cannot rule out φ, that is, it is not the case that she is certain
that ¬φ,

2. she judges φ to be plausible, and

3. she does not judge ¬φ to be plausible.

We use the expression ‘maximally plausible possibility’ rather than ‘plausible
possibility’ because of Point 3: if φ is plausible, but so is ¬φ, then – according
to our definition – it is not the case that the agent believes φ.

For example, consider Ann who – recognising her lack of expertise – decides
to base her opinions (concerning some relevant matters) on the beliefs of n

6 Thus we steer clear of the controversies concerning what is appropriate to postulate for
knowledge. For example, Hintikka (Hintikka (1962)) and Lenzen (Lenzen (2004)) argue against
Negative Introspection (if I don’t know that φ then I know that I don’t know) as a justifiable
property of knowledge, Williamson (Williamson (2000)) offers some arguments against Positive
Introspection (if I know that φ then I know that I know); on the other hand, Truth (if I know that
φ then φ is indeed true) adds an external criterion, which seems indispensable for knowledge but
problematic if one is merely interested in modeling the doxastic state of an individual

7A natural axiom to postulate is that plausibility implies possibility: see Axiom (CP2) in Section
3.
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experts (n ≥ 2):8 she declares herself to be certain of p if all the experts believe p
and - since she considers all experts to be competent and reliable - she considers
p to be plausible if and only if at least m experts believe p, for some fixed 1 ≤ m ≤
n. For simplicity, consider the case where the experts are “opinionated” (that
is, each of them either believes p or believes ¬p, for every relevant proposition
p). Let b be the number of experts who believe p (so that, given our assumption,
the remaining n− b experts believe ¬p). Then p is maximally plausible for Ann
if and only if (1) b ≥ m and (2) n − b < m (which is equivalent to b ≥ n −m + 1),
that is, if and only if b ≥ max{m, n−m+1}. Thus we can distinguish three cases:

1. If m= 1 then belief coincides with certainty: Ann believes p if and only if
all the experts believe p.

2. If 1 < m < n+1
2 (so that max{m, n−m+1} = n−m+1) then belief differs from

both plausibility and certainty: Ann believes p if and only if b ≥ n−m+1.9

3. If m ≥ n+1
2 (so that max{m, n − m + 1} = m) then belief coincides with

plausibility: Ann believes p if and only if she considers p plausible.10

The logic that we develop can accommodate epistemic/doxastic states such
as the one expressed in the statement “I believe, but am not certain, that Pales-
tine is not a party to the statute of the International Court of Justice” (Beddor
and Goldstein (2018)).11.

Our approach thus falls within the literature that takes belief not as a prim-
itive but as a derived notion.12

We start with a basic modal logic, denoted by L, containing a certainty op-
erator C, which is assumed to be a normal operator (represented, semantically,

8We assume that the experts hold consistent beliefs, that is none of the experts simultaneously
believes a proposition and its negation.

9For example, if n = 12 and m = 3 then if b = 4 Ann considers p plausible but does not believe p
(because ¬p is also plausible), while if b = 10 then Ann believes p although she is not certain that p.

10If the experts are not opinionated, let b be the number of experts that believe p, b¬ the number
of experts that believe ¬p and b? the number of experts that neither believe p nor believe ¬p (thus
b + b¬ + b? = n). Fix an m such that 1 ≤ m ≤ n. Then p is maximally plausible if and only if
b ≥ max{m, n −m − b? + 1}.

11Lenzen (Lenzen 2004, p.969) remarks that “from a pragmatic point of view when person a says
‘I believe that p’, she thereby expresses that she is not convinced that p.”

12In the literature where belief is derived from knowledge and plausibility, one postulates either
a preference/plausibility ordering over possible worlds (and then φ is defined to be believed if it is
known to be true in the most preferred - or most plausible - worlds) or a plausibility measure over
events (and then an individual is said to believe φ if and only if she knows that φ is more plausible
than ¬φ): see, for example, Lamarre and Shoham (1994), Moses and Shoham (1993), Friedman and
Halpern (1997).
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by a binary relation on the set of possible world), and a plausibility operator
P, which is assumed to be a classical operator (represented by a neighborhood
structure).13 To begin with, we impose no restrictions at all on the logic of
certainty and plausibility. We define the belief operator as follows:

Bφ ↔
(
¬C¬φ ∧ Pφ ∧ ¬P¬φ

)
.

First we show that it is a theorem of this basic logic that belief satisfies
consistency, that is, it cannot be the case that the agent believes φ and also ¬φ
(Proposition 1):

Bφ→ ¬B¬φ.

Then we consider minimal extensions of logic L that yield as theorems
various properties that have been discussed in the literature concerning:

- the interaction of certainty and belief,

- properties of belief, such as positive introspection (if the agent believes φ
then she believes that she believes φ), negative introspection (if the agent
does not believe φ then she believes that she does not believe φ) and their
converses.

These extensions of logic L are obtained by adding axioms concerning the
interaction of certainty and plausibility. First of all, it seems contradictory to
state “I find φ to be implausible (or unlikely) and yet I am certain (I know) that
φ”; the first axiom rules this out by requiring certainty to imply plausibility:

Cφ→ Pφ. (CP1)

Secondly, it also seems contradictory to claim ‘I find ¬φ to be plausible (or
likely) and yet I am certain (I know) that φ”; the second axiom rules this out by
requiring certainty of φ to imply implausibility of ¬φ :

Cφ→ ¬P¬φ. (CP2)

Adding Axioms (CP1) and (CP2) to the basic logic L yields (Proposition 5):

Cφ→ Bφ (Certainty implies belief).

13The reasons for not assuming that the plausibility operator is a normal operator are discussed
below.
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We then add two more interaction axioms that can be viewed as “introspection”
properties, namely that if the agent judges φ to be (im)plausible than she is
certain of her judgment:

¬Pφ→ C¬Pφ (CP3)
Pφ→ CPφ. (CP4)

When all four axioms (CP1)-(CP4) are added to the basic logic L, the following
become theorems of the corresponding logic (Propositions 6-10):

Bφ→ CBφ (Belief implies certainty of belief)
¬Bφ→ C¬Bφ (Absence of belief implies certainty of absence of belief)
Bφ→ BBφ (Positive Introspection of belief)
BBφ→ Bφ (Converse of positive introspection)
¬Bφ→ B¬Bφ (Negative Introspection of belief)
B¬Bφ→ ¬Bφ (Converse of negative introspection).

It is worth noting that, besides the interaction axioms (CP1)-(CP4), no properties
need to be imposed on the logic of certainty or on the logic of plausibility in
order to obtain the above theorems. All of the above is shown in Sections 2
and 3.

In Section 4 we develop a possible world semantics for the logics considered
in the previous sections and provide modal correspondence results, as well as
results concerning the minimality of the logics considered in Section 3.

This brings us to the issue of why we model plausibility as a classical, rather
than a normal, operator. Our purpose is to explore a very general logic of (a
derived notion of) belief, that does not impose at the outset constraints such
as the conjunction properties, according to which belief of φ and belief of ψ
implies belief of (φ ∧ ψ) and vice versa. For example, we want our notion of
belief to be flexible enough to accommodate phenomena such as the Lottery
Paradox (Kyburg (1961; 1983)). In 1961 Kyburg pointed out that there are
circumstances where one can reasonably believe each of n propositions (n ≥ 2)
while at the same time believing the negation of their conjunction. For example,
given 100 Million lottery tickets and exactly one winner, the probability of the
proposition “Ticket n is not the winner” (denote it by pn) is virtually 1 and
thus one might be disposed to believe it; on the other hand, since there is a
winner, the conjunction

(
p1 ∧ · · · ∧ pn

)
must be false and thus one might also

be disposed to believe ¬
(
p1 ∧ · · · ∧ pn

)
. Kyburg argues for tolerating such
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joint inconsistency of beliefs. In the strongest logic mentioned above, namely
L + {CP1,CP2,CP3,CP4}, formulas of the form B

(
φ ∧ ψ

)
∧ ¬

(
Bφ ∧ Bψ

)
as well

as Bφ∧ Bψ∧¬C¬
(
φ ∧ ψ

)
∧¬B

(
φ ∧ ψ

)
are satisfiable and thus the conjunction

properties of belief do not hold (this remains the case even if one imposes the S5
logic on the certainty operator, that is, if one interprets certainty as knowledge).
In Section 5 we identify further axioms that can be used to extend the basic logic
L in such a way that the conjunction properties of belief become theorems.

In Section 6 we consider several possible interpretations of the notion of
plausibility (such as plausibility as positive probability, plausibility as truth at
most preferred world(s), etc.). We identify the extensions of our basic logic
L that are implied by such interpretations and show that our framework is
sufficiently flexible to accommodate various notions proposed in the literature.

In Section 7 we consider alternative minimal extensions of the basic logic L
that yield some of the schemata considered in Section 3. Section 8 concludes.
The proofs of minimality of the logics considered are given in the Appendix.

It should be noted that the results proved in this paper do not present tech-
nical challenges and are quite straightforward applications of known methods.
We view the contribution of this paper as threefold:

- we provide a stripped-down logic for exploring the notion of belief as
derived from the primitive notions of certainty and plausibility: the less
structure one imposes, the clearer it is to grasp what is really necessary
in order to obtain “desirable” properties of belief (such as positive and
negative introspection),

- we point out that properties of beliefs that are normally postulated in the
literature (such as positive and negative introspection) can be understood
in terms of the interaction of certainty and plausibility, and

- we show that the proposed logic can accommodate various notions of
belief proposed in the literature.

Our view is that, instead of seeking “the philosophically correct” notion of
belief, one can rely on a flexible framework that can be restricted in several
ways (with appropriate axioms) depending on the context and application one
has in mind. Thus, rather than defending any particular axiom or set of axioms
as “reasonable”, we limit ourselves to investigating what each set of axioms
(involving the primitive notions of certainty and plausibility) implies in terms
of properties of the proposed notion of belief.



8 Belief as Plausible Possibility

2 The basic logic

We consider a modal logic with two modal operators: C interpreted as “cer-
tainty” and P interpreted as “plausibility”. Thus Cφ means that the individual
in question, from now on called “the agent”, is certain that φ, and Pφ means
that the agent judges φ to be plausible. C will be taken to be a normal operator,
while we will impose no restrictions on the operator P (besides assuming that
is a classical operator).

The formal language is built in the usual way from a countable set of propo-
sitional variables (or atoms) At, the connectives ¬ (for “not”) and ∨ (for “or”)
and the modal operators.14 Thus the set Φ of formulas is defined inductively
as follows: q ∈ Φ for every atomic proposition q ∈ At, and if φ,ψ ∈ Φ then all of
the following belong to Φ: ¬φ, (φ∨ψ), Cφ and Pφ. We will follow the standard
rules for omission of the parentheses.

We denote by L0 the logic determined by the following axioms and rules of
inference.15

AXIOMS:

1. All propositional tautologies.

2. Axiom K for C:
C(φ→ ψ)→ (Cφ→ Cψ) (KC)

RULES OF INFERENCE:

1. Modus Ponens:
φ, φ→ ψ

ψ
(MP)

2. Necessitation for C:
φ

Cφ
(NecC)

3. Rule RE for P:
φ↔ ψ

Pφ↔ Pψ
(RP

E)

14See, for example, Chellas (1984), Blackburn et al. (2001). The connectives ∧ (for “and”),→ (for
“if ... then ...”) and↔ (for “if and only if”) are defined as usual: φ∧ψ = ¬(¬φ∨¬ψ),φ→ ψ = ¬φ∨ψ
and φ↔ ψ = (φ→ ψ) ∧ (ψ→ φ).

