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Introduction
e emerging discipline of evolutionary developmental biology (also known as evo-

devo) has been driven, in part, by evidence demonstrating the existence of non-
genetic forms of inheritance that are developmentally derived—in particular 

epigenetics or cell memory (Hall, 2003; Müller, 2008).1  Where earlier theorists had 
supposed that evolution results only from natural selection acting on variation that 

is both produced and transmitted via genetic mechanisms, proponents of evo-devo 
argue that non-genetic developmental mechanisms can also contribute importantly 

to changes in the distribution of phenotypes in populations over time. Non-genetic 
inheritance provides important support for this claim.

 Uptake of this new perspective has been uneven, however. Some areas of 
evolutionary study have seen vigorous engagement with the broad conceptual 

framework offered by evo-devo—the study of the evolution of morphological traits 
is a notable example. In contrast, those who work on the evolution of behavioral 

traits—especially workers in the fields of animal behavior, behavioral ecology and 
ethology—have shown scarcely any substantial engagement with the theoretical 

framework presented by evolutionary developmental biology (Ghalambor et al., 

2010: 90; Bertossa, 2011: 2056-57). 2

 One reason for the lack of engagement with evo-devo in behavioral biology 
may be the perception that evo-devo is concerned solely with understanding the 

role development plays in morphological evolution. Evo-devo has its roots in the 
evolutionary embryology of the 19th century, a field focused on the embryonic 
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1 There are other threads of evidence supportive of an evo-devo research program besides 
evidence for non-genetic inter-generational inheritance that is developmentally derived. For 
example, the growing body of work on developmental constraint and the origins of body 
plans. Müller, 2008 provides a nice overview of the many conceptual foundations of evo-
devo that makes these different threads of evidence clear.

2 There are some notable exceptions to this general trend. For example; Carroll and Corneli, 
1999; Gottlieb, 2001; Sih et al., 2004a; Sih et al., 2004b; Laland et al.,  2008; Dingemanse 
et al., 2010; Ghalambor et al., 2010; Mery and Burns, 2010; Bertossa, 2011: 2056-57.



foundations of morphology and body plans (Hall, 2000; Müller, 2008). ese 
origins are still reflected in the way evo-devo is most oen discussed today. Many 

key proponents of evo-devo still describe its explanatory focus as being the “origins 
of organismal form” and discuss key evo-devo concepts such as innovation and 

novelty in terms peculiar to morphology (for example, Müller and Newman, 2005; 
Müller, 2007; Müller, 2008; Müller, 2010). is focus upon morphological evolution 

gives the appearance that evo-devo could only ever be concerned with morphology, 
but the appearance is deceptive. Evo-devo at its heart is a science concerned with 

the relationship between development and evolution in general, not just 
morphological development and morphological evolution. ough much of the 

empirical work that has moved the field forward has focused on morphological 
cases, at a theoretical and conceptual level evo-devo is simply concerned with the 

influence of development upon phenotypic variation, regardless of the traits in 
question. us, if it can be shown that developmental processes play a role in the 

evolution of behavioral traits, just as they do for some morphological traits, then 
the existing conceptual framework offered by evo-devo is the obvious starting point 

for researchers wishing to understand behavior in light of this evidence.
 In this paper I seek to motivate those working in behavioral biology to 

engage with evo-devo, by pointing out some evidence demonstrating that 
developmental processes can play a role in the evolution of behavior. I begin the 

paper with an overview of evo-devo, focusing on the relationship between the 
emerging conceptual framework it represents and the status quo within 

evolutionary biology—the “received” view or Modern Synthesis (this being the 
most prevalent account of evolutionary biology within behavioral ecology, ethology 

and animal behavior). I then show how non-genetic inter-generational forms of 
inheritance lend support to the evo-devo approach, using chromatin marking (a 

developmentally-derived form of epigenetic inheritance) as an example. In the 
second part of the paper, I argue that a type of behavioral inheritance—social 

learning—presents a challenge to the Modern Synthesis analogous to that provided 
by epigenetics. Like chromatin marking, social learning is a non-genetic inheritance 

channel. It is a developmental process via which behavioral traits acquired during 
the lifetime of the parent can be transmitted to their offspring and subsequent 

generations, thus contributing to evolution. is interplay between the evolution 
and the developmental process of social learning is important to explaining the 

evolution of behavior in numerous species and thereby justifies the application of 
the evo-devo research approach to the behavioral domain.
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1. Evo-devo: Moving away from the Modern Synthesis
 1.1 What is the Modern Synthesis?
Since the mid-twentieth century the dominant theory within evolutionary biology 

regarding how the requirements for selection are satisfied has been the Modern 
Synthesis (or “received view”). e Modern Synthesis is a general theory of 

evolution and includes claims both about the conditions that are necessary in 
principle for evolution by natural selection to take place, and about how these are 

actually instantiated. 
 In the simplest case, three necessary conditions must hold within a 

population for it to undergo evolution by natural selection—(I) phenotypic 
variation, (II) heritability of phenotype and (III) differential survival and 

reproduction. When these three conditions hold in any population of entities, 
evolution by natural selection is highly likely (Lewontin, 1970: 76; Godfrey-Smith, 

2008). A fourth condition, (IV) cumulative selection, is required for the evolution 
of complex adaptations (Sterelny and Griffiths, 1999). is requires that inheritance 

be stable over many generations. Without such stability of inheritance, the 
accumulation of beneficial mutations necessary for complex adaptation is not 

possible. 
 One key empirical claim of the Modern Synthesis is that the underlying 

biological structures enabling evolution by natural selection to occur are 
predominantly genetic (Huxley, 2010; Mayr, 1982: 542-46; Dobzhansky, 1937: 26; 

