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In The Nature and Meaning of Numbers, Dedekind produces an original, quite remarkable proof for the 
holy grail in the foundations of elementary arithmetic, that there are an infinite number of things. It 
goes like this. [p, 64 in the Dover edition.] Consider the set 𝑆 of things which can be objects of my 
thought. Define the function 𝜙(𝑠), which maps an element 𝑠 of 𝑆 to the thought that 𝑠 can be an object 
of my thought. Then 𝜙 is evidently one-to-one, and the image of 𝜙 is contained in 𝑆. Indeed, it is 
properly contained in 𝑆, because I myself can be an object of my thoughts and so belong to 𝑆, but I 
myself am not a mere thought. Thus 𝑆 is infinite. 

Now Dedekind's proof is not well respected by philosophers of mathematics (e.g. see George Boolos' 
The Standard of Equality of Numbers). The appeals to me myself and to thoughts take the proof out of 
what Anglo-Saxons anyway would consider the proper domain of logic. There is also the assumption 
that, if 𝑠 is a thought, then there always exists the thought that 𝑠 can be an object of my thoughts. This 
may be defensible, but it obviously depends, at the least, on one's perspectives on thoughts, which 
again do not seem strictly logical. 

These criticisms aside, Dedekind's proof in its essence is nonetheless not really so bad as all that. On 
the contrary, the technique which it employs, building a hierarchical chain of pseudo-logical things, is 
of fundamental importance. It uses thoughts--constructing a thought of a thought of a thought...--, but 
one might equally have used sets--a set of a set of a set...--or predicates--a predicate of a predicate of a 
predicate...  

The major competition to Dedekind comes from Frege. This technique, which can be called the 
"bootstrap" approach, proceeds by showing the natural numbers themselves are infinite, since the 
existence of 0 implies there is 1 thing, the existence of 0 and 1 that there are 2, the existence of 0, 1, 
and 2 that there are 3 things, and so forth, and in general the existence of the natural number 𝑛 implies 
that there are 𝑛 + 1 things (namely the natural numbers 0 through 𝑛). 

Boolos (again in The Standard of Equality of Numbers) asserts that "infinity is cheap." By this he 
means that theories with weak assumptions must have infinite models. So in his eyes the interesting 
question is not whether a theory must have infinite models, but whether a logically true theory is such. 
(He answers no.) 

I would like to suggest that there is another interesting question: whether one can prove the infinity of 
objects in the theory itself. Boolos did not ask this question, because he was a logician, and modern 
logicians don't as a rule think much of interpreted systems. In their eyes syntax and semantics are to be 
kept separate, theories are syntax, and so forth. Nonetheless, despite the modern bias against such an 
approach, it has sense. The idea is to fix one's eyes on proving a particular proposition, such as that 
there are an infinite number of things, and ask what axioms one must make in order to prove it. In an 
interpreted system, the quality of the axioms can be judged: would one really want to assume such-and-
such about the concepts in question? Is it--because it is in the context of the foundations of elementary 
arithmetic--fundamental, or can we do better? 

It is a different question from Boolos', but probably the one Frege wanted to resolve, and one which in 
any case Boolos in his analysis of Frege essentially answers.  

Now there are two different ways of stating that there are an infinite number of things--if you will, the 
potential and the actual version. Let 

𝑁𝑥 mean "𝑥 is a natural (finite) number", 
𝑀𝑛,𝑃 mean "𝑃 is 𝑛 in number", and 
𝑆𝑛,𝑚 mean "𝑚 succeeds 𝑛". 
 
Potential infinity means that the number of things are unbounded, i.e. for any natural number 𝑛, there 
are more than 𝑛 things, or formally 



∀𝑛 (𝑁𝑛 ⇒  ∃𝑋∃𝑎 (𝑀𝑛,𝑋 & ¬ 𝑋𝑎)) (POTINF) 
 
Actual infinity asserts that there is a set or predicate which is infinite. Formally, 
 
∃𝑋∃𝑛 ¬ (𝑁𝑛 & 𝑀𝑛,𝑋) (ACTINF)  