15Throughout the paper, the naming of axioms and rules of inference follows Chellas (1984).
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Remark 1 (Derived rules of inference). It is well-known that from KC, (MP) and
(NecC) one can derive the following rules of inference:

φ→ ψ

Cφ→ Cψ
(RC

K)

φ↔ ψ

Cφ↔ Cψ
(RC

E)

φ→ ψ

¬C¬φ→ ¬C¬ψ
(R¬C¬

K )

φ↔ ψ

¬C¬φ↔ ¬C¬ψ
(R¬C¬

E )

Remark 2 (Normality of C). It is also well-known that the following are theorems of
the basic logic L0:

(MC) C(φ ∧ ψ)→ (Cφ ∧ Cψ)

(CC) (Cφ ∧ Cψ)→ C(φ ∧ ψ)

(Mdual
C ) ¬C¬(φ ∨ ψ)→ (¬C¬φ ∨ ¬C¬ψ)

(Cdual
C ) (¬C¬φ ∨ ¬C¬ψ)→ ¬C¬(φ ∨ ψ)

Remark 3. In virtue of rule RC
K, the following is a theorem of logic L0:16

¬C¬(φ1 ∧ · · · ∧ φn)→ (¬C¬φ1 ∧ · · · ∧ ¬C¬φn)

16Proof. For every i = 1, . . . ,n, since ¬φi → ¬(φ1 ∧ · · · ∧ φn) is a tautology, by RC
K we get

that C¬φi → C¬(φ1 ∧ · · · ∧ φn) is a theorem. Thus, by propositional logic (PL), we get that
¬C¬(φ1 ∧ · · · ∧ φn) → ¬C¬φi, from which we obtain (again, by PL) that ¬C¬(φ1 ∧ · · · ∧ φn) →(
¬C¬φ1 ∧ · · · ∧ ¬C¬φn

)
.
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We now extend the logic L0 by adding a third operator, namely the belief
operator B, which is derived from C and P. The interpretation of Bφ is “the agent
believes that φ”. Belief is defined as “maximally plausible possibility” in the
sense that the agent believes that φ if and only if:

1. she cannot rule out φ, that is, it is not the case that she is certain that ¬φ,

2. she judges φ to be plausible, and

3. she does not judge ¬φ to be plausible.

Definition 2.1. The operator B is defined as follows:

Bφ↔
(
¬C¬φ ∧ Pφ ∧ ¬P¬φ

)
(DefB)

We denote by L the logic obtained by extending the syntax of L0 to include
formulas of the form Bφ and by adding axiom (DefB) to L0.

First we show that, without imposing any further axioms, we obtain consis-
tency of beliefs: the property that the agent does not simultaneously believe a
proposition and also its negation; that is, the following is a theorem of logic L:

Bφ→ ¬B¬φ. (DB)

We write L ` φ to denote the fact that formula φ is a theorem of logic L.

Proposition 1.

L `
(
Bφ→ ¬B¬φ

)
.

In all the proofs, ‘PL’ stands for ‘Propositional Logic’.17

17 Note that in Step 5 of the following proof we also implicitly use the theorem Pφ ↔ P¬¬φ
which is obtained from the fact that φ ↔ ¬¬φ is a tautology, so that – by rule RP

E – we get that
Pφ↔ P¬¬φ is a theorem. The same applies to Cφ↔ C¬¬φ.
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Proof.

1. Bφ↔ (¬C¬φ ∧ Pφ ∧ ¬P¬φ) (DefB)
2. (¬C¬φ ∧ Pφ ∧ ¬P¬φ)→ (Pφ ∧ ¬P¬φ) (tautology)
3. (Pφ ∧ ¬P¬φ)→ (Pφ ∨ ¬P¬φ) (tautology)
4. Bφ→ (Pφ ∨ ¬P¬φ) (1, 2, 3, PL)
5. B¬φ↔ (¬Cφ ∧ P¬φ ∧ ¬Pφ) (DefB)
6. (¬Cφ ∧ P¬φ ∧ ¬Pφ)↔ ¬(Cφ ∨ ¬P¬φ ∨ Pφ) (PL)
7. ¬B¬φ↔ (Cφ ∨ ¬P¬φ ∨ Pφ) (5, 6, PL)
8. (Pφ ∨ ¬P¬φ)→ (Cφ ∨ ¬P¬φ ∨ Pφ) (tautology)
9. Bφ→ (Cφ ∨ ¬P¬φ ∨ Pφ) (4, 8, PL)

10. Bφ→ ¬B¬φ. (7, 9, PL)

�

The next proposition shows that the belief operator is a classical operator
(that is, the rule of inference (RE) applies to it).

Proposition 2. The following is a derived rule of inference of logic L:

φ↔ ψ

Bφ↔ Bψ
(RB

E)

Proof.

1. φ↔ ψ (Hypothesis)

2. Pφ↔ Pψ (1, rule RP
E)

3. ¬φ↔ ¬ψ (1, PL)

4. P¬φ↔ P¬ψ (3, rule RP
E)

5. ¬P¬φ↔ ¬P¬ψ (4, PL)

6. C¬φ↔ C¬ψ (3, rule RC
E)

7. ¬C¬φ↔ ¬C¬ψ (6, PL)
8. (¬C¬φ ∧ Pφ ∧ ¬P¬φ)↔ (¬C¬ψ ∧ Pψ ∧ ¬P¬ψ) (2, 5, 7, PL)
9. Bφ↔ (¬C¬φ ∧ Pφ ∧ ¬P¬φ) (DefB)

10. Bψ↔ (¬C¬ψ ∧ Pψ ∧ ¬P¬ψ) (DefB)
11. Bφ↔ Bψ. (8, 9, 10, PL) �
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3 Extensions of logic L

In this section we consider the following axioms concerning the interaction of
C and P, which were discussed in the introduction.

(CP1) Cφ→ Pφ

(CP2) Cφ→ ¬P¬φ

(CP3) ¬Pφ→ C¬Pφ

(CP4) Pφ→ CPφ.

Axiom (CP1) says that if the agent is certain that φ, then she must consider
φ plausible, while axiom (CP2) says that if the agent is certain that φ then
she cannot judge the negation of φ as plausible. Axioms (CP3) and (CP4) are
introspective properties: the former says that if the agent does not consider φ
plausible, then she is certain that she does not consider φ plausible, while the
latter says that if the agent considers φ plausible then she is certain that she
considers φ plausible.

The following propositions show that, by extending logic L to include ax-
ioms (CP1) − (CP4) we obtain the following properties of belief:

Bφ→ CBφ (Belief implies certainty of belief)
¬Bφ→ C¬Bφ (Absence of belief implies certainty of absence of belief)
Bφ→ BBφ (Positive Introspection of belief)
BBφ→ Bφ (Converse of positive introspection)
¬Bφ→ B¬Bφ (Negative Introspection of belief)
B¬Bφ→ ¬Bφ (Converse of negative introspection).

We denote the fact that formula φ is a theorem of the extension of L obtained
by adding axioms φ1, . . . , φn as follows:

L +


φ1
. . .
φn

 ` φ
The following proposition shows that Axiom (CP2) yields a reduction of Bφ to
(Pφ ∧ ¬P¬φ).
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Proposition 3.

L +
{

(CP2) Cφ→ ¬P¬φ
}
` Bφ↔ (Pφ ∧ ¬P¬φ)

Proof.

1. Bφ↔ (¬C¬φ ∧ Pφ ∧ ¬P¬φ) (DefB)
2. Bφ→ (Pφ ∧ ¬P¬φ) (1, PL)
3. C¬φ→ ¬Pφ (Axiom CP2)
5. Pφ→ ¬C¬φ (3, PL)
6. (Pφ ∧ ¬P¬φ)→ (¬C¬φ ∧ Pφ ∧ ¬P¬φ) (5, PL)
7. (Pφ ∧ ¬P¬φ)→ Bφ (6, 1, PL)
8. Bφ↔ (Pφ ∧ ¬P¬φ). (2, 7, PL) �

The next proposition shows that consistency of certainty (the agent cannot
be simultaneously certain of φ and of ¬φ) is provable from the conjunction of
Axioms (CP1) and (CP2).

Proposition 4.

L +

{
(CP1) Cφ→ Pφ
(CP2) Cφ→ ¬P¬φ

}
` Cφ→ ¬C¬φ

Proof.

1. C¬φ→ ¬Pφ (Axiom CP2)
2. Pφ→ ¬C¬φ (1, PL)
3. Cφ→ Pφ (Axiom CP1)
4. Cφ→ ¬C¬φ. (3, 2, PL) �

The next proposition shows that it is a theorem of the logic
L + {CP1,CP2} that certainty implies belief.

Proposition 5.

L +

{
(CP1) Cφ→ Pφ
(CP2) Cφ→ ¬P¬φ

}
` Cφ→ Bφ
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The proof is obvious, since the conjunction of the consequents of (CP1) and
(CP2) is (Pφ ∧ ¬P¬φ) which, by Proposition 3, is equivalent to Bφ.

Proposition 6 says that if Axioms (CP1), (CP3) and (CP4) are assumed, then,
whenever the agent believes something, she is certain that she believes it and
Proposition 7 says that if Axioms (CP2), (CP3) and (CP4) are assumed then, if
the agent does not believe φ, then she is certain that she does not believe φ.

Proposition 6.

L +


(CP1) Cφ→ Pφ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

 ` Bφ→ CBφ

Proof.

1. Bφ↔ (Pφ ∧ ¬P¬φ ∧ ¬C¬φ) (DefB)
2. Pφ→ CPφ (Axiom CP4)
3. ¬P¬φ→ C¬P¬φ (Axiom CP3)
4. Bφ→ (CPφ ∧ C¬P¬φ) (1, 2, 3, PL)
5. C¬φ→ P¬φ (Axiom CP1)
6. ¬C¬C¬φ→ ¬C¬P¬φ (5, R¬C¬

K )
7. C¬P¬φ→ C¬C¬φ (6, PL)
8. Bφ→ (CPφ ∧ C¬P¬φ ∧ C¬C¬φ) (4, 7, PL)
9. (CPφ ∧ C¬P¬φ ∧ C¬C¬φ)→ C(Pφ ∧ ¬P¬φ ∧ ¬C¬φ) (CC: Remark 2)

10. Bφ→ C(Pφ ∧ ¬P¬φ ∧ ¬C¬φ) (8, 9, PL)
11. CBφ↔ C(Pφ ∧ ¬P¬φ ∧ ¬C¬φ) (1, RC

E)
12. Bφ→ CBφ. (10, 11, PL) �

Proposition 7.

L +


(CP2) Cφ→ ¬P¬φ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

 ` ¬Bφ→ C¬Bφ

Proof.

1. Bφ↔ (Pφ ∧ ¬P¬φ) (Proposition 3)
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2. ¬Bφ↔ (¬Pφ ∨ P¬φ) (1, PL)
3. C¬Bφ↔ C(¬Pφ ∨ P¬φ) (2, RC

E)
4. ¬Pφ→ C¬Pφ (Axiom CP3)
5. P¬φ→ CP¬φ (Axiom CP4)
6. ¬Bφ→ (C¬Pφ ∨ CP¬φ) (2, 4, 5, PL)
7. ¬Pφ→ (¬Pφ ∨ P¬φ) (tautology)
8. C¬Pφ→ C(¬Pφ ∨ P¬φ) (7, RC

K)
9. P¬φ→ (¬Pφ ∨ P¬φ) (tautology)

10. CP¬φ→ C(¬Pφ ∨ P¬φ) (9, RC
K)

11. (C¬Pφ ∨ CP¬φ)→ C(¬Pφ ∨ P¬φ) (8, 10, PL)
12. ¬Bφ→ C¬Bφ. (6, 11, 3, PL) �

Next we consider introspection properties of belief, namely,

(4B) Bφ→ BBφ

(5B) ¬Bφ→ B¬Bφ

(4cnv
B ) BBφ→ Bφ

(5cnv
B ) B¬Bφ→ ¬Bφ.