Fisher and Bennett, 1999). In other words, genes are the major channel of 
inheritance for traits, and it is genetic mutation and recombination that provide 

heritable phenotypic variation within populations. Furthermore, the supply of 
variation generated by these mechanisms is taken to be largely isotropic (uniform in 

all directions) and thus unbiased with respect to adaptive value. A further 
conclusion is generally accepted along with these claims: that the large-scale 

evolutionary events in the tree of life (such as the emergence of novel capacities or 
morphological features) are simply the outcome of the accumulation of a series of 

small-scale events at the genetic level (Jablonka and Lamb, 2005; Bonduriansky and 
Day, 2009).  But this is not (as the others are) an empirical claim; it is a simplifying 

assumption or idealization that allows evolutionary biologists to ignore features of 
the world which, according to proponents of the Modern Synthesis, are not of 

evolutionary significance on a large scale (Mayr, 1982: 832).  To illustrate—the 
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Modern Synthesis is only committed to the empirical claim that the underlying 
biological structures enabling natural selection to occur are predominantly genetic, 

not that they are exclusively so. Proponents of the Synthesis do not deny that non-
genetic structures capable of sustaining selection exist, nor that evolution via these 

routes of inheritance may occur. For example, Richard Dawkins (a prominent 
advocate of the Modern Synthesis) takes seriously the possibility that human 

culture can evolve by natural selection in his discussion of memetic evolution 
(Dawkins, 1976). at non-genetic structures capable of sustaining selection are 

widespread enough to contribute to evolution beyond a few special contexts, 
however, is denied. e transmission of behavior via human culture is thus not 

included as a source of heritable phenotypic variation in the general account of 
evolution presented by the Modern Synthesis, because it is considered relevant only 

to a “special” and restricted class of species (i.e. humans and other higher primates) 
(Tomasello, 1999a; Tomasello, 1999b; Dawkins, 2004).  is idealization is a very 

strong one. Advocates of the Modern Synthesis are claiming that we need look only 
to natural selection and gene frequency change over time in order to explain the 

vast majority of evolution—nothing else is relevant to this task (Stebbins and Ayala, 
1981; Charlesworth, 1996; Dawkins, 2004; Mayr, 1993).

 One consequence of this idealized view of the evolutionary process is that 
proponents of the Modern Synthesis “bracket off” the study of development and 

ontogeny from the study of evolution (Sterelny, 2000; Müller, 2007; Jablonka and 
Lamb, 2005; Gilbert et al., 1996). is key aspect of the Modern Synthesis is best 

represented by Ernst Mayr’s widely-accepted proximate-ultimate distinction (Mayr, 
1961; Beatty, 1994). According to Mayr (a key architect of the Modern Synthesis) 

when we look at the types of questions asked in biology we are able to identify two 
domains of enquiry—functional biology and evolutionary biology. Research in 

functional biology is fundamentally concerned with “how” questions, such as “how 
does a bat wing develop?” and “how does the bat wing work?” Mayr claims that 

answering these questions requires the functional biologist to uncover a particular 
type of cause—a proximate cause. Proximate causes “govern the responses of the 

individual (and his organs) to immediate factors of the environment” and include 
development, ontogeny, and agency (Mayr, 1961: 1503). Research in evolutionary 

biology, on the other hand, concerns an entirely different set of questions—“why” 
questions, such as “why does the bat have wings?” and “why do bats and birds both 

have wings?” According to Mayr, answering “why” questions requires that the 
evolutionary biologist look to a different type of cause—an ultimate cause. Ultimate 
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causes “are responsible for the evolution of a particular DNA code of information 
with which every individual of every species is endowed” (Mayr, 1961: 1503). 

Natural selection is—unsurprisingly—the central ultimate cause. According to 
Mayr these two domains of enquiry (functional biology and evolutionary biology) 

are largely causally independent—they are concerned with answering 
fundamentally different questions; they answer them by appeal to different sets of 

causes; and the research within each of those domains can provide little (if any) 
explanatory traction upon the questions of the other. us, biologists who conflate 

these two classes of questions—for example, by attempting to respond to ultimate 
questions by considering development, or by attempting to respond to proximate 

questions by considering adaptation—are making a serious category mistake.
 Mayr’s view makes excellent sense within the context of the gene-focused 

view he advocated.  If, as the Modern Synthesis assumes, the sole inheritance 
channel is the transmission of DNA in the germ-line cells, it follows that only traits 

and variants that arise from genetic mutation and recombination in the germ line 
can contribute to natural selection. Any other traits or variants that arise (for 

example those acquired via developmental or environmental processes) are not 
important in the evolutionary context, as they are assumed not to be heritable: 

while selection may act upon them, no evolutionary change can result. In this 
context the bracketing-off of developmental biology from evolutionary biology is 

entirely reasonable. If proponents of the Modern Synthesis are correct to presume 
that genetic inheritance is the only kind there is, then developmental processes are 

indeed causally independent from evolutionary processes and irrelevant to them. 