Boolos worked in what is called Frege Arithmetic (FA), which is second-order logic (two types of 
entities, lower- and upper-case, which must be kept separate) plus the axiom known as Hume's 
Principle (HP), which says that 𝑃 and 𝑄 have the same number precisely when there is a 1-1 function 
from 𝑃 onto 𝑄. The name "Frege Arithmetic" obviously is suggestive, and Frege can be thought of 
having used FA to derive elementary arithmetic, although of course he did not assume HP, and indeed 
proved it from his now infamous, because inconsistent, Axiom V. In the perspective of an interpreted 
system, definitions which are not abbreviations become axioms, so Boolos following Frege made these 
assumptions (here 𝑃 ==  𝑄 abbreviates there is a 1-1 function from 𝑃 onto 𝑄): 

B1 ∀𝑥( {𝑥 ∶  𝜙}𝑥 ⇔  𝜙), where 𝜙 is any formula 
B2 ∀𝑥∀𝑦( {𝑥, 𝑦 ∶  𝜙}𝑥, 𝑦 ⇔  𝜙), where 𝜙 is any formula 
B3 ∀𝑃 ∃𝑛 𝑀𝑛,𝑃 
B4 ∀𝑃∀𝑄∀𝑛 ( 𝑀𝑛,𝑃 ⇒  (𝑃 ==  𝑄 ⇔  𝑀𝑛,𝑄) ) 
B5 ∀𝑃∀𝑛∀𝑚 (𝑀𝑛,𝑃 & 𝑀𝑚,𝑃 ⇒  𝑛 =  𝑚) 
B6 𝑀0, {𝑥 ∶   ¬ 𝑥 =  𝑥} 
B7 ∀𝑚∀𝑛 (𝑆𝑚, 𝑛 ⇔  ∃𝑃∃𝑎 (¬ 𝑃𝑎 & 𝑀𝑚,𝑃 & 𝑀𝑛, {𝑥 ∶  𝑃𝑥 ∨  𝑥 =  𝑎})) 
B8 ∀𝑛 (𝑁𝑛 ⇔  𝑛 =  0 ∨  ∀𝑃 [ ∀𝑎∀𝑏 ( [(𝑎 =  0 ∨  𝑃𝑎) & 𝑆𝑎, 𝑏]  ⇒  𝑃𝑏)  ⇒  𝑃𝑛 ]) 

Remark that 𝑃𝑎 says that "𝑎 satisfies 𝑃" or "𝑎 belongs to 𝑃," according to one's interpretation of big-
letters as predicates or classes (or properties or sets...). So {𝑥 ∶  𝑥 =  𝑥}𝑎 for instance says that 𝑎 
satisfies {𝑥 ∶  𝑥 =  𝑥}, i.e. 𝑎 =  𝑎. Also, {𝑥 ∶  𝑥 =  𝑥}𝑥 if and only if 𝑥 =  𝑥, which is an instance of 
B1. (I would like to think this is a clever use of scope, but perhaps people just find it confusing.) 

Remark as well that {𝑥 ∶  𝜙} is considered a "big" letter, and may only be substituted for a universal 
quantifier of a big letter. E.g. from B3 we may conclude that ∃𝑛 𝑀𝑛, {𝑥 ∶  𝑥 =  𝑥}. 

Remark finally that Hume's Principle has been split into three, B3, B4, and B5. That is, Hume's 
Principle (within Frege Arithmetic) is the assumption: 

 ∀𝑃∀𝑄 (#𝑃 =  #𝑄 ⇔  𝑃 ==  𝑄) 

The use of #𝑃 implicitly assumes B3 and B5, while B4 captures the rest. 

Proceed now as follows to prove POTINF and ACTINF. Proofs are not given up to P12, since they can 
be found at the end of Boolos' The Standard of Equality of Numbers: 

P1 ∀𝑃 (𝑀0,𝑃 ⇔  ∀𝑥 ¬ 𝑃𝑥) 

P2 ∀𝑚∀𝑛∀𝑚′∀𝑛′ (𝑆𝑚, 𝑛 & 𝑆𝑚′, 𝑛′ ⇒  (𝑚 =  𝑚′ ⇔  𝑛 =  𝑛′)) 

P3 ∀𝑛  ¬ 𝑆𝑛, 0 

Abbreviate ∀𝑃 [ ∀𝑎∀𝑏 ( [(𝑎 =  𝑛 ∨  𝑃𝑎) & 𝑆𝑎, 𝑏]  ⇒  𝑃𝑏)  ⇒  𝑃𝑚 ] by (𝑆∗)𝑛,𝑚. Note that: 