(4B) is the property of Positive Introspection of belief, (5B) is the property of
Negative Introspection, (4cnv

B ) is the converse of (4B) and (5cnv
B ) is the converse of

(5B) (the latter two say that the agent has correct beliefs about what she believes
and what she does not believe).

Proposition 8.

L +


(CP1) Cφ→ Pφ
(CP2) Cφ→ ¬P¬φ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

 ` Bφ→ BBφ and ¬Bφ→ B¬Bφ

Proof. Proof of Positive Introspection of belief:

1. Bφ→ CBφ (Proposition 6)
2. CBφ→ BBφ (Proposition 5)
3. Bφ→ BBφ. (1, 2, PL)
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Proof of Negative Introspection of belief:

1. ¬Bφ→ C¬Bφ (Proposition 7)
2. C¬Bφ→ B¬Bφ (Proposition 5)
3. ¬Bφ→ B¬Bφ. (1, 2, PL )

�

Remark 4. Note that, in order to obtain positive or negative introspection of belief, we
need neither positive nor negative introspection of certainty. Indeed, no axioms at all
were imposed on the logic of certainty. The same is true of the properties highlighted in
Propositions 5-7.

Proposition 9.

L +


(CP2) Cφ→ ¬P¬φ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

 ` BBφ→ Bφ

Proof.

1. ¬Bφ→ C¬Bφ (Proposition 7)
2. ¬C¬Bφ→ Bφ (1, PL)
3. BBφ↔ (¬C¬Bφ ∧ PBφ ∧ ¬P¬Bφ) (DefB)
4. BBφ→ ¬C¬Bφ (3, PL)
5. BBφ→ Bφ. (4, 2, PL)

�

Proposition 10.

L +


(CP1) Cφ→ Pφ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

 ` B¬Bφ→ ¬Bφ
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Proof.

1. B¬Bφ↔
(
¬CBφ ∧ P¬Bφ ∧ ¬PBφ

)
(DefB)

2. ¬B¬Bφ↔
(
CBφ ∨ ¬P¬Bφ ∨ PBφ

)
(1, PL)

3. Bφ→ CBφ (Proposition 6)

4. CBφ→
(
CBφ ∨ ¬P¬Bφ ∨ PBφ

)
(tautology)

5. Bφ→ ¬B¬Bφ (3, 4, 2, PL)
6. B¬Bφ→ ¬Bφ. (5, PL)

�

In Section 7 we show that some of the schemata considered in this section
can also be obtained from alternative extensions of logic L. In the next section
we turn to the semantics.

4 Semantics, modal correspondence and minimality

Definition 4.1. A frame is a triple 〈Ω,C,P〉where

• Ω is a non-empty set of states; the subsets of Ω will be called events or
propositions.

• C ⊆ Ω × Ω is a binary relation on Ω, representing “certainty”. The
interpretation of ωCω′ is that if the true, or actual, state is ω then the
agent cannot rule out the possibility that the true state is ω′. We denote
by C(ω) = {ω′ ∈ Ω : ωCω′} the set of states that the agent cannot rule out
at state ω.

• P : Ω → 22Ω
(where 2Ω is the set of subsets of Ω and 22Ω

is the set of
subsets of 2Ω) is a “plausibility” function that associates with every state
a collection of events. The interpretation of E ∈ P(ω) is that at state ω the
agent “considers event E plausible”. The function P is known in modal
logic as a neighborhood function (see, for example, Pacuit (2017)).

For example, suppose that Ω = {ω1, ω2, . . . , ω7} , C(ω1) = {ω4, ω5, ω6, ω7} and
P(ω1) = {{ω4, ω5},Ω}. Then, if the true state is ω1, the agent (erroneously) rules
out the possibility that the state is ω1 as well as (correctly) the possibility that
the true state is either ω2 or ω3; moreover – although she does not rule out the
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possibility that the true state is either ω6 or ω7 – she judges these two states to
be implausible. Furthermore, since {ω4, ω5} ∈ P(ω1) and (Ω \ {ω4, ω5}) < P(ω1)
then we can say that – at state ω1 – the agent believes that the true state is either
ω4 or ω5: this is the semantic counterpart of Definition 2.1 in Section 2 (see the
validation rule for Bφ below).

The connection between syntax and semantics is given by the notion of
model. Given a frame 〈Ω,C,P〉, a model based on it is obtained by adding a
valuation V : At → 2Ω which associates with every atomic proposition p ∈ At
the set of states at which p is true. The truth of an arbitrary formula at a state
is then defined inductively as follows (ω |= φ denotes that formula φ is true at
state ω; ‖φ‖ denotes the truth set of φ, that is, ‖φ‖ = {ω ∈ Ω : ω |= φ}):

if q is an atomic proposition, ω |= q if and only if ω ∈ V(q)

ω |= ¬φ if and only if ω 6|= φ

ω |= φ ∨ ψ if and only if either ω |= φ or ω |= ψ (or both)

ω |= Cφ if and only if C(ω) ⊆ ‖φ‖

ω |= Pφ if and only if ‖φ‖ ∈ P(ω)

ω |= Bφ if and only if:

1. C(ω) ∩ ‖φ‖ , ∅,

2. ‖φ‖ ∈ P(ω), and

3. (Ω \ ‖φ‖) < P(ω).

It follows that ω |= ¬C¬φ if and only if C(ω)∩‖φ‖ , ∅ and ω |= ¬P¬φ if and
only if (Ω \ ‖φ‖) < P(ω) (since ‖¬φ‖ = (Ω \ ‖φ‖).

We say that a formula φ is valid in a model if ω |= φ for all ω ∈ Ω, that is, if φ
is true at every state in that model. A formula φ is valid in a frame if it is valid in
every model based on that frame. Finally, we say that a property of frames is
characterized by (or characterizes) an axiom if (1) the axiom is valid in any frame
that satisfies the property and, conversely, (2) if a frame violates the property
then there is a model based on that frame such that the axiom is not valid in
that model.

The next proposition identifies the semantic properties that characterize the
axioms considered in Section 3.
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Proposition 11. Concerning the interaction axioms between certainty and plausibil-
ity,

1. Axiom (CP1) (Cφ→ Pφ) is characterized by the following property:
∀ω ∈ Ω,∀E ∈ 2Ω,

if C(ω) ⊆ E then E ∈ P(ω). (FCP1 )

2. Axiom (CP2) (Cφ→ ¬P¬φ) is characterized by the following property:
∀ω ∈ Ω,∀E ∈ 2Ω,

if C(ω) ⊆ E then (Ω \ E) < P(ω). (FCP2 )

3. Axiom (CP3) (¬Pφ → C¬Pφ) is characterized by the following property:
∀ω,ω′ ∈ Ω,

if ω′ ∈ C(ω) then P(ω′) ⊆ P(ω). (FCP3 )

4. Axiom (CP4) (Pφ→ CPφ) is characterized by the following property:
∀ω,ω′ ∈ Ω,

if ω′ ∈ C(ω) then P(ω) ⊆ P(ω′). (FCP4 )

Proof. .

1. Fix an arbitrary model based on a frame that satisfies the property that,
∀ω ∈ Ω,∀E ∈ 2Ω, if C(ω) ⊆ E then E ∈ P(ω). Fix an arbitrary ω ∈ Ω and
an arbitrary formula φ and suppose that ω |= Cφ, that is, C(ω) ⊆ ‖φ‖.
Then, by the assumed property, ‖φ‖ ∈ P(ω), that is, ω |= Pφ. Conversely,
fix a frame that violates the property, that is, there is an ω ∈ Ω and an
E ∈ 2Ω such that C(ω) ⊆ E and E < P(ω). Let q be an atomic formula and
construct a model where ‖q‖ = E. Then ω |= Cq and, since ‖q‖ < P(ω),
ω 6|= Pq (that is, ω |= ¬Pq), so that Axiom (CP1) is not valid in this model.

2. Fix an arbitrary model based on a frame that satisfies the property that,
∀ω ∈ Ω,∀E ∈ 2Ω, if C(ω) ⊆ E then (Ω \ E) < P(ω). Fix an arbitrary ω ∈ Ω
and an arbitrary formula φ and suppose that ω |= Cφ, that is, C(ω) ⊆ ‖φ‖.
Then, by the assumed property, (Ω \ ‖φ‖) < P(ω), that is, ω 6|= P¬φ
or, equivalently, ω |= ¬P¬φ. Conversely, fix a frame that violates the
property, that is, there is an ω ∈ Ω and an E ∈ 2Ω such that C(ω) ⊆ E and
(Ω \ E) ∈ P(ω). Let q be an atomic formula and construct a model where
‖q‖ = E. Then ω |= Cq and, since ‖¬q‖ = (Ω \ E) ∈ P(ω), ω |= P¬q, so that
Axiom (CP2) is not valid in this model.
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3. Fix an arbitrary model based on a frame that satisfies the property that,
∀ω,ω′ ∈ Ω, if ω′ ∈ C(ω) then P(ω′) ⊆ P(ω). Fix an arbitrary ω ∈ Ω and
an arbitrary formula φ and suppose that ω |= ¬Pφ, that is, ‖φ‖ < P(ω).
Fix an arbitrary ω′ ∈ C(ω). Then, by the assumed property, ‖φ‖ < P(ω′),
so that ω′ 6|= Pφ, that is, ω′ |= ¬Pφ, and thus, since ω′ ∈ C(ω) was
chosen arbitrarily, ω |= C¬Pφ. Conversely, fix a frame that violates the
property, that is, there exist ω,ω′ ∈ Ω and E ∈ 2Ω such that (a) ω′ ∈ C(ω),
(b) E ∈ P(ω′) and (c) E < P(ω). Let q be an atomic formula and construct
a model where ‖q‖ = E. Then, by (c), ω |= ¬Pq while, by (b), ω′ |= Pq so
that, since ω′ ∈ C(ω), ω 6|= C¬Pq (that is, ω |= ¬C¬Pq), thus invalidating
axiom (CP3).

4. Fix an arbitrary model based on a frame that satisfies the property that,
∀ω,ω′ ∈ Ω, if ω′ ∈ C(ω) then P(ω) ⊆ P(ω′). Fix an arbitrary ω ∈ Ω
and an arbitrary formula φ and suppose that ω |= Pφ, that is, ‖φ‖ ∈
P(ω). Fix an arbitrary ω′ ∈ C(ω). Then, by the assumed property, ‖φ‖ ∈
P(ω′), so that ω′ |= Pφ and thus, since ω′ ∈ C(ω) was chosen arbitrarily,
ω |= CPφ. Conversely, fix a frame that violates the property, that is, there
exist ω,ω′ ∈ Ω and E ∈ 2Ω such that (a) ω′ ∈ C(ω), (b) E ∈ P(ω) and
(c) E < P(ω′). Let q be an atomic formula and construct a model where
‖q‖ = E. Then, by (b), ω |= Pq while, by (c), ω′ 6|= Pq (that is, ω |= ¬Pq) so
that, since ω′ ∈ C(ω), ω 6|= CPq, thus invalidating axiom (CP4).

�

A logic is said to be sound with respect to a class of frames if every theorem of
the logic is valid in every frame of that class. Since Axiom (KC) is valid on all
the frames considered here and the rules of inference (MP), (NecC) and (RP

E) are
validity preserving,18 it follows that logic L is sound with respect to the class
of all frames. The following proposition then follows from Proposition 11.