 1.2 Enter evolutionary developmental biology 
Evolutionary developmental biology (or evo-devo) challenges this aspect of the 

Modern Synthesis, for its subject matter is precisely the relationship between the 
developmental processes within individuals and evolutionary processes within 

populations (Hall, 1999; Müller and Newman, 2005). 3  Proponents of evo-devo take 

seriously the potential for so-called proximate causes (in particular, developmental 

processes) to inform our understanding of evolutionary “why?” questions. ey 

Rethinking Behavioral Evolution

5

3 This is itself an oversimplification. Evo-devo is a broad church. There are many ways in 
which evo-devo can be said to challenge or disagree with the Modern Synthesis, I present 
but one here.  The true extent and nature of the challenge evo-devo presents to the Modern 
Synthesis is as yet unresolved (Hall, 2000; Laubichler, 2009; Minelli, 2009; Craig, 2009, 
2010a, 2010b; Müller and Pigliucci, 2010).



thus challenge Mayr’s supposition that functional and evolutionary biology are 
effectively independent. 

 In particular, evolutionary developmental biologists investigate the 
potential for developmental mechanisms to contribute to and influence the supply 

of variation to natural selection. Key issues within evo-devo such as plasticity, 
novelty, innovation, and evolvability relate to the mechanisms supplying phenotypic 

variation to selection and the nature of that supply (Müller and Newman, 2005). By 
incorporating both proximate and ultimate causes into their investigations, 

evolutionary developmental biologists make it possible to entertain a picture of 
evolution that includes both developmental processes and natural selection (Hall, 

1999; Müller and Newman, 2005).   
 Proponents of evo-devo thus reject Mayr’s sharp dichotomy, but most of 

them do so in a reformist rather than a revolutionary spirit, regarding the account 
of the evolutionary process provided by the Modern Synthesis as overly simplified 

rather than eschewing it altogether (Laland et al., 2012). In particular, the 
presumption that genes provide the sole route for phenotypic inheritance and that 

development therefore has no place in evolution is seen as the consequence of a 
view of the nature of evolution that is overly simplified rather than wholly mistaken. 

Proponents of evo-devo argue that developmental processes are important in 
structuring the supply of phenotypic variation to selection and thus can explain 

disparity in the tree of life: biases in the available variation can drive different 
populations’ evolutionary trajectories in different directions (Müller, 2008). ey 

also claim that there are there are extra-genetic channels of inheritance that come 
into play during development and are not captured if we simply focus upon gene 

frequency change over time in populations (Jablonka and Lamb, 2005). us, 
because it “brackets off” developmental processes from the processes of evolution, 

the Modern Synthesis cannot adequately capture the true nature of evolution and 
the actual role of natural selection in shaping the tree of life as we see it today 

(Pigliucci, 2007, 2008, 2009; Pigliucci and Muller, 2010). One key piece of evidence 
supporting this assessment of the Modern Synthesis by advocates of evo-devo 

comes from the study of epigenetics—the functioning of extra-genetic cellular 
entities that are heritable and apparently widespread (Hall, 2003; Raff, 1998; Müller, 

2007; Müller, 2008). 

 1.3 Epigenetics
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e science of epigenetics or “cell memory” is the study of changes in phenotype or 
gene expression that are not generated by changes in the DNA of the cell (Hall, 

2011).  A simple example of an epigenetic effect is seen during growth in our own 
bodies. As our bodies develop, the cells in our body (despite carrying the same 

DNA) change in morphology and physiology according to the role they are playing 
in the body. For instance, bone cells, brain cells, and skin cells all differ in 

appearance and action despite containing the same complement of DNA. Variation 
in the appearance and action of these cells is due to the differential activation of 

gene expression in the cells during development. Importantly for our purposes here, 
when such differentiated cells divide during growth, each daughter cell has the 

same activation pattern as its parent cell. e inheritance of the activation pattern 
from parent to daughter cell is not solely caused by the transmission of genetic 

material from parent cell to daughter cells. Epigenetic material—non-genetic 
cellular factors—must be transmitted as well. For our purposes what is important is 

that such mechanisms are widespread and, in some cases, have been shown to be 
capable of facilitating the type of cell-to-cell inheritance needed to satisfy the 

heredity requirement for natural selection (Grant-Downton and Dickinson, 2006; 
Richards, 2006; Jablonka and Lamb, 2008; Jablonka and Raz, 2009; Gilbert and Epel, 

2009; Richards et al., 2010). One example of this is chromatin marking.
 Chromatin is the material that makes up chromosomes. In addition to 

DNA this includes non-genetic molecules such as RNA, proteins, and other 
molecules. e way that these non-genetic factors within the chromatin are 

distributed along the DNA making up any given chromosome is known as 
“chromatin marking”. Crucially, this marking influences which genes on each 

chromosome are expressed and when. In other words, these non-genetic factors 
determine how the genetic code is read and interpreted. Some of these marks and 

the gene expression patterns they control have been shown to be heritable. e best 
studied of these is DNA methylation patterns.

 DNA methylation is the attachment of a methyl group to the DNA within 
the chromosome. It is seen in all vertebrates and plants, and in some invertebrates, 

fungi, and bacteria (Jablonka and Lamb, 2005). Methylation affects gene expression; 
the presence or absence of these methyl groups, and their density in a region of 

DNA, alters the likelihood of that region of DNA being transcribed. e 
transgenerational inheritance of methylation patterns and their phenotypic effects 

has been shown in asexual plants and single-celled organisms (Chong and 
Whitelaw, 2004; Richards, 2006; Hauser et al., 2011; Youngson and Whitelaw, 2008) 
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and amongst eukaryotes (Morgan et al., 1999; Rakyan et al., 2001; Crews et al., 
2007; Anway and Skinner, 2006; Cropley et al., 2006; Cuzin et al., 2008; Youngson 

and Whitelaw, 2008). 
 In single-celled and asexually budding organisms the primary mode of 

inheritance for methylation patterns, known as structural inheritance, involves the 
transfer of elements of the parental cells to offspring during mitotic reproduction or 

binary fission (Jablonka and Raz, 2009). In particular, when cells reproduce via 
meiosis, mitosis, or fission, the parent cell is cleaved into a number of daughter 

cells. In this process the parent cell is lost, but elements of its structural properties 
are conserved in the daughter cells. One such conserved structure is methylation 

patterns in the DNA. e conservation of these patterns results in the replication of 
phenotypic effects seen in the parent cells, in the offspring cells.