P3a ∀𝑛(𝑁𝑛 ⇔  𝑛 =  0 ∨  (𝑆∗)0, 𝑛) 

P4 ∀𝑛∀𝑚 (𝑆𝑛,𝑚 ⇒  (𝑆∗)𝑛,𝑚) 

P5 ∀𝑛∀𝑚∀𝑝 ((𝑆∗)𝑛,𝑚 & (𝑆∗)𝑚, 𝑝 ⇒  (𝑆∗)𝑛, 𝑝) 



P6 ∀𝑛∀𝑥 ((𝑆∗)𝑥, 𝑛 ⇒  ∃𝑚 𝑆𝑚, 𝑛 & ∀𝑚 (𝑆𝑚, 𝑛 ⇒  ((𝑆∗)𝑥,𝑚 ∨  𝑥 =  𝑚))) 

P7 ∀𝑛 ((𝑆∗)0, 𝑛 ⇒  ¬ (𝑆∗)𝑛, 𝑛) 

Abbreviate 𝑛 =  𝑚 ∨  (𝑆∗)𝑚, 𝑛 by 𝑚 ≤  𝑛. Note that: 

P7a ∀𝑛 (𝑁𝑛 ⇔  0 ≤  𝑛). 

P8 ∀𝑛∀𝑚 (𝑆𝑛,𝑚 & (𝑆∗)0,𝑚 ⇒  ∀𝑥 (𝑥 ≤  𝑛 ⇔  𝑥 ≤  𝑚 & ¬ 𝑥 =  𝑚)). 

P9 ∀𝑛∀𝑚∀𝑝∀𝑞 (𝑆𝑛,𝑚 & (𝑆∗)0,𝑚 & 𝑀𝑝, {𝑥 ∶  𝑥 ≤  𝑛} & 𝑀𝑞, {𝑥 ∶  𝑥 ≤  𝑚}  ⇒  𝑆𝑝, 𝑞) 

P10 ∀𝑛∀𝑚∀𝑝∀𝑞 (𝑆𝑛,𝑚 & 𝑁𝑛 & 𝑀𝑝, {𝑥 ∶  𝑥 ≤  𝑛} & 𝑀𝑞, {𝑥 ∶  𝑥 ≤  𝑚} & 𝑆𝑛, 𝑝 ⇒  𝑁𝑚 & 𝑆𝑚, 𝑞) 

P11 ∃𝑝 𝑀𝑝, {𝑥 ∶  𝑥 ≤  0} & ∀𝑝(𝑀𝑝, {𝑥 ∶  𝑥 ≤  0}  ⇒  𝑆0, 𝑝) 

P12 ∀𝑛(𝑁𝑛 ⇒  ∃𝑝 𝑀𝑝, {𝑥 ∶  𝑥 ≤  𝑛}) & ∀𝑛∀𝑝(𝑁𝑛 & 𝑀𝑝, {𝑥 ∶  𝑥 ≤  𝑛}  ⇒  𝑆𝑛, 𝑝) 

P13 ¬ (𝑆∗)0,0. 
Pf:  This contradicts P7. 

P14 ∀𝑛 (𝑁𝑛 ⇒  ¬ (𝑆∗)𝑛, 𝑛). 
Pf:  By P3a, 𝑁𝑛 ⇒  𝑛 =  0 ∨  (𝑆∗)0, 𝑛. So use P7 and P13. 

P15 ∀𝑛∀𝑚 (𝑁𝑛 & 𝑆𝑛,𝑚 ⇒  𝑁𝑚) 
Pf: Suppose 𝑁𝑛 & 𝑆𝑛,𝑚. By P4, (𝑆∗)𝑛,𝑚. By P3a, 𝑛 =  0 ∨  (𝑆∗)0, 𝑛. If the former, then (𝑆∗)0,𝑚. If 
the latter, then by P5, (𝑆∗)0,𝑚. So in both cases, using again P3a, 𝑁𝑚.  