Proposition 12. Let {φ1, . . . , φn} (n ≥ 0) be any collection of axioms from the set
{CP1,CP2,CP3,CP4}. Then L + {φ1, . . . , φn} is sound with respect to the class of
frames that satisfy the collection of properties {F1, . . . ,Fn}where, for every i = 1, . . . ,n,
Fi is the property that characterizes axiom φi (see Proposition 11).

18The proof that (RP
E) is validity preserving is straightforward. For completeness we provide

it here. Consider an arbitrary model and suppose that φ ↔ ψ is valid, that is, ‖φ ↔ ψ‖ = Ω.
Since ‖φ ↔ ψ‖ =

(
(Ω \ ‖φ‖) ∪ ‖ψ‖

)
∩

(
‖φ‖ ∪ (Ω \ ‖ψ‖)

)
, we have that

(
(Ω \ ‖φ‖) ∪ ‖ψ‖

)
= Ω, that is,

‖φ‖ ⊆ ‖ψ‖ and
(
‖φ‖ ∪ (Ω \ ‖ψ‖)

)
= Ω, that is, ‖ψ‖ ⊆ ‖φ‖. Thus ‖φ‖ = ‖ψ‖. Fix an arbitrary ω ∈ Ω.

Then ω |= Pφ if and only if ‖φ‖ ∈ P(ω) if and only if ‖ψ‖ ∈ P(ω) if and only if ω |= Pψ, so that
ω |= (Pφ↔ Pψ). Thus ‖Pφ↔ Pψ‖ = Ω.
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For example, the logic L + {CP3,CP4} is sound with respect to the class of
frames where the following property holds: ∀ω,ω′ ∈ Ω, if ω′ ∈ C(ω) then
P(ω′) = P(ω).

Definition 4.2. Let S be a non-empty set of axioms and φ a formula. We
say that the logic L + S is a minimal extension of L that yields φ as a theorem if
(1)L+S ` φ and (2) for every proper subset S′ of S, φ is not a theorem ofL+S′.

Remark 5. In virtue of Proposition 12, to show that L + {φ1, . . . , φn} is a minimal
extension of L that yields axiom φ as a theorem, it is sufficient to show that, for every
i = 1, . . . ,n, φ is not valid in the class of frames that satisfy the collection of properties
{F1, . . . ,Fi−1,Fi+1, . . . ,Fn}.

For example, let us show that logic L + {CP1,CP2} is a minimal extension
of L that yields the theorem Cφ → Bφ (see Proposition 5). First of all, by
Proposition 12, this logic is sound with respect to the class of frames where
properties (FCP1 ) and (FCP2 ) are satisfied. In both of the following examples we
take Ω = {α, β, γ}.19

\CP1 Consider the following frame: C(α) = C(β) = C(γ) = {β}, P(α) = P(β) =
P(γ) =

{
{β},Ω

}
. This frame satisfies Property (FCP2 ) (thus it validates

the logic L + {CP2}), but fails Property (FCP1 ), since C(α) = {β} ⊆ {β, γ}
and yet {β, γ} < P(α). Let p be an atomic formula and consider a model
where ‖p‖ = {β, γ}. Then α |= Cp but α 6|= Bp since α 6|= Pp (because
‖p‖ = {β, γ} < P(α)).

\CP2 Consider the following frame: C(α) = C(β) = C(γ) = {β, γ}, P(α) = P(β) =
P(γ) =

{
{α}, {β, γ},Ω

}
. This frame satisfies Property (FCP1 ) (thus it validates

the logic L + {CP1}), but fails Property (FCP2 ), since C(α) ⊆ {β, γ} and yet
Ω \ {β, γ} = {α} ∈ P(α). Let p be an atomic formula and consider a model
where ‖p‖ = {β, γ}. Then α |= Cp but α 6|= Bp since α 6|= ¬P¬p (because
‖¬p‖ = Ω \ ‖p‖ = {α} ∈ P(α), so that α |= P¬p).

Since, as the above example shows, it is rather laborious to prove that an
extension of logicL is a minimal extension that yields a particular theorem, the
proof of the following proposition is relegated to the Appendix.

Proposition 13. The extensions of logicL considered in Propositions 5-10 are minimal
extensions for the corresponding theorems.

19Note that, in both frames considered below, C is transitive and Euclidean (these two properties
are defined in Remark 6 in the next section) and thus both frames validate both positive and
negative introspection of certainty: see Remark 6.
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In the next section we consider the circumstances under which belief satisfies
conjunction properties.

5 Conjunction properties of belief

In this section we consider the following conjunction properties of belief:

(MB) B(φ ∧ ψ)→ (Bφ ∧ Bψ)

(Cweak
B )

(
Bφ ∧ Bψ ∧ ¬C¬(φ ∧ ψ)

)
→ B(φ ∧ ψ)

(MB) says that belief in the conjunction of φ and ψ implies belief in each of φ
and ψ, while (Cweak

B ) is a weak converse: if the agent believes each of φ and ψ
and does not rule out (φ ∧ ψ) then she must believe (φ ∧ ψ).

First we show that the extensions of logic L considered so far are consistent
with the failure of both (MB) and (Cweak

B ). In order to stress that this is not due to
not having restricted the logic of certainty, we will show that this fact remains
true even if axioms TC and 5C below are added to logic L (so that certainty can
be interpreted as knowledge). First we recall the following possible axioms for
certainty:

(DC) Consistency of certainty: Cφ→ ¬C¬φ

(4C) Positive Introspection of certainty: Cφ→ CCφ

(5C) Negative Introspection of certainty: ¬Cφ→ C¬Cφ

(TC) Truth of certainty: Cφ→ φ.

Consistency rules out the possibility that the agent may simultaneously be
certain of a proposition and also of its negation. Positive Introspection says that
if the agent is certain of φ then she is certain that she is certain of φ. Negative
Introspection says that if the agent is not certain of φ then she is certain that she
is not certain of φ and Truth says that the agent cannot be certain of something
which is not true.

The certainty operator is said to satisfy the S5 logic if it satisfies Axioms (TC)
and (5C) (in which case (DC) and (4C) can be derived as theorems) and is said
to satisfy the KD45 logic if it satisfies Axioms (DC), (4C) and (5C).

Remark 6. It is well-known that the semantic properties corresponding to the above
axioms are as follows:
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1. (DC) is characterized by seriality of the relation C: ∀ω ∈ Ω,

C(ω) , ∅. (FDC )

2. (4C) is characterized by transitivity of the relation C: ∀ω,ω′ ∈ Ω,

if ω′ ∈ C(ω) then C(ω′) ⊆ C(ω). (F4C )

3. (5C) is characterized by Euclideanness of the relation C: ∀ω,ω′ ∈ Ω,

if ω′ ∈ C(ω) then C(ω) ⊆ C(ω′). (F5C )

4. (TC) is characterized by reflexivity of the relation C: ∀ω ∈ Ω,

ω ∈ C(ω). (FTC )

As Example 1 below shows, none of the extensions of logic L considered
in Section 3 yield (MB) as a theorem, even if the logic is further extended by
requiring the certainty operator to satisfy the S5 logic. The frame considered in
the example validates the logic

L +



(TC) Cφ→ φ
(5C) ¬Cφ→ C¬Cφ
(CP1) Cφ→ Pφ
(CP2) Cφ→ ¬P¬φ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

Example 1 (violation of MB). Consider the following frame: Ω = {α, β, γ},
C(α) = C(β) = C(γ) = Ω, P(α) = P(β) = P(γ) =

{
{β},Ω

}
.20 Let p and q be atomic

propositions and construct a model where ‖p‖ = {α, β} and ‖q‖ = {β, γ}. Then
‖p ∧ q‖ = {β} and β |= B(p ∧ q) (since C(β) ∩ ‖p ∧ q‖ = {β} , ∅, ‖p ∧ q‖ ∈ P(β)
and (Ω \ ‖p ∧ q‖) = {α, γ} < P(β)); however β 6|= Bp because β 6|= Pp (since
‖p‖ = {α, β} < P(β); similarly, β 6|= Bq).

20
C is reflexive and Euclidean (and thus serial and transitive) and Properties FCP1 , FCP2 , FCP3 ,

and FCP4 are all satisfied. Note that, in this example, Property FCP1 only requires that Ω ∈ P(ω),
∀ω ∈ Ω, and Property FCP2 only requires that ∅ < P(ω), ∀ω ∈ Ω.
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The reason why the frame considered in Example 1 fails to validate (MB)
is that, although event {β} is considered plausible, no superset of it (with the
exception of Ω) is considered plausible, that is, the frame violates the following
property (‘MON’ stands for ‘Monotonicity’):

∀ω ∈ Ω,∀E,F ∈ 2Ω, if E ⊆ F and E ∈ P(ω) then F ∈ P(ω). (MON)

Consider the following axioms:

P(φ ∧ ψ)→ (Pφ ∧ Pψ) (P1)
(Pφ ∨ Pψ)→ P(φ ∨ ψ). (P2)

Axiom (P1) requires that if the conjunction of φ and ψ is considered plausible
then each ofφ andψ should be considered plausible, while Axiom (P2) says that
if either φ or ψ is considered plausible then their disjunction is also considered
plausible.

Remark 7. Axioms (P1) and (P2) are valid on every frame that satisfies Property
(MON).21

The next proposition shows that (MB) is a theorem of L + {P1,P2}.

Proposition 14.

L +

{
(P1) P(φ ∧ ψ)→ (Pφ ∧ Pψ)
(P2) (Pφ ∨ Pψ)→ P(φ ∨ ψ)

}
` B(φ ∧ φ)→ (Bφ ∧ Bψ)

Proof.

1. B(φ ∧ ψ)↔
(
¬C¬(φ ∧ ψ) ∧ P(φ ∧ ψ) ∧ ¬P¬(φ ∧ ψ)

)
(DefB)

2. ¬C¬(φ ∧ ψ)→ (¬C¬φ ∧ ¬C¬ψ) (Remark 3 )
3. P(φ ∧ ψ)→ (Pφ ∧ Pψ) (Axiom P1)

21 Proof of validity of (P1): fix an arbitrary frame that satisfies (MON), an arbitrary model based
on it, arbitrary formulas φ and ψ and an arbitrary state ω. Suppose that ω |= P(φ ∧ ψ), that is,
‖φ∧ψ‖ ∈ P(ω). Since ‖φ∧ψ‖ = ‖φ‖∩ ‖ψ‖ ⊆ ‖φ‖, by (MON) ‖φ‖ ∈ P(ω) and thus ω |= Pφ. Similarly,
since ‖φ‖ ∩ ‖ψ‖ ⊆ ‖ψ‖, by (MON) ‖ψ‖ ∈ P(ω) and thus ω |= Pψ. Hence ω |= (Pφ ∧ Pψ).
Proof of validity of (P2): fix an arbitrary frame that satisfies (MON), an arbitrary model based on
it, arbitrary formulas φ and ψ and an arbitrary state ω. Suppose that ω |= (Pφ ∨ Pψ), that is, either
‖φ‖ ∈ P(ω) or ‖ψ‖ ∈ P(ω). If ‖φ‖ ∈ P(ω), since ‖φ‖ ⊆ ‖φ‖ ∪ ‖ψ‖ = ‖φ∨ψ‖, by (MON) ‖φ∨ψ‖ ∈ P(ω)
and thus ω |= P(φ∨ψ). The argument for the case where ‖ψ‖ ∈ P(ω) is similar. Thus ω |= P(φ∨ψ).
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4. (¬φ ∨ ¬ψ)↔ ¬(φ ∧ ψ) (tautology)

5. P(¬φ ∨ ¬ψ)↔ P¬(φ ∧ ψ) (4, RP
E)

6. (P¬φ ∨ P¬ψ)→ P(¬φ ∨ ¬ψ) (Axiom P2)
7. (P¬φ ∨ P¬ψ)→ P¬(φ ∧ ψ) (6, 5, PL)
8. ¬P¬(φ ∧ ψ)→ (¬P¬φ ∧ ¬P¬ψ) (7, PL)

9.
(
¬C¬(φ ∧ ψ) ∧ P(φ ∧ ψ) ∧ ¬P¬(φ ∧ ψ)

)
→

(
¬C¬φ ∧ Pφ ∧ ¬P¬φ

)
(2, 3, 8, PL)

10.
(
¬C¬(φ ∧ ψ) ∧ P(φ ∧ ψ) ∧ ¬P¬(φ ∧ ψ)

)
→

(
¬C¬ψ ∧ Pψ ∧ ¬P¬ψ

)
(2, 3, 8, PL)

11. Bφ↔
(
¬C¬φ ∧ Pφ ∧ ¬P¬φ

)
(DefB)

12. Bψ↔
(
¬C¬ψ ∧ Pψ ∧ ¬P¬ψ

)
(DefB)

13. B(φ ∧ ψ)→
(
Bφ ∧ Bψ

)
(1, 9,10, 11, 12, PL).