 In sexually-reproducing multi-cellular organisms like mammals, the 
mechanisms of inheritance are less well understood. In these organisms many of the 

chromatin markings of cells in the offspring are “reprogrammed” rather than 
maintaining the parental state during reproduction and early embryonic 

development (Reik et al., 2001). While originally it was thought that this 
reprogramming completely ruled out the inheritance of epigenetic factors in sexual 

organisms, more recent research has shown that the erasure of methylation patterns 
is incomplete, at least with respect to the maternal alleles (Morgan et al., 1999; 

Chong and Whitelaw, 2004; Blewitt et al., 2006). e agouti viable yellow mouse 
allele provides the most famous example of this type of inheritance in mammals.

Fig. 1: Genetically identical (but epigenetically different) mice
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ese mice represent the continuum of phenotypes ranging from yellow on the le 
to agouti on the right depending on the level of activation of the agouti viable 

yellow (Avy) allele.

(Source: Morgan et al., 1999)
 

 e mice in the picture above are genetically identical. ey all carry two 
alleles at a genetic locus for wild-type coat colour: Avy and a. What differs between 

them is the amount of folic acid consumed by mouse dams during pregnancy. e 
smaller brown mice on the right had mothers who were fed folic acid. e larger 

mice on the le, did not (Wolff et al., 1998). e different diets of the two dams has 
led to the generation of different methylation patterns on the chromosomes of the 

embryos developing within them and thus different phenotypes. In particular, the 
presence or absence of folate in the maternal environment induces changes to the 

DNA methylation patterns and this alters whether the dominant “agouti viable 
yellow ” allele (Avy) within that embryo is “activated” or “inactive.” e phenotype 

of Avy/a mice pups is thus dependent on the level of activity of the Avy allele and 
ranging from yellow (Avy is strongly activated) through to agouti (Avy is not 

active).4

 e phenotypic effects of methylation at the Avy allele are transgenerational. 

All Avy/a mice are genotypically identical at the Avy allele, yet within this class, 
agouti dams are more likely than yellow dams to have agouti pups, and vice versa 

(Wolff et al., 1998; Morgan et al., 1999; Blewitt et al., 2006). It is clear that the 
inheritance of the phenotype from dam to pup results from the incomplete erasure 

of the epigenetic modification in the germ line cells (Cropley et al., 2006; Waterland 
et al., 2007), but the exact mechanism of inheritance is unclear. Although the 

methylation patterns that influence the expression of the Avy  allele in the dam are 
replicated in the juvenile offspring, those patterns are not seen in the offspring at 

the blastocyst stage of development, which is good evidence that the methylation 
patterns themselves are not being retained during cell reprogramming. Some other 

epigenetic element appears to be underwriting the inheritance here but it is not 
clear what it is (Blewitt et al., 2006). is problem is not restricted to the agouti 

viable yellow mouse allele; broader studies suggest that although the DNA 
methylation patterns are clearly important to the inheritance of the phenotype in a 
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number of cases, some other element is also required for transmission (Daxinger 
and Whitelaw, 2010; Jablonka and Raz, 2009).

 1.4 Lessons from chromatin marking 
Chromatin marking challenges some key assumptions of the Modern Synthesis 
regarding the supply of phenotypic variation to selection—in particular, the 

assumption that phenotypic variation to selection is exclusively supplied by genetic 
mechanisms and that the supply itself is isotropic. First, chromatin marking is a 

route of inheritance that is not genetic—while genes are necessary in such 
circumstances, they are not sufficient for the expression of the traits in question in 

the parent and their reiteration in further offspring; the particular chromatin 
marking patterns are also required. Furthermore, traits underwritten by chromatin 

marking are stable within lineages over multiple generations (Crews et al., 2007; 
Anway and Skinner, 2006) and potentially widespread—chromatin marking is 

found in all cells with chromosomes. Chromatin marking thus presents a source of 
variation that is heritable and potentially capable of contributing to cumulative 

selection, challenging the assumption that the only evolutionarily significant source 
of phenotypic variation to selection is via genetic mutation and recombination. In 

addition, the supply of variation via chromatin marking is not isotropic. Because 
chromatin marking arises via the interaction between the organism and the 

environment, it offers a route via which the environment can potentially bias the 
supply of variation to selection (though not necessarily towards adaptive benefit). 

Chromatin marking therefore can potentially help to explain the divergent 
evolutionary trajectories that create disparity in the tree of life.

 ere are still many questions surrounding chromatin marking, however. 
First, just how widespread is inter-generational inheritance via the transmission of 

chromatin marking? Although chromatin marking is clearly heritable across 
generations within many single-celled organisms, it is not clear how widespread its 

inheritance is in multicellular organisms. If it turns out to be very rare, then the 
gene-centrism of the Modern Synthesis would be justified. A second question 

relates to the stability and fidelity of the inheritance that chromatin marking offers. 
While it might be capable of maintaining selected traits over generations, can 

chromatin marking underwrite their persistence over the tens and hundreds of 
generations required for cumulative evolution and thus for the evolution of 

complex adaptations? If the evolutionary reach of chromatin marking is only very 
shallow, perhaps it can still be justifiably partitioned off from general evolutionary 
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theory. ese concerns cannot be ignored, but they alone do not threaten the 
science of evo-devo. Chromatin marking (like other epigenetic mechanisms) 

presents a potential alternative to genetic inheritance, and thus gives reason to 
question the idealizations of the Modern Synthesis even though at this time it does 

not conclusively discredit them. Epigenetic inheritance reveals the need for further 
research into the role of developmental factors in evolution and thus provides 

important motivation for the evo-devo research program (Müller, 2008).