P16 ∀𝑛 (𝑁𝑛 & ¬ 𝑛 =  0 ⇒  ∃ 𝑚 (𝑁𝑚 & 𝑆𝑚, 𝑛)) 
Pf:  Suppose 𝑁𝑛 & ¬ 𝑛 = 0. By B8,∀𝑃 [∀𝑎∀𝑏 ( [(𝑎 =  0 ∨  𝑃𝑎) & 𝑆𝑎, 𝑏]  ⇒  𝑃𝑏)  ⇒  𝑃𝑛 ]. Let 
𝑃 =  {𝑥 ∶  ∃𝑚 (𝑁𝑚 & 𝑆𝑚, 𝑥)}. Suppose [(𝑎 =  0 ∨  𝑃𝑎) & 𝑆𝑎, 𝑏]. By P3a, 𝑎 =  0 implies 𝑁𝑎. On the 
other hand, so does 𝑃𝑎, using P15. Hence 𝑁𝑎 & 𝑆𝑎, 𝑏, so evidently ∃𝑚 (𝑁𝑚 & 𝑆𝑚, 𝑏). Thus 𝑃𝑏. 
Hence 𝑃𝑛. 

P17 ∀𝑛∀𝑚 (𝑁𝑚 & 𝑆𝑚, 𝑛 ⇒  ¬ 𝑛 ≤  𝑚) 
Pf:  Suppose 𝑁𝑚 & 𝑆𝑚, 𝑛 & 𝑛 ≤  𝑚. The second conjunct and P4 implies (𝑆∗)𝑚, 𝑛. The third implies 
𝑚 =  𝑛 ∨  (𝑆∗)𝑛,𝑚. By P14, ¬ 𝑚 =  𝑛. So (𝑆∗)𝑛,𝑚. By P5, (𝑆∗)𝑚,𝑚. But this contradicts P14. 

P18 POTINF 
Pf:  Let 𝑁𝑛. 𝑀0, {𝑥 ∶  ¬ 𝑥 =  𝑥} &  ¬ {𝑥 ∶  ¬ 𝑥 =  𝑥}0. So true for 𝑛 =  0. Assume then ¬ 𝑛 =  0. 
By P16, 𝑁𝑚 & 𝑆𝑚, 𝑛 for some 𝑚. By P12, 𝑆𝑚, 𝑞, where 𝑀𝑞, {𝑥 ∶  𝑥 ≤  𝑚}. By P2, 𝑛 =  𝑞, i.e. 
𝑀𝑛, {𝑥 ∶  𝑥 ≤  𝑚}. By P17, ¬ {𝑥 ∶  𝑥 ≤  𝑚}𝑛. 

P19 ACTINF 
Pf:  Suppose 𝑁𝑛 & 𝑀𝑛,𝑁. But 𝑆 is a 1-1 function from N onto {𝑥 ∶  𝑁𝑥 & ¬ 𝑥 =  0}. (It is a 1-1 
function by P2, it is onto by P16.) That is, 𝑁 ==  {𝑥 ∶  𝑁𝑥 & ¬ 𝑥 =  0}. 𝑀𝑛, {𝑥 ∶  𝑁𝑥 & ¬ 𝑥 =  0} by 
B4. By B7, 𝑆𝑛, 𝑛. By P4, (𝑆∗)𝑛, 𝑛. But this contradicts P14. 

A version of Dedekind's proof can't go through in Frege Arithmetic, because numbers are the only first-
order entities guaranteed to exist. The second-order entities, which are pseudo-logical--properties, 
classes, or whatever you choose to call them--cannot themselves be counted, so of course cannot be 
proven infinite in the theory. (Remark that looked at from the exterior, of course, they can be counted, 
and of course must be infinite since numbers are. After all, {𝑥 ∶  𝑥 =  𝑎} must be different from 
{𝑥 ∶  𝑥 =  𝑏} if ¬ 𝑎 =  𝑏, because of B1.) 



So we cannot stay in pure second-order logic, in order to express Dedekind's proof. Consider instead 
the following logical system. Like second-order logic, use big- and small-letters. Big-letters, however, 
may be substituted for small-letters. It is possible as well to let small-letters be substituted for big-
letters, in which case there is no difference between the two types, and the system becomes a standard 
one-type first-order theory. Nonetheless, this is stronger than what is needed, and the solution to the 
paradoxes advocated in my A Comprehensive Solution to the Paradoxes supports a distinction between 
big- and small-letters. 
  