�
The following example shows that (Cweak

B ) is not a theorem of any extension of
L+{(P1)+(P2)} obtained by adding any subset of the set of axioms {DC, 4C, 5C,TC,
CPi(i = 1, . . . , 4)}: indeed, the frame considered in Example 2 validates the logic

L +



(TC) Cφ→ φ
(5C) ¬Cφ→ C¬Cφ
(CP1) Cφ→ Pφ
(CP2) Cφ→ ¬P¬φ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ
(P1) P(φ ∧ ψ)→ (Pφ ∧ Pψ)
(P2) (Pφ ∨ Pψ)→ P(φ ∨ ψ).

Example 2 (violation of Cweak
B ). Consider the following frame: Ω = {α, β, γ},

C(α) = C(β) = C(γ) = Ω, P(α) = P(β) = P(γ) =
{
{α, β}, {β, γ},Ω

}
.22 Let p and q be

atomic propositions and construct a model where ‖p‖ = {α, β} and ‖q‖ = {β, γ}.
Then β |= Bp ∧ Bq ∧ ¬C¬(p ∧ q) (since (1) C(β) ∩ ‖p‖ = {α, β} , ∅, ‖p‖ ∈ P(β),
(Ω\‖p‖) = {γ} < P(β)), (2)C(β)∩‖q‖ = {β, γ} , ∅, ‖q‖ ∈ P(β), (Ω\‖q‖) = {α} < P(β)
and (3) C(β)∩‖p∧ q‖ = {β} , ∅); however β 6|= P(p∧ q) since ‖p∧ q‖ = {β} < P(β).

22
C is reflexive and Euclidean, Properties FCP1 , FCP2 , FCP3 and FCP4 are all satisfied and the frame

satisfies Property (MON) (see Remark 7).
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In order to obtain (Cweak
B ) as a theorem we need to add the following two

axioms:

¬Pφ→ P¬φ (P3)
(¬Pφ ∧ ¬Pψ)→ ¬P(φ ∨ ψ) (P4)

Axiom (P3) says that if φ is not plausible then its negation must be plausible
and Axiom (P4) says that if neither φ nor ψ are plausible then their disjunction
is not plausible either.

The proof of the following proposition is straightforward and is omitted.

Proposition 15. .

1. Axiom (P3) is characterized by the following property: ∀ω ∈ Ω,∀E ∈ 2Ω,

if E < P(ω) then (Ω \ E) ∈ P(ω). (FP3 )

2. Axiom (P4) is characterized by the following property: ∀ω ∈ Ω,∀E,F ∈ 2Ω,

if E < P(ω) and F < P(ω) then (E ∪ F) < P(ω). (FP4 )

We can now show that, by adding Axioms (P3) and (P4) to logic L, one
obtains (Cweak

B ) as a theorem. First we need the following proposition.

Proposition 16.

L +
{

(P4) (¬Pφ ∧ ¬Pψ)→ ¬P(φ ∨ ψ)
}
` (¬P¬φ ∧ ¬P¬ψ)→ ¬P¬(φ ∧ ψ)

Proof.
1. (¬P¬φ ∧ ¬P¬ψ)→ ¬P(¬φ ∨ ¬ψ) (Axiom P4)
2. (¬φ ∨ ¬ψ)↔ ¬(φ ∧ ψ) (tautology)

3. P(¬φ ∨ ¬ψ)↔ P¬(φ ∧ ψ) (2, RP
E)

4. ¬P(¬φ ∨ ¬ψ)↔ ¬P¬(φ ∧ ψ) (3, PL)
5. (¬P¬φ ∧ ¬P¬ψ)→ ¬P¬(φ ∧ ψ). (1, 4, PL)

�

Proposition 17.

L+

{
(P3) ¬Pφ→ P¬φ
(P4) (¬Pφ ∧ ¬Pψ)→ ¬P(φ ∨ ψ)

}
` Bφ ∧ Bψ ∧ ¬C¬(φ ∧ ψ)→ B(φ ∧ ψ)
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Proof. 23

1. Bφ↔ (¬C¬φ ∧ Pφ ∧ ¬P¬φ) (DefB)
2. Bψ↔ (¬C¬ψ ∧ Pψ ∧ ¬P¬ψ) (DefB)
3. (Bφ ∧ Bψ)→ (¬P¬φ ∧ ¬P¬ψ) (1, 2, PL)
4. (¬P¬φ ∧ ¬P¬ψ)→ ¬P¬(φ ∧ ψ) (Proposition 16)
5. (Bφ ∧ Bψ)→ ¬P¬(φ ∧ ψ) (3, 4, PL)
6. ¬P¬(φ ∧ ψ)→ P(φ ∧ ψ) (Axiom P3)

7. (Bφ ∧ Bψ)→
(
¬P¬(φ ∧ ψ) ∧ P(φ ∧ ψ)

)
(5, 6, PL)

8.
(
Bφ ∧ Bψ ∧ ¬C¬(φ ∧ ψ)

)
→

→

(
¬C¬(φ ∧ ψ) ∧ P(φ ∧ ψ) ∧ ¬P¬(φ ∧ ψ)

)
(7, PL)

9. B(φ ∧ ψ)↔
(
¬C¬(φ ∧ ψ) ∧ P(φ ∧ ψ) ∧ ¬P¬(φ ∧ ψ)

)
(DefB)

10.
(
Bφ ∧ Bψ ∧ ¬C¬(φ ∧ ψ)

)
→ B(φ ∧ ψ). (11, 12, PL)

�

6 Special cases and related literature

In this section we first consider several possible interpretations of plausibility,
relating our framework to some of the literature, and then discuss other relevant
literature.

6.1 Plausibility as positive probability

A commonly used semantic structure in game theory (see, for example, Au-
mann (1976; 1999), Battigalli and Bonanno (1999)) consists of:

1. An equivalence relation ≈ on a non-empty, finite24 set of states Ω, rep-
resenting the agent’s possible states of knowledge; the interpretation of

23Step 6 in the following proof is a shortcut; the full proof of that step is as follows:

1. ¬P¬(φ ∧ ψ)→ P¬¬(φ ∧ ψ) (Axiom P3)
2. ¬¬(φ ∧ ψ)↔ (φ ∧ ψ) (tautology)
3. P¬¬(φ ∧ ψ)↔ P(φ ∧ ψ) (2, Rule RP

E)
4. ¬P¬(φ ∧ ψ)→ P(φ ∧ ψ). (1, 3, PL)

24For simplicity we restrict attention to the case where the set of states is finite.
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ω ≈ ω′ is that at stateω the agent considersω′ possible. Letting [ω] be the
equivalence class that contains state ω (that is, [ω] = {ω′ ∈ Ω : ω ≈ ω′}),
we have that the collection

{
[ω] : ω ∈ Ω

}
is a partition of Ω.

2. For every state ω ∈ Ω, a probability distribution µω on Ω such that:

(a) if ω ≈ ω′ then µω = µω′ and

(b) if µω(ω′) > 0 then ω′ ≈ ω.

The probability distribution µω represents the probabilistic assessment
of the agent when her state of knowledge is given by the cell [ω] of her
partition. Condition 2a ensures that that the probabilistic assessment is
the same at any two states that belong to the same cell of the partition and
Condition 2b requires the support of µω to be a subset of the cell [ω].25

Within this framework one can define an event E ∈ 2Ω to be plausible at state ω
if it has positive probability, that is, one can define

P(ω) =
{
E ∈ 2Ω : µω(E) > 0

}
where µω(E) =

∑
x∈E
µω(x). Then the Monotonicity property (MON) is satisfied

and so are the properties that characterize Axioms (P3) and (P4) (see Propo-
sition 15). With this definition of plausibility, in any model based on such a
framework, for every formula φ and every state ω,

ω |= (Pφ ∧ ¬P¬φ) if and only if µω
(
‖φ‖

)
= 1

that is, if
∑

x∈‖φ‖
µω(x) = 1.26 Note that, by Condition 2a above, µω

(
‖φ‖

)
= 1 implies

that ‖φ‖ ∩ [ω] , ∅ and thus, if one identifies the certainty relation C with the

25Equivalently, one can postulate a probability distribution µ : Ω → [0, 1] such that, ∀ω ∈ Ω,
Supp(µ) ∩ [ω] , ∅, where Supp(µ) = {ω ∈ Ω : µ(ω) > 0}. Then, for every state ω, one defines µω to
be the probability distribution obtained by conditioning µ on [ω], that is,

µω(ω′) =


µ(ω′)∑

x∈[ω]
µ(x) if ω ≈ ω′

0 otherwise.

26If ω |= Pφ then ‖φ‖ ∈ P(ω), that is, µω(‖φ‖) > 0 and if ω |= ¬P¬φ then ¬‖φ‖ < P(ω), that is,
µω(¬‖φ‖) = 0 and thus µω

(
‖φ‖

)
= 1.
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equivalence relation ≈, ω |= ¬C¬φ. Hence, by the validation rule for belief, in
these structures, believing a proposition at a state coincides with assigning probability
1 to it (at that state).27 Identifying the certainty relation C with the equivalence
relation ≈ and defining plausibility as positive probability, this class of frames
validates all the axioms considered in Section 3, as well as Axioms (TC), (5C),
(P1), (P2), (P3) and (P4). Hence the logic validated by this class of frameworks
is the following extension of L:

L + {TC, 5C,CP1,CP2,CP3,CP4,P1,P2,P3,P4} .

All the schemata considered in Propositions 5-17 are theorems of this logic and
are thus valid in this class of frames.

6.2 Plausibility based on a preference order

A common approach in computer science and philosophy is to postulate a pref-
erence order% on the set of states, capturing the perceived relative likelihood of
states: ω % ω‘ is interpreted as “state ω is at least as likely as state ω′.” Various
authors (see, for example, Boutilier (1992), Goldszmidt and Pearl (1992), Spohn
(1988)) have then interpreted “the agent believes φ” as “φ is true in the most
preferred states among those that the agent considers possible”. To obtain this
interpretation of belief within our approach, let Best%C(ω) be the set of most
preferred states among the ones that are possible according to C at state ω:

Best%C(ω) =
{
ω′ ∈ C(ω) : ω′ % x,∀x ∈ C(ω)

}
.