2. Rethinking Behavioural Evolution
Epigenetic chromatin marking has been shown to underwrite both morphological 
and behavioral traits, and thus motivates the application of the evo-devo approach 

across a broad range of contexts (Jablonka and Raz, 2009; Bonduriansky and Day, 
2009). While this alone could be seen as sufficient to motivate an evo-devo of 

behaviour (Jablonka & Lamb, 2005), research in the behavioral domain also offers 
distinctive motivations of its own. In particular, as I will argue, social learning is a 

widespread and evolutionarily efficacious route of inheritance for behavioral traits; 
an extra-genetic channel of inheritance for characters acquired during 

development. It is also potentially a source of bias in the supply of variation. us, I 
claim, understanding the role that social learning plays in evolution requires us to 

focus upon the interplay between the developmental processes within individuals 
(in particular, those that are affected by social learning) and the evolution of 

populations over many generations— i.e. upon the subject matter of evo-devo. 
Evidence that social learning acts as a route of behavioral inheritance thereby 

motivates the extension of the evo-devo research approach to the behavioral 
domain, while the distinctive features of social learning as a form of inheritance 

raise new questions for that approach.
 I begin by discussing the view of social learning and evolution that is 

standard within behavioral biology—that inter-generational inheritance of 
behavioral traits via social learning sufficient to satisfy the requirements for 

cumulative selection is limited to only a few special cases in the animal kingdom. I 
then give an overview of the evidence demonstrating the widespread existence of 

animal traditions. Such traditions, I argue, represent a feasible source of non-
genetic inter-generational inheritance of behavioral traits that is widespread and 

stable enough to bring behavioral evolution within the ambit of evo-devo.
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 2.1 Social learning – the traditional view
Within behavioral ecology, animal behavior, and ethology there has been little to no 
engagement with evolutionary developmental biology (Ghalambor et al., 2010: 90; 

Bertossa, 2011: 2056-57). Rather, the Modern Synthesis, and the approach to 
development and evolution it advocates, is the norm. is is demonstrated clearly 

by the central role accorded to Mayr’s proximate-ultimate distinction and Niko 
Tinbergen’s related “four questions” of ethology in these fields (Tinbergen, 1951; 

Tinbergen, 1963; Griffiths, 2008; Manning, 2005). Tinbergen argued that behavioral 
biology is best understood as responding to four interrelated problems or questions

—Causation, Ontogeny, Survival Value and Evolution (Fig. 2)—each of which 
corresponds to a different aspect of the question “Why is behavior x as it is?” 

Tinbergen’s taxonomy established a set of principles that have defined research in 
behavioral biology for more than half a century. 

1. Causation:

How does it work?

2. Ontogeny:

How did it develop?
3. Survival value:

What is it for?

4. Evolution:

Why did it evolve?

Fig. 2: Tinbergen’s Four Problems

Textbooks and collections of papers on the foundations of animal behavior (Houck 

and Drickamer, 1996); methodology in the studying of animal behavior (Martin 
and Bateson, 2007; Lehner, 1998; Manning and Dawkins, 1998); behavioral 

evolution (Slater and Halliday, 1994); behavioral ecology (Krebs and Davies, 1997); 
cognitive evolution (Shettleworth, 2010); and cognitive ethology (Allen and Bekoff, 

1999), not to mention hundreds of journal articles published across these fields, all 
refer to Tinbergen’s “four questions.” Most of them explicitly combine them with 

Mayr’s distinction as in Fig. 3 (for example, Martin and Bateson, 

2007).5   
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Proximate

“How questions”

1. Causation:

How does it work?

3. Ontogeny:

How did it develop?

Ultimate

“Why questions”

2. Survival value:

What is it for?

4. Evolution:

Why did it evolve?

Fig. 3: Tinbergen’s Four Problems as questions with Mayr’s proximate-

ultimate distinction
 Social learning—learning that involves the use of information gained from 
other individuals such as the location of food sources or successful behavioral 

patterns—encompasses a range of different learning processes ranging from true 
imitation to stimulus enhancement (see Brown and Laland, 2003: Table 1 for a 

summary). It is accepted that such learning is widespread in the animal kingdom, in 
species from insects (Leadbeater and Chittka, 2007) to complex vertebrates (Galef Jr 

and Laland, 2005). What is less accepted is that such learning is a route via which 
behavioral traits can be inherited over multiple generations and thus contribute to 

the outcomes of evolution. Rather, those interested in the evolution of animal 
behavior generally assume that the intergenerational inheritance of behavior within 

animal lineages is solely genetic. is is unsurprising given the widespread 
acceptance of the Modern Synthesis within behavioral biology.

 Yet social learning obviously constitutes a channel through which 
behavioral patterns can be transmitted from one individual to another; a sort of 

inheritance. Why omit it from the evolutionary picture? Several widely-accepted 
assumptions about social learning are commonly invoked to justify this omission. 