Just to give a small feel for the system, here are some simple examples. From ∀𝑥(𝑥 =  𝑥), one may 
infer all of 0 =  0, 𝑃 =  𝑃, and {𝑥 ∶  ¬ 𝑥 =  0}  =  {𝑥 ∶  ¬ 𝑥 =  0}. On the other hand, one has a 
choice about allowing the substitution of 0 in for 𝑃 in "∀𝑃 (𝑀0,𝑃 ⟺  ∀𝑥  𝑃𝑥)". If one allows it, then 
the system makes no distinction between big- and little-letters, as these become interchangeable. The 
system is therefore standard first-order. If one doesn't, as done here, then little-letters subsume big-. 
  
Rmark that {𝑥 ∶  𝑥 =  𝑃} is now a legitimate term, and indeed by comprehension {𝑥 ∶  𝑥 =  𝑃}𝑃. 
(Again, big-letters may be substituted for little.) It is this facility which will allow the system to 
construct a hierarchy of predicates (or sets or classes, depending on your interpretation). 
Full-scale comprehension isn't of course consistent in such a system, but only very simple 
comprehension is justified and anyway needed, and one can and should stop with ACA, that is 
arithmetic comprehension (i.e. with restrictions on the variables allowed in the predicate place).  
 
Consider now the following axioms. 

F1 ∀𝑥( {𝑥 ∶  𝜙}𝑥 ⇔  𝜙), where 𝜙 does not contain any bound variables or free 𝑥 in the predicate 
position 
F2 ∀𝑥∀𝑦( {𝑥, 𝑦 ∶  𝜙}𝑥, 𝑦 ⇔  𝜙), where 𝜙 does not contain any bound variables or free 𝑥 or 𝑦 in the 
predicate position  
F3 ∀𝑛∀𝑚∀𝑃 ( 𝑁𝑛 & 𝑀𝑛,𝑃 & 𝑀𝑚,𝑃 ⇒  𝑛 =  𝑚) 
F4 ∀𝑃 (𝑀0,𝑃 ⇔  ∀𝑥 ¬ 𝑃𝑥) 
F5 ∀𝑛∀𝑚∀𝑃∀𝑄∀𝑎 ( 𝑁𝑛 & 𝑆𝑛,𝑚 & ¬ 𝑃𝑎 & ∀𝑥(𝑄𝑥 ⇔  𝑃𝑥 ∨  𝑥 =  𝑎)  ⇒  (𝑀𝑛,𝑃 ⇔  𝑀𝑚,𝑄) ) 
F6(rule of induction: 𝜙 is any formula, and (𝑥\𝑦) means 𝑥 substituted for free instances of 𝑦, 
supposing that 𝑥 does not become bound in any of these occurences) 

𝜙(0\𝑛)  
∀𝑛∀𝑚 ( 𝑁𝑛 & 𝑆𝑛,𝑚 & 𝜙 ⇒  𝜙 (𝑚\𝑛) )  
------------------------------------------------- 
∀𝑛 ( 𝑁𝑛 ⇒ 𝜙 ) 

Now probably the first thing to note in this system is that there may not even be any natural numbers! 
There are no axioms, for instance, like  
𝑁0, 
∀𝑛∀𝑃∀𝑎 ( ¬ 𝑃𝑎 & 𝑀𝑛,𝑃 ⇒  ∃𝑚 𝑀𝑚, {𝑥 ∶  𝑃𝑥 ∨  𝑥 =  𝑎} ), 
or B3, which state that certain natural numbers exist. Nonetheless, both POTINF and ACTINF are 
provable. Indeed, both become more "easily" true if there is a paucity of natural numbers; in the 
extreme, if there are no natural numbers whatsoever, both POTINF and ACTINF are trivially true.  

Secondly note that it is a metatheorem that induction may be replaced by (F6*): 

𝜙(0\𝑛)  
∀𝑛∀𝑚 ( 𝑁𝑛 & 𝑁𝑚 & 𝑆𝑛,𝑚 & ¬ 𝑚 =  0 & 𝜙 ⇒  𝜙(𝑚\𝑛) )  
------------------------------------------------- 
∀𝑛 ( 𝑁𝑛 ⇒  𝜙 ) 

Q1 ∀𝑃∀𝑄 (𝑀0,𝑃 & (𝑃 ==  𝑄 ⇔  𝑀0,𝑄)) 
Pf: Assume 𝑀0,𝑃. By F4, ∀𝑥 ¬ 𝑃𝑥. Suppose 𝑃 ==  𝑄, i.e. there is a 1-1 relationship from 𝑃 onto 𝑄. 
Then ∀𝑥 ¬ 𝑄𝑥. By F4, 𝑀0,𝑄. On the other hand, suppose 𝑀0,𝑄. Then ∀𝑥 ¬ 𝑄𝑥 by F4. So the empty 
relationship proves that 𝑃 ==  𝑄. 