Define P as follows: ∀ω ∈ Ω,∀E ∈ 2Ω,

E ∈ P(ω) if and only if E ∩ Best%C(ω) , ∅

that is, E is judged to be plausible at stateω if it contains at least one of the most
preferred states within the set C(ω). Then this class of frames validates Axioms

27Thus, in this case, our derived notion of belief coincides with Lenzen’s notion of “strong
belief” (Lenzen (2004)). Dodd (2017) argues that (in a probabilistic setting) this ought to be the
correct notion of belief:

I argue that believing that p implies having a credence of 1 in p. This is true because
the belief that p involves representing p as being the case, representing p as being the
case involves not allowing for the possibility of not-p, while having a credence that’s
greater than 0 in not-p involves regarding not-p as a possibility.
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(CP1), (CP2), (P1), (P2), (P3) and (P4). Thus the corresponding logic will be

L + {CP1,CP2,P1,P2,P3,P4} + S

where S is the (possibly empty) collection of axioms from the set {DC, 4C, 5C,TC}

that are postulated for certainty. Since consistency of certainty (Axiom DC) is a
theorem of this logic (Proposition 4) one obtains the interpretation of belief as “true at
the most preferred among the possible states”, that is, in every model based on such
a framework, ∀ω ∈ Ω and for every formula φ,

ω |= Bφ if and only if Best%C(ω) ⊆ ‖φ‖.

6.3 Plausibility as truth at 100x% of the accessible states

Another interpretation of “φ is plausible” is in terms of the percentage of the
accessible states at which φ is true. Let x be a positive number between 0 and
1. Then “φ is plausible” is interpreted as “φ is true at, at least, 100x% of the
accessible states”, that is, assuming that Ω is finite and letting #F denote the
number of elements in event F ⊆ Ω, for every ω ∈ Ω:

P(ω) =

{
E ∈ 2Ω :

# (E ∩ C(ω))
#C(ω)

≥ x
}
.

Under this interpretation, φ is believed at state ω if and only if (1) φ is true
at, at least, 100x% of the states that are accessible fromω and (2)¬φ is true at less
than 100x% of the states that are accessible fromω, that is, these frames validate
the formula

(
Bφ↔ (Pφ ∧ ¬P¬φ)

)
.28 Thus belief satisfies one of the conjunction

properties, namely (MB),29 but – if x < 1 – not the other, namely (Cweak
B ).30

We can distinguish three cases.

28ω |= Bφ if and only if (1) ω |= Pφ, that is,
#(‖φ‖∩C(ω))

#C(ω) ≥ x, which implies (since x > 0) that

‖φ‖ ∩ C(ω) , ∅, that is, ω |= ¬C¬φ, and (2) ω |= ¬P¬φ, that is,
#(‖¬φ‖∩C(ω))

#C(ω) < x.
29If φ ∧ ψ) is true at, at least, 100x% of the states that are accessible from ω then φ is true at, at

least, 100x% of the states that are accessible from ω and so is ψ, so that
(
P(φ ∧ ψ)→ (Pφ ∧ Pψ)

)
is

valid. If, furthermore, ¬(φ ∧ ψ) or, equivalently,
(
¬φ ∨ ¬ψ

)
is true at less than 100x% of the states

that are accessible from ω, then ¬φ is true at less than 100x% of the states that are accessible from
ω and so is ¬ψ, so that

(
¬P¬(φ ∧ ψ)→ (¬P¬φ ∧ ¬P¬ψ)

)
is valid.

30If x < 1 it is possible that (1) φ is true at, at least, 100x% of the accessible states and (2) ψ is
true at, at least, 100x% of the accessible states but φ ∧ ψ is true at some, but less than 100x%, of the
accessible states.
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1. x ∈
(
0, 1

2

]
. In this case we have that at state ω the agent believes φ if and

only if φ is true at more than (100 − x)% of the accessible states, that is,

ω |= Bφ if and only if
#
(
‖φ‖ ∩ C(ω)

)
#C(ω)

> 1 − x. 31

For example, if x = 0.2 then φ is believed if and only if it is true at more
than 80% of accessible states,32 while if x = 0.5 then φ is believed if and
only if it is true at the majority of accessible states.

The logic validated by this class of frames is

L + {CP1,CP2,P1,P2,P3} + S

where S is the (possibly empty) collection of axioms from the set {DC, 4C, 5C,
TC} that are postulated for certainty. Note that Axiom (P4) is not valid in
this frames. Case 1 (in particular, when x is close to 0) is an interesting
case since it allows one to capture phenomena such as the Lottery Paradox
(Kyburg (1961; 1983)) discussed in the Introduction.33

2. x ∈
(

1
2 , 1

)
. In this case we have that the agent believes φ if and only if

the agent considers φ plausible,34 that is, we have the reduction of belief
to plausibility: ω |= Bφ if and only ω |= Pφ. As in this previous case, the
logic validated by this class of frames is

L + {CP1,CP2,P1,P2,P3} + S
31First of all, note that when x ∈

(
0, 1

2

]
, (1−x) ≥ x. Define Aφ = ‖φ‖∩C(ω) and B¬φ = ‖¬φ‖∩C(ω).

Then
{
Aφ,B¬φ

}
is a partition ofC(ω) so that

#Aφ
#C(ω) +

#B¬φ
#C(ω) = 1. Letφ be such that

#Aφ
#C(ω) > (1−x). Then

‖φ‖ ∩ C(ω) , ∅,
#Aφ

#C(ω) > x (since 1 − x ≥ x), implying that ‖φ‖ ∈ P(ω), and
#B¬φ
#C(ω) < x, implying that

‖¬φ‖ < P(ω); hence ω |= Bφ. Conversely suppose that ω |= Bφ. Then ω |= ¬P¬φ, that is,
#B¬φ
#C(ω) < x

and thus, since
#Aφ

#C(ω) = 1 −
#B¬φ
#C(ω) ,

#Aφ
#C(ω) > 1 − x.

32If x = 0.2 and, say, φ is true at 51% of the states that are accessible from ω, then ω |= Pφ but
ω 6|= Bφ because it is also the case that ω |= P¬φ (since ¬φ is true at 49% of the states that are
accessible from ω and 0.49 > 0.2).

33For example, suppose that there are three states, ω1, ω2, ω3, e.g. with the interpretation “at
state ωi ticket i is the winner” (assuming that there is one and only one winner) and x = 1

3 . Let
the atomic proposition p−i be “ticket i is not the winner” so that, for example, ‖p−1‖ = {ω2, ω3}.
Then, letting C(ωi) = {ω1, ω2, ω3}, for every i ∈ {1, 2, 3}, we have that ω2 |= Bp−1 and ω2 |= Bp−3 but
ω2 6|= B(p−1 ∧ p−3).

34When x ∈
(

1
2 , 1

)
,

#(‖φ‖∩C(ω))
#C(ω) ≥ x (so that ω |= Pφ) implies that

#(‖¬φ‖∩C(ω))
#C(ω) < x and thus

ω |= ¬P¬φ.
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where S is the (possibly empty) collection of axioms from the set {DC, 4C, 5C,
TC} that are postulated for certainty.35

3. x = 1. In this case we get the reduction of belief to certainty:
ω |= Bφ if and only ω |= Cφ.36

6.4 Other related literature

As mentioned in the Introduction, there is a long tradition in several disci-
plines where the agent is modeled as having two epistemic levels, typically
called knowledge and belief. Both notions are taken to be primitives and their
relationship is explored either from a syntactic or from a semantic point of
view. Our approach is similar, in that we also start with two primitive notions
(certainty and plausibility), but in our framework belief is a derived notion.
While certainty is modeled in the standard way, by means of a normal syntactic
operator (or, semantically, as a binary Kripke relation), plausibility is treated
as a more general concept: syntactically it is only required to be a classical
operator and semantically it is modeled by means of a neighborhood function.
Along somewhat similar lines, Balbiani et al. (2018) investigate a logic that
distinguishes the concept of “explicit belief” from the concept of “background
knowledge”. They use a relational semantics for background knowledge and
a neighbourhood semantics for explicit beliefs and discuss axioms that express
the relationship between the two concepts. They take the two concepts of
background knowledge and explicit belief as primitive notions.

There are several contributions in the literature where belief is a derived
notion: derived from knowledge and/or plausibility. In some papers the agent
is said to believe φ if he/she knows φ to be true in the most plausible states.37

We showed in Section 6.2 that belief as truth in the most plausible (or preferred)
states is a special case of our framework. In other papers (e.g. Lamarre and
Shoham (1994)) plausibility is the only primitive and is used to define both
knowledge and belief. Other authors (e.g. Boutilier (1992), Goldszmidt and
Pearl (1992)) postulate a preference ordering over possible states to characterize
formulas of the form “after learning ψ, the agent believes φ”; this approach is

35The Lottery Paradox can also be captured in Case 2 (in particular, when x is close to 1).
36If φ is true at 100% of the states accessible from ω then, at ω, the individual is certain that φ.
37For example, Moses and Shoham (1993). However, in that paper plausibility is not defined

by an ordering but in terms of a formula, which can be thought of identifying the most plausible
states.
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linked to the extensive literature on the AGM theory of belief revision (for a
survey see Fermé and Hansson (2011; 2018)).

Perhaps the closest paper to ours is Friedman and Halpern (1997). The
authors start with two primitive notions: knowledge and plausibility. Knowl-
edge is modeled semantically by a reflexive and Euclidean Kripke relation (and
syntactically by an S5 operator), while plausibility is defined as a plausibility
measure which allows one to compare any two events in terms of their relative
plausibility; thus their framework has more structure than ours since it allows
one to make assertions of the form “event E is more plausible than event F”,
denoted by Pl(E) ≥ Pl(F). Syntactically, the plausibility measure is represented
by a binary modal operator ↪→ and the interpretation ofφ ↪→ ψ is “according to
the agent, φ typically implies ψ”; the validation rule is as follows: ω |= φ ↪→ ψ

if either Pl
(
‖φ‖

)
= ⊥ or Pl

(
‖φ ∧ ψ‖

)
> Pl

(
‖φ ∧ ¬ψ‖

)
. The authors then define

belief as follows: the agent believes φ if and only if he knows that φ is more
plausible than ¬φ: Bφ ↔ K

(
true ↪→ φ

)
. As we did in Sections 3 and 5, the

authors then consider a number of properties defining the interaction between
knowledge and plausibility and study how these properties are translated into
properties of belief.38 It is clear that our framework is “lighter” than theirs, since
we model plausibility as a unary modal operator, which is not even required to
be a normal operator (that is, it does not correspond to a binary Kripke relation)
and we do not impose the S5 logic on the certainty operator. The less structure
one imposes, the clearer it is to grasp what is really necessary in order to obtain
“desirable” properties of belief (such as positive and negative introspection).39

7 Alternative minimal extensions of L

In this section we consider alternative minimal extensions of logic L that yield
some of the theorems considered in Section 3.

Recall that, by Proposition 6, the schema (Bφ → CBφ) is a theorem of logic
L + {CP1,CP3,CP4}. The following proposition shows that one can replace
Axiom (CP1) with (5C) (negative introspection of certainty) and obtain the same
result.

38Note that the analysis in Friedman and Halpern (1997) goes beyond this, because they also
introduce time and use the extended framework to incorporate belief revision and belief update.

39For example, we showed that no interaction properties (between certainty and plausibility) at
all are needed to obtain consistency of beliefs (Proposition 1).
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Proposition 18.