To begin with, it is oen argued that most social learning processes lack the fidelity 
and stability required to underpin the persistence of traits required for the evolution 

of cumulative and complex behaviors via natural selection; that only true imitation
—the explicit copying of the behavior of others—and teaching can support the 

persistence of traits long enough for cultures or traditions to evolve (Tomasello, 
1999a; Tomasello, 1999b). Such imitation, it is then claimed, is cognitively 

demanding and thus limited to a few “special cases”—the few species that possess 
what are thought to be the appropriate cognitive capacities, such as humans and 

primates (e.g. Galef, 1992).  e assumption is thus that evolutionarily efficacious 
inheritance of behaviors by social learning is the rare exception, not the rule 

(Jablonka and Lamb, 2005; Laland and Janik, 2006; Avital and Jablonka, 2000). 
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Recent evidence of social learning and animal traditions beyond primates 
challenges this assumption, calling into question the exclusive focus upon genetic 

inheritance and the bracketing-off of development by those interested in the 
evolution of behavioral traits.

 2.2 Social learning – challenging the traditional view

Two types of evidence support the view that the inheritance of behaviors via social 

learning is both widespread and evolutionarily significant: first, evidence of the 
existence of culture and traditions beyond the primate lineage; second, evidence 

that culture and traditions can be generated by relatively simple learning 
mechanisms.

 Evidence of culture and traditions in non-human animals comes several 
sources. What is important is demonstrating that behavior is being transferred from 

one generation to the next via learning rather than via genes. A few different types 
of evidence are relevant here (in part due to Laland and Janik, 2006):

• e speed at which behaviors infiltrate a population: Behaviors that are 
produced by genetic mutation are generally slow to invade populations 

because, even when under very strong selection, they are transferred 
between individuals only during reproduction. If behaviors are 

heritable by social learning, however, they can feasibly invade entire 
populations within a generation. 

• e speed at which behaviors are lost from populations: Socially 
learned behaviors are more likely to suffer a rapid decline than 

genetically heritable behaviors. is is because the persistence of 
socially learned behaviors in populations is much more contingent on 

the environment and random events. In particular, there is no silent 
transmission of behavioral traits—if a trait is not expressed it cannot 

be learned by others. is contrasts with genetic traits, which can be 
recessive and skip generations.

• e arbitrariness of persistent behavioral traits: at arbitrary or 
maladaptive differences in behavior take hold in populations and 

persist is a good indicator of the social transmission of behavior 
between individuals, as via genetic inheritance alone we would not 

expect the traits to reach fixation because they play no adaptive role 
(Tomasello, 1994: 274-75). Persistent variations between groups or 
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geographic “clines” in behavior within spatially distributed groups that 
are not explicable by differences in environment are usually used as an 

indicator of arbitrariness.
• e outcomes of “cross-fostering” experiments: is type of 

experiment gives us information about the extent to which differences 
in behavior are due to maternal environment or to genetics. To 

illustrate, imagine two populations of the same species in very similar 
environments. e majority of individuals in one of those populations 

exhibit a foraging technique not seen in the other population—in this 
case, nut cracking. Furthermore the technique is known to have 

persisted in the population over multiple generations. We might want 
to test whether the variation in nut cracking capacity between the 

populations is the product of a genetic difference or a difference in 
“culture”. One way to do this is to look into the inheritance of the nut 

cracking behavior by doing cross fostering experiments (i.e. fostering 
the offspring of non-nut-cracking mothers with nut-cracking mothers 

and vice versa). If the nut cracking behavior is largely genetically 
inherited, we should not see it in those individuals taken from the 

non-nut-cracking population and raised in the nut-cracking 
population. is is because they should lack the appropriate genes. 

Conversely if the nut cracking behavior is inherited via some social 
means we should see it only those individuals raised in the nut-

cracking population. ose raised in the non-nut-cracking population 
will lack the technique because the appropriate social stimulus is 

unavailable to them in that environment.
 It is generally accepted that these types of evidence exist for some primates, 

particularly chimpanzees, Pan troglodytes (Whiten et al., 1999; Whiten, 2005). 
What is less accepted is the idea that some or all of the characteristics of culture and 

traditions are seen in other species, even those very far removed phylogenetically 
from primates. Among the most famous challenges to this view is the tool use of the 

New Caledonian crow (Corvus menuloides). 
 New Caledonian crows manufacture and use stick- and leaf-based tools for 

foraging. ese tools are complex and their successful use requires skill. ere is 
strong evidence that a significant portion of tool use and manufacture in New 

Caledonian crows is maintained in populations via social learning and that the 
complexity of the tools is a product of cultural evolution. First, there is evidence of 
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geographic clines in tool design and manufacture (Hunt and Gray, 2003; Hunt and 
Gray, 2007). Second, there is evidence of the relatively fast transmission of 

innovative behaviors within groups (Holzhaider et al., 2010). ird, there is 
evidence that social learning plays an important role in the development of the tool 

use and manufacture behaviors in juvenile crows similar to that played in the 
development of stick-fishing and nut-cracking technologies in chimpanzees 

(Holzhaider et al., 2010; Kenward et al., 2006). 
 While the crow case is particularly impressive for the cultural complexity 

involved and demonstrates that the cultural achievements of primates are not 
unique, it is not a demonstration that animal culture is widespread across different 

taxa. Simpler animal cultures and traditions have been more widely observed 
however. e multi-generational transmission of elements of songs and 

vocalizations via social learning is observed in birds (Kroodsma, 1980; Podos and 
Warren, 2007; Mundinger, 1982) and whales (Deecke et al., 2000; Yurk et al., 2002).  