Q2 ∀𝑃∀𝑛 (𝑁𝑛 & 𝑀𝑛,𝑃 & ¬ 𝑛 =  0 ⇒  ∃𝑎 𝑃𝑎) 
Pf:  Assume 𝑁𝑛 & 𝑀𝑛,𝑃 and ¬ 𝑛 = 0, and suppose ∀𝑎 ¬ 𝑃𝑎. By F4, 𝑀0,𝑃. By F3, 𝑛 =  0, a 
contradiction. 

Q3 ∀𝑃∀𝑄∀𝑛 (𝑁𝑛 & 𝑀𝑛,𝑃 ⇒  (𝑃 ==  𝑄 ⇔  𝑀𝑛,𝑄)) 
Pf:  By induction. Q1 proves the case 𝑛 =  0. Suppose 
𝑁𝑛 & 𝑁𝑚 & 𝑆𝑛,𝑚 & ¬  𝑚 =  0 & ∀𝑃∀𝑄 (𝑁𝑛 & 𝑀𝑛,𝑃 ⇒  (𝑃 ==  𝑄 ⇔  𝑀𝑛,𝑄)). Suppose further 
that 𝑀𝑚,𝑃. By Q2, 𝑃𝑎 for some 𝑎. Consider 𝑃′ =  𝑃 \ {𝑎}. Obviously, ¬ 𝑃′𝑎 and                  
∀𝑥(𝑃𝑥 ⇔  𝑃′𝑥 ∨  𝑥 =  𝑎). By F5, 𝑀𝑛,𝑃′. 
 Now suppose 𝑃 ==  𝑄. Let 𝑅 be a 1-1 relationship from 𝑃 onto 𝑄. Then 𝑅𝑎𝑏 for a unique 𝑏 
s.t. 𝑄𝑏. Consider 𝑄′ =  𝑄 \ {𝑏}. 𝑅 \ {(𝑎, 𝑏)} is 1-1 from 𝑃′ onto 𝑄′, so 𝑃′ ==  𝑄′. By the induction 
hypothesis, 𝑀𝑛,𝑄′. ¬ 𝑄′𝑏 and ∀𝑥(𝑄𝑥 ⇔  𝑄𝑥′ ∨  𝑥 =  𝑏), so by F5, 𝑀𝑚,𝑄. 
Suppose 𝑀𝑚,𝑄. Since ¬ 𝑚 =  0, 𝑄𝑏 for some 𝑏 by Q2. Consider again 𝑄′ =  𝑄 \ {𝑏}. Of course, 
¬ 𝑄′𝑏 and ∀𝑥(𝑄𝑥 ⇔  𝑄′𝑥 ∨  𝑥 =  𝑏). So by F5, 𝑀𝑛,𝑄′. By induction, 𝑃′ ==  𝑄′. Let 𝑅′ be the 1-1 
relationship from 𝑃′ onto 𝑄′. Then 𝑅′ ⋃ {(𝑎, 𝑏)} is 1-1 from 𝑃 onto 𝑄. That is, 𝑃 ==  𝑄. 

Abbreviate ∀𝑥(𝑃𝑥 ⇔  𝑄𝑥) by 𝑃 𝑒𝑞𝑣 𝑄. Remark that  

Q3' ∀𝑛∀𝑃∀𝑄 ( 𝑁𝑛 & 𝑀𝑛,𝑃 & 𝑃 𝑒𝑞𝑣 𝑄 ⇒  𝑀𝑛,𝑄 ) 

follows from Q3, since 𝑃 𝑒𝑞𝑣 𝑄 implies 𝑃 ==  𝑄. 

Abbreviate ∀𝑥(𝑃𝑥 ⇒  𝑄𝑥) by 𝑃 𝑐𝑛𝑡 𝑄 (𝑃 "contained in" 𝑄). 

Abbreviate 𝑃 𝑐𝑛𝑡 𝑄 & ¬ 𝑃 𝑒𝑞𝑣 𝑄 by 𝑃 𝑝𝑐𝑛 𝑄 (𝑃 "properly contained in 𝑄"). 