L +


(5C) ¬Cφ→ C¬Cφ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

 ` Bφ→ CBφ

The proof consists of Steps 1-4 in the proof of Proposition 6 while Steps 5-7
are replaced by

5. ¬C¬φ→ C¬C¬φ (Axiom 5C)

6. Bφ→
(
CPφ ∧ C¬P¬φ ∧ ¬C¬φ

)
(1, 4, PL)

7. Bφ→ (CPφ ∧ C¬P¬φ ∧ C¬C¬φ) (5, 6,PL)

step 8 is deleted (it is a copy of the new step 7) and then the proof continues
with Steps 9-12 in the proof of Proposition 6, re-numbered as Steps 8-11 (the
reference to 8 and 9 in the new step 9 should be replaced by 7 and 8 and the
reference 10 and 11 in the last step should be replaced by 9 and 10).

Remark 8. In virtue of Proposition 18 and the proof of Proposition 10, the schema
B¬Bφ → ¬Bφ is also a theorem of the logic obtained by replacing Axiom (CP1) with
Axiom (5C) in Proposition 10,40 that is,

L +


(5C) ¬Cφ→ C¬Cφ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

 ` B¬Bφ→ ¬Bφ

Furthermore, the logic L + {5C,CP3,CP4} is a minimal extension of L that yields
(Bφ→ CBφ) and (B¬Bφ→ ¬Bφ) as theorems: see Footnotes 42, 50 and 51.

By Proposition 7, the schema (¬Bφ → C¬Bφ) is a theorem of logic L +
{CP2,CP3,CP4}. The following proposition shows that one can replace Axiom
(CP2) with (4C) (positive introspection of certainty) and obtain the same result.

Proposition 19.

L +


(4C) Cφ→ CCφ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

 ` ¬Bφ→ C¬Bφ

Proof.

40In step 3 of the proof of Proposition 10 the call would be to Proposition 18 instead of Proposition
6.
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1. C¬φ→ CC¬φ (Axiom 4C)
2. ¬CC¬φ→ ¬C¬φ (1, PL)
3. ¬Pφ→ C¬Pφ (Axiom CP3)
4. ¬C¬Pφ→ Pφ (3, PL)
5. P¬φ→ CP¬φ (Axiom CP4)
6. ¬CP¬φ→ ¬P¬φ (5, PL)
7. (¬CC¬φ ∧ ¬C¬Pφ ∧ ¬CP¬φ)→ (¬C¬φ ∧ Pφ ∧ ¬P¬φ) (2, 4, 6, PL)
8. (¬C¬φ ∧ Pφ ∧ ¬P¬φ)↔ Bφ (DefB)
9. (¬CC¬φ ∧ ¬C¬Pφ ∧ ¬CP¬φ)→ Bφ (7, 8, PL)

10. ¬C¬(¬C¬φ ∧ Pφ ∧ ¬P¬φ)↔ ¬C¬Bφ (8, R¬C¬
K )

11. ¬C¬(¬C¬φ ∧ Pφ ∧ ¬P¬φ)→ (¬CC¬φ ∧ ¬C¬Pφ ∧ ¬CP¬φ) (Remark 3)
12. ¬C¬Bφ→ Bφ (10, 11, 9, PL)
13. ¬Bφ→ C¬Bφ. (12, PL)

�

Remark 9. In virtue of Proposition 19 and the proof of Proposition 9, the schema
BBφ → Bφ is also a theorem of the logic obtained by replacing Axiom (CP2) with
Axiom (4C) in Proposition 9,41 that is,

L +


(4C) ¬Cφ→ C¬Cφ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

 ` BBφ→ Bφ

Furthermore, the logic L + {4C,CP3,CP4} is a minimal extension of L that yields
(¬Bφ→ C¬Bφ) and (BBφ→ Bφ) as theorems: see Footnotes 43, 47 and 48.

On the other hand, by inspecting the proof of minimality of the logic of
Proposition 8, one can see that positive and negative introspection of belief are
not theorems of a logic obtained by adding Axioms (4C) and (5C) to L and any
proper subset of the set of axioms {CP1,CP2,CP3,CP4}.

41In step 1 of the proof of Proposition 9 the call would be to Proposition 19 instead of Proposition
7.
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8 Conclusion

From the two primitive notions of certainty and plausibility we derived belief
as “maximally plausible possibility”: the agent believes φ if (1) she cannot
rule out φ, (2) she judges φ to be plausible and (3) she does not judge ¬φ
to be plausible. We then considered interaction properties between certainty
and plausibility and studied how these properties translate into properties
of belief (such as positive and negative introspection and their converses).
Our purpose was to identify minimal logics that would yield those properties
of belief. In order to do so we started with a basic logic where certainty is
modeled as a normal operator and plausibility as a weaker operator (a classical
operator) and then added as few axioms as possible (concerning certainty and
the interaction between certainty and plausibility) to obtain various properties
of beliefs. The analysis was carried out syntactically, but in Section 4 we
introduced the semantics in order to prove the minimality of the various logics
considered. The semantics for certainty was specified in terms of a standard
binary Kripke relation, while plausibility was represented by a neighborhood
function. In Section 6 we considered a number of possible interpretations of
plausibility (thereby establishing a link to some of the literature) and identified
the minimal logic associated with each interpretation. In future work we plan
to apply (a multi-agent version of) the framework introduced in this paper to a
qualitative analysis of game theoretic notions.

A Proof of Proposition 13

The proof for Proposition 5 was given in Section 4. Thus we only need to give
a proof of minimality for Propositions 6-10.

Proof of minimality for Proposition 6. We need to prove that the schema

Bφ→ CBφ is not a theorem of any sub-logic of L +


(CP1) Cφ→ Pφ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

.

\CP1 Let Ω = {α, β},C(α) = {α, β},C(β) = {β},P(α) = P(β) = {{α},Ω}. This
frame satisfies Properties (FCP3 ) and (FCP4 ) (and thus validates Axioms
(CP3) and (CP4)) but violates Property (FCP1 ) since C(β) ⊆ {β} but {β} <
P(β).42 Let p be an atomic formula and construct a model based on this

42 Note that C is transitive but not Euclidean. Indeed, as implied by Proposition 18, it cannot
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frame where ‖p‖ = {α}. Then ‖Bp‖ = {α} (β 6|= Bp since C(β) ∩ ‖p‖ = ∅)
and thus α |= Bp but (since β ∈ C(α)) α 6|= CBp.

\CP3 Let Ω = {α, β},C(α) = C(β) = {β},P(α) =
{
{β},Ω

}
,P(β) =

{
{α}, {β},Ω

}
.

This frame satisfies Properties (FCP1 ) and (FCP4 ) (and thus validates
Axioms (CP1) and (CP4)) but violates Property (FCP3 ) since β ∈ C(α)
but P(β) * P(α). Let p be an atomic formula and construct a model
based on this frame where ‖p‖ = {β}. Then ‖Bp‖ = {α} (β 6|= Bp since
Ω \ ‖p‖ = {α} ∈ P(β) and thus β 6|= ¬P¬p) so that α |= Bp but α 6|= CBp.

\CP4 Let Ω = {α, β, γ},C(α) = C(β) = C(γ) = {β, γ},P(α) =
{
{β}, {β, γ},Ω

}
,P(β) =

P(γ) =
{
{β, γ},Ω

}
. This frame satisfies Properties (FCP1 ) and (FCP3 ) (and

thus validates Axioms (CP1) and (CP3)) but violates Property (FCP4 ) since
β ∈ C(α) but P(α) * P(β). Let p be an atomic formula and construct a
model based on this frame where ‖p‖ = {β}. Then ‖Bp‖ = {α} (β 6|= Bp
since ‖p‖ < P(β) and thus β 6|= Pp and the same is true of γ) so that α |= Bp
but α 6|= CBp. �

Proof of minimality for Proposition 7. We need to prove that the schema

¬Bφ→ C¬Bφ is not a theorem of any sub-logic ofL+


(CP2) Cφ→ ¬P¬φ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

.

\CP2 Let Ω = {α, β, γ},C(α) = {β},C(β) = C(γ) = {β, γ},P(α) = P(β) = P(γ) ={
{γ},Ω

}
. This frame satisfies Properties (FCP3 ) and (FCP4 ) (and thus vali-

dates Axioms (CP3) and (CP4)) but violates Property (FCP2 ) since C(α) ⊆
{α, β} but

(
Ω \ {α, β}

)
= {γ} ∈ P(α). Let p be an atomic formula and con-

struct a model based on this frame where ‖p‖ = {γ}. Then ‖Bp‖ = {β, γ}
(α 6|= Bp because C(α) ∩ ‖p‖ = ∅). Thus α |= (¬Bp ∧ ¬C¬Bp).43

\CP3 Let Ω = {α, β},C(α) = C(β) = {β},P(α) = {Ω} ,P(β) =
{
{β},Ω

}
. This frame

satisfies Properties (FCP2 ) and (FCP4 ) (and thus validates Axioms (CP2)
and (CP4)) but violates Property (FCP3 ) since β ∈ C(α) but P(β) * P(α).
Let p be an atomic formula and construct a model based on this frame
where ‖p‖ = {β}. Then ‖Bp‖ = {β} (α 6|= Bp since ‖p‖ < P(α)) and thus
α |= (¬Bp ∧ ¬C¬Bp).

be Euclidean. Note also that the proof given for Proposition 6 is also a proof of minimality for the
logic of Proposition 18 since in the remaining two cases C is in fact Euclidean.

43 Note thatC is not transitive. Indeed, as implied by Proposition 19, it cannot be transitive. Note
also that the proof given for Proposition 7 is also a proof of minimality for the logic of Proposition
19 since in the remaining two cases C is in fact transitive.



38 Belief as Plausible Possibility

\CP4 Let Ω = {α, β, γ},C(α) = {β, γ},C(β) = C(γ) = {γ},P(α) =
{
{γ}, {α, β},Ω

}
,

P(β) = P(γ) =
{
{γ},Ω

}
. This frame satisfies Properties (FCP2 ) and (FCP3 )

(and thus validates Axioms (CP2) and (CP3)) but violates Property (FCP4 )
since β ∈ C(α) butP(α) * P(β). Let p be an atomic formula and construct
a model based on this frame where ‖p‖ = {γ}. Then ‖Bp‖ = {β, γ} (α 6|= Bp
since Ω\‖p‖ = {α, β} ∈ P(α) so that α 6|= ¬P¬p). Thus α |= (¬Bp∧¬C¬Bp).
�

Proof of minimality for Proposition 8.
First we prove that the schema Bφ→ BBφ is not a theorem of any sub-logic of

L +


(CP1) Cφ→ Pφ
(CP2) Cφ→ ¬P¬φ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

.

\CP1 Let Ω = {α, β, γ},C(α) = C(β) = {β},C(γ) = {γ},P(α) = P(β) =
{
{β},Ω

}
,

P(γ) =
{
{γ}, {α, γ}, {β, γ},Ω

}
. This frame satisfies Properties (FCP2 ), (FCP3 )

and (FCP4 ) (and thus validates Axioms (CP2), (CP3) and (CP4))44 but
violates Property (FCP1 ) since C(α) ⊆ {β, γ} but {β, γ} < P(α). Let p be an
atomic formula and construct a model based on this frame where ‖p‖ =
{β}. Then ‖Bp‖ = {α, β} so that α |= Bp but α 6|= BBp since ‖Bp‖ < P(α).