Similarly, simple foraging techniques and innovations have been shown to persist 
within populations and be transmitted between generations via social learning in 

rodents (Aisner & Terkel, 1992), various birds (Lefebvre and Bouchard, 2003), and 
even fish (Laland et al., 2003; Brown and Laland, 2003). ese cases give grounds 

for thinking that animal cultures could be widespread. ey also give grounds for 
questioning the supposition that behavioral inheritance via social learning is 

limited to cases of imitation and teaching. Fish provide a particularly good example 
of this.

 Fish are traditionally thought to be fairly cognitively limited organisms, but 
recent studies have shown that fish are able to recognise and remember their shoal-

mates, foraging and nest locations, and navigational routes. ere is also evidence 
that fish learn via stimulus enhancement and social exposure —relatively 

cognitively simple processes (see Laland et al., 2003 and Brown and Laland, 2003 
for a review of the evidence in both cases). In some fish, researchers suggest that 

this evidence is sufficient to demonstrate the existence of traditions that persist 
across many generations. A good example of social learning in fish is seen in the 

bluehead wrasse (alassoma bifasciatum). In this species, information about the 
location of arbitrarily determined mating sites and how to get to them is 

transmitted from older to younger fish via simple learning mechanisms. Individuals 
learn the location of traditional mating sites by observing and following others 

rather than via more cognitively demanding means of social transmission such as 
explicit copying or “true” imitation. e use of such sites is determined not by genes 
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but by the maintenance of information about those sites in the lineage via social 
learning, and there is evidence that the use of such sites can span several 

generations (Laland and Janik, 2006). Similar mechanisms have been shown to 
maintain foraging behaviors in other species, such as milk-bottle opening in some 

birds (Sherry and Galef, 1984; Sherry and Galef, 1990; Lefebvre and Bouchard, 
2003). ese cases suggest that social learning is widespread, and can be 

underpinned by simple mechanisms. is lowers the bar for achieving inheritance 
via social learning considerably. 

 2.3 Stable inheritance via social learning
One challenge to the picture I have presented here concerns the fidelity and stability 
of social learning as a channel of inheritance. It is clear that behavior can be 

transferred between individuals via social learning over multiple generations, but 
what evidence is there that this route of inheritance provides sufficient fidelity of 

transfer or stability over multiple generations to satisfy the requirements for 
cumulative selection?

 Some features of social learning seem likely to undermine its ability to serve 
as an evolutionarily-significant channel of inheritance. First, unlike genetic 

inheritance, the inheritance of behavior via social learning cannot be silent: 
behavioral traits must be expressed in order to be transmitted. is makes the 

persistence of the traits far more fragile or sensitive to changes in the environment 
than in the case of genetic inheritance. Second, copying fidelity is crucial. Although 

copying failure is a potential source of novel behavioral variation in populations, it 
can also swamp out the effects of selection. is is a potential problem for genetic 

inheritance as well (a species with a very high mutation rate could not undergo 
cumulative selection), but simple social learning mechanisms such as stimulus 

enhancement appear particularly prone to copying error. Although these concerns 
are legitimate, they are not conclusive. Considering the role of niche construction 

may reveal mechanisms by which social learning can achieve robustness and high 
fidelity without the need for cognitively-demanding forms of imitiation.

 Niche construction refers to the ability of organisms to define, alter and 
build their own environments (Odling-Smee et al., 2003). e effects of niche 

construction can endure or accumulate over many generations, so that organisms 
inherit not just genetic information but features of their selective environment in 

what is known as “ecological inheritance.” Proponents argue that niche construction 
can have important evolutionary impacts, altering the course of the evolution for 
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niche-constructing species (and for other species with which they interact) by 
generating long-term changes to the environmental elements of the selective 

regime. Examples of niche construction include the manufacture of nests, burrows 
and webs by animals, the alteration of atmospheric gases by plants, and the fixation 

of nutrients by bacteria. 
 Niche construction has the potential to increase the robustness and fidelity 

of social inheritance. Niche construction in this context is best thought of as 
“scaffolding” for inheritance, capable of buffering social inheritance mechanisms 

from changes in the environment. It aids social inheritance, for example, by 
reducing the likelihood of losing cues or materials required for the transfer of traits. 

Niche construction can also increase the likelihood of high-fidelity transfer by 
adding redundancy to the system. Niche construction coupled with social learning 

can thus provide a more effective route of inheritance. A good example of both 
these outcomes is seen in the New Caledonian Crow case.

 We’ve noted already that New Caledonian Crow tool use is a particularly 
good example of animal culture outside the primate lineage. One way in which 

juvenile New Caledonian Crows learn to use tools is by interacting with the 
discarded tools of adult crows. Juvenile crows are naturally interested in the tools. 

ey pick them up and carry them about. ey also use them to mimic adults’ use 
of them (Holzhaider et al., 2010; Kenward et al., 2006). By interacting with their 

environment, New Caledonian Crows have set up a situation (unintentionally, of 
course) in which juvenile crows are able to gain familiarity with tool structure and 

manipulation before they even begin to make tools themselves. In this way, the 
discarded tools of adult crows provide a type of ecological scaffolding for the 

development of tool use in subsequent generations—i.e. the simple addition of 
discarded tools to the developmental environment of juveniles makes the effective 

transmission of tool use and manufacture via social learning more likely, increasing 
both the fidelity and the robustness of the transfer. It is worth noting that a similar 

phenomenon is observed in chimpanzee troops that engage in tool use (Tomasello, 
1994). 