Abbreviate ∀𝑥 (𝑃𝑥 ⇒  𝑥 𝑝𝑐𝑛 𝑃) by 𝑯 𝑃. 

Q4 ∀𝑃 (𝑯 𝑃 ⇒  ¬ 𝑃𝑃) 
Pf:  Suppose 𝑯 𝑃. Then 𝑃𝑃 ⇒  𝑃 𝑝𝑐𝑛 𝑃. Since ¬ 𝑃 𝑝𝑐𝑛 𝑃, we conclude that ¬ 𝑃𝑃. 

Q5 ∀𝑃 (𝑀0,𝑃 ⇒  𝑯 𝑃) 
Pf:  Suppose 𝑀0,𝑃. By F4, ∀𝑥 ¬ 𝑃𝑥. So ∀𝑥 (𝑃𝑥 ⇒  𝑥 𝑝𝑐𝑛 𝑃) vacuously. 

Abbreviate {𝑥 ∶  𝑃𝑥 ∨  𝑥 =  𝑃} by (𝑃+).  

Q6 ∀𝑥((𝑃+)𝑥 ⇔  𝑃𝑥 ∨  𝑥 =  𝑃) 
Pf:  By F1. Remark that 𝜙 is 𝑃𝑥 ∨  𝑥 =  𝑃, so that the only variable in a predicate position, namely 
"𝑃", is free. 

Q7 ∀𝑃 (𝑯 𝑃 ⇒  ¬ 𝑃 𝑒𝑞𝑣 (𝑃+)) 
Pf:  Suppose 𝑯 𝑃 and 𝑃 𝑒𝑞𝑣 (𝑃+). (𝑃+)𝑃 by Q6, so 𝑃𝑃 by equivalence. This contradicts Q4. 

Q8 ∀𝑃 (𝑯 𝑃 ⇒  𝑃 𝑝𝑐𝑛 (𝑃+)) 
Pf:  Suppose 𝑯 𝑃. By Q7, ¬ 𝑃 𝑒𝑞𝑣 (𝑃+). But obviously 𝑃 𝑐𝑛𝑡 (𝑃+). So 𝑃 𝑝𝑐𝑛 (𝑃+). 

Q9 ∀𝑃 (𝑯 𝑃 ⇒  𝑯 (𝑃+)) 
Pf:  Assume 𝑯 𝑃. Suppose (𝑃+)𝑥. Then 𝑃𝑥 ∨  𝑥 =  𝑃. In the first case, 𝑥 𝑝𝑐𝑛 𝑃 since 𝑯 𝑃. Since 
𝑃 𝑐𝑛𝑡 (𝑃+), 𝑥 𝑝𝑐𝑛 (𝑃+). In the second case, use Q8.  

Q10 ∀𝑛 (𝑁𝑛 ⇒  ∃𝑃 (𝑯 𝑃 & 𝑀𝑛,𝑃)) 
Pf:  By induction. By Q5, 𝑯 {𝑥 ∶  ¬ 𝑥 =  𝑥}. By F4, 𝑀0, {𝑥 ∶  ¬ 𝑥 =  𝑥}. So true for 𝑛 =  0. Suppose 
𝑁𝑛 & 𝑆𝑛,𝑚 & ∃𝑃 (𝑯 𝑃 & 𝑀𝑛,𝑃). Indeed, suppose 𝑯 𝑃 & 𝑀𝑛,𝑃 for some P as promised. Then 
𝑯 (𝑃+) by Q9. ¬ 𝑃𝑃 by Q4. Then 𝑀𝑚, (𝑃+) by F5 and Q6.  



Q11 POTINF 
Pf:  Suppose 𝑁𝑛. By Q10, 𝑯 𝑃 & 𝑀𝑛,𝑃 for some 𝑃. ¬ 𝑃𝑃 by Q4. 