\CP2 Let Ω = {α, β, γ}, C(α) = C(β) = {β}, C(γ) = {γ}, P(α) = P(β) ={
{β}, {γ}, {α, β}, {β, γ},Ω

}
,P(γ) =

{
{γ}, {α, γ}, {β, γ},Ω

}
. This frame satisfies

Properties (FCP1 ), (FCP3 ) and (FCP4 ) (and thus validates Axioms (CP1),
(CP3) and (CP4))45 but violates Property (FCP2 ) since C(α) ⊆ {α, β} and
Ω\{α, β} = {γ} ∈ P(α). Let p be an atomic formula and construct a model
based on this frame where ‖p‖ = {β}. Then ‖Bp‖ = {α, β} so that α |= Bp
but α 6|= BBp since α 6|= ¬P¬Bp (because ‖¬Bp‖ = {γ} ∈ P(α)).

\CP3 Let Ω = {α, β, γ, δ}, C(α) = {α, β}, C(β) = C(γ) = C(δ) = {β, γ, δ},
P(α) =

{
{α, β}, {α, β, γ}, {α, β, δ},Ω

}
, P(β) = P(γ) = P(δ) ={

{α, β}, {γ, δ}, {α, β, γ}, {α, β, δ}, {β, γ, δ},Ω
}
. This frame satisfies Properties

(FCP1 ), (FCP2 ) and (FCP4 ) (and thus validates Axioms (CP1), (CP2) and
(CP4)) but violates Property (FCP3 ) since β ∈ C(α) but P(β) * P(α). Let p
be an atomic formula and construct a model based on this frame where
‖p‖ = {α, β}. Then ‖Bp‖ = {α} (β < ‖Bp‖ because Ω\‖p‖ = {γ, δ} ∈ P(β) and
the same is true of γ and δ) so that α |= Bp but α 6|= BBp since ‖Bp‖ < P(α).

44Note also that C is transitive and Euclidean and thus validates Axioms (4C) and (5C).
45Note also that C is transitive and Euclidean and thus validates Axioms (4C) and (5C).
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\CP4 Let Ω = {α, β, γ}, C(α) = C(β) = C(γ) = {β, γ},46
P(α) =

{
{β}, {β, γ},Ω

}
,

P(β) = P(γ) =
{
{β, γ},Ω

}
. This frame satisfies Properties (FCP1 ), (FCP2 )

and (FCP3 ) (and thus validates Axioms (CP1), (CP2) and (CP3)) but vio-
lates Property (FCP4 ) since β ∈ C(α) but P(α) * P(β). Let p be an atomic
formula and construct a model based on this frame where ‖p‖ = {β}.
Then ‖Bp‖ = {α} (β < ‖Bp‖ because ‖p‖ < P(β) and the same is true of γ)
so that α |= Bp but α 6|= BBp since C(α) ∩ ‖Bp‖ = ∅. �

Next we prove that the schema ¬Bφ→ B¬Bφ is not a theorem of any sub-logic

ofL+


(CP1) Cφ→ Pφ
(CP2) Cφ→ ¬P¬φ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

. Note that in all the frames considered below,

C is transitive and Euclidean and thus validates Axioms (4C) and (5C).

\CP1 Let Ω = {α, β, γ},C(α) = C(β) = {β},C(γ) = {γ},P(α) = P(β) = {Ω} ,P(γ) ={
{β, γ},Ω

}
. This frame satisfies Properties (FCP2 ), (FCP3 ) and (FCP4 ) (and

thus validates Axioms (CP2), (CP3) and (CP4)) but violates Property
(FCP1 ) since C(α) ⊆ {β} but {β} < P(α). Let p be an atomic formula
and construct a model based on this frame where ‖p‖ = {β, γ}. Then
‖Bp‖ = {γ} (α < ‖Bp‖ because ‖p‖ < P(α) and the same is true of β). Thus
α |= ¬Bp but α 6|= B¬Bp because ‖¬Bp‖ = Ω \ ‖Bp‖ = {α, β} < P(α) .

\CP2 Let Ω = {α, β, γ}, C(α) = C(β) = {β}, C(γ) = {γ}, P(α) = P(β) ={
{α}, {β}, {γ}, {α, β}, {β, γ},Ω

}
,P(γ) =

{
{γ}, {α, γ}, {β, γ},Ω

}
. This frame sat-

isfies Properties (FCP1 ), (FCP3 ) and (FCP4 ) (and thus validates Axioms
(CP1), (CP3) and (CP4)) but violates Property (FCP2 ) since C(α) ⊆ {β, γ}
and Ω \ {β, γ} = {α} ∈ P(α). Let p be an atomic formula and construct a
model based on this frame where ‖p‖ = {β, γ}. Then ‖Bp‖ = {γ} (α < ‖Bp‖
because Ω \ ‖p‖ ∈ P(α) and the same is true of β). Thus α |= ¬Bp but
α 6|= B¬Bp because ‖¬Bp‖ = Ω \ ‖Bp‖ = {α, β} and Ω \ ‖¬Bp‖ = {γ} ∈ P(α).

\CP3 Let Ω = {α, β, γ},C(α) = C(β) = C(γ) = {β, γ},P(α) =
{
{β, γ},Ω

}
,P(β) =

P(γ) =
{
{α, β}, {β, γ},Ω

}
. This frame satisfies Properties (FCP1 ), (FCP2 ) and

(FCP4 ) (and thus validates Axioms (CP1), (CP2) and (CP4)) but violates
Property (FCP3 ) since β ∈ C(α) but P(β) * P(α). Let p be an atomic
formula and construct a model based on this frame where ‖p‖ = {α, β}.
Then ‖Bp‖ = {β, γ} (α 6|= Bp since ‖p‖ < P(α)). Thus α |= ¬Bp but
α 6|= B¬Bp because ‖¬Bp‖ = Ω \ ‖Bp‖ = {α} and C(α) ∩ {α} = ∅.

46Note that C is transitive and Euclidean and thus validates Axioms (4C) and (5C).
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\CP4 Let Ω = {α, β, γ},C(α) = C(β) = C(γ) = {β, γ},P(α) =
{
{γ}, {α, β}, {β, γ},Ω

}
,

P(β) = P(γ) =
{
{α, β}, {β, γ},Ω

}
. This frame satisfies Properties (FCP1 ),

(FCP2 ) and (FCP3 ) (and thus validates Axioms (CP1), (CP2) and (CP3))
but violates Property (FCP4 ) since β ∈ C(α) but P(α) * P(β). Let p be
an atomic formula and construct a model based on this frame where
‖p‖ = {α, β}. Then ‖Bp‖ = {β, γ} (α 6|= Bp since Ω \ ‖p‖ = {γ} ∈ P(α)).
Thus α |= ¬Bp but α 6|= B¬Bp because ‖¬Bp‖ = Ω \ ‖Bp‖ = {α} and
C(α) ∩ {α} = ∅. �

Proof of minimality for Proposition 9. We need to prove that the schema

BBφ→ Bφ is not a theorem of any sub-logic of L +


(CP2) Cφ→ ¬P¬φ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

.

\CP2 Let Ω = {α, β, γ},C(α) = {β},C(β) = C(γ) = {γ},P(α) = P(β) = P(γ) ={
{γ}, {α, γ}, {β, γ},Ω

}
. This frame satisfies Properties (FCP3 ) and (FCP4 )

(and thus validates Axioms (CP3) and (CP4)) but violates Property (FCP2 )
since C(α) ⊆ {β} but Ω \ {β} = {α, γ} ∈ P(α). Let p be an atomic formula
and construct a model based on this frame where ‖p‖ = {α, γ}. Then
‖Bp‖ = {β, γ} (α < ‖Bp‖ because C(α) ∩ ‖p‖ = ∅) so that α |= BBp but
α 6|= Bp.

\CP3 Let Ω = {α, β, γ},C(α) = {β, γ},C(β) = C(γ) = {γ}, 47
P(α) =

{
{β, γ},Ω

}
,

P(β) = P(γ) =
{
{γ}, {α, γ}, {β, γ},Ω

}
. This frame satisfies Properties (FCP2 )

and (FCP4 ) (and thus validates Axioms (Cp2) and (CP4)) but violates
Property (CP3) since β ∈ P(α) but P(β) * P(α). Let p be an atomic
formula and construct a model based on this frame where ‖p‖ = {α, γ}.
Then ‖Bp‖ = {β, γ} so that α |= BBp but α 6|= Bp since ‖p‖ < P(α).

\CP4 Let Ω = {α, β, γ}, C(α) = {β, γ}, C(β) = C(γ) = {γ},48

P(α) =
{
{β}, {α, γ}, {β, γ},Ω

}
, P(β) = P(γ) =

{
{α, γ}, {β, γ},Ω

}
. This

frame satisfies Properties (FCP2 ) and (FCP3 ) (and thus validates Ax-
ioms (CP2) and (CP3)) but violates Property (CP4) since β ∈ P(α) but
P(α) * P(β). Let p be an atomic formula and construct a model based
on this frame where ‖p‖ = {α, γ}. Then ‖Bp‖ = {β, γ} (α < ‖Bp‖ because
Ω \ ‖p‖ = {β} ∈ P(α)) so that α |= BBp but α 6|= Bp.

47 Note that C is transitive.
48 Note that C is transitive.
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Proof of minimality for Proposition 10. We need to prove that the schema

B¬Bφ→ ¬Bφ is not a theorem of any sub-logic ofL+


(CP1) Cφ→ Pφ
(CP3) ¬Pφ→ C¬Pφ
(CP4) Pφ→ CPφ

.

\CP1 Let Ω = {α, β, γ}, C(α) = {β, γ}, C(β) = C(γ) = {γ},49
P(α) = P(β) =

P(γ) =
{
{α, β}, {β, γ},Ω

}
. This frame satisfies Properties (FCP3 ) and (FCP4 )

(and thus validates Axioms (CP3) and (CP4)) but violates Property (FCP1 )
sinceC(β) ⊆ {γ} but {γ} < P(β). Let p be an atomic formula and construct
a model based on this frame where ‖p‖ = {α, β}. Then ‖Bp‖ = {α}
(β < ‖Bp‖ because C(β) ∩ ‖p‖ = ∅ and the same is true of γ) so that
‖¬Bp‖ = Ω \ ‖Bp‖ = {β, γ} and thus α |= (B¬Bp ∧ Bp).

\CP3 Let Ω = {α, β, γ}, C(α) = C(β) = C(γ) = {β, γ},50
P(α) =

{
{α, β}, {β, γ},Ω

}
,

P(β) = P(γ) =
{
{γ}, {α, β}, {β, γ},Ω

}
. This frame satisfies Properties (FCP1 )

and (FCP4 ) (and thus validates Axioms (CP1) and (CP4)) but violates
Property (FCP3 ) since β ∈ C(α) but P(β) * P(α). Let p be an atomic
formula and construct a model based on this frame where ‖p‖ = {α, β}.
Then ‖Bp‖ = {α} (β < ‖Bp‖ because Ω \ ‖p‖ = {γ} ∈ P(β) and the same is
true of γ) so that ‖¬Bp‖ = {β, γ} and thus α |= (B¬Bp ∧ Bp).

\CP4 Let Ω = {α, β, γ}, C(α) = C(β) = C(γ) = {β, γ},51
P(α) =

{
{α, β}, {β, γ},Ω

}
,

P(β) = P(γ) =
{
{β, γ},Ω

}
. This frame satisfies Properties (FCP1 ) and

(FCP3 ) (and thus validates Axioms (CP1) and (CP3)) but violates Property
(FCP4 ) since β ∈ C(α) but P(α) * P(β). Let p be an atomic formula
and construct a model based on this frame where ‖p‖ = {α, β}. Then
‖Bp‖ = {α} (β < ‖Bp‖ because ‖p‖ < P(β) and the same is true of γ) so that
‖¬Bp‖ = {β, γ} and thus α |= (B¬Bp ∧ Bp). �
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