 e role of niche construction in structuring the environment so as to 
facilitate the transfer of learned behaviors is not limited to cognitively complex 

species. Meerkats (Suricata suricatta) exhibit a type of niche construction in the 
transmission of foraging techniques. Meerkats eat scorpions. While they are a good 

source of protein, scorpions are also a potentially very costly prey because of their 
sting (which carries enough neurotoxin to kill an adult meerkat). Meerkats use 
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particular predation techniques for scorpions that involve disabling the sting. 
Interestingly—given the high costs of failure—these foraging techniques are 

learned. A form of niche construction scaffolds this learning. Adult meerkats 
modify the juvenile learning environment by presenting their offspring with live 

scorpions from which the adults have removed the stings. is is enables the naive 
foragers to learn from adults how to catch and disable scorpions, without the risk of 

a high cost sting (ornton and McAuliffe, 2006). Once again, niche construction 
here increases the robustness and fidelity of transmission of behaviors between 

generations. e stability of the transfer of behaviors via social learning is sensitive 
to the costs of failure or transfer error—if a behavior is only transferrable via a 

costly or dangerous learning situation its persistence in a population is fragile. 
Scaffolding the juvenile learning environment via the provision of “safe” prey items 

reduces the costs of learning in the meerkat, at least during the initial learning 
phase, and thus increases the effectiveness of social learning as a form of 

inheritance.
 ough the exact extent of social learning and its evolutionary reach 

remain unclear, niche construction provides a potential source of stability for social 
learning as a route of inheritance. Overall, the cases I have described provide good 

grounds for rethinking the relationship between development and selection in 
evolution. ere is reason to question the standing assumption in behavioral 

biology that inheritance via social learning plays little role in the evolution of 
behavioral traits. is evidence, like that of epigenetic inheritance, undermines the 

“bracketing-off” of development from studies of behavioral evolution. As with 
epigenetics, inheritance via social learning is developmentally derived—it is the 

consequence of experience rather than the transfer of genetic material from parent 
to offspring. It is thus a form of inheritance that is not captured if development is 

ignored in evolutionary biology. Social learning is also like epigenetics in that it is 
not totally understood. While there is evidence that social learning could be an 

important channel of inheritance it is not clear how important it actually is. More 
research is required to establish how widespread inheritance via social learning is, 

and to determine its “evolutionary reach.” Evo-devo is a science concerned with the 
relationship between the developmental processes within individuals and 

evolutionary processes within populations, and thus, research considering the 
relationship between the developmental process of social learning and evolution 

falls broadly within its purview. It is in this sense that we should be asking why 
social learning has not motivated an evo-devo approach to behavior if epigenetic 
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research motivates the application of evo-devo principles elsewhere in evolutionary 
biology.

3. Conclusion
In this paper I have argued that, like chromatin marking, social 

learning presents an important challenge to the bracketing off of 

development from evolution in the Modern Synthesis by being an 

example of a non-genetic inheritance route which is active during 

development. In doing this I have shown that there is clear motivation 

for the application of the evo-devo research framework in the 

behavioral domain. We already know that behavioral traits can be 

transferred over multiple generations via chromatin marking. is 

alone might be considered sufficient to motivate a reintegration of the 

study of behavioral development and behavioral evolution. Showing, 

in addition, that behavioral traits can also be transferred over multiple 

generations via social learning adds support to the claim that those 

interested in behavioral evolution should take seriously the interplay 

between development and evolution. Evo-devo, as a science that does 

take this interplay seriously, is the obvious place for behavioral 

biologists to begin the study of the evolutionary developmental biology 

of behavior.
 Moving to an evo-devo of behavior will require openness to change 

amongst both behavioral biologists and evolutionary developmental biologists. For 
behavioral biology it means thinking more about the developmental systems 

underpinning behaviors and the ways in which this could influence evolution. is 
will require untangling the messy interplay between genetics, development and the 

environment and a new way of looking at the proximate-ultimate questions of 
behavioral biology (Laland et al., 2012). is will be challenging, both conceptually 

and methodologically. 
 For evo-devo there will also be challenges. e focus of evo-devo research 

to date has been upon morphological traits and their evolution. Because of this, 
many key terms and concepts used in evo-devo are tailored to suit this agenda and 
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thus are not directly applicable to behavior. For example, the concepts of novelty 
and innovation in evo-devo are standardly defined in a manner that explicitly 

makes reference to variation in morphological features such as the metazoan body 
plan or anatomy (e.g. Müller, 2010; Table 12.1). Such concepts are not directly 

applicable to behavioral traits. New evo-devo concepts that are either more general 
or designed specifically with behavior in mind will be needed.

 While these challenges are real barriers to the use of the evo-devo research 
framework in the behavioral domain, the benefits of moving away from the 

standard approaches to behavioral biology towards an approach that integrates our 
understanding of development and evolution are potentially very large. For 

example, not only does social learning present a route of inheritance that is 
developmental; it is also a route of inheritance that is very oen biased to adaptive 

value. Learning is dependent upon the perceived benefit of the behavior being 
learned by the organism. Learned behaviors that are beneficial are maintained 

during the lifetime of the organism and behaviors that fail to be beneficial or lose 
their value tend to be lost. Unlike genetic inheritance that is blind to adaptive value, 

social learning is consequently a potential source of bias in the supply of variation 
to selection. It may increase the rate at which adaptations evolve (for example) and 

thus drive the emergence of disparity in behavior in the tree of life. us, taking 
into account a role for social learning as a route of inheritance may help to explain 

many aspects of behavioral evolution, including the persistence of behavioral traits 
in populations, the rapid loss of behaviors in populations, differences in the rates of 

behavioral evolution between lineages and differences in extinction rates. 
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