Q12 ∀𝑃∀𝑄∀𝑛 ( 𝑁𝑛 & 𝑀𝑛,𝑃 & 𝑀𝑛,𝑄 & 𝑃 𝑐𝑛𝑡 𝑄 ⇒  𝑃 𝑒𝑞𝑣 𝑄 ) 
Pf:  By induction. True by F4 for 𝑛 =  0. Suppose then 
𝑁𝑛 & 𝑆𝑛,𝑚 & ¬ 𝑚 =  0 & ∀𝑃∀𝑄)(𝑁𝑛 & 𝑀𝑛,𝑃 & 𝑀𝑛,𝑄 & 𝑃 𝑐𝑛𝑡 𝑄 ⇒  𝑃 𝑒𝑞𝑣 𝑄). And suppose 
𝑁𝑚 & 𝑀𝑚,𝑃 & 𝑀𝑚,𝑄 & 𝑃 𝑐𝑛𝑡 𝑄. As usual, 𝑚 =  0 has already been shown, so we may suppose 
¬ 𝑚 =  0. Then ¬ 𝑃𝑎 for some 𝑎, and we let 𝑃′ =  𝑃 \ {𝑎} and 𝑄′ =  𝑄 \ {𝑎}. By F5, 𝑀𝑛,𝑃′ and 
𝑀𝑛,𝑄′. Obviously, 𝑃′ 𝑐𝑛𝑡 𝑄′. By the induction hypothesis, 𝑃′ 𝑒𝑞𝑣 𝑄′. So 𝑃 𝑒𝑞𝑣 𝑄.  

Q13 ACTINF 
Pf:  Suppose 𝑁𝑛 & 𝑀𝑛, {𝑥 ∶  𝑥 =  𝑥} for some 𝑛. By Q11, 𝑀𝑛,𝑃 & ¬ 𝑃𝑎 for some 𝑃 and 𝑎. Evidently, 
𝑃 𝑐𝑛𝑡 {𝑥 ∶  𝑥 =  𝑥}. By Q12, 𝑃 𝑒𝑞𝑣 {𝑥 ∶  𝑥 =  𝑥}. But then ¬ {𝑥 ∶  𝑥 =  𝑥}𝑎, contradicting F1. 

Now as my high-school English teachers were always fond of saying, "Compare and contrast the two 
systems." And maybe I'm just a little biased, but there are assumptions in the Fregean system which I 
would not choose to make. 

Boolos himself criticizes B3, citing the case of {𝑥 ∶  𝑥 =  𝑥}. Now I think he is correct in his criticism, 
but by singling out this set/class/predicate, he has taken the easy route, and he is appealing to the gut 
instincts of his audience, who largely believe in ZF, where {𝑥 ∶  𝑥 =  𝑥} doesn't exist, much less have a 
number. But really the difficulty is much more widespread: there is no reason to suppose that most sets 
have a number. This idea (sorry for the polemics, but it must be said) is best called Cantor's Fallacy, 
since Cantor was the first to suppose that by some magical capability, we could abstract from the fact 
that P and Q are equinumerous (can be put into 1-1 correspondance) to the thesis that P and Q both 
have a number and indeed the same number. And there just is no reason to suppose this, anymore than 
there is to suppose that N or the real numbers R or, yes, {𝑥 ∶  𝑥 =  𝑥}, have a number. 

Nor is B3 the only dubious axiom. Once B3 establishes that N has a number, it is B4 which implies that 
the even numbers have the same number as all the natural numbers, which again is a modern prejudice 
dating from Cantor, without any particular backing. Even if one were to accept B4 as true, it would 
seem more of the nature of something to be proved, rather than assumed. 

Finally, even B7 seems a bit over-reaching. Because of it, 𝑆𝑚, 𝑛 implies that there are 𝑛 (and 𝑚) 
objects, which again seems more something which should be proved, rather than assumed. That 100 
succeeds 99 shouldn't straightaway imply that there are 100 things. 

Against this, the second system only assumes that predicates may be objects. While this goes against 
the separation of object-concept most notably put into place by Frege, and also the set-class distinction 
which logicians are very comfortable with, it nonetheless is the more natural approach. As Quine 
insisted, if you're quantifying it, then it is an object. If "All 𝑃 have a number" (the assumption B3), well 
then 𝑃 certainly seems to be an object. 

All this goes to suggest that Frege's proof has serious problems. Nonetheless, to give Frege his due, the 
"bootstrap" technique does in fact go through, in second-order logic with only predicative 
comprehension, using different axioms, indeed F3, F4, F5, and F6.  

So, Frege is much like Dedekind in this respect: he must be credited with the major intuition and 
insight, but criticized ultimately for his particular implementation. In short, in this particular contest 
between Dedekind and Frege, it is not so much a victory for Frege, but more like a draw. 

